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Abstract: Phaeoviruses infect the brown algae, Phaeophyceae. They exploit a Persistent evolutionary strategy via genome integration and 
are the only known representatives to do so amongst the giant viruses, Megaviridae. This review brings together for the first time new 
knowledge on phaeovirus prevalence and alternative strategies of infection, and highlights how exceptional phaeoviruses are compared to 
most host-virus systems. Given what we now know about phaeoviruses, unlocking the hidden diversity within other seaweed systems has 
the potential to fundamentally change concepts within Virology, while significantly impacting on the seaweed industry.

Introduction

A key discovery towards the end of the 20th century that over 
a million viruses can be found in every millilitre of seawa-
ter (Bergh et al. 1989) has led to the resurgence of arguably 
the most dynamic and rapidly evolving branch of virology, 
Aquatic Viral Ecology (Fuhrman 1999). Many new orders 
and families of aquatic viruses have since been discovered 
(Labonte & Suttle 2013) and more are predicted to emerge 
as we gain an even greater understanding of the biodiver-
sity in our oceans (e.g. http://www.microb3.eu/). To put the 
aforementioned discovery into context, our knowledge of 
viruses infecting marine algae can be dated as far back as 
the late 19th century with the first descriptions of abnormal 
or deformed reproductive organs (e.g. Fig. 1) in the small 
filamentous brown macroalga Ectocarpus (Sauvageau 
1896). This observation coincided with Ivanovsky’s semi-
nal work in 1892; the first experiments defining the filter-
able infectious agents as viruses, which was later verified 
by Beijerinck in 1898 (Lechevalier 1972). Sauvageau (1896) 
was unaware that viruses were responsible for these deform-
ities but, nonetheless, speculated that it could be due to a 
parasite. Many years later, with the application of electron 
microscopy, confirmation came that these deformities were 
indeed due to a virus, named Ectocarpus siliculosus virus 
(EsV-1) (Müller et al. 1990). Continued efforts by two inde-
pendent laboratories, headed by and linked to Müller and 
Meints, led to the further characterisation of many more 
examples of phaeoviruses infecting other members of the 
order Ectocarpales (Table 1). Here I will give my perspec-
tive on how the application of advances in molecular tech-
nologies has challenged our understanding of established 
concepts in the field of Virology. I will expand on two key 
findings that propose phaeoviruses use a genome reduction 

strategy to widen their host range to beyond the filamentous 
brown ectocarpoids and that a legacy of this range expansion 
is multiple infections.

Multiple infections as a result of host range 
expansion
Viruses are obligate parasites and therefore require a cel-
lular environment for their propagation. Successful viruses 
have found a way to co-exist with their hosts and stable 
infections often have a long co-evolutionary history with 
specific hosts. This co-evolution leads to a unique relation-
ship that results in a species, or even strain, specificity of 
the virus which can make transmission to other hosts (even 
within species) very difficult. Thus, natural host range 
expansions by viruses are rare events. However, when they 
do occur disease outbreaks can become devastating because 
the viruses often spread through non- adapted host popula-
tions. Two notable examples of these are HIV and Ebola 
where the virus has spread from infected wild animals such 
as chimpanzees to humans (Hahn et al. 2000; Chowell & 
Nishiura 2014).

Eukaryotic algal dsDNA viruses fall within two fami-
lies, the Phycodnaviridae (Wilson et al. 2005) and the 
Mimiviridae (Raoult et al. 2004). Both share a common 
ancestor and are often collectively referred to as Nucleo-
Cytoplasmic Large DNA Viruses (NCLDVs) (Yutin et al. 
2009). More recently the terms “Giant viruses” or “Giruses” 
have been used to emphasize the relative size of the NCDLVs 
in comparison to those viruses that commonly infect plants 
and animals (Ogata et al. 2009). That said, both these viral 
families share many features of other eukaryotic viruses, 
which include the Poxviridae, Iridoviridae, Ascoviridae, 
Asfarviridae, and Marseilleviridae, and for that reason a new 
order Megavirales has been proposed (Colson et al. 2013). 

http://www.schweizerbart.de
http://www.microb3.eu/
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The Phycodnaviridae consists of six genera: Chlorovirus, 
Coccolithovirus, Prasinovirus, Prymnesiovirus, Phaeovirus, 
and Raphidovirus, so named because virus classification in 
this family of viruses is linked to the taxonomy of their hosts.

