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Biomorpher: Interactive Evolution for Parametric Design 

John Harding and Cecilie Brandt-Olsen 

Abstract 
Combining graph-based parametric design with metaheuristic solvers has to date 
focussed solely on performance based criteria and solving clearly defined objectives. In 
this paper, we outline a new method for combining a parametric modelling environment 
with an interactive Cluster-Orientated Genetic Algorithm (COGA). In addition to 
performance criteria, evolutionary design exploration can be guided through choice 
alone, with user motivation that cannot be easily defined. As well as numeric parameters 
forming a genotype, the evolution of whole parametric definitions is discussed through 
the use of genetic programming. Visualisation techniques that enable mixing small 
populations for interactive evolution with large populations for performance-based 
optimisation are discussed, with examples from both academia and industry showing a 
wide range of applications. 

1. Introduction 

In the forward to John Frazer seminal book, An Evolutionary Architecture [1], the 
�F�\�E�H�U�Q�H�W�L�F�L�V�W���*�R�U�G�R�Q���3�D�V�N���V�W�D�W�H�V���W�K�D�W���³�W�K�H���U�R�O�H���R�I���W�K�H���D�U�F�K�L�W�H�F�W���K�H�U�H���L�V���Q�R�W���V�R���P�X�F�K���W�R��
design a building or a city as to catalyse them; to act that they may evolve��� ́Now over 
twenty years on, one could argue that the impact of evolutionary approaches within 
architecture has been relatively minimal despite their potential. Handing the process of 
design, even a part of it, over to the machine seems to run counter to the control a 
designer usually craves, with many impressive academic developments rarely making it 
into real projects. 

One may therefore ask why, especially in the context of technological progression 
within this time? It could be argued �W�K�D�W���W�K�H���U�H�D�V�R�Q�V���D�U�H���W�Z�R�I�R�O�G�����)�L�U�V�W�O�\�����W�K�H���µ�S�U�R�E�O�H�P�¶���R�I��
architectural design can rarely be stated with explicit objective functions, and therefore 
�R�S�H�Q���W�R���E�H���µ�R�S�W�L�P�L�V�H�G�¶���L�Q���W�K�H���W�U�D�G�L�W�L�R�Q�D�O���V�H�Q�V�H�����$�V���0�H�Q�J�H�V��[2] puts it, evaluation criteria 
and design objectives often co-evolve with the development of a project, with Rowe [3] 
defining architecture as a prime �H�[�D�P�S�O�H���R�I���D���µ�Z�L�F�N�H�G�¶���S�U�R�E�O�H�P��too complex to be 
formally defined against metrics alone. Secondly, metaheuristic algorithms (such as 
evolutionary solvers) that enable wide design exploration have until recent years, 
required the specialist to master both the technical skill of computer programming and 
the complexity of architectural design. 

As the popularity of visual programming continues to rise, the latter of these two 
issues is becoming increasingly eroded, opening computational design to the non-
specialist with intuitive human user interfaces [4]. However, the nature of evolutionary 
methods integrated within parametric design software are yet to fully address the first - 
namely that architecture, as a study of place, should not be reduced to minimising or 
maximising objective functions within a black box. Instead, the process of evolution in 



architectural design should be adaptable, mediated and guided. As Derix asks with 
regards an evolutionary architecture [5]�����³�K�R�Z���F�D�Q���D���G�H�V�L�J�Q�H�U���E�H�W�W�H�U���L�Q�W�H�U�I�H�U�H���Z�L�W�K��
computational heuristics and understand the search struggle, offering the opportunity for 
�L�G�H�Q�W�L�I�L�F�D�W�L�R�Q���E�H�W�Z�H�H�Q���G�H�V�L�J�Q�H�U�V�¶���D�Q�D�O�R�J�X�H���D�Q�G���F�R�P�S�X�W�D�W�L�R�Q�D�O���K�H�X�U�L�V�W�L�F�V�"�´ 

2. Background 

Parametric modelling software for visually constructing algorithms is now becoming 
commonplace, opening up computational methods to a much broader audience. A form of 
dataflow programming, visual programs define the development of form through a series 
of associated explicit functions, commonly taking the form of a Directed Acyclic Graph 
(DAG). The structure of the DAG describes a mapping of number to geometry, setting 
out a possible design space to be explored when parameters are adjusted [6].  

A combination of parametric modelling and performance analysis tools allow for 
designs to be evaluated both quantitatively and qualitatively in real-time when adjusting 
parameters [7]. Again, this process is now well-known, with many third-party analysis 
plug-ins, including environmental [8] and structural analysis [9] for example, being 
developed for visual programming tools such as Rhino Grasshopper and Autodesk 
Dynamo. 

