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Phaeoviruses discovered in kelp (Laminariales)
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Phaeoviruses are latent double-stranded DNA viruses that insert their genomes into those of their
brown algal (Phaeophyceae) hosts. So far these viruses are known only from members of the
Ectocarpales, which are small and short-lived macroalgae. Here we report molecular and
morphological evidence for a new Phaeovirus cluster, referred to as sub-group C, infecting kelps
(Laminariales) of the genera Laminaria and Saccharina, which are ecologically and commercially
important seaweeds. Epifluorescence and TEM observations indicate that the Laminaria digitata
Virus (LdigV), the type species of sub-group C, targets the host nucleus for its genome replication,
followed by gradual degradation of the chloroplast and assembly of virions in the cytoplasm of both
vegetative and reproductive cells. This study is the first to describe phaeoviruses in kelp. In the field,
these viruses infected two thirds of their host populations; however, their biological impact remains
unknown.
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Kelps (brown algae of the order Laminariales) are the
largest marine photosynthetic organisms, engineer-
ing temperate rocky coastlines into complex habitats
comparable to terrestrial forests, that support exten-
sive marine ecosystems (Dayton, 1985). Ectocarpoids
(order Ectocarpales) are small filamentous brown
algae (Cock et al., 2010) sharing habitat and close
evolutionary relationships with kelps (Kawai et al.,
2015). Ectocarpoids are host to the only fully
characterised seaweed viruses (genus Phaeovirus),
which are comprised of nine virus species infecting
seven ectocarpoid species. Phaeoviruses are eukar-
yotic algal viruses (family Phycodnaviridae) with
large (150–350 kb), complex double-stranded DNA
genomes (Schroeder, 2011), and are Nucleo-
Cytoplasmic Large DNA Viruses alongside Poxvir-
idae, Asfarviridae, Iridoviridae, Ascoviridae, and
Mimiviridae. The well-studied type species of
Phaeovirus sub-group A is Ectocarpus siliculosus
virus 1 (EsV-1), which infects Ectocarpus siliculosus
using a persistent strategy, integrating its genome
into the genome of hosts infected during their short
term as motile spores or gametes, that is, the only
wall-less life-cycle stages (Maier et al., 2002). Each
host cell inherits the phaeoviral genome, but

symptoms appear only in reproductive organs
(sporangia or gametangia), which are reprogrammed
to produce virus particles instead of host zoids
(Müller, 1996). Phaeoviral diversity and host range
are largely unknown (Park et al., 2011; Schroeder,
2011). For example, Stevens et al. (2014) provided
evidence that members of the Phaeovirus sub-group
B (mainly viruses that infect the ectocapoid Feld-
mannia) evolved from sub-group A, through genome
reduction and accompanying loss of DNA proof-
reading capability. This has led to Phaeovirus
increasing its host range and changing from a K- to
an r- strategist (Stevens et al., 2014).

There are approximately 13.5 thousand described
seaweed species (Guiry, 2012), with 13% belonging
to the brown algal class Phaeophyceae. Seaweeds are
possibly host to a vast, unexplored diversity of
viruses. There have been microscopic observations
of virus-like particles (VLPs) in some seaweeds other
than Ectocarpales, but none are described in any
greater detail (Schroeder, 2011). We have examined
three ecologically and commercially important
European kelp species, Laminaria digitata, L. hyper-
borea and Saccharina latissima, targeting the
phaeovirus-encoded major capsid protein (MCP)
gene using a standard PCR methodology (Stevens
et al., 2014). Samples were taken on both sides of the
English Channel (Supplementary Figure S1); they
included 34 field sporophyte tissue samples col-
lected from epiphyte-free meristematic zones, mix-
tures of gametophytes isolated from 82 fertile field
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sporophytes, and 28 clonal gametophyte cultures
isolated from gametophyte mixtures that were MCP
positive in PCR. In total, 64.7% of sporophytes and
23.2% of gametophyte mixes were phaeoviral MCP
positive (Supplementary Table S1).

Phylogenetic analysis of 28 sequences of MCP
fragments from kelps (160 bp in length; Figure 1),
obtained by Sanger sequencing of cloned PCR
products showed that the viral sequences from
Laminariales (sporophyte MCPs: KY063706-
KY063723 and gametophyte MCPs: HG003317-
HG003355, LdigPH10-30m: KY316507) formed a
cluster distinct from all known phaeoviruses, which
we name sub-group C (Figure 1; posterior probability
0.91). Sub-group C appears to share common
ancestry with sub-group A (posterior probability
0.93) and sub-group B (posterior probability 0.87).
Similar phaeoviral variants in sub-group C were
found in Laminaria and Saccharina, suggesting a
host range including multiple genera. The gameto-
phytes LdigPH10-18 and SlatPH10-7 each had 2
different viral MCP sequences, which suggests
multiple infection in a single host individual
(Figure 1). Given that a combined MCP-DNA poly-
merase phylogeny of ectocarpoid phaeoviruses

showed similar sub-group distinctions (Stevens
et al., 2014; Schroeder, 2015), it is unknown if sub-
group C diverged at the same time as sub-group B,
that is, during or after the speciation of the
Ectocarpales, or during or after the divergence of
Ectocarpales and Laminariales 90.5Ma (Kawai et al.,
2015). If algal viruses are ancient, then ancestral
phaeoviruses may have expanded their host range
into all brown algal orders. Many brown algal groups
need to be screened for viruses, followed by
phylogenetic analyses of any new viral sequences.
This would allow the common descent and lateral
transfer of brown algal viruses to be disentangled.

