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CONTRIBUTION OF ANTHROPOGENIC CLIMATE CHANGE  
TO APRIL–MAY 2017 HEAVY PRECIPITATION  

OVER THE URUGUAY RIVER BASIN

Rafael C. de abReu, ChRistopheR Cunningham, ConRado m. RudoRff, natalia RudoRff, 
abayomi a. abatan, buwen dong, fRaseR C. lott, simon f. b. tett, and saRah n. spaRRow

Anthropogenic climate change has increased the risk of the April–May 2017 extreme rainfall in  
the Uruguay River basin, which has caused extensive f lood and major socioeconomic impacts,  

by at least twofold with a most likely increase of about f ivefold.
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INTRODUCTION. The Uruguay River is a trans-
boundary river of great economic importance in 
South America. Its headwaters lie in southern Brazil, 
the middle reach forms part of the Brazil–Argentina 
border, the lower reach forms the Argentina–Uruguay 
border, and it then empties into the La Plata River 
with a catchment area of 3.65 × 105 km2. The river 
basin has a temperate climate with annual mean 
precipitation of 1,750 mm with little seasonality. 
During the late twentieth century, the Uruguay basin 
had a positive trend in precipitation (Barros et al. 
2008) and streamflow (Pasquini and Depetris 2007). 
Based on hydrological modeling, Saurral et al. (2008) 
attributed the 1960–2000 streamflow trend mainly to 
the increase in precipitation rather than land cover 

change. The upper Uruguay River catchment has 
relatively high relief, low soil storage capacity, and 
land use is mostly pasture and cropland. Therefore, 
the catchment has a fast hydrologic response in which 
flood occurrence is more dependent on meteorology 
than on initial conditions of soil moisture and flow 
(Tucci et al. 2003). A cascade of hydroelectric dams 
is used for flood control operations. However, when 
more persistent and intensive rainfall systems develop 
over the upper catchment, the high soil moisture, fast 
rainfall runoff response, and limited storage capacity 
of reservoirs overwhelm the flood control operations 
and result in downstream flooding. Flood related 
impacts have also increased, resulting in a growing 
concern regarding the need to identify the causes 
of increased flood frequency and establish effective 
mitigation efforts.

Explaining the increase in f lood frequency re-
quires assessing the role of climate change in shifting 
the likelihood of extreme rainfall events over the 
catchment and building more detailed understanding 
of ongoing changes in the linkage between rainfall 
and hydrological mechanisms that cause flooding in 
this flow regulated catchment. To address the former, 
we analyzed the influence of anthropogenic climate 
change on the likelihood of the heavy rainfall that 
occurred in April–May 2017, which led to widespread 
overbank f looding along the Uruguay River that 
peaked in June, causing significant impacts such as 
direct economic loss in Brazil of 102 million U.S. dol-
lars (FAMURS 2017) and displacement of more than 
3,500 people in Uruguay (BBC 2017).

DATA AND METHODS. The Climate Prediction 
Center (CPC) Global Unified Precipitation data (Chen 
et al. 2008) with a spatial resolution of 0.5° × 0.5° were 
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used to characterize the precipitation over the Uruguay 
River catchment for the period 1979–2017 (Fig. 1). We 
applied the Met Office Hadley Centre atmosphere-only 
general circulation model HadGEM3-A (Ciavarella 
et al. 2018) at N216 resolution (approximately 60 km in 
the midlatitudes) to assess the influence from anthro-
pogenic forcings. For 1980–2013 two ensembles of 15 
members were used. The first ensemble (“Actual”) is 
driven by both natural (variability in the solar irradi-
ance in the top of the atmosphere and volcanic activity) 
and anthropogenic forcings [greenhouse gases (GHG), 
zonal-mean ozone concentrations, aerosol emissions, 
and land use changes], with sea surface temperatures 
(SSTs) and sea ice coverage from HadISST (Rayner 
et al. 2003). The second ensemble (“Natural”) is driven 
only by natural atmospheric forcings, and has the 
estimated impact of anthropogenic forcings removed 
from SST and sea ice patterns using the attribution 
method described in Pall et al. (2011) and Christidis 
et al. (2013). To estimate the change in likelihood of the 
2017 heavy precipitation, we analyze the extensions of 
these ensembles (denoted “ActualExt” and “Natura-
lExt”) that were available from March to August 2017 
with 525 ensemble members each.

