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A large proportion of the global land surface is covered by pasture. The advent of the Sentinel satellites program
provides free datasets with good spatiotemporal resolution that can be a valuable source of information for
monitoring pasture resources. We combined optical remote sensing data (proximal hyperspectral and Sentinel
2A) with a radiative transfer model (PROSAIL) to estimate leaf Area Index (LAI), and biomass, in a dairy farming
context. Three sites in Southern England were used: two pasture farms that differed in pasture type and man-
agement, and a set of small agronomy trial plots with different mixtures of grasses, legumes and herbs, as well as
pure perennial ryegrass. The proximal and satellite spectral data were used to retrieve LAI via PROSAIL model
inversion, which were compared against field observations of LAI. The potential of bands of Sentinel 2A that
corresponded with a 10 m resolution was studied by convolving narrow spectral bands (from a handheld hy-
perspectral sensor) into Sentinel 2A bands (10 m). Retrieved LAI, using these spectrally resampled S2A data,
compared well with measured LAI, for all sites, even for those with mixed species cover (although retrieved LAI
was somewhat overestimated for pasture mixtures with high LAI). This proved the suitability of 10 m Sentinel 2A
spectral bands for capturing LAI dynamics for different types of pastures. We also found that inclusion of 20 m
bands in the inversion scheme did not lead to any further improvement in retrieved LAI Sentinel 2A image based
retrieval yielded good agreement with LAl measurements obtained for a typical perennial ryegrass based pasture
farm. LAI retrieved in this way was used to create biomass maps (that correspond to indirect biomass mea-
surements by Rising Plate Meter (RPM)), for mixed-species paddocks for a farm for which limited field data were
available. These maps compared moderately well with farmer-collected RPM measurements for this farm. We
propose that estimates of paddock-averaged and within-paddock variability of biomass are more reliably ob-
tained from a combined Sentinel 2A-PROSAIL approach, rather than by manual RPM measurements. The phy-
sically based radiative transfer model inversion approach outperformed the Normalized Difference Vegetation
Index based retrieval method, and does not require site specific calibrations of the inversion scheme.

Satellite retrieval

1. Introduction

Grasslands ecosystems, including managed pastures, are one of the
largest ecosystems of the world; currently 26% of global land area and
70% of total agricultural area is under pasture and fodder crops (http://
www.fao.org). Grazing ruminants convert grass and other fibrous
forage materials into milk and meat for human consumption; ruminant
production represents a key agricultural enterprise, particularly in the
more developed countries (Thornton, 2010). Pasture management, to-
gether with local weather conditions, will affect productivity and pas-
ture quality and hence farm output. Thus, there is a need for regular
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herbage monitoring and prediction of pasture growth rates and quality
indicators. Such information assists the efficient utilization of pastures
by avoiding overgrazing, providing guidance with regards to food
supplement decisions or alerting farmers to wastage during periods of
surplus pasture availability. Dairy farmers practicing rotational grazing
systems generally keep track of pasture productivity through ‘field
walking’. This involves regular assessments of biomass, either visually
by a simple estimation of the grass height, or by using a more tech-
nological approach, such as a ‘rising plate meter’ (RPM) which mea-
sures both the height and density of the grass sward. The equations
required to convert compressed pasture height to biomass can vary per
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country, per year and per season and also as per type of pasture
(Bransby et al., 1977; Huillier and Thomson, 1988; Ferraro et al., 2012;
Somasiri et al., 2014). Therefore accurate ‘on farm’ prediction of bio-
mass requires that the correct regional, seasonal and pasture specific
conversion equation is used. However, for practical on-farm use op-
erators of RPM systems tend to use a single equation (with constant
coefficients) for the entire grazing season. This approach can lead to
inaccurate prediction of the available biomass (Nakagami and Itano,
2013) with a consequential reduction in utilization efficiency.

Furthermore, regular pasture walking can be time consuming and
labor intensive. If not performed following key guidelines, traditionally
used methods (such as RPM monitoring, visual appraisal, pastures sticks
and boot height) for pasture biomass quantification can produce in-
accurate estimates of sward biomass. This is a consequence of the large
within-field spatial variability of grass growth (generally associated
with low stocking rate), so that the recommended minimum of 50-80
measurements per field (Thomson et al., 1997) may not be enough to
enable accurate estimation of average grass biomass at any moment in
time. Profit margins in pasture based farming are small and auto-
matically monitoring grass growth to maximise production could make
a real difference to farmers by aiding in increasing the efficiency of use
of the cheapest feed input available (i.e., grass).

If grass quantity and quality can be determined from space (i.e. via
satellite), with suitable accuracy and spatial/temporal resolution, this
would open up a host of possibilities for more efficient pasture man-
agement and more profitable pasture farming. Similar to ground based
methods, remote sensing based pasture monitoring is also prone to
errors due to a range of factors such as sensor noise, radiometric as well
as geometric corrections, errors associated with atmospheric correc-
tions, and inadequate BRDF models (Fernandes et al., 2014). Never-
theless, despite these limitations satellite images have significant po-
tential due to their spatiotemporal coverage. The recent European
Space Agency satellite program Sentinel 2 comprises two satellites that
ensure continuity for SPOT and LANDSAT programs and provide
images with as fine as 10 m pixel size every five days (depending on
latitude). These freely available data are ideal for monitoring pasture
biomass availability on pasture farms and offer the opportunity to de-
velop robust algorithms to exploit their potential in efficient and cost
effective pasture monitoring.

The use of remote sensing for monitoring and prediction of arable
crop growth (with an emphasis on optical remote sensing) is already
well established (Bégué et al., 2018; Ozdogan et al., 2010). However,
the same is not true for forage crops used for grazing or silage in animal
and dairy production systems. Remote monitoring of grass production
is difficult due to the fact that intensively grazed pastures are very
dynamic systems and grass crops need to be maintained carefully at
optimum height to avoid over and under-utilization of pastures. Hence
for intensively managed grazing pastures interpretation of remote
sensing data is difficult without detailed knowledge of farming opera-
tions (Edirisinghe et al., 2012).

Despite these limitations there have been some notable research
efforts that investigated applications of remote sensing data for regular
pasture monitoring. Hill et al. (2004) used AVHRR based normalized
difference vegetation index (NDVI) time series to produce maps of
pasture growth rate in Western Australia. Following these efforts sci-
entists from Australia and New Zealand discussed applications of
MODIS, Landsat and SPOT for operational monitoring of grazing pad-
docks (Eastwood et al., 2009; Mata et al., 2011; Edirisinghe et al.,
2012), mainly under the framework of the ‘Pasture from Space’ pro-
gram. Di Bella et al. (2004) studied 13 forage regions in France, looking
at the spatial and seasonal variability in grassland productivity in re-
lation to drought. They used images from (SPOT) 4-VEGETATION to
forecast variables related to grass production that were compared to the
STICS-Prairie simulation model. Schino et al. (2003) demonstrated
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application of Landsat NDVI for monitoring biomass in Alpine pastures
in Italy. Researchers have also investigated hyperspectral data and
narrow band indices for pasture characterization in terms of biomass
(Boschetti et al., 2007) as well as pasture quality parameters such as
nutrient content and dead biomass content (Mutanga and Skidmore,
2004; Pullanagari et al., 2016, 2017). However, remote sensing of
pastures has mainly followed spectral index based methods that are
inherently empirical in nature (Schino et al., 2003; Eastwood et al.,
2009; Fava et al., 2009; Edirisinghe et al., 2012). Furthermore, hy-
perspectral data are costly and field-scale relationships based on in-situ
hyperspectral data have rarely been up-scaled and tested at the satellite
image level.