2.1. A flexible shape grammar 

A parametric definition (or schema) defines the development of form explicitly as well as 
providing a cognitive artifact for the design team to interact with. Parametric modelling 
therefore shifts focus on final form to the development of form through a sequential 
process. As Oxman states [10, p243]�����³�,�Q���G�L�J�L�W�D�O���G�H�V�L�J�Q���V�L�J�Q�L�I�L�F�D�Q�W���S�U�R�F�H�V�V�H�V���W�K�D�W���K�D�Y�H��
frequently been represented as non-explicit in traditional design models must now be 
�F�R�Q�V�L�G�H�U�H�G���H�[�S�O�L�F�L�W�´�� 

Nodes in the graph (or components) can essentially encapsulate, grammar-based 
rules that can be repeated, manipulated and copied from project to project. Such 
components essentially act like shape grammars [11] that are either pre-compiled or open 
to customisable imperative code, able to be combined within the overall dataflow 
schema. Parametric models therefore provide a valuable cognitive artifact for design 
teams working at the level of computational process, enabling algorithmic routines to be 
integrated at various hierarchies of scale, in-between specialisms and traditional design 
stages [12]. 

2.2. Metaheuristics in parametric design 

Although a DAG-based parametric modelling software is based on dataflow 
programming, many bi-directional metaheuristic solvers are now available that allow for 
numeric parameter search based on performance optimisation via evaluation feedback 
(figure 1). For Grasshopper, these include Galapagos for evolution and simulated 
annealing [13], Goat [14] for multiple gradient-free optimisation algorithms from the 



NLopt open-source library [15]�����D�Q�G���µ�2�F�W�R�S�X�V�¶���>���@��for multi-objective optimisation using 
the Strength Pareto Evolutionary Algorithm (SPEA2) within Rhino Grasshopper. 

The latter approach introduces user interaction in controlling the weighting 
between objectives at each generation �± with objective functions dictating a non-
dominated set of candidate solutions. Whilst allowing user input, such approaches still 
emphasise performance criteria according to definable metrics, somewhat different to 
interactive evolution whereby in theory, no definable performance criteria need exist. 
Indeed, at the early design stage defining explicit metrics too early can often lead to 
constraining the problem before it is �N�Q�R�Z�Q�����³�L�Q�G�X�F�L�Q�J��a false sense of having optimized 
a design which may be fundamentally ill-conceived�  ́[1, p.18]. 

 
Figure 1. Metaheuristic algorithm operating on metric parameters and/or the whole 
definition. 

2.3. Interactive evolution 

Outside of methods integrated with parametric design environments, interactive 
evolutionary computation (IEC) has been researched for over thirty years. Whereas 
metaheuristic search algorithms commonly use an objective function to evaluate designs 
�D�W���H�D�F�K���J�H�Q�H�U�D�W�L�R�Q�����D�U�W�L�I�L�F�L�D�O�����R�U���µ�L�Q�W�H�U�D�F�W�L�Y�H�¶���V�H�O�Hction replaces this with selection by 
human participant(s) who need not make their motivations explicit and/or constant, 
perhaps changing during the evolutionary process itself. 

Broadly speaking, there are two forms of IEC: the first where the user changes the 
weightings between known objectives as part of a multi-objective search, the second 
where the user has input to the selection of the designs to go through at each generation 
[16]. The former requires multiple objective functions be constructed with selection 
taking place from a Pareto optimal non-dominated set [17-19], whereas the latter requires 
no such objectives and is the main focus of this research. 

Historically, Dawkins [20] was the first to implement this latter approach, using 
computation and a selection interface to evolve so-�F�D�O�O�H�G���µ�%�L�R�P�R�U�S�K�V�¶�����8�V�L�Q�J���D���G�L�U�H�F�W��
encoding from a bit string, various patterns resembling common creatures or new ones 
could be explored without a target being defined. This work has inspired many artists 



interested in computation since, such as the work of Latham and Todd [21] and more 
recent applications such as exploring fashion designs [22], the evolution of 2D images 
[23] and 3D forms by combining with Compositional Pattern Producing Networks, so-
called CPPN-NEAT [24, 25]. A thorough historical record is given by Steadman [26]. 

The two most commonly used evolutionary algorithms are Evolutionary 
Strategies and Genetic Algorithms, both suited to discontinuous, noisy or ill-defined 
objective functions. For genetic algorithms, manipulation using crossover and mutation 
occurs at the level of the genotype, and with selection based on the resulting phenotype. 
As selection occurs by the human designer(s), interface design becomes a crucial part of 
any interactive approach.  

Methods to display populations need to be legible and allow designs to be 
displayed to enable the quality of the solution to be assessed in some way. Whereas 
target-based evolutionary computation favours relatively large populations, this can 
overwhelm the human user and hence smaller populations are often used for interactive 
evolution �± or else the population reduced in size at each generation to prevent user 
fatigue. A thorough review of selection methods is given by Shackelford and Simons 
[27], including the so-called Cluster-Orientated Genetic Algorithm (COGA), first 
developed by Bonham and Parmee [28]. 

2.4. Interactive evolution in architecture 

In architectural design, interactive evolution was pioneered by Frazer [1] and Coates et 
al. [29] using genetic programming with Lindenmayer systems, with the latter combining 
both interactive and performance-based selection methods, albeit not as part of the same 
evolutionary run. More recently, Piasecki & Hanna [30] used an interactive genetic 
algorithm to counter the paradox of choice at the early design stage, and Mor et al. [31] 
have used interactive evolution to explore a Biomimetic Space installation.  