To further describe the sub-group C kelp phaeo-
viruses, we focused on the L. digitata strain
LdigPH10-30m (Supplementary Table S1), a male
gametophyte culture that produced an array of
consistent phaeoviral infection-like symptoms
(Figures 2a–n), alongside normal growth and game-
togenesis (Figure 2a). Gametangia formed preferen-
tially on short side branches (Figure 2a), with one to
several spermatozoids developing in each (~5 μm in
diameter, arrowhead Figure 2a). The gametes were
ejected through a mucilaginous cap, leaving empty
translucent gametangia (white arrow, Figure 2a).

Figure 1 Phylogenetic analysis of sub-group C phaeoviral MCP from Laminariales and Ectocarpales phaeoviral sub-groups A and B. The
Coccolithovirus EhV-86 (Schroeder et al., 2002) was used as an outgroup. Topology based on maximum likelihood and decimals are
Bayesian posterior probabilities for each sub-group. * denotes sequence variants from gametophyte isolates. Accession numbers are given
for each sequence. Scale bar denotes number of nucleotide substitutions per site. Highlighted in green is the strain used for microscopy
observations.
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Figure 2 Light and epifluorescence (a–d, DAPI stained) and transmission electron (e–n) micrographs of Laminaria digitata gametophyte
strain LdigPH10-30 m. (a) Spermatozoid (arrowhead) released from antheridium (white arrow), (b, c). Deformed opaque structures with
high DAPI blue fluorescence in contrast to normal nuclei (white arrowheads). (d) High prevalence of DAPI-fluorescent filaments. (e) Cross-
section of healthy vegetative cell showing chloroplast (ch), nucleus (n), and mitochondria (m). (f–l) VLP formation in vegetative
gametophyte cells. Chloroplasts detached from cell periphery, loss of internal structure, appearance of tubular structures (arrows) and
various stages of VLP assembly (arrowheads). (m, n) VLPs isolated from extracellular medium and visualised by negative staining.
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Female L. digitata gametophyte strains (LdigPH10-
31f and LdigPH10-22f) showed similar phaeoviral
infection symptoms (Supplementary Figure S2).
Healthy gametophyte cells have a large nucleus that
can be visualised through DAPI staining and epi-
fluorescence microscopy (discrete and localised blue
fluorescence, white arrowheads Figures 2b and c);
these are often closely associated with chloroplasts
(large irregular red auto-fluorescent structures,
Figures 2a–c) distributed around the cell periphery
(Figure 2e). Heavily DAPI stained cells were asso-
ciated with many opaque and not translucent cells
(Figures 2b–d). It has been previously reported that
similar cells in Ectocarpales were a result of viral
infection and that the phaeovirus DNA genomes
could be detected through DAPI staining (Müller
et al., 1990).

Transmission electron microscopy (TEM) of the
L. digitata strain LdigPH10-30m suggests that LdigV-1,
similar to phaeovirus infections in Ectocarpales,
targets the nucleus resulting in the eventual degen-
eration (Figures 2f and g) as the cytoplasm fills with
long tubular structures (arrows; Figures 2h, i and k),
followed by the development of virus-like particles
(VLPs) (Figures 2f–l). Simultaneously, the chloro-
plasts detached from the cell periphery and lost their
internal structure and pigmentation (Figure 2f). After
nuclear and chloroplast degeneration, more fully
formed VLPs were visible in the cytoplasm (Figures
2j–l). VLPs were 80–150 nm in diameter, with a 60–
100 nm granular core (Figures 2l and n). The VLPs
appeared round to hexagonal and may have icosahe-
dral capsids, as known in other phaeoviruses.
Mature VLPs were observed in ultrafiltered gameto-
phyte culture medium (Figures 2m and n) showing a
structure similar to intracellular VLPs. Our observa-
tions in kelp compare well with the characteristics of
EsV-1 in Ectocarpus as described by Müller et al.
(1990). However, unlike the ectocarpoid phaeo-
viruses, the infection in kelp appears to be common
in vegetative cells (Figures 2d and e) and we do not
know yet how the virions are released. Examination
of the sorus of field sporophytes did not reveal any
abnormal structures, suggesting that kelp viruses,
unlike those in Ectocarpoids, may only be expressed
in the gametophytes.

Natural reservoirs of gametophytes stabilise kelp
populations by allowing new sporophyte recruit-
ment (Steneck et al., 2002) following natural or
anthropogenic deforestation (Dayton, 1985; Dayton
et al., 1999; Smale et al., 2013). Sea surface
temperature increases of 1.4–5.8 °C over the next
century (Cox et al., 2000; Houghton et al., 2001) may
cause local extinctions of European kelps (Raybaud
et al., 2013). In ectocarpoids, phaeoviral symptoms
are temperature sensitive (Müller et al., 1998), but it
is unknown how phaeoviruses will affect the biology
and ecology of their ectocarpoid and kelp hosts in
future climate change scenarios.

Seaweeds are exploitated for human consumption,
livestock feed (MacArtain et al., 2007; Evans and

Critchley, 2014), unique polysaccharides with many
industrial applications, pharmaceuticals (Kraan,
2012; Schiel and Foster, 2015), bioremediation, and
biofuel (Kraan, 2013). Knowledge of kelp phaeo-
viruses may be required to meet challenges to
seaweed aquaculture (Cottier-Cook et al., 2016),
especially since phaeoviruses are transmitted
through the germline and could have unexpected
effects in cultivation conditions. Though the effects
of viruses on kelps remain to be studied in detail, if
phaeoviruses commonly occur in kelps they may be
transmitted in the host genome, and could alter host
reproduction. The discovery of phaeoviruses in
kelps highlights the need to further explore the
diversity, biology, and ecology of brown algal
viruses.
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