The Actual and Natural ensemble members 
are multidecadal simulations, from 1960 to 2013, 

designed primarily for model validation, while the 
ActualExt and NaturalExt are shorter simulations 
with a higher number of ensemble members used 
for attribution assessments. The “Ext” simulations 
are continuations of the 1959–2013 runs, with the 
ensemble members increased by producing batches 
of members branching from the end of a single 
multidecadal simulation, which therefore share the 
initial conditions of the small size ensemble but are 
different in the realization of the stochastic physics 
(Ciavarella et al. 2018).

To establish how representative the precipitation in 
the climate model is for our study region we applied 
a nonparametric two-sample Kolmogorov–Smirnov 
(KS) test to verify if the CPC precipitation and the 
“Actual” model simulations from 1979 to 2013 were 
from the same distribution (Wilks 2006). Gamma 
distributions were fitted to ActualExt and NaturalExt 
to estimate the risk ratio (RR). To test sensitivity to the 
fitted distribution we also fitted a generalized extreme 
value (GEV) distribution to both distributions. Risk 
ratio is a metric recommended for use in attribution 
(National Academies of Sciences, Engineering, and 
Medicine 2016) to indicate the change in probability 
of an event with climate change, and is simply the ratio 
of the actual probability to the natural. Uncertainties 

Fig. 1. (a) 2017 April and May anomalous precipitation in the Uruguay basin as percentage difference from a 
1979–2013 climatology, based on the Climate Prediction Center (CPC) Global Unified Precipitation data. The 
gray borders indicates the geographic boundaries for coastlines, countries and Brazilian states, while black 
line indicates the boundaries of the Uruguay River basin. (b) Two-month precipitation anomaly related to the 
period of 1979–2017 as percentage difference from the 1979–2013 climatology, based on the Uruguay catch-
ment average calculated using the CPC data (black line). Red bars in (b) highlight very strong El Niño events, 
where the Oceanic Niño Index (ONI) was greater than 2°C for more than 3 consecutive months; red dots in-
dicate April–May precipitation anomaly and the red dashed dotted line the 2017 April–May anomaly. (c) Daily 
streamflow from Uruguaiana (black line) and daily precipitation for the average CPC data in the catchment 
area upstream of Uruguaiana (blue line).
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within the simulations were computed using a boot-
strap resampling method (Efron and Tibshirani 1993).

RESULTS AND DISCUSSION. The region is 
characterized by monthly precipitation distributed 
equally throughout the year, and is susceptible to 
f loods year round. However, April–May 2017 pre-
cipitation was the largest April–May anomaly and 
the eighth highest anomaly for a two-month con-
secutive period since 1979 (Fig. 1b). It resulted from 
a succession of intense events from synoptic scale to 
mesoscale in the region (CPTEC 2017a,b). A major 
component was the interaction of midlatitude me-
teorological systems with the low-level jet to the east 
of the Andes that supplied additional moisture from 
tropical regions, enhancing the associated convection. 
April events enhanced the streamflow in the basin 
(Fig. 1c) and also led to increased soil moisture and 
reservoir levels. In May, more heavy rainfall over the 
hydrological wet conditions resulted in flooding that 
peaked in the beginning of June with a return period 
of 40 years, causing great economic impacts.

Unlike most of the large anomalies in Fig. 1b, 
April–May 2017 coincided with a neutral phase of 
El Niño. However, the austral summer of 2017 was 
characterized by an unusual fast warming of the far 
eastern Pacific, denominated by a coastal El Niño 
(Garreaud 2018). Generally, positive precipitation 
anomalies in southern Brazil are expected during El 
Niños (Grimm et al. 1998, 2000), which can cause sig-
nificant floods (Pasquini and Depetris 2007). Because 
of the low streamflow in the end of March (Fig. 1c), 

the low soil moisture storage, and the fast response of 
the basin, no preconditioning of soil moisture from 
earlier months would have had a significant impact on 
the flood. However, we cannot reject the hypothesis 
that this El Niño increased the frequency of the low-
level jet (Silva et al. 2009), which is a key component 
in producing precipitation in the region.

To avoid a selection effect we consider 1986 April–
May precipitation as a threshold for record-breaking 
events. Although this was a moderate El Niño year, 
the 1986 flood occurred in April of that year and had 
similar meteorological conditions to 2017, with heavy 
precipitation events in the headwater of the basin 
during a two-month period, resulting in the second 
highest April–May anomaly on record for the CPC 
dataset with 517 mm and a positive anomaly of 73%.