Despite these applications, until recently the development of a generic tool for a 
parametric environment has not been specifically developed for wider general use. To the 
�D�X�W�K�R�U�V�¶���N�Q�R�Z�O�H�Gge, a sole example exists that enables interactive evolution within 
Grasshopper, developed by the Digital Structures Group at MIT [32]. Known as 
�µ�6�W�R�U�P�F�O�R�X�G�¶�����W�K�L�V���W�R�R�O���K�D�V���E�H�H�Q���U�H�F�H�Q�W�O�\���P�D�G�H���D�Y�D�L�O�D�E�O�H���W�R���W�K�H���F�R�P�P�X�Q�L�W�\���D�W���D���V�L�P�L�O�D�U��
time to the work discussed here, however it is geared mainly to the evolution of structures 
in its phenotype display, and does not include mixed-mode evolutionary search using a 
cluster-oriented approach. 

3. Biomorpher 

The lack of a suitably available tool led to the authors to develop a new freely available 
plug-in for Rhino Grasshopper known as Biomorpher, inspired by the pioneering work of 
Dawkins. The choice of development within Grasshopper was partly due to its current 
popularity as an environment for integrating both modelling and analysis. In addition, 
models that have been evolved can easily be manually adjusted either during the search 
process or during a post-production phase, something often lacking in stand-alone 



applications. Such adjustments need not be limited to parameters only, with topological 
adjustments to the graph available to the designer following design evolution. 

3.1. Process Overview 

Biomorpher allows for any parametric definition constructed in Grasshopper to be 
explored using an IGA. Figure 2 shows a typical simple setup before evolution: 
Parameter sets (a & b) are combined to produce mesh geometry (c), with a simple volume 
measure taken (d). These are then connected to the Biomorpher component before 
evolution begins by launching the graphical user interface. One should note that 
performance measures are optional (see Section 3.4. for how these are used). 
 

 
Figure 2. Typical implementation within Rhino Grasshopper. 

At present, all parameters, even integers, are encoded into normalised real number 
(double precision) format between 0.0 and 1.0, thus forming a genotype for each design. 
Once Biomorpher is launched, the user may select a population size, single point 
crossover and random mutation rate. Selecting these parameters depends on the problem 
in hand, which can vary dramatically depending on the nature of the parametric model 
itself, the (unknown) search space and the sensitivity of the mapping between genotype 
and phenotype. By default however, population is set to 100, mutation rate 0.01 and 
crossover set to zero, noting that with some genotype-phenotype mappings crossover can 
be often be disruptive (see Section 4.6.2). An overview of the process underpinning 
Biomorpher is given in figure 3. 



 
Figure 3: Overview of process, with human interaction stages highlighted. 

3.2. Developmental mapping 

The mapping between genotype and phenotype has an important effect on the nature of 
the evolution. For example (figure 4), if a numeric slider control the radius of a sphere, 
then mapping is direct (a). However, if the same parameter is used instead as a random 
seed which then controls the radius of a sphere, then the mapping is highly indirect and 
discontinuous (b) �± i.e. a small change in the genotype can lead to an unpredictable 
change in the phenotype.  
 

 
Figure 4. An extra component makes a large difference in terms of genotype-phenotype 
mapping 

With a tool that can in theory be applied to many different parametric models, the 
mapping directness is hard to predict, however in general as DAGs follow an explicit 
form (or embryogeny) and therefore their suitability for evolutionary search is highly 



likely [33]. As Coates et al. state [29, p339]�����³�W�K�H���G�H�Y�H�O�R�S�P�H�Q�W���D�Q�G���L�P�S�U�R�Y�H�P�H�Q�W���R�I���W�K�H��
�D�U�W�L�I�L�F�L�D�O���H�P�E�U�\�R�J�H�Q�\���L�V���F�U�X�F�L�D�O�´�����Z�L�W�K���P�R�V�W���S�D�U�D�P�H�W�U�L�F���P�R�G�H�O�V���D�V�V�X�P�H�G���W�R���K�D�Y�H���D�W���O�H�D�V�W��
some direct relationship between altering a parameter and altering form, a so-called 
�µ�G�H�Y�H�O�R�S�P�H�Q�W�D�O�¶���J�H�Q�R�W�\�S�H-phenotype mapping. In simple examples using Biomorpher, 
model parameters are encoded to real numbers, however it is possible to encode entire 
parametric definitions themselves and hence evolve them. This is discussed further in 
Section 4.6. 

3.3. Population display 

Biomorpher thus begins by either generating a new population of genes, using an existing 
set from a previous evolutionary run, or finally by copying the current parameter state 
across the whole population. This latter option followed beta-testing of the tool, where it 
was found that most users will incorporate Biomorpher to look for alternatives from an 
existing state.  