Phaeovirus contain members that represent the only 
characterised genus to infect the brown macroalgal order 
Ectocarpales, which contribute significantly to primary pro-
duction in coastal waters and estuaries, worldwide. Given 
the diversity of the many known species of all macroalgae in 
the world, i.e. not only browns but greens and reds as well, 
there is a lack of knowledge of the prevalence and range of 
virus infections in these taxa (Schroeder 2011). A limited 
screening program for phaeoviruses in other members of the 
class Phaeophyceae has revealed that virus infections may be 
a general feature of the entire class (unpublished data). This 
study utilised a relatively new application of real time PCR 
where amplified products are denatured along a temperature 
gradient and unique melting curves distinguish between gen-
otypes within complex populations. This technique is known 
as High Resolution Melt or HRM (Al-Kandari et al. 2011; 
Li et al. 2014). HRM was used in my lab to observe for the 
first time that phaeoviruses infect three common European 

kelp species, namely Laminaria digitata, L. hyperborea and 
Saccharina latissimi (Table 1). This is the first indication that 
algal viruses can jump across taxonomic orders. If this study 
was extended to look at the other macroalgal viruses, how 
common would this phenomenon be?

Phaeoviruses have evolved a stable co-existence with 
their ectocarpoid hosts. This is because they follow a per-
sistent viral life strategy, seldom causing disease and with 
transmission often from adults through deformed reproduc-
tive organs to the spores and gametes (collectively referred 
to as zoids) of a susceptible ectocarpoid host (Müller et al. 
1998). Genome sequence analysis of three phaeoviruses, 
EsV-1, FirrV-1 and FsV-158, revealed that a central core set 
of genes are maintained (Schroeder et al. 2009). Sequence 
and gene phylogenies for three phaeovirus core single copy 
genes (Stevens et al. 2014) revealed that these viruses can 
be split into two subgroups (A & B), with A representing 
a single virus genotype – host relationship (Stevens et al. 
2014) containing the type virus EsV-1 and four other phaeo-
viruses infecting different genera of ectocarpoids (Table 1). 
Subgroup B on the other hand contain viruses represent-
ing multiple virus genotypes – host infections (Ivey et al. 

Fig. 1.  Epi-fluorescence microscope images of E. siliculosus depicting zoidangium development. (A) From 
left to right, different developmental stages of zoidangium development to zoid release. The pink stained 
individual zoids (combination of DAPI stained blue DNA and red auto-fluorescence from nuclei and chloro-
plasts, respectively) are clearly visible. (B) From right to left, EsV-1 induction in the zoidangium resulting in 
misshapen and heavily stained virus filled cells.
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1996; Stevens et al. 2014) and appear to be restricted to 
the ectocarpoid genus, Feldmannia (Table 1). In addition, 
the jumping of a virus of subgroup A into the Feldmannia 
species led to a dramatic genome reduction, with as much 
as half of a genome equivalent loss (Table 1). This genome 
loss could also explain the apparent rapid host expansion in 
the Laminariales. In contrast to other much publicised host 
range expansion events, few or no disease outbreaks directly 
assigned to virus infection has emerged or been reported for 
kelps. That said, the increase in demand for seaweed prod-
ucts has seen a steady increase in algal aquaculture activities, 
with a resultant increase in losses due to disease (Gachon 
et al. 2010). Because of the latent nature of Phaeovirus infec-
tion, some of these losses could be due to viruses, especially 
if no molecular tools were used to determine the causative 
agent. The need to isolate and characterise phaeoviruses, or 
for that matter any other virus, in kelp systems is therefore 
both timely and of ecological and economic importance.

The multiple infections by the subgroup B viruses, 
especially in Feldmannia simplex, has revealed that up to 
8 closely related, but distinct, FlexV’s can be found in its 
genome (Stevens et al. 2014). This observation challenges 
the Superinfection exclusion (SIE) phenomenon commonly 

reported in many bacterial and plant virus systems. SIE pos-
its that a virus excludes a closely related virus from infect-
ing the same host (Abedon 2015). Moreover, some phage 
can also integrate like phaeoviruses into the genomes of 
their hosts. These lysogenic or temperate phage provide 
the host with a fitness benefit because they actively pre-
vent other, often lytic, phage from lysing the host. What 
is the benefit to Feldmannia simplex in having eight viral 
genomes inserted into its genome? This is especially puz-
zling as transcriptomic experiments demonstrate that the 
provirus in Ectocarpus remains silent (Cock et al. 2010). 
As in mammal models, could these ectopcarpoid proviruses 
serve as a source of new transcriptional regulatory regions 
(van de Lagemaat et al. 2003)? Whatever their roles in the 
biology of brown seaweeds, we know that new processes 
are bound to be uncovered if we are bold enough to keep 
working on them. Moreover, other, less well studied, sea-
weed viruses have the potential to be even more diverse than 
the phaeoviruses; they have a more diverse size, shape and 
genome range than the phaeoviruses (Schroeder 2011). What 
is becoming clear is that they belong to different families of 
viruses, thereby extending algal viruses to beyond the phy-
codna- and mimivirus families.