Ali et al. (2016) presented a review of the current status of grassland
monitoring/observation methods and applications based on satellite
remote sensing data, and related technological and methodological
developments, to retrieve grassland information. They noted that the
retrieval of grassland biophysical parameters is moving from standard
regression analysis to more mechanistic and hence more robust mod-
eling approaches, driven by satellite data. Radiative transfer model
inversion based retrieval schemes have been widely studied at field,
regional and global scales (Dorigo et al., 2007; Frederic and Buis, 2008;
Verrelst et al., 2015). Recent developments for promoting process
based, and hence more adaptive inversion schemes for biophysical re-
trievals, include hybrid methods coupling model inversion with vege-
tation index based relationships for quick regional scale mapping
(Dorigo et al., 2009; Houborg et al., 2007), combination of radiative
transfer simulations for training artificial neural nets and kernel based
algorithms (Doktor et al., 2014; Verrelst et al., 2015; Vohland et al.,
2010), and application of prior information or reflectance of neigh-
bouring pixels or land cover classes to constrain solutions (Atzberger
and Richter, 2012). However, despite these advancements in the bio-
physical parameter retrievals, the emphasis is still on statistical models
for remote sensing based monitoring of grasslands (Jin et al., 2014;
Song et al., 2014; Zhao et al., 2014; Li et al., 2016; Meng et al., 2017;
Schucknecht et al., 2017). Considering the limitations of these em-
pirical methods (Atzberger et al., 2011) and to promote radiative
transfer model based approaches for operational pasture monitoring
systems, new datasets such as Sentinel 2 have to be tested over a variety
of pasture types and management operations. The Sentinel 2 satellite
with high revisit frequency and good spatial resolution offers oppor-
tunity to develop operational systems for pasture monitoring with data
being available within a couple of days of acquisition. These systems
should be less dependent on site specific calibrations.

As pointed out by Darvishzadeh et al. (2011, 2008) radiative
transfer models have seldom been applied for studying heterogeneous
grassland canopies. Using field and airborne hyperspectral data these
authors explored the potential of radiative transfer modeling to predict
LAI in heterogeneous Mediterranean grassland. We investigate whether
multispectral Sentinel 2 data can be equally useful for inversion of ra-
diative transfer model PROSAIL (Jacquemoud et al., 2009), as an al-
ternative to widely used empirical models to capture changes in pasture
canopy in terms of Leaf Area Index (LAID). This was done by develop-
ment of robust algorithms that can be applied over a variety of pasture
types and throughout the entire growing season, with minimum data
requirement for calibration. The present study discusses model ver-
ification results over three sites differing in pasture types and man-
agement regime.

The methods and results presented in this paper are contributing
towards the operational system development by addressing the fol-
lowing research questions: (1) whether Sentinel 2A (S2A) optical data
are able to capture spatio-temporal changes in pasture biomass, ex-
pressed as changes in LAI; (2) whether a Look Up Table (LUT) based
radiative transfer model inversion algorithm is able to reliably estimate
LAI over different types of pastures, i.e. perennial ryegrass and multiple
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Fig. 1. Diagram showing location and details of three study sites against UK Ordnance Survey basemap (1:25000): Sonning farm, CEDAR Hall farm and Brixey's farm.
In the case of CEDAR farm and Brixey's farm, farms have been divided in paddocks of different sizes. This figure also shows location of sampling plots on CEDAR farm

and Brixey's farm.

species mixtures, as well as grazing paddocks and silage plots; (3)
whether LAI maps can be usefully translated to RPM- equivalent bio-
mass maps using a simple empirical approach. Finally, we also in-
vestigate how the LUT based algorithms perform in comparison to NDVI
based ones.

2. Methodology
2.1. Study area, vegetation and management

Three sites in southern England were used for data-gathering and
related analyses (Fig. 1). They differed in pasture type and management
- typical perennial ryegrass paddocks at the Centre for Dairy Research
(CEDAR) research platform; herbal, legume and grass mixed pasture
paddocks at Brixey's Farm; and small agronomy trial plots with dif-
ferent mixtures of grass, legumes and herbs, as well as pure perennial
ryegrass, located at Sonning farm. Both CEDAR farm and Sonning farm
are part of the University of Reading agricultural research facilities,
whereas Brixey's farm is a privately managed commercial dairy farm.

CEDAR farm (51.40°N, 0.91°W) is located near Arborfield, in the
Loddon river catchment, about 3 km south of Reading (UK), see Fig. 1.
Average elevation is ~45m above mean sea level. The farm grazing
platform comprises 140 ha, established on a clay capped gravel soil
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(prone to drought and waterlogging) and is divided in 19 paddocks of
variable sizes that consist of predominantly perennial ryegrass leys
under rotational grazing. Paddock 15 and 16 were under arable crops
and on paddock 7 four different types of pastures were grown in
~200m X 40 m strips. The composition of these types was similar to
that of the agronomy trial plots at Sonning farm (described below). The
commercial herd of 560 Holstein cows at CEDAR farm is managed as a
continuous calving system, fed with two grazing groups: (i) Eighty cows
that graze ryegrass paddocks in late lactation with milk yields < 251
per day, and (ii) Sixty dry cows that are between lactations. The rest of
the cows are indoor-housed. Grazing starts in late March and continues
until late November and these two grazing groups are grazed separately
on different paddocks.

Brixey's farm (50.82°N, 1.77°W), 3 km south of Ringwood, is river-
terrace (interbedded clay, silts and sands) farmland located within the
Avon river catchment, near the coast of southern England (Fig. 1).
Average elevation is ~15m and the total area is 167 ha, consisting of
50 paddocks. Brixey's farm concerns a mix of traditional perennial
ryegrass leys and herbal leys, which include grasses (perennial ryegrass,
timothy, cocksfoot and fescue) clover varieties (red, white, sweet,
crimson, alsike), lucerne, sanfoin, chicory, plantain, yarrow and burnet.
The grazing system is rotational by paddock with a 30 day rotation at
the height of the season. A single herd of 500 Friesian Jersey crosses is
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maintained in a spring block calving system. Paddocks are strip grazed
wherein they are temporarily divided in strips with movable electric
fence and with each paddock grazed intensively for 12 h to maintain a
high stocking rate and avoid herbage wastage.

Sonning farm (51.47°N, 0.90°W) is located at about 4km from
Reading on mostly free-draining alluvial land on the south bank of the
river Thames (Fig. 1). The soil has a sandy loam texture. Four different
pasture types were grown in 4 m X 5m sampling plots (with four re-
plicates) that were monitored regularly: Perennial ryegrass (control),
consisting of five varieties of ryegrass; ‘smartgrass’, consisting of three
varieties of perennial ryegrass plus timothy, clover (red, white), chicory
and ribgrass; ‘biomix’, consisting of Festulolium, perennial ryegrass,
timothy, cocksfoot, meadow fescue, clover (alsike, red, white), Lucerne,
yellow trefoil, chicory, and ribgrass; and ‘herbal’ consisting of Festu-
lolium, cocksfoot, perennial ryegrass, timothy, meadow fescue, tall
fescue, clover (red, white, alsike, sweet), birdsfoot trefoil, sainfoin,
ribgrass, burnet, yarrow and sheep parsley. These plots were cut three
times throughout the season, at peak growth stage, but before senes-
cence.