As selection could be either performance based or manual at each generation, a 
conflict on population size must be addressed. Large populations are useful for 
performance-based optimisation and relatively small populations for interactive selection. 
As Shackleford and Simons state [27, p1431]�����³�Q�D�L�Y�H�O�\���S�U�H�V�H�Q�W�L�Q�J���H�D�F�K���L�Q�G�L�Y�L�G�X�D�O���L�Q���D��
large population at each generation causes evaluation fatigue and a subsequent non-
�O�L�Q�H�D�U�L�W�\���R�I���X�V�H�U���I�R�F�X�V���P�D�N�L�Q�J���V�H�D�U�F�K���W�U�D�M�H�F�W�R�U�\���L�Q�F�R�Q�V�L�V�W�H�Q�W���D�Q�G���L�Q�H�I�I�H�F�W�L�Y�H�´�� 

A compromise is therefore to maintain a large population, but represent the whole 
space of possible designs by clustering similar outputs. Methods to incorporate Cluster-
Orientated Genetic Algorithms (COGAs), were first outlined by Bonham and Parmee 
using solution space measures [28]. Due to the likelihood of a relatively direct genotype-
phenotype mapping, parameter (genotype) space clustering was chosen for Biomorpher, 
using k-�P�H�D�Q�V�����Z�L�W�K���µ�N-�P�H�D�Q�V�����¶���V�H�H�G�L�Q�J���W�R���K�H�O�S���E�H�W�W�H�U���J�X�D�U�Dntee a suitable result [34]. 
A similar method was used by Stasiuk et al. [35] for design exploration of funicular 
vaults. In future, a choice to enable clustering of the phenotypes could be implemented, 
however the measures on which this is based could be difficult to judge, especially if the 
phenotypes have no performance measures displayed. 

Biomorpher obtains a phenotype from Grasshopper by automatically adjusting 
parameters, calculating the solution and importing the geometry and performance 
measures. For manual selection, this is only necessary for cluster centroids increasing 
speed at each generation, however if performance measure(s) are selected to be 
optimised, phenotypes must be calculated for the total population. 



 

 
Figure 5. Biomorpher GUI: (a) clustering of 200 designs, (b) phenotype closest to 
centroid. 

Figure 5 shows how a population of 200 designs is reduced to just 12 clusters, 
with a representative (closest to the cluster centroid in parameter space) displayed (c). 
Each design (d) has a checkbox for selection, a 3d orientable display aside from the main 
Grasshopper display, and a colour coded bar indicating the relative score of each 
(optional) performance measure. The colours are designed to give the user more 
�L�Q�I�R�U�P�D�W�L�R�Q���W�K�D�W���P�D�\���L�Q�I�O�X�H�Q�F�H���W�K�H���F�K�R�L�F�H�V���P�D�G�H���D�W���H�D�F�K���J�H�Q�H�U�D�W�L�R�Q�����R�U���µ�Q�X�G�J�H�¶���X�V�H�U�V��
without enforcing a particular objective function as with traditional optimisation. If 
�S�H�U�I�R�U�P�D�Q�F�H���µ�R�S�W�L�P�L�V�D�W�L�R�Q�¶���L�V���W�R���E�H���L�Q�F�O�X�G�H�G���K�R�Z�H�Y�H�U�����W�K�H�Q���D�Q���R�S�W�L�R�Q���W�R���P�D�[�L�P�L�V�H���R�U��
minimise each is available (e). It is therefore possible to have selection made by both 
human and machine at each generation. 

3.4. Mixed-mode selection 

Depending on both human selection and performance based criteria, at each generation a 
fitness score is assigned to each phenotype from 0.0 to 1.0. These are then used for 
roulette wheel (fitness proportionate) selection [36], although in future tournament-based 
selection may be implemented. The process at each generation is as follows: 
 

1. Reset all fitness scores to zero. 
2. If a manual selection is made, set the fitness score for all designs in that cluster to 

1.0. If no performance-based criteria are specified, skip to roulette-wheel. 
3. If one performance-based criteria is specified, then normalise performance values 

for the whole population based on minimum and maximum values, and assign this 
as the fitness. Note that if a performance value is to minimised, set fitness to 1-x. 
If the fitness for any design is already 1.0 (due to manual selection) then do 
nothing. 

4. If two or more performance-based criteria are used, then normalise values and 
take the weighted sum with equal weighting between criteria. 

At present, multiple criteria are assumed an equal weighting and combined to a 
single objective, a so-�F�D�O�O�H�G���µ�Q�R-�S�U�H�I�H�U�H�Q�F�H�¶���P�H�W�K�R�G�����)�X�W�X�U�H���G�H�Y�H�O�R�S�P�H�Q�W�V���W�R���L�Q�F�O�X�G�H��
Pareto front exploration between alternative weights could be implemented, however 



careful consideration must be taken as this may bias any selection procedure towards 
those measures that can be defined by metrics to the detriment of qualitative aspects 
influencing manual selection. Maintaining that one could in theory evolve something that 
is poorly performing for all performance-based objectives (i.e. nowhere near a Pareto 
front), simply because it subjectively feels right, was considered important to the authors. 

3.5. Evolution history 

Biomorpher records the evolution history and displays this to the user, including optional 
performance data. As the solution space could be completely unknown when initialising a 
search, there is potential to steer evolution towards undesirable paths �± indeed, this is 
inevitable for any wide design exploration. With this in mind, some way to return to 
previous generations and begin a new search branch becomes important. Figure 6 shows 
how each population (in this simple example for exploring a textured Möbius band) is 
displayed at each generation, with an option to reinstate previous populations to begin a 
new search. 
 