At the 5% significance level, the KS test indicated 
that we cannot reject the hypothesis that both data-
sets, the CPC observations and “Actual” historical 
simulations (1980–2013), were drawn from the same 
distribution (p value = 0.9). This suggests that the 
Actual simulations were able to correctly reproduce 
the statistics of April–May historical precipitation 
over the catchment area of the Uruguay River (see also 
online supplemental material). When the same test 
was used to check whether “Actual” and “Natural” 
simulations were different, the result indicated that 
they were not drawn from the same distribution (p 
value = 0.005), suggesting a difference between the 
simulations over the catchment area.

The fitted probability distribution functions 
(Fig. 2a) indicates different shapes for ActualExt 

Fig. 2. (a) Probability distribution function for fitted gamma distributions of ActualExt and NaturalExt simula-
tions of 2017 April and May accumulated precipitation in the Uruguay basin. (b) Return time for the ActualExt 
and NaturalExt experiments. Each marker represents an ensemble member and the blue and orange lines are 
the fitted gamma return period for the ActualExt and NaturalExt, respectively. The errors bars indicate the 
95% confidence interval using bootstrap resampling. Black dashed line indicating the 517 mm threshold based 
on the 1986 event and the 2017 rainfall of 549 mm as dashed dotted line.
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and NaturalExt, with a high narrower PDF in the 
NaturalExt world in comparison to the ActualExt 
world. On the other hand, ActualExt shows increased 
probabilities in the right tail of the distribution, 
indicating greater chance of extreme events due to 
anthropogenic forcings, such as the 1986 and the 
2017 thresholds. ActualExt also shows a 61-yr return 
time (Fig. 2b) for the 1986 threshold while NaturalExt 
indicates a return period of 285 years according to 
the fitted gamma distributions. Furthermore, for the 
61-yr return time, NaturalExt has 11% lower precipi-
tation than ActualExt.

We assessed the risk ratio using the fitted gamma 
distributions for ActualExt and NaturalExt. The 
value obtained was about 4.6, suggesting that the 
chance of occurrence of a 1986-like event is about 5 
times greater in ActualExt than in the NaturalExt. 
Uncertainty in the RR was estimated using bootstrap-
ping. For each model ensemble 1,000 samples, with 
replacement, were produced and gamma distributions 
fitted. They were used to calculate the probability of 
exceeding the threshold, for both the ActualExt and 
NaturalExt simulations. In this case, the RR distribu-
tion had a median of 5.2 with 5 and 95% percentiles of 
2.6 and 10.4, respectively. Using a GEV fit and identi-
cal methodology we find that the RR distribution was 
highly skewed with a median of 4.7 with 5 and 95% 
percentiles of 2.0 and 17.7 respectively.

The historical record of CPC alone (Fig. 1b) did not 
seem to foresee the anomalous event of 2017, with 13 
years since 2000 experiencing close to or below aver-
age anomalies in April–May. However, the increase 
in probability of enhanced precipitation events in 
ActualExt is consistent with the findings of Soares 
and Marengo (2009). They investigated the South 
American low-level jet in a warming climate due to 
anthropogenic influence and found an increase in the 
meridional moisture transport from the Amazonian 
region to the south part of Brazil, where the Uruguay 
River basin is located, mainly because of an increased 
temperature gradient between tropical and subtropi-
cal South America.

CONCLUSIONS. This article examined the 
April–May 2017 extreme rainfall in a historical con-
text, and analyzed the influence of anthropogenic 
climate change on the likelihood of such an event that 
led to severe flooding of the Uruguay River. We found 
that anthropogenic climate change has increased the 
risk of the April–May 2017 extreme rainfall in this 
catchment by at least 2 times with a median increase 
of about 5 times. However, when considering event 
attribution it is necessary to consider methodological 

limitations. The removal of the anthropogenic effect 
in the SST and SIC is a major source of uncertainty, 
as well as land use changes. Also, there is a need for a 
more thorough evaluation of the circulation patterns 
in the model simulations for that particular region 
that is beyond the scope of this paper.

Our study made reference to the 2017 f looding 
of the Uruguay River as the main impact caused by 
extreme rainfall over a two-month period. The length 
of the period was defined based on the prerequisite 
of high levels in the reservoirs for the occurrence of 
high-impact floods. The flood wave travel time from 
the upper to middle catchment toward the end of the 
period after heavy rainfall over antecedent high soil 
moisture and high reservoir levels was of the order 
of 5 to 6 days. Hence an analysis based on precipita-
tion outputs on a daily to weekly scale would also be 
important to track individual heavy rainfall events 
more specifically. Future research to understand the 
linkage between rainfall and hydrological mecha-
nisms that cause f looding in this f low-regulated 
catchment is necessary to fully explain the increase 
in flood frequency.
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