2.2. Field data collection

Ten plots of 30m x 30 m were demarcated on three paddocks at
CEDAR farm - five on paddock number 17 (plots C1 to C5), two on
paddock 8 (C9 and C10) and three on paddock 6 (C6-C8), see Fig. 1.
This sampling plot size, equal to three times the pixel size, has been
found appropriate when taking into account errors associated with
geometric correction (Edirisinghe et al., 2012; Fernandes et al., 2014).
Paddocks 6 and 17 (Fig. 1) were managed as grazed paddocks while
paddock 8 was reserved for silage production until the middle of May
2017.

Table 1 summarises the data used in this paper for the different
farms. For reasons related to farm management, it was decided to
concentrate sampling efforts on paddock 17 (plots C1 to C5), and
sample the other two paddocks only occasionally. Sampling days were
chosen such that observations were available within 3 days after sa-
tellite overpass.

Field measurements included top of canopy hyperspectral re-
flectance, LAI and canopy height. In each 30 m X 30 m plot, measure-
ments were taken along three transects, roughly in the centre of each
10m X 30m section of the plot. In each transect, measurements were
taken every 3m approximately, resulting generally in 27 to 30 ob-
servations per plot.

Spectra were collected using SVC HR2024i spectroradiometers

Table 1

Farm-wise sampling dates and data used for calibration and verification of the
retrieval scheme. v, X and NA denote presence, absence of data and ‘not ap-
plicable’, respectively.

Farms Dates SVC data LAI RPM S2A images
CEDAR farm 5 Apr 2017 X v v v (2 Apr 2017)
11 Apr 2017 v v v X
5 May 2017 v v v X
25 May 2017 ¢ v v v (22 May 2017)
21 Jun 2017 v v v v
4 Aug 2017 v v v X
Sonning farm 28 Mar 2017 v v v NA
21 Apr 2017 v v v NA
3 May 2017 v v v NA
1 Jun 2017 v v v NA
12 Jun 2017 v v v NA
22 Aug 2017 v v v NA
Brixey's farm 10 Aug 2017 v v v X
21 Jul 2016 X X v v (19 July 2016)
15 Nov 2016° X X v v
28 Mar 2017 X X v v (26 Mar 2017)

2 Historical RPM data obtained from farmer, see also Section 2.5.
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(Spectra Vista Corporation, Poughkeepsie, USA) in dual field of view
mode. A standard set-up for dual field of view and post-processing
protocol was followed as described in Maclellan (2017). A fibre optics
cable with 25° FOV, connected to the SVC, was used to measure spectra
from approximately 1 m height above ground at nadir. The spectral
data were post-processed using the NERC Field Spectroscopy Facility
(http://fsf.nerc.ac.uk/) recommended protocol.

LAI was measured using a ceptometer (AccuPAR LP-80, Decagon
Devices, Pullman, USA) and measurements took place on the same or
subsequent day as the hyperspectral sampling. The instrument's leaf
inclination factor was set to 1, assuming a spherical leaf angle dis-
tribution. Measurements were taken under stable sky conditions.

Canopy height was measured using a RPM (F200, Farmworks Ltd.,
New Zealand) and used to estimate biomass using an equation re-
commended by the UK Agriculture and Horticulture Development
Board (https://ahdb.org.uk/) for UK pasture systems.

Field sampling was conducted at Brixey's farm on 10 Aug 2017 on
four 30m X 30m plots, located in an herbal-grass mixture paddock.
The exact same sampling protocol was followed as described above for
CEDAR farm.

In the case of Sonning farm, 12-13 spectral reflectance measure-
ments were done on each of the sixteen 4m X 5m mini-plots (see
Section 2.1), followed by ten LAI measurements and ten RPM mea-
surements.

2.3. Sentinel-2A image post-processing

The workflow for image post-processing was developed to prepare
the S2A imagery for the retrieval. The Sentinelsat library enables the
automation of searching and downloading of satellite images from the
Copernicus Open Access Hub (https://scihub.copernicus.eu/) using a
cloud contamination threshold. Selected images were then processed
with the Sen2Cor processor [version 2.3.0; European Space Agency.
http://step.esa.int/main/third-partyplugins-2/sen2cor/ (accessed June
2017)], which performs topographic correction and transforms top-of-
atmosphere reflectance to bottom-of-atmosphere reflectance. Scene
classification and cloud masks are produced for each scene in the
Sen2Cor process to allow for cloud and shadow removal, if required,
prior to further analysis.

2.4. LAI retrieval algorithm

2.4.1. PROSAIL inversion approach

In our analyses, we consider two datasets (Fig. 2a) for testing LAI
retrieval — ground hyperspectral data and actual S2A multispectral
images. The ground hyperspectral reflectance data were resampled into
the S2A bands using spectral response functions obtained from the
European Space Agency's website (http://www.esa.int/ESA). These
resampled data will be referred as ‘in-situ S2A’ data hereafter. We were
mainly interested in working with spectral bands (490, 560, 665 &
842 nm) corresponding to 10 m spatial resolution S2A images as some
of our paddocks are relatively small in size; however, the retrieval
scheme was also tested using resampled bands corresponding to the
S2A 20 m bands (705, 740, 783, 865, 1610, 2190 nm).

The PROSAIL model was used to generate a Look-Up Table (LUT) of
spectral reflectance for inversion. PROSAIL is a canopy radiative
transfer scheme that couples leaf (PROSPECT) and canopy (4-SAIL)
radiative transfer models (Jacquemoud et al., 2009; Jacquemoud and
Baret, 1990; Verhoef, 1984; Verhoef and Bach, 2007). The model re-
quires the following parameters: LAI, leaf inclination angle, hotspot
parameter (q), leaf chlorophyll content (Cgp), leaf dry matter content
(Cr), leaf water content (C,), leaf brown pigment content (Cpp), leaf
structure parameter (N), and the solar and viewing geometry (see also
Table S1 in Supplementary material). Canopy level reflectance has been
found to have a relatively small sensitivity to N (Punalekar et al., 2016)
and S2A rarely samples in the sensitive hotspot zone; thus reflectance is
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Fig. 2. Flowcharts showing (a) PROSAIL inversion scheme for LAI retrieval, (b) LAI-RPM biomass relationship generation and application over Brixey's farm to create

S2A-based RPM biomass maps.

only modestly affected by g, in the nadir viewing direction (or even up
to 5°, as in S2A scenes). Hence these parameters were fixed to 1.6 and
0.05 (both unitless), respectively.

The effect of leaf inclination is taken into account by using a leaf
inclination distribution function (LIDF) that requires two parameters:
LIDF, and LIDF, (both unitless). The first one defines the type of leaf
inclination (with values between approximately —1, for fully erecto-
phile, to +1 for planophile distributions) while LIDF, represents the
bimodality of the distribution (Verhoef, 1998). Canopy reflectance is
typically not strongly affected by LIDF,; hence this parameter was fixed
to —0.15, ie. the default value of the standard PROSAIL model con-
figuration.

The LUT was generated for six free parameters — LAI, Cgp, Cp, Cy,
Cpp and LIDF,. Twenty thousand random combinations of these para-
meters were generated within pre-defined parameter ranges. LAI, Cgp,
C, and C, were sampled using a distribution function suggested by
Weiss et al. (2000). LIDF, and C,, were sampled assuming uniform
distributions. Parameter values were allowed to range considerably in
order to reflect the variability in herb and grass species at some of the
sites (see Table S1). Parameter ranges were based on the literature, field
data and previous research conducted on semi-natural grasslands
(Darvishzadeh et al., 2008; Vohland and Jarmer, 2008; Atzberger et al.,
2015; Punalekar et al., 2016). LUTs were generated for different solar
and sensor zenith angles with respect to different observation dates and
time (for S2A images as well as in-situ S2A).