 
Figure 6. Search tree example. Each new search is formed from a previous population. 

4. Application 

A series of experiments were conducted to test the effectiveness of the tool in a variety of 
situations from individual trials, workshops and real projects. The examples given in this 
section involved defined parametric models (i.e. parameter based search space). Rather 
than focusing on one particular use, the aim of these tests were to establish the benefits of 
locating an IGA within a parametric design environment which could in theory lead to 



many different types of application. Examples set out in sections 4.1 and 4.2 are work 
solely by the authors, examples 4.3 and 4.4 the result of workshops, and examples 4.5 
and 4.6 are real-world projects. The final example investigates the evolution of 
paramet�U�L�F���G�H�I�L�Q�L�W�L�R�Q�V���W�K�H�P�V�H�O�Y�H�V���X�V�L�Q�J���D���µ�0�H�W�D-�3�D�U�D�P�H�W�U�L�F�¶���H�Q�F�R�G�L�Q�J, more suited to the 
earlier design stage. 

�����������/�D�\�R�X�W���µ�R�S�W�L�P�L�V�D�W�L�R�Q�¶ 

Automating floor plan layouts has a long history in architectural computing, however 
these have mostly focus on ascribing specific functions to spaces and/or specifying 
target-based goals [37]. Whilst valuable, these studies can turn design into a series of 
logical steps with pre-defined semantics that often run counter to the complexity of how 
designers work in practice. One must strive to be fast and flexible when constructing rule 
sets that may or may not have semantic meaning, or else derive meaning inductively 
through their application, not a priori. This again highlights the benefits of basing 
interactive evolution within a parametric modelling environment at the early design stage. 

In this test, a simple arrangement of lines, non-descript rectangles and soft 
landscaping features inspired by the work of architect Junya Ishigami were constructed 
parametrically in order to quickly generate plan compositions. The model was controlled 
by 156 parameters, in this case directly mapping to either the 2D location of points or 
rectangular widths and heights, giving rise to a combinatorially rich design space. 

An initial population of 100 random designs, with a decreasing mutation rate from 
0.20 to 0.01 (shown to be effective for COGAs [38]) was trialed, with the results of one 
example run shown in Figure 7. After three generations during the first evolutionary 
branch (0), it was decided to return to the original population upon which two suitable 
candidates (clusters) appeared that subjectively felt like a balanced composition of 
elements, with the mutation rate reduced and arriving at a final design at generation 1.4. 
Again, by basing the IGA within Grasshopper, parameters could then be manually 
adjusted in the model following evolution, as shown in Figure 8. From constructing the 
model, exploring through evolution, and post-production, the study took little more than 
ten minutes to complete. 



 
Figure 7. Evolution of Junya Ishigami inspired compositions with final design 
highlighted. 

 

  
Figure 8. Refining the evolutionary result manually using the parametric model. 

4.2. Henry Moore sculptures 

Combing the IGA within a parametric design software means other plug-ins and add-ons 
can be used as part of the modelling process. In this example, a combination of Kangaroo 
Physics [39] and marching cubes were combined to generate fleshed funicular sculptures 
inspired by the artist Henry Moore. A surface area measurement was taken to give a 
rough estimate of relative material cost.  

The parametric setup consisted of a series of five points situated around a 
perimeter curve are connected by lines, replaced with springs and form-found into 
parabolic shapes similar to that described by Stasiuk et al. [35]. Parameters controlled the 
location of the five boundary points and the thickness of the mesh. Genotype-phenotype 



mapping in this example was �µ�G�H�Y�H�O�R�S�P�H�Q�W�D�O�¶�����E�H�W�Z�H�H�Q���G�L�U�H�F�W���D�Q�G���L�Q�G�L�U�H�F�W���Z�K�L�F�K���K�H�O�S�H�G��
during evolution �± i.e. a small mutation could sometimes give rise to a large phenotypic 
change, but only rarely. An example evolutionary history is given in Figure 9, with three 
outputs from separate evolutionary branches shown. 

 

 
Figure 9. Evolving Henry Moore Sculptures by combining with Kangaroo 2 Physics. 

4.3. CoOptimise workshop 

As well as the various modelling benefits from situating Biomorpher within Grasshopper, 
analysis plug-ins such as Karamba3D structural analysis tool [9] can be easily integrated. 
�7�K�L�V���Z�D�V���L�Q�Y�H�V�W�L�J�D�W�H�G���G�X�U�L�Q�J���W�K�H���µ�&�R�2�S�W�L�P�L�V�H�¶���V�W�X�G�H�Q�W���Z�R�U�N�V�K�R�S���D�W���W�K�H�������W�K���D�Q�Q�X�D�O��
eCAADe conference 2017, run by Mariam Khademi and Kristjan Nielsen. The resulting 
in at structural layout following evolution was driven by both subjective and 
performance-based criteria using the selection method outlined in Section 3.4. Figure 10 
shows a screenshot from an initial set of designs, showing relative performance of each 
shown by the strength of the coloured circles (a) and indicated numerically for a 
highlighted design (b). 

