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Biomorpher:Interactive Evolution for Parametric Design

John Harding and Cecilie Bran@isen
Abstract

Combining grapfbased parametric design with metaheuristic solvers has to date
focussedsolely on performance based criteria and solving clearly defined objectives. In
this paper, we outline eew method for combining a parametric modelling environment
with an interactiveClusterOrientatedGenetic Agorithm (COGA). In addition to
performane criteria, evolutionary design exploration can be guided through choice
alone, with user motivation that cannot be easily defined. As well as numeric parameters
forming a genotype, the evolution of whole parametric definitions is discussed through
the useof genetic programming. Visualisation techniques that enable mixing small
populations for interactive evolution with large populations for performbased
optimisation are discussed, with examples from both academia and industry showing a
wide range ofpplications.

1. Introduction

In the forward to John Frazer seminal book,EAmlutionary Architecture [1]the
F\EHUQHWLFLVW *RUGRQ 3DVN VWDWHY WKDW 3WKH UROH F
design a building or a city as to catalyse them; tahettthey may evolve’Now over

twenty years on, one could argue that the impact of evolutionary approaches within

architecture has been relatively minimal despite their potential. Handing the process of

design, even a part of it, over to the machine séems counter to the control a

designer usually craves, with many impressive academic developments rarely making it

into real projects.

One may therefore ask why, especially in the context of technological progression
within this time? It could be argued KDW WKH UHDVRQV DUH WZRIROG )LU
architectural design can rarely be stated with explicit objective functions, and therefore

RSHQ WR EH pRSWLPLVHGY LQ WK puwit)&v8uaivn KRieria0O VHQVH
and design objewes often ceevolve with the development of a project, with R4&

defining architecture asa primté [DPSOH RI D pZLtBdNddrplex3doe EO H P

formally defined against metrics alone. Secondly, metaheuristic algorithms (such as
evolutionary solvensthat enable wide design exploration have until recent years,

required the specialist to master both the technical skill of computer programming and

the complexity of architectural design.

As the popularity of visual programming continues to rise, tlerlat these two
issues is becoming increasingly eroded, opening computational design tothe non
specialist with intuitive human user interfa¢dés