The effect of soil type and soil moisture status on reflectance was
also taken into account in the PROSAIL simulations by incorporating a
semi-empirical soil reflectance model (Verhoef et al., 2018). This model
simulates soil reflectance as a function of soil moisture content and
three other soil parameters: soil brightness, soil ‘latitude’ and soil
‘longitude’. Prior to performing PROSAIL simulations, we used in situ
bare soil spectral measurements (for CEDAR farm and Sonning farm
separately) to invert the soil model and obtain these soil parameter
values for each soil type. As no bare soil measurements were available
for Brixey's farm, retrieved values for CEDAR farm soil type were used.
Soil moisture data (at 5cm depth), obtained from a Vantage Pro2
weather station (Davis Instruments, USA) installed at CEDAR farm,
were used to estimate soil moisture status on in situ sampling and S2A
image acquisition days. In the model, two values of volumetric soil
moisture content (0.2 and 0.4 m®m™3) were considered, and LUT si-
mulations were done for these two soil moisture scenarios and re-
spective soil parameters derived for that site.

The contrast cost function (Verrelst et al., 2014) was used to find the
best match between measured and modelled (from LUT) spectra. This
function has been found to be more appropriate than the traditionally
used cost functions (e.g. those based on root mean square error), par-
ticularly so for LAI retrievals (Rivera et al., 2013; Verrelst et al., 2014).
In order to reduce effects caused by the ill-posed nature of inversion
problems, parameters for the 50 best solutions (corresponding to the 50
lowest values of the contrast function) were averaged to calculate
modelled estimates of all free parameters (Weiss et al., 2000).

2.4.2. NDVI based approach

In order to compare the radiative transfer model inversion to an
empirical NDVI based approach in capturing changes in pasture bio-
mass, LAI was also independently estimated from NDVI. The compar-
ison was done for Brixey's farm and in terms of RPM derived biomass
(Section 2.5).

All the in-situ S2A data (NIR: 842 nm and Red: 665 nm) and field
measured LAI over CEDAR and Sonning farm were utilized to develop
the following NDVI-LAI relationship (see also Fan et al., 2009; Gowda
et al., 2016, for similar equations):

LAI = 0.001exp(®7343NDVD) @

This relationship was then applied to NDVI maps for Brixey's farm
(derived from S2A) to generate a LAI map (for a summary of the pro-
cedure, see Fig. 2b). There were twelve S2A scenes for this farm from 19
July 2016 to 14 June 2017.

2.5. Generation of RPM biomass map from LAI and comparison with
historical plate meter biomass data for Brixey's farm

S2A Image based LAI verification was not possible for Brixey's farm,
due to lack of LAI measurements. However, historical RPM based in-
direct biomass measurements (Table 1), collected by the farmer, for
Brixey's farm offered an opportunity to assess the usefulness of S2A
images, combined with different retrieval procedures (PROSAIL and
NDVI based, see Fig. 2), in capturing spatio-temporal variability in
productivity on operational pasture farms. RPM derived biomass mea-
surements were collected fortnightly as part of standard management
practice and not for satellite verification specifically. Each record for a
paddock on any given date corresponded to 30 random RPM mea-
surements taken within that paddock. Dates of RPM collections were
compared with the S2A image archive and three dates (19 July 2016,
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Fig. 3. Relationship between LAI and RPM biomass measurements (as reported
in Eq. (2)) for all three experimental sites (CF, SF, BF representing CEDAR,
Sonning and Brixey's farm respectively). Each symbol represents the average for
one plot at any one date between March and August 2017 (Table 1). Note that
Brixey's farm (4 plots) was sampled by the research team on 10 August 2017
only.

15 November 2016 and 26 March 2017) were identified for which good
quality images were available within two days of the farmer's survey
(Table 1).

The LAI maps (obtained by PROSAIL inversion as well as from the
LAI-NDVI relationship (Eq. (1))) were converted into RPM based bio-
mass values using a linear relationship (Eq. (2)) between field mea-
surements for LAI and RPM readings. For this purpose, ground based
LAI from ceptometry, and RPM measurements, as obtained by the re-
search-team (procedures described in Section 2.2), for all three sites
were pooled. A positive relationship was found between LAI and RPM
measurements, BM (Fig. 3, r* = 0.50 and p-value for regression <
0.005), as defined by the following linear equation:

(2)

Fig. 3 shows that generally lower values of LAI and biomass were
found at CEDAR farm, whereas higher values were observed for Son-
ning farm (also reported in Figs. 4 and 5, for LAID). This was to be ex-
pected, as the small plots at Sonning farm were cut only occasionally
and never grazed.

After creating biomass maps for Brixey's farm using LAI maps
(Sections 2.4.1 and 2.4.2) and Eq. (2), paddock level averages were
calculated using ARCMAP 10.4 spatial analyst toolbox (http://www.
esri.com) and these were compared with RPM measurements, obtained
by the farmer.

BM = 451.99 x LAI + 1870.7

2.6. Verification procedures and statistics

In the case of the in-situ S2A bands derived from SVC data, LAI
values retrieved for each individually measured spectrum were aver-
aged to obtain the mean retrieved LAI per plot. For the S2A image
verification (for CEDAR farm), retrieved LAI values of 4-5 pixels that
fell well within each 30 m X 30 m sampling plot were averaged. The
retrieved LAI average was compared with plot average LAI The fol-
lowing statistics (using Matlab, Mathworks) were calculated in the
context of LAI verification: Root mean square error (RMSE), %, slope of
linear regression, range of modelled LAI and concordance correlation
coefficient (crc). The crc allows comparison of model simulations with
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measured values while correcting biases and considering them as in-
dependent variables.

3. Results

3.1. Comparison of measured and retrieved LAI: CEDAR farm and Brixey's
farm

3.1.1. Changes in measured LAI with respect to weather conditions and
management

Fig. 4a shows LAI measured with the ceptometer in three paddocks
at CEDAR farm on different dates during spring and summer months in
2017. The silage plots (plots C9 and C10) had considerably higher LAI
values than the grazed plots (C1-C8). The silage plots had been left un-
grazed since the start of the growing season (approximately the first
week of March) and had already reached LAI values of > 5m?m ™2 by
11 April 2017. Further growth until 5 May 2017 increased LAI by a
further 20%.

Weather conditions were conducive to good vegetation growth
during spring (March—April). A steady rise in air temperature and in-
coming solar radiation since late winter (monthly average for February
2017: 6.5°C, 3.80 MJm~2day ') through early spring (March 2017:
9.4°C, 8.54MJm 2day ™!, April 2017: 8.9°C, 14.4MJm™*day %)
boosted pasture growth. The variations in LAI on the grazed plots
during April-May were driven by vegetation growth as well as pasture
removal due to grazing, and maximum LAI was always < 4m*m ™2,
Relatively low LAI values were found on 5 May 2017 and 25 May 2017,
as the paddock had been grazed about 7-10 days before these dates.
Very low LAI values were observed for 21 June 2017, resulting from
drought-induced pasture die-back due to low rainfall and relatively
high air temperatures (total rainfall between 10 and 25 June 2017 was
0.6 mm and average air temperature was 18.9 °C).