Feedback from the workshop indicated that participants struggled with the 
intractability between generations. For example, if manually selecting a cluster centroid, 
it was not guaranteed to be in the next generation due to the nature of fitness 
proportionate selection. Incorporating elitism in the selection process could counter this 
in future. In addition, it was found that starting with an initial random population caused 
problems with intractability, leading to the authors to add a facility to copy the current 
parameter state to the first generation following this workshop. In addition, the 
Biomorpher component was modified to output the historic data of parameter states (in 



addition to the display) within Grasshopper, thus allowing any past parameter states to be 
recalled and calculated from historic data. 

 

 
�)�L�J�X�U�H�����������6�F�U�H�H�Q�V�K�R�W���W�D�N�H�Q���I�U�R�P���W�K�H���µ�&�R�2�S�W�L�P�L�V�H�¶���Z�R�U�N�V�K�R�S�����H�&�$�$�'�H���F�R�Q�I�H�U�H�Q�F�H, 
Rome, 2017. 

4.4. CITA workshop 

In October 2017, 26 Masters level students took part in a week long workshop at the 
Centre for Information Technology and Architecture (CITA), Copenhagen. During the 
workshop, participants investigated steering the growth of plants using Vascular 
Morphogenesis Controllers (VMCs) [40], with an agent based model simulated within 
Grasshopper, and resultant forms explored using Biomorpher. Growth of the plants was 
non-deterministic, with several possible outcomes of a similar nature displayed as the 
phenotype to the user, rather than a single design.  

It was found that the interactive method helped explore a wide design space by 
automating multiple parameters associated with the VMCs during evolution, rather than 
participants individually adjusting single parameter states. Detailed information on the 
workshop is given by Heinrich et al. [41]. 

4.5. Pollen sculptures 

Working alongside Format Engineers and the artist Lee Simmons in the UK, various 
potential configurations of a private artwork in London were explored using Biomorpher. 
The sculptures consist of stainless steel ellipsoids depicting pollen grains, welded 
�W�R�J�H�W�K�H�U���W�R���I�R�U�P���O�D�U�J�H���µ�V�Z�D�U�P-�O�L�N�H�¶���D�V�V�H�P�E�O�L�H�V, hung within building atria. Minimising 



bending moment in the structures was desirable, hence funicular shapes working 
predominantly in axial tension were proposed. 

�$���P�H�W�K�R�G���I�R�U���J�H�Q�H�U�D�W�L�Q�J���S�R�W�H�Q�W�L�D�O���J�H�R�P�H�W�U�L�H�V���V�L�P�L�O�D�U���W�R���6�L�P�P�R�Q�V�¶���S�K�\�V�L�F�D�O���P�R�G�H�O��
experiments was constructed within Grasshopper, using a combination of parametrically 
defined points, subsequent Voronoi patterns, form-finding methods and meshing 
techniques. Again, the genotype-phenotype mapping was developmental rather than 
direct, which helped with adding variety to the design exploration. 

�5�D�W�K�H�U���W�K�D�Q���D�F�W���D�V���D�Q���H�[�S�O�L�F�L�W���F�R�Q�V�W�U�D�L�Q�W�����W�K�H���µ�S�R�O�O�H�Q���J�U�D�L�Q�¶���F�R�X�Q�W���Z�D�V���Lmported as 
a performance measure, guiding the design search by minimising for one or two 
generations should the sculptures become too large. Here, the mixed-mode selection 
method proved useful, as indicated in generations 0.5 and 0.6 of the example (Figure 11). 
This passage of performance-based evolution acted as negative feedback for the search, 
�Z�L�W�K���W�K�H���D�Y�H�U�D�J�H���µ�S�R�O�O�H�Q-�J�U�D�L�Q���F�R�X�Q�W�¶���R�I���W�K�H���S�R�S�X�O�D�W�L�R�Q���E�U�R�X�J�K�W���E�D�F�N���W�R���D���V�H�Q�V�L�E�O�H���O�H�Y�H�O��
without requiring a restart, with desirable individual members of the population still 
being retained. It was found that whilst running the computational model gave rise to a 
varied design search, however assessing phenotypes ideally required physical models be 
constructed. In future, ease of exporting for 3d printing could be incorporated, although 
in reality the practical time for manufacture would have to be considered. 

 
Figure 11. Evolving hanging pollen-grain sculptures by the artist Lee Simmons. 



4.6. Meta-Parametric example 

So far the examples given have involved adjusting parameters in a static parametric 
definition. Although in theory an infinite amount of designs can often be generated by a 
parametric system, they are bounded by the topological structure of the graph. As Aish 
and Woodbury [6] �V�W�D�W�H�����³�Q�R�W�K�L�Q�J���F�Dn be created in a parametric system for which a 
designer has not explicitly externalised... this runs counter to the often-deliberate 
�F�X�O�W�L�Y�D�W�L�R�Q���R�I���D�P�E�L�J�X�L�W�\���W�K�D�W���D�S�S�H�D�U�V���W�R���E�H���S�D�U�W���R�I���W�K�H���K�H�D�O�W�K�\���G�H�V�L�J�Q���S�U�R�F�H�V�V���´ 

In response, a previous paper by the first author [42] highlighted a possible 
method of widening the design search by evolving whole parametric definitions 
themselves, treating Grasshopper components as easily interchangeable shape-grammar 
rules, similar to the visual approach set out by Strobbe et al. [43]. By opening up the 
search to topological changes, the search space becomes broader than the examples given 
in Sections 4.1 to 4.5, at the cost of problem ideation being harder to define. Grammar 
rules become combinatorial, suited to a wider design space often required at the early 
design stage. Despite promising results, difficulties arose in not being able to compare 
phenotypes associatively, thus requiring integration with Biomorpher. 

