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ANTHROPOGENIC WARMING HAS SUBSTANTIALLY  
INCREASED THE LIKELIHOOD OF JULY 2017–LIKE  
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Heat waves in central eastern China like the record-breaking July 2017 event were rare in natural worlds but have 
now become approximately 1-in-5-yr events due to anthropogenic forcings.
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INTRODUCTION. During July 2017, an unprec-
edentedly intense heat wave struck central eastern 
China, resulting in drastically increased human 
morbidity/mortality, steeply reduced agriculture 
productivity, and serious shortage of electricity and 
water supply (CMA 2017). Many meteorological 
stations registered 15–25 hot days (daily maximum 
temperature over 35°C), and some even had record-
high July temperatures, such as a new record of 40.9°C 
among historical observations since 1873 at Xu-Jia-
Hui station in Shanghai (CMA 2017). The China 

Meteorological Administration issued 10 high-level 
warnings against hot weather during 21–25 July. Such 
unprecedentedly frequent alarms within only 5 days 
attracted intense scrutiny from policy-makers, media, 
and the public on the relationship between this heat 
wave and global warming.

Previous studies usually conducted attribution 
analyses on seasonal warmth in central eastern China 
(e.g., the 2013 record-breaking summer; Sun et al. 
2014), leaving attribution statements for short-term 
(synoptic) hot extremes sparsely reported. This study 
therefore attempts to answer whether and to what 
extent anthropogenic warming has increased the 
likelihood of 5-day heat waves as hot as or hotter than 
the 21–25 July 2017 case over central eastern China.

DATA AND METHODS. Homogenized obser-
vations of daily maximum temperatures (Tmax) 
during 1960–2017 from 760 meteorological stations 
are used [Li et al. 2015; for homogenization methods 
see Szentimrey (1999)]. Daily observations is inter-
polated onto the 0.56° × 0.83° grid of the model via a 
“natural neighbor” scheme (Sibson 1981), following 
the model’s resolution and geography.

The upgraded HadGEM3-GA6-N216 model is 
employed (Christidis et al. 2013; Ciavarella et al. 
2018). Model outputs include all-forced simulations 
conditioned on the observed 2017 sea surface tem-
perature (SST) and sea ice from the HadISST dataset 
(Rayner et al. 2003) and naturalized simulations with 
anthropogenic signals removed from observed SSTs 
and with preindustrial forcings. Accordingly, occur-
rence probabilities and resultant attribution conclu-
sions reported in this study are also conditioned on 
the 2017 SST patterns. The ensemble is generated 
through physics perturbations of multiple initial 
conditions with identical external forcings.
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More specifically, historical simulations (histCLIM) 
consisting of 15 members over 1961–2013 are com-
pared with interpolated observations to evaluate the 
model’s fidelity in simulating climatological statistics 
(mean and variability) of the strongest 5-day heat 
waves. Two ensembles of 525-member simulations 
for the 2017 July with (hereafter histALL, as an 
extension of previous histCLIM runs) and without 
(hereafter histNAT) anthropogenic forcings are used 
to estimate the probability of the 21–25 July heat wave 
in each scenario. Denoting PALL and PNAT as the occur-
rence probability of events equivalent to or stronger 
than the targeted case in 525-member histALL and 
histNAT ensembles, the risk ratio (RR) is expressed 
as PALL/PNAT. The fraction of attributable risks (FAR) 
is expressed as 1 − PNAT/PALL.