In general, considering the size of the individual error bars in
Fig. 4a, LAI did not differ significantly between dates for plots C1 to C5,
except on 21 June 2017. However, these relatively large error bars il-
lustrate considerable within-plot variability. Plots C6—-C8 in Paddock 6
(Fig. 1) were sampled twice (11 April and 21 June 2017). As they were
grazed almost a month before 21 June 2017, grass regrew well before
the water stress conditions occurred and hence these plots had higher
LAI compared to C1 to C5, which were more susceptible to soil water
deficiencies as they were grazed from 1 to 11 June 2017.

3.1.2. LAI verification with respect to ceptometry measurements

Fig. 4b and Table 2 (top row) show a comparison between measured
LAI and LAI retrieved using PROSAIL (see Section 2.4.1, Fig. 2a) using
in-situ S2A (10 m bands) simulated from SVC hyperspectral data.

Note that there were some small discrepancies between dates of LAI
sampling, SVC survey and actual image acquisition; for example, on 5
April 2017 no SVC survey was done on plots C1-C5, but LAI mea-
surements and a good quality S2A image (2 April 2017) were available.

High to very high values of crc and 2 in Table 2 indicate that there
was a good match between measured and modelled LAI for CEDAR farm
and Brixey's farm (10 August 2017, 4 plots), when data for all SVC
sampling dates were considered. Fig. 4b shows that high values of LAI
for CEDAR farm silage plots (C9 and C10) on 11 April 2017, as well as
highly reduced LAI values on 21 June 2017 for plots C1 to C5, were
captured well by the PROSAIL inversion.

Fig. 4b also shows results for four herbal-grass mixture plots
(B1-B4) that were sampled on 10 August 2017 at Brixey's Farm. Three
out of four of these points fell close to the 1:1 line shown in the scatter
plot; however, retrieved LAI for the grass plot with the highest mea-
sured LAI values (paddock no. 25) was lower than measured LAIL
During August, paddocks at Brixey's farm were on a ~35 days rotation
cycle and had favourable weather conditions (average air temperature
16.6 °C, rainfall 72.4 mm). Paddock number 25 (Fig. 1), that contained
our sampling plots, was grazed on 12 July2017 and had achieved a
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LAI (ceptometry) and LAI retrieved from in-situ S2A for sampling plots at Sonning farm. All dates in the figure correspond to the year 2017.
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Table 2

Statistics reporting a comparison between measured and retrieved LAI for all three sites.
Data Spatial resolution corresponding to bands used Farms RMSE r slope cre Range

(m) (m*m~?) (m*m~?)

In-situ S2A 10 CEDAR farm, Brixey's farm 0.55 0.87 0.78 0.88 4.20
In-situ S2A 10 Sonning farm 1.22 0.61 0.84 0.61 4.30
Actual S2A images 10 CEDAR farm 0.62 0.76 1.30 0.64 3.10
In-situ S2A 10 & 20 CEDAR farm, Brixey's farm 0.91 0.78 0.91 0.86 4.24
In-situ S2A 10 & 20 Sonning farm 1.19 0.56 0.73 0.58 3.96

dense vegetation cover by 10 August 2017 (average measured LAIL
4m?m2).

Except for the aforementioned four plots from Brixey's farm and two
CEDAR farm silage plots, all other points in the scatter plot (Fig. 4b)
represent CEDAR farm sampling plots C1 to C5. For these plots the
variations over different dates observed in measured LAI were also
evident in the LAI retrieved from in-situ S2A. For example, both average
measured and retrieved LAI on 11 April and 4 August 2017 were higher
than average LAI on 5 May, 25 May and 21 June 2017 (Fig. 4a).
However, retrieved LAI values for 11 April and 25 May 2017 were very
similar, whereas the measured values show a much clearer separation
between these dates.

Finally, Fig. 4c shows the comparison between measured LAI and
LAI retrieved from actual S2A images (10 m bands), for CEDAR farm, for
three different dates (2 April, 22 May and 21 June 2017). LAI mea-
surements for plots C1-C5 conducted on 5 April and 25 May 2017 were
used for comparison with LAI maps for 2 April and 22 May 2017, re-
spectively. Three plots (C6-C8, sampled on 21 June 2017) were in-
cluded in addition to the regularly measured plots C1-C5, dictated by
availability of field LAI data (in-situ S2A data were not available for
these plots; hence, they were not shown in Fig. 4b). Table 2 (third row)
shows lower crc and 2 values for retrievals based on actual S2A images
compared to in-situ S2A retrieval. However, reasonable values of all
statistical measures confirm good overall accuracy of the PROSAIL LUT
retrieval algorithm using both datasets. Similar to observed LAI, re-
trieved values show high LAI on 5 April 2017 followed by 25 May 2017
and lowest values on 21 June 2017. However, the range of modelled
LAI based on actual S2A data (3.1 m?>m™?) was relatively narrow
compared to the observations (5.2 m?m 2, based on all dates and sites
combined) and in-situ S2A retrievals (4.2 m?m ™ 2).

Table 2 also shows statistics for LAI retrieval using in-situ S2A bands
that correspond to 20 m as well as 10 m bands. With these additional
bands included, there was a small drop in crc for CEDAR and Brixey's
farm (compared to row 1 in Table 2); however, RMSE and r? were
significantly poorer compared to the retrieval using the 10 m bands
only.

3.2. Comparison of measured and retrieved LAI: Sonning farm

3.2.1. Changes in measured LAI with respect to weather conditions and
management

Fig. 5 shows bar plots summarising ceptometry-based LAl mea-
surements for four pasture types (four replicates of each type, see
Section 2.1) for small plots at Sonning farm, as observed on different
sampling dates. The seasonal growth pattern of the forage species
monitored here varies, with most legumes, chicory and plantain being
dormant or semi-dormant at cooler temperatures in the winter, whereas
growth peaked in late spring and summer.

Ryegrass grows at cooler temperatures and has higher growth rates
in early spring and autumn compared to other grasses and herbal
mixtures (Kemp et al., 2010). Hence, on most sampling dates, it was
found to have significantly higher LAI values than the other pasture
types. Due to their rapid growth, plots with ryegrass were cut earlier
than other pasture types. Hence there were no measurements of LAI on
3 May 2017 as ryegrass plots was cut a week before this date and the
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grass crop was still too low to reliably conduct ceptometry. Similarly,
on 12 June 2017 LAI for ryegrass was less than the values measured for
the other types, due to the fact that ryegrass was cut on 1 June 2017
and left to re-grow, while the other pasture types were left uncut to
achieve maximum biomass stage. The rapid growth of ryegrass was
reduced in late summer, when herbal plots started to grow more vig-
orously and hence had higher LAI on 22 August 2017, compared to
ryegrass. Other than on 22 August 2017, measured LAI was not sig-
nificantly different among biomix, smartgrass and herbal plots.

Weather conditions at Sonning farm were very similar to CEDAR
farm due to their geographical proximity. However, Sonning farm plots
generally had higher LAI values compared to CEDAR farm due to the
absence of grazing. These plots were comparable to the silage plots at
CEDAR farm.

3.2.2. LAI verification with respect to ceptometry measurements

Each bar chart in Fig. 5 is paired with a scatter plot that shows a
comparison of measured LAI against LAI retrieved using four in-situ S2A
bands. Plots corresponding to dates with ryegrass (all except 3 May
2017), having the highest measured LAI, also showed the highest re-
trieved values (28 March, 21 April and 1 June 2017). Retrieved LAI was
lowest for ryegrass on 12 June 2017, as was also observed in the
measurements. Furthermore, on 22 August 2017 retrieved LAI values
for ryegrass were comparable to those obtained for other forage species.
Also, those retrieved for herbal plots were considerably higher than
values for most of the non-ryegrass plots. Likewise, these findings
correspond well with the observed variations in LAI on 22 August 2017.
In general, retrieved LAI was overestimated for all dates and especially
for plots with observed LAI > 3m?m™2

The statistical indicators relating to Sonning farm (second row of
Table 2) indicate a reasonably good accuracy of LAI retrieval. Similar to
the other two sites, inclusion of 20 m bands (in-situ S2A only) did not
improve retrieval accuracy any further.