Table 1.  Members of genus Phaeovirus that infects the Phaeophytes.

Phaeovirus 
Subgroup Virus name

Original Species 
of isolation or 

detection

Average Virus 
genome size 

in kbp (std dev) Host range References

A EsV-1 Ectocarpus 
siliculosus

336 (39) Ectocarpales (Lanka et al. 1993; 
Delaroque et al. 2001)

EfasV-1 Ectocarpus 
fasciculatus

(Kapp et al. 1997; 
Stevens et al. 2014)

HincV-1 Hincksia hincksia

MclaV-1 Myriotrichia 
claviformis

PlitV-1 Pylaiella littoralis (Maier et al. 1998; 
Stevens et al. 2014)

B FlexV-1 (+ 7 variants) Feldmannia 
simplex

190 (26) Ectocarpales & 
Laminariaceae

(Friess-Klebl et al. 1994; 
Stevens et al. 2014)

FirrV-1 (+ 2 variants) Feldmannia 
irregularis

(Kapp et al. 1997; 
Delaroque et al. 2003)

FsV-158 (+ 1 variant) Feldmannia sp. (Henry & Meints 1992; 
Schroeder et al. 2009)

LdigV Laminaria digitata TBD Unpublished data

LhybV Laminaria 
hyperborea

TBD

SlatV Saccharina 
latissima

TBD

TBD: to be determined
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A latent co-existence
Phages are the most abundant viruses in marine ecosys-
tems. They can be characterised as being highly virulent, 
r-strategists, acute and lytic pathogens with large burst sizes 
that rapidly turn-over their bacterial hosts (Suttle 2007). 
The phycodna- and mimiviruses are another significant, yet 
smaller, component of the marine viral fraction. They too, 
mostly, follow an acute life strategy, although their burst 
sizes are numerically much smaller. Significantly, the phaeo-
viruses are the only notable exception to this rule as they 
follow a K-selected persistent life strategy (Müller et al. 
1998). Free phaeovirus particles infect swimming zoids pro-
duced in zoidangia of healthy adult hosts. Upon attachment 
the zoids stop swimming and settle onto suitable substrata. 
Importantly, the virus does not kill or lyse the zoids and 
those that settle develop into adult sporophytes or gameto-
phytes (Müller et al. 1998).

Virus infection takes place in the zoid life stages as they 
lack the protection of a cell wall. The virus integrates into 
the genome of the zoid and therefore the resultant adult has 
one copy of a provirus inserted into every cell. The infected 
adult often expresses in a gradient of non to absolute overt 
symptoms (deformed zoidangia). The host-virus relation-
ship has evolved a stable evolutionary co-existence where 
the host appears for all intents and purposes healthy and the 
virus exists indefinitely as a provirus. Initiation of infec-
tion, i.e. the mechanism of release of the provirus out of 
the host genome, is still not well understood. Virus particles 
are exclusively seen in reproductive organs, suggesting that 
reproductive cells possess unique properties for virus propa-
gation. Epi-fluorescence microscopy reveals that induction 
occurs before zoid differentiation (Fig. 1). Infection there-
fore does not appear to spread between zoids within a fully 
differentiated and developed zoidangium. Instead, virus 
induction occurs at a very early stage during zoidangium 
development. It is likely that a trigger within the cell-cycle, 
i.e. transition from somatic cell to mitotically or meiotically 
producing zoid cell, could be involved in the induction pro-
cess. Deformed reproductive structures have been reported 
to produce in the range of 105 to 106 viruses per deformed 
reproductive organ.

Another unusual feature of the subgroup B phaeoviruses 
is that they have evolved at a similar evolutionary rate as an 
Acute life strategist, but uniquely retain a Persistent life strat-
egy (Stevens et al. 2014). This study applied a pairwise anal-
ysis of the evolutionary divergence in nucleotide sequences 
within the various groups of phycodnaviruses. It was found 
that subgroup B has a median nucleotide divergence range 
in the DNA polymerase gene fragment, comparable to the 
ranges of that of the other r- selected lytic phycodnavirus 
groups. While subgroup A viruses have maintained the clas-
sic K – selection life strategy, they have a much lower diver-
gence range, i.e. about a half of that of subgroup B (Stevens 
et al. 2014).

Conclusion

Phaeoviruses share an evolutionary history with other large 
viruses and raises the question of whether the novel evolu-
tionary features as described here are also prevalent in other 
related systems. New insights into this group reveal that 
they can have unusually high mutation rates, multiplicity of 
infection can be common and that reduction of their giant 
dsDNA genomes might play a significant part in their unusu-
ally large host range. The take home message from what has 
been learnt to date is that further research into seaweed viral 
ecology is required and that the phaeoviruses amply demon-
strate that our knowledge of Virology more generally is still 
incomplete.
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