Reference climatologies over 1961–90 are formed 
for both simulations (ensemble mean of 15-member 

histCLIM) and observations from the hottest 5-day 
running mean Tmax in July. These pentad clima-
tologies are approximately 2°–3°C warmer than July 
monthly-mean Tmax climatologies in both simula-
tions and observations, and serve to distinguish es-
pecially intense 5-day heat waves from more typical 
5-day cases (Figs. 1c,d). Respective climatologies are 
then removed from observations and simulations to 
create overlapping pentad Tmax anomalies (hereafter 
PTmax; see Fig. 1c). Based on these PTmax anomalies, 
both the historical distribution of the hottest 5-day 
heat waves and warm anomalies for the 2017 case 
could be well reproduced by this model (see Fig. ES1 
in the online supplemental information), indicating 
the suitability of using this model and PTmax anoma-
lies for attributing this 5-day heat wave. Freychet et al. 
(2018) also reported good performance of this model 
in simulating characteristics of 5-day heat waves in 

Fig. 1. (a) Observed pentad-mean (21–25 Jul 2017) Tmax anomalies (°C) relative to the 1961–90 climatology for 
the maximum 5-day mean Tmax. The green contour indicates the 35°C-isoline of mean Tmax during this pen-
tad. Central eastern China is shown by the dashed rectangle. (b) Spatial distribution of stations that registered 
record- and near-record (since 1960) pentad-mean July Tmax during 21–25 Jul 2017. (c) Observed overlapping 
pentad-mean Tmax anomaly averaged over central eastern China during July 2017. Each value is indexed by the 
first day of the pentad. (d) Observed maximum 5-day mean Tmax anomaly averaged over central eastern China 
in each July over 1960–2017. The red vertical line labels the 2017 event, and the dashed line indicates its anomaly.

S92 JANUARY 2019|



central eastern China, as it is capable of capturing 
critical mechanisms generating heat waves there. 
In the reminder of this paper, we used the PTmax 
anomaly to define the threshold.

RESULTS. During 21–25 July, almost the entirety 
of central eastern China had temperatures over 35°C, 
equivalent to 2°–6°C PTmax anomalies (Fig. 1a). 
Anomalies of these magnitudes produced numerous 
record- or near-record July PTmax (Fig. 1b). In terms 
of domain-averaged values, the PTmax in this pentad 
not only peaked during July 2017, but also set a new 
record among all historical July counterparts (any 
5-day mean Tmax during July) since 1960 (Figs. 1c,d; 
note that we consider this pentad instead of 22–26 
July because of its extensive social and economic re-
percussions). It is well known that heat waves in this 
area result dynamically from the persistence of anti-
cyclonic circulations that facilitate increased surface 
solar radiation and adiabatic heating (Freychet et al. 
2017; Chen and Lu 2015). Specific to this case, an un-
precedentedly (all Julys since 1960) strong anomalous 
anticyclonic cell was centered above central eastern 
China, dynamically explaining the origin of the 
“record-breaking” Tmax (Fig. ES2) and its exclusive 
occurrence in this domain (Fig. 1a).

The PTmax anomaly from the interpolated obser-
vation (2.52°C) was used as a threshold to character-
ize the July 2017–like heat wave. Events of this mag-
nitude are fairly rare (PNAT = 2.1%) in natural-forcing 
simulations (Fig. 2a, green). Without anthropogenic 
warming, similar heat waves should have been seen 
one to three times per century [mean return period: 
47.7 yr; 95% confidence interval (CI): 30.8–75.0 yr; 
Fig. 2b, green]. By contrast, the distribution of simu-
lated PTmax anomaly is markedly positive-displaced 
in all-forcing worlds, signifying substantially in-
creased odds (PALL = 20.1%) of events this hot. In the 
current climate, anthropogenic warming has exposed 
central eastern China to 2017-like heat waves about 
twice per decade (mean return period: 4.9 yr; 95% CI: 
4.3–5.8 yr; Fig. 2b, red).