3.3. Spatial maps of LAI: CEDAR farm

Fig. 6 shows S2A-derived LAI maps for CEDAR farm for three dates —
5 April, 22 May and 21 June 2017. Verification of retrieved LAI has
been reported for these dates in Section 3.1.2. These maps show spatio-
temporal changes in LAI for all paddocks, which were in parity with
expected changes in pasture vegetation, as driven by weather condi-
tions and management operations. High LAI in most of the paddocks on
2 April 2017 can be explained by good growth of perennial ryegrass
pastures in early spring (from early March onwards). The weather
during March was relatively warm and sunny (compared to the long-
term average) and the soil moisture content was near field capacity.
Most of the paddocks did not have cows grazing until 2 April 2017.
Grazing commenced on all paddocks and more or less followed a ro-
tational pattern, during April and May. Some paddocks were also cut
for silage, which resulted in pronounced differences in LAI among
paddocks on 22 May 2017.

Later in the growing season, around 21 June 2017, all paddocks had
a distinctly low LAI due to plant water stress (as discussed in Section
3.1.1). Ryegrass generally has a low tolerance to soil moisture deficits
(Akmal and Janssens, 2004) due to its relatively shallow root zone and
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Fig. 6. False colour composite S2A images (top row) of CEDAR farm for three dates in 2017 used for determination of LAI maps (bottom row) using the PROSAIL

model inversion.

hence most paddocks in CEDAR farm experienced drought, resulting in
grass die-back for the period around 21 June 2017. This can be clearly
seen in the LAI map produced for that date.

Paddock 8 was under silage around 2 April 2017 and hence had
LAI > 5 mzm_z, whereas its LAl was < 1m?m~2 on 22 May 2017, as
the sward was cut in the middle of May.

Note that some distinct strips are visible in paddock 7; it had a
variety of pasture mixtures grown in strips (Sections 2.1 and 2.2); these
are most distinct on 22 May 2017. However, on 21 June 2017 the entire
paddock had LAI < 0.5m?m™? as it was cut for silage on 12 June
2017.

3.4. Spatial maps of biomass based on PROSAIL and NDVI retrieval:
Brixey's farm

Fig. 7 shows RPM-equivalent biomass maps for Brixey's farm, pro-
duced from PROSAIL derived LAI maps (Fig. 2a) and Eq. (2). These
maps showed considerable spatio-temporal variability for the different
grazing paddocks.

Changes in pasture cover brought about by grazing/cutting for si-
lage can be easily traced in the maps, especially for images captured by
consecutive S2A passes (~12-day periods; see, for example, maps for 3
and 15 November 2016 or 13 and 26 March 2017). In these cases,
abrupt drops in biomass were caused either by grazing or removal of
pasture for silage. Paddocks with biomass lower than ~2000kgha™!
indicated freshly grazed or cut paddocks; in subsequent biomass maps
they exhibited increased biomass, showing that they had been left to
recover.

Statistics relating RPM-equivalent biomass maps derived from
PROSAIL (Eq. (2) and Fig. 2b) with actual surveys for three dates
(Table 1) have been reported in Table 3 (left side). Values for % and
RMSE indicate relatively poor agreement between modelled and mea-
sured biomass when all three dates were compared together. However,
when the comparison was done separately for each date, RMSE and crc
values improved for all dates. Values of crc of 0.50 or higher, and
r? > 0.40, on all three dates indicated a reasonable match between
modelled and measured RPM biomass estimates (p-value for regres-
sion < 0.005). However, values were clearly overestimated (high

RMSE), especially on 15 November 2016 and 26 March 2017 (Fig. 8a).

Fig. 8b and Table 3 (right side) also report on the agreement be-
tween NDVI based biomass maps and RPM surveys. Higher 7 and lower
intercept (in magnitude) indicate a better linear fit between measured
and modelled RPM biomass estimates using PROSAIL based LAI maps
than when NDVI based once. RMSE was also lower for PROSAIL in-
version based biomass maps for ‘all three dates’ and 19 July 2016 maps.
However, NDVI based biomass estimates were slightly more accurate in
terms of crc and RMSE for 15 November and 26 March data. It is im-
portant to note that the standard deviation bars plotted for modelled
average biomass depict within-image spatial variability and these bars
were longer for inversion based biomass maps compared to NDVI based
ones. This is also demonstrated by the higher range in biomass, for
inversion based maps (Table 3, left side).

Note that all the pixels within a given paddock boundary were used
to calculate average RPM based biomass estimates (Figs. 7 and 8).
Pixels close to the paddock boundary may have been affected by the
area surrounding the paddock (Handcock et al., 2008) and this may
help explain the relatively poor fit between observations and S2A es-
timates. However, these errors should have had a similar effect on both
PROSAIL based and NDVI based LAI maps. Therefore, we did not omit
any edge pixels when comparing these two methods for LAI retrieval
(and hence for generation of RPM biomass maps).

4. Discussion
4.1. Performance of the retrieval scheme using S2A data

Since the Sentinel optical satellites mission was proposed, various
studies have examined the potential of Sentinel 2 bands, resampled
from field/airborne hyperspectral sensors, for the monitoring of a wide
range of crops including pastures (Delegido et al., 2013, 2011;
Frampton et al., 2013; Sibanda et al., 2015). The findings presented in
our paper that use in-situ S2A bands resampled from SVC hyperspectral
data are consistent with those studies and demonstrate the potential of
using Sentinel 2 data for observing grass vegetation dynamics.

The good accuracy of the PROSAIL based LAI retrieval algorithm,
using in-situ S2A data, for typical perennial ryegrass (CEDAR farm) as
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Fig. 7. S2A based RPM-equivalent biomass maps for Brixey's farm corresponding to dates in 2016-17, produced by applying Eq. (2) on twelve LAI maps (not shown)

derived from S2A images through PROSAIL inversion.

well as herbal-legume-grass mixtures (Sonning and Brixey's farm) has
shown that S2A bands with 10 m spatial resolution can be used to
monitor growth of pastures with variable composition and for different
farm management configurations (grazed versus un-grazed, as well as
silage plots). This is important from a sustainable management point of
view, as this practice encourages a good balance between the use of
traditional perennial ryegrass and herbal pastures for optimising both
pasture quality and quantity for dairy and meat production (Sleugh
et al., 2000; Woodward et al., 2013).

Furthermore, this study is among the very few, if not the first, re-
search work that reports image based verification of pasture biophysical
properties derived from S2A. Our results show (Table 2) that actual
image based retrievals over perennial ryegrass (CEDAR farm) were
better than in-situ spectral data based retrievals for pasture mixtures at
Sonning farm. This is related to a better performance of the retrieval
algorithm over ‘relatively homogeneous’ and less dense (LAI <
~4m?m™2) canopies in regularly grazed perennial ryegrass paddocks.
The good performance of PROSAIL S2A image based retrievals during

Table 3

three different stages of canopy growth at CEDAR farm (Figs. 4c and 6),
indicates that the post-processing techniques and corrections (geo-
metric, radiometric and atmospheric) were reliable, and that the field
based sampling strategies for verification were appropriate. Further-
more RPM-equivalent biomass maps derived using LAI maps (Eq. (2),
Fig. 2b) created for Brixey's farm, using PROSAIL inversion (Fig. 2a),
captured within-paddock spatial variability well.