4.6.1. Encoding 
Harding and Shepherd [44] describe a method of encoding a parametric model within a 
single numeric list, opening the topology of a parametric model itself for evolution. 
Encoding the model is similar to that used in Cartesian Genetic Programming (CGP) 
[45], which has been shown to be suitable for evolutionary methods due to its 
�G�H�Y�H�O�R�S�P�H�Q�W�D�O���P�D�S�S�L�Q�J���I�U�R�P���J�H�Q�R�W�\�S�H���W�R���S�K�H�Q�R�W�\�S�H�����6�X�F�K���µ�0�H�W�D-�3�D�U�D�P�H�W�U�L�F�¶���P�H�W�K�R�G�V��
have recently been investigated Joyce and Ibrahim [46] for the combinatorial search of 
parametric models.  

The genome consists of three parts: External parameters (for example numeric 
sliders, external geometry, etc.), the pool of components in the graph (nodes) and the 
topological structure that forms associations between components (edges). These three 
categories form the basis of the genotype used by a separate Grasshopper plug-in called 
�µEmbryo�¶ when constructing a parametric model: 

1. Metric genes (double): control the parameter values for generated sliders and have 
a direct numerical mapping. These can be either integer or floating point values. 
These metric parameters are the first things generated by Embryo. 

2. Function genes (integer): when a component is added to the graph, the function 
genes controls the type of component is selected from the pool. 

3. Topological genes (integer): map the output location for each component input 
when forming the graph. Altering these genes changes the topology of the graph. 

Figure 12 gives an outline of the process with a simple example. A component 
pool is specified (a), which in addition to the genotype is used by the Embryo component 
(b) to generate a parametric model (c). The functional and topological aspects of the 
genotype are shown, indicating how each component input is mapped back to an output 



as the model is constructed. More details on the method can be found in Harding and 
Shepherd [44].  

 
Figure 12. Encoding a parametric definition into a real number list 

As an explicit embryogeny is used, the genotype is mapped directly onto the 
topological structure of the graph, as opposed to an implicit method with low-level rules. 
This leads to a closer mapping between the genotype and phenotype than with an implicit 
embryogeny, assisting with evolvability [47]. The numeric parameters that encode the 
graph now form the genotype used by Biomorpher. Judgement during evolution is now 
involves two forms of phenotypic representation: the generated design and the graph 
itself (i.e. the user may wish to retain legibility). Maintaining this engagement enables the 
evolved models to be further developed manually following evolution.  

4.6.2. Application 
It was decided to return to an earlier study by the first author [42] and compare the search 
process now using Biomorpher to establish whether the limitations identified had been 
overcome - namely now using an interface that displayed populations associatively. In 
the earlier study, a series of bespoke grammar rules were created, specific to a residential 
project in collaboration with 3D Reid Architects, London. As with genetic programming, 
the grammar rules were both parametric and combinatorial, hence offering a wider design 
space than that enabled by parameters alone. Importantly, the rules could be formed 
bespoke to the project during an early design team meeting, which were then 
encapsulated in bespoke Grasshopper components (Figure 13). 



 

 
Figure 13. Two residential blocks (a, b) and circulation link bridge (c).  

Parametric definitions generated contained 9 numeric parameters and 16 
components, with massing designs evolved according to qualitative judgment and 
quantitative measures. Performance criteria indicating total number of apartments and 
proportion with adequate access to daylight were included, helping to nudge the 
evolution to approximately 500 apartments. Figure 14. shows a typical evolution history, 
with initial (a) and final (b) parametric definitions shown for the population. An initial 
mutation rate of 0.20 was used, which was gradually reduced to 0.05 until generation 5, 
whereby the rate was returned to 0.20 as the variety of designs had become stagnant. It 
was found that including crossover with this particular method of encoding led to 
frequent disruptive changes to the phenotype (likely due to the mapping technique), and 
hence mutation alone was used. 



 

 
Figure 14. Massing study evolution with initial (a) and final (b) parametric definitions. 

The resulting massing studies and parametric definitions were once again simple 
to manipulate manually following evolution, as the complexity of the graphs was kept 
relatively simple �± indeed graph complexity became part of the evaluation itself. 
Increasing the component number decreases legibility to the user. With this in mind, a 
shape grammar that included iteration or recursion, without requiring a component be 
used multiple times in the same graph would help to increase legibility and reduce the 
genotype size. As opposed to the earlier study without Biomorpher [42], associative 
evaluation of phenotypes was possible without iterating through each possibility thus 
enabling a more fluid experience during evolution. 