Quantitatively speaking, the risk of an event as 
hot or hotter increased at least tenfold (RR = 9.8; 
95% CI: 5.9–18.9) due to anthropogenic warming. 
Translating into FAR, human influence accounted 
for at least 90% (95% CI: 83.0%–94.7%) for the pres-
ence of 2017-like heat waves. To avoid selection bias 
potentially introduced by using the critical threshold 
at the very end tail (Stott et al. 2004), we also adopted 
the second hottest July record (2.09°C in July 2002) 
as an alternative threshold. Simulated anomalies 

Fig. 2. (a) Distribution of domain-averaged hottest 5-day mean Tmax anomalies during July 2017 (histogram), 
based on 525-member histALL (red) and histNAT (green) ensembles, and their generalized extreme value 
(GEV)-fitted curves shown by respective colors. (b) Return periods of domain-averaged hottest 5-day mean 
Tmax anomalies in histALL (red) and histNAT (green) ensembles. The threshold value of 2.52°C is indicated 
by dashed lines in (a) and (b). In (b), vertical and horizontal bars represent the 5%–95% uncertainty interval of 
temperature anomalies and return periods, derived via the bootstrapping method (N = 1000). Gray shadings 
specify the uncertainty interval of return period of the threshold exceedance in histNAT and histAll runs.
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exceeding this threshold are recorded 5 times more 
frequently (RR = 4.5; 95% CI: 3.4–6.5) in the all-forc-
ing world (PALL = 26.8%) than in the natural-forcing 
world (PNAT = 5.9%). These results also indicate that 
anthropogenic forcings contributed more to increases 
in the risks of rarer, more extreme heat waves. So, 
we reiterate that anthropogenic warming played an 
overarching role (FAR = 77.8%; 95% CI: 70.4%–84.6%) 
in elevating the risk of heat waves stronger than this 
second-hottest threshold (e.g., the July 2017 case).

CONCLUSIONS AND DISCUSSION. In 
central eastern China, heat waves hotter than the 
July 2017 event should have had a very slim chance 
to occur in natural-forcing worlds. But now, forced 
by anthropogenic warming and conditioned on the 
2017 SST pattern, a 5-day heat wave like this case has 
become 10 times more likely, as a 1-in-5-yr or more 
common event.

Although influences of anthropogenic warming 
could be detected and were largely attributable, attribu-
tion conclusions for a single high-impact case may be 
subject to some uncertainties. First, the estimated RR 
and FAR may be quantitatively sensitive to the selec-
tion of baseline periods (here 1961–90), as reported by 
Knutson et al. (2013). Still, sensitivity tests adopting 
varying baselines for this case indicate that the quali-
tative statement “increase in the likelihood of a July 
2017–like heat wave could be largely attributable to an-
thropogenic warming” robustly holds. Second, the es-
timated RR and FAR only apply to the current climate. 
As the planet keeps warming, a higher RR of a July 
2017-like case would be expected (Perkins and Gibson 
2015). Future reductions in aerosols due to increasingly 
stricter air quality control in this area may also give a 
greater RR of a July 2017-like case (van Oldenborgh 
et al. 2018; Wang et al. 2018). This study is based only on 
factual and counterfactual runs in a single atmosphere-
only model, with the intention of exploiting its large 
ensembles for calculating the statistics of rare events 
(Otto 2017). Estimated RRs should still be compared 
with those derived via other methods/models, such as 
observation-constrained estimates (van Oldenborgh 
et al. 2015), alternative atmosphere-only model-based 
estimates (e.g., weather@home; Massey et al. 2015), and 
fully coupled model-based estimates (CMIP5; Sun et al. 
2014) to further clarify uncertainties.

Comparing temperatures alone in factual and 
counterfactual simulations, the estimated RR only 
delivers a general attribution message, leaving physi-
cal interpretations about how anthropogenic forcings 
influenced the likelihood of the heat wave and its 
preferential occurrence in central eastern China to 

be addressed. To this end, follow-up efforts will be 
made to disentangle this general attribution effort 
into a dynamic (e.g., large-scale circulations) and a 
thermodynamic part (Vautard et al. 2016; Schaller 
et al. 2016). A critical step toward dynamic attribu-
tion is to quantify the extent to which anthropogenic 
warming affected the presence, location, mainte-
nance, and amplitude of anticyclonic circulations 
akin to the 2017 case (Fig. ES2). Such a separation 
could also facilitate tracking down and communicat-
ing the source of attribution uncertainties from both 
dynamic and thermodynamic perspectives (Vautard 
et al. 2016; Wehrli et al. 2018).
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