Our study overestimated LAI values for Sonning farm plots that had
relatively high LAI (Fig. 5). The increased discrepancy between mod-
elled and measured LAI for Sonning farm, in comparison to CEDAR
farm, may partly be explained by the fact that the Sonning plots were
characterised by multi-species ‘swards’ with a broader range and larger
number of possible combinations of biophysical and chemical proper-
ties at leaf and canopy scale. These kinds of canopies pose a challenge
to radiative transfer models such as PROSAIL that assume canopies to
be a homogeneous medium. Although PROSAIL based inversions have
been proven to be sufficiently accurate for a wide range of canopies,
including heterogeneous grasslands, reductions in accuracy of

Brixey's farm biomass analyses: statistics summarising a comparison between farmer-collected RPM biomass measurements and RPM biomass calculated using LAI
maps derived from a combination of PROSAIL inversion and Eq. (2) (see also Fig. 8a); or based on a NDVI based empirical equation for LAI (Eq. (1)) and Eq. (2) (see

also Fig. 8b).

RPM measurements compared with RPM-equivalent biomass estimates using LAI maps from
PROSAIL inversion and Eq. (2)

RPM measurements compared with RPM-equivalent biomass estimates using
LAI maps from NDVI and Eq. (2)

Statistics All three dates 19-Jul-16 15-Nov-16 26-Mar-17 All three dates 19-Jul-16 15-Nov-16 26-Mar-17
RMSE (kgha™?) 802.93 488.50 881.73 990.37 717.60 524.97 830.60 784.94

r 0.22 0.46 0.54 0.76 0.16 0.38 0.40 0.73

slope 0.55 0.52 1.14 1.42 0.41 0.44 0.71 1.20
Range (kgha™!) 2030.93 1697.40 1537.01 1877.10 1869.68 1433.30 1404.99 1738.08
cre 0.45 0.59 0.53 0.57 0.40 0.50 0.62 0.69
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Fig. 8. (a) Comparison between farmer RPM biomass measurements and RPM biomass equivalent maps derived from LAI maps obtained via PROSAIL inversion and
using Eq. (2). (b) As described in (a), but in this case LAI was derived from NDVI using Eq. (1). Both measured and calculated biomass values were averaged at
paddock level. Each dot represents one paddock on Brixey's farm, with the spatial variability (based on a variable number of pixels per paddock) indicated by the

error bars.

algorithms with increased species diversity in grasslands have also been
reported in the literature (Darvishzadeh et al., 2008).

The performance of LAI retrieval schemes has also been linked to
the sensitivities of reflectance to LAI in different spectral regions (VIS,
red-edge, NIR and SWIR). Reflectance in the NIR is highly sensitive to
LAI. However, opinions differ regarding the importance of red-edge
bands, as this region of the spectrum corresponds to a shift from
chlorophyll absorption to leaf scattering (Darvishzadeh et al., 2009;
Delegido et al., 2011; Herrmann et al., 2011; Richter et al., 2012). In
our study inclusion of red-edge bands, obtained from the 20 m resolu-
tion S2A data, did not lead to an improvement in LAI retrieval.
Nevertheless, the retrieved LAI using either bands corresponding to
10m, or to 10 and 20 m combined, compared reasonably well with
measured LAI as illustrated by high and comparable crc values
(Table 2). This implies that the exclusion of red-edge bands, while
producing 10 m LAI maps using just four S2A bands, would probably
not affect retrieval accuracy for pasture canopies. However, red-edge
bands have been found to be useful for retrieval of other crucial para-
meters such as chlorophyll content (Clevers and Gitelson, 2013) and
hence this additional information has the potential to further aid pas-
ture management activities such as fertilizer applications and therefore
needs further investigation.

The inclusion of the 20 m band centred on 1610 and 2190 nm also
did not improve LAI retrieval accuracy (Table 2), despite the fact that
SWIR bands have been reported to be beneficial for LAI or biomass
retrieval by some researchers (Darvishzadeh et al., 2009; Richter et al.,
2012). For example, Handcock et al. (2008) recommended utilization of
SWIR bands in biomass estimation to characterize seasonal as well as
management driven changes in non-photosynthetic material, together
with the contribution of soil fractions, on the canopy reflectance. Ef-
fective utilization of SWIR bands in improving LAI retrieval through
LUT inversion may be achieved by improved representation of leaf dry
matter and water content in the LUT parameters, as well as modifica-
tion of the background soil spectra for litter content (Danner, 2017).
This may require characterization of seasonal and management driven
changes in senescing plant material that affect SWIR bands reflectance,
which in turn would provide an additional source of information aiding
LAI retrieval.

4.2. Comparison between PROSAIL derived and NDVI based biomass maps

Our analyses showed that LUT based biomass predictions (using Eq.

(2) and the approach outlined in Fig. 2b to get biomass from LAI)
performed better than NDVI based biomass maps. Although model
comparison statistics were not largely different for NDVI based and LUT
based retrievals (Table 3), it is important to note that LUT based in-
versions for LAI were independent of field based information; whereas
the NDVI based LAI-equation was developed using field measurements.
In addition, standard deviation bars in Fig. 8 show that LUT based
biomass maps exhibited more within-paddock variability compared to
NDVI based biomass maps. Thus, non-dependence on field based in-
formation, and improved accuracy, demonstrate that LUT based LAI
retrieval schemes offer better and more versatile options for operational
systems dedicated to regular pasture monitoring. Note that remote
sensing indices that include further S2 bands, in addition to those used
for NDVI, may be more successful in determining biomass for pasture
land (Delegido et al., 2011; Handcock et al., 2008). However, spectral
statistical models would always need larger calibration datasets than a
physically based model, before they can be used for operational sys-
tems.

The moderate accuracy of the LAI-RPM relationship in addition to
its empirical nature suggests that Eq. (2) is not readily transferable for
pasture monitoring over different sites in operational systems. The
weakness of the relationship is potentially a result of the indirect nature
of both RPM and LAI measurements. Furthermore, the lower r? and crc
when comparing remotely sensed biomass (obtained via remotely-
sensed LAI and Eq. (2), which is based on a combination of RPM
measurements and LAI derived from ceptometry) and actual RPM ob-
servations (Fig. 8 and Table 3) could also be due to the fact that the
farmer only took 30 measurements (compared to the recommended
50-80) per paddock to derive paddock average biomass. The compar-
ison is particularly poor when all dates have been combined (Table 3),
which indicates that the nature of the relationship between LAI and
RPM, as well as RPM calibration equations, are dependent on season. In
fact, seasonal changes in RPM calibrations have been discussed in the
literature (Thomson et al., 1997). However, recommendations from
such papers are generally not implemented by commercial instrument
manufacturers, as the country or region where the RPM will be used is
not known. The responsibility to correctly ‘set up’ the RPM lies with the
user and the requirement to adopt the appropriate conversion equation,
and the implication of inaccurate biomass predictions, are not com-
municated well to farmers.

Despite the only moderate goodness of fit of the LAI-RPM re-
lationship, we used it to generate remote sensing based RPM-equivalent
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biomass maps, not so much to promote it as a model for pasture bio-
mass estimation, but rather to allow us to study and comment on
within-paddock variability, as well as provide the opportunity for a
comparison between PROSAIL based and NDVI based retrieval
methods.