One of the issues identified during the study was that the cluster centroids did not 
fully represent the nature of the population as a whole. For example, if in a total 
population of 100 designs, 70 of these were very similar they were then only represented 
by a single design in the phenotype display. As noted by Bonham and Parmee [38, p269], 
the sampling nature �³can lead to promoting over-zealous exploration of areas that do not 



lie within any of the defined high per�I�R�U�P�D�Q�F�H���U�H�J�L�R�Q�V�´�����7�K�L�V���O�H�D�G���W�R���W�K�H���P�R�V�W���X�V�H�I�X�O��
setup being a population of just twelve designs (one per cluster) being used in favour of 
enabling any performance based optimisation benefitting from a large population. 
Potential methods to counter this issue are discussed in Section 5.1. 

4.7. Discussion 

The examples given are aimed to highlight the versatility of the tool for parametric 
design, rather than focus on one particular application. The ability to display multiple 
models in parallel enhances the Grasshopper user environment and necessary for 
assessing phenotypes. Some limitations during these tests were highlighted and 
addressed, such as establishing a predefined initial population. Others require further 
research: for example, it was found that despite selecting a design, it may get replaced in 
the next generation due to fitness proportionate selection. Here, incorporating elitism 
perhaps only for those designs explicitly selected (i.e. cluster centroids) would seem to be 
a possible step forward and will be discussed further in Section 5.1.  

Biomorpher can be used at a variety of design stages, from exploring existing 
parametric models in new ways, to exploring early stage massing concepts. In the final 
example, the use of Biomorpher in combination with a meta-parametric approach enabled 
a wider combinatorial design space to be explored, albeit with a constraint on the 
complexity of the graph for future legibility. 

5. Conclusion 

The purpose of this paper is to highlight the benefits of using interactive evolution 
(including optional performance optimisation) within a parametric design environment. 
The authors have developed the software Biomorpher, a plug-in for Rhino Grasshopper 
that allows the non-expert to engage in such evolutionary methods within an environment 
that already boasts many modelling and analysis native tools and third-party plug-ins.  

Two types of examples have been shown, for parameter-based exploration and 
exploration of parametric definitions themselves using a �µmeta-parametric�¶ approach 
better suited to the early design stage. It was found that the IGA works effectively for a 
wide range of situations with graph-based parametric definitions, due to their often 
developmental mapping between genotype and phenotype and their flexibility of use; 
before, during and after evolution. 

5.1. Outlook 

Biomorpher is an ongoing project, with the results of the initial experiments informing 
the future of the approach. Any future enhancements should strike a balance between 
�µ�I�H�D�W�X�U�H���F�U�H�H�S�¶���D�Q�G���P�D�L�Q�W�D�L�Q�L�Q�J���L�Q�W�X�L�W�L�R�Q���D�K�H�D�G���R�I���D���F�U�R�Z�G�H�G���X�V�H�U���L�Q�W�H�U�I�D�F�H�����K�R�Z�H�Y�H�U 
future possible developments include the following: 
 



�x Incorporating multi-objective methods with interactive selection could be 
explored, whilst noting the dangers of preferencing measurable objectives as 
discussed in Section 3.4. At present an equal weighted-sum approach is used.  

�x As identified in Section 4.6.2, COGAs tended to give equal weighting to a single 
design if it was unique rather than adequately bias many similar designs. An 
associative method of dimensionality reduction of the parameter space would be a 
possible solution to this, as opposed to discrete cluster methods. Self-organising 
maps, implemented for example by Amor and Rettinger [48] for IGAs, and 
Principal Component Analysis as used by Talton et al. [49] in displaying large 
populations of tree designs are possible alternatives. These methods could also be 
used to select a large group of designs for high fitness, rather than the current 
�µ�F�K�H�F�N�E�R�[�¶���D�S�S�U�R�D�F�K�� 

�x As noted in the examples in Section 4, in order to address the issue with lost 
designs even after selection, implementing elitism, either at the cluster level or 
individual designs, may be beneficial. 

�x Investigate clustering of phenotypes based on notional performance, in addition to 
parameter space. As noted, one must be careful not to overemphasise quantitative 
metrics over qualitative measures with this approach. 

�x Include recursive structures in the generation of parametric definitions to reduce 
the genotype size. 

�x Crossover causes a larger than expected disruption when used in combination 
with generating parametric definitions. This was likely due to the CGP method of 
encoding and using mutation alone may be more suitable approach in future in 
line with other CGP applications [50]. 

�x As mentioned in Section 4.5, incorporating physical models in the selection 
process as an alternative form of representation. As 3d printing is likely to be too 
slow, a form of augmented reality may be a viable compromise. 

As a final thought, by locating an IGA within a parametric design environment, 
models and rules can be easily interchanged to create novel and interesting evolutionary 
processes that include a variety of disciplines. However, one must acknowledge that there 
will always be limitations to an entirely computer based approach to architectural design, 
especially if enacted using 2D interfaces [51]. Manual selection must be informed by the 
experience of the architect with influence from mixed modes of representation, such as 
physical models, collage, sketches, etc. Rather than reduce design to a systematic 
process, parametric design methods that encompass a wider approach to architectural 
representation appear to be the next step going forward. 
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