4.3. Sentinel 2 based operational system for pasture monitoring

The LUT algorithm we have presented here is designed as a proof-of-
concept for how such a retrieval might be implemented with Sentinel-2
data. It is not, in its current form, likely to be useful as an operational
tool but could serve as a starting point to develop one. LUTs are used
already for some operational satellite derived products, for example the
MODIS LAI/fAPAR algorithm (Myneni et al., 1999) and there are a
number of techniques that could be used to speed up the inversion of
our algorithm. For example Gastellu-Etchegorry et al. (2003) present a
method that generalises LUTs for view-illumination geometries which
eliminates the need to produce individual LUTs for each scene as done
in our study. Verrelst et al. (2014) suggest a method that involves the
combination of multiple best solutions with the addition of noise. Here
we have opted only to use the multiple best solution component, but the
addition of noise is something that could potentially form part of an
operational algorithm. Many other disciplines use LUTSs routinely and
there are inevitably valuable methods that could be incorporated in
operational systems used for pasture monitoring. For example, Wilcox
et al. (2011) describe a tool, Mesa, that provides a range of performance
enhancements for LUTs that remove a large number of design decisions
from the construction of the LUT. Verrelst et al. (2015) discuss various
hybrid retrieval schemes essentially developed to speed up biophysical
mapping in operational systems. We propose that further research can
build on these research findings.

Apart from the technical aspects of the actual operational algorithm
it is important to discuss essential features of operational systems from
the user's perspective. Considering the dynamic nature of intensively
managed grazing pastures, Eastwood et al. (2009) posed that for any
pasture monitoring system to be efficient and reliable three factors play
a key role - timeliness, efforts in data collection and accuracy. By de-
finition remote sensing based solutions should reduce the manual ef-
forts involved in pasture monitoring. Furthermore, with the advent of
software and hardware tools that can handle large datasets in real time
it is becoming easier to deliver final biomass prediction products in user
friendly formats to farmers (pasture wedge plots for instance) within a
couple of days of image acquisition. However, even though in theory
the Sentinel 2 program offers an excellent spatial coverage approxi-
mately every 5days (depending on latitude), in countries such as the
UK frequent cloud cover significantly reduces the number of good
quality satellite scenes. Based on the MODIS cloud mask analysis for the
UK, Armitage et al. (2013) showed that mean percentage of cloud free
days in the UK in 2005 was only 21.3%. Thus, delivering biomass maps
whenever a good satellite image is available may not be a viable ap-
proach for efficient pasture management. Hence our future work will
focus on combining retrieved LAI maps with a pasture growth model to
produce full time-series of pasture biomass estimates, taking into ac-
count the management activities and weather conditions. These esti-
mates will be verified using actual (destructive) biomass measurements.
This may allow the delivery of biomass prediction maps in near-real
time, thus assisting farmers in well-informed management decisions
such as designing weekly grazing rotation plans.

The accuracy of biomass estimates has a significant effect on bio-
mass allocation and feed supplements and hence on overall input cost
and profit margin. The level of accuracy expected from a prediction tool
has been found to be dependent on the individual famer's perception
and management practices (Eastwood et al., 2009). At Sonning and
CEDAR farms a prediction accuracy of about 100kg DMha ™! is con-
sidered to be the ideal target by the farm management. For example,
with the accuracy of 100 kg DM ha ™! and estimated intake of 15 kg DM

218

Remote Sensing of Environment 218 (2018) 207-220

per dairy cow per day, stocking density could still be under or over
estimated by * 6.7 animals or 6.7%. Traditional methods such as RPM
can provide an accuracy of about 350 to 450 kg DM ha ™' (Huillier and
Thomson, 1988; Thomson et al., 1997) which at a target available
biomass of 1500 kg DM ha ™' produces a biomass prediction error of up
to 30%.

In absence of any destructive (and hence more accurate) biomass
measurements it is difficult to discuss the absolute accuracy of the
biomass maps derived from LAI maps in this paper. Table 3 shows a
sub-optimal predictive performance of our derived RPM-LAI relation-
ship resulting in an overall high RMSE for RPM-equivalent biomass
maps (reasons for this are discussed in Sections 3.4 and 4.2). In order to
approximate the potential error in biomass maps purely due to errors
associated in the LAI maps, RMSE in retrieved LAI (Table 2) was
translated to biomass units using a LAI-RPM derived biomass equation
(Eq. (2)). The calculated error was about 250 kgha™! in the grazing
paddocks and ~550kgha™! in mixed pasture silage plots, which is
considerably better and somewhat worse, respectively, than the error-
range reported for plate-meters. Therefore, there is scope for improving
the accuracy of biomass predictions based on remotely-sensed LAI
maps. This can be achieved by expanding the LUT for a range of pasture
types and seasonal variations in the pasture canopy, thereby taking into
account the inherent variability in biophysical parameters and com-
bined effects of soil and litter fractions on canopy reflectance, but most
importantly by combining the potential of satellite images with that of
process-driven pasture growth models. We propose to use the LAI maps
(containing key spatial information in terms of pasture density dis-
tribution) as assimilation datasets for a pasture growth model. This
model uses daily weather data to predict near-real time changes in
pasture biomass, to inform management decisions. The pasture growth
model simulates daily values of biomass and LAI and whenever a good-
quality Sentinel 2 image is available a LAI map would be derived as per
the procedure described in this paper. During the generation of pasture
LAI maps a calibration routine minimises the difference between the
remotely sensed LAI and growth model simulated LAI by calibrating
photosynthesis and growth related parameters. The developed pasture
monitoring system would ultimately use weather forecast data to gen-
erate biomass growth predictions and hence can be used to create so-
called pasture wedge plots to help farmers develop grazing rotation
plans across paddocks. Similar remote sensing based model assimilation
algorithms have been proposed for arable crop monitoring (Dorigo
et al., 2007; Olioso et al., 2005). However, in the case of intensively
grazed pastures, for which remote sensing based applications are cur-
rently largely empirical, and pasture growth models are rarely used in
conjunction with remote sensing based datasets, the proposed algo-
rithm would explore new solutions to regular monitoring as well as
more informed decision making. We emphasise that full advantage of
fine spatiotemporal satellite datasets for pasture management demands
further research in development of such model-data fusion tools.

5. Conclusions

We have demonstrated that Sentinel 2A data, combined with a ra-
diative transfer model (PROSAIL), can be used for pasture monitoring at
high spatio-temporal resolutions and with good accuracy. The 10 m
spatial resolution allows for assessment of within-paddock variability
due to selective grazing, for example, and can be used by farmers to
identify farm management problems. The physically based approach
outperforms the empirical NDVI approach, as it does not require site
specific calibration of the retrieval model and in theory has the po-
tential to be applied and tested over a wide range of farms without
requiring a large field based database. Despite the fact that PROSAIL
should theoretically work best with homogeneous canopies, we ob-
tained good results for both homogeneous and mixed species forage
plots and paddocks, which is encouraging for farmers moving away
from single species herbage feeds. We postulate that Sentinel 2A-
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derived field-average biomass estimates, as well as their spatial varia-
bility, are potentially better than those derived from rising plate meter
surveys. However, to predict biomass yield, for example to help pasture
farmers manage their feed wedge, the S2-PROSAIL package would need
to be combined with a comprehensive process-based grass growth
model, driven by weather predictions. In a follow-up paper, we will
present such an approach, that allows for single-species and multi-
species swards and that will work in conjunction with the inversion
algorithm presented here, to provide day-by-day current and near-fu-
ture estimates of grass productivity and other key sward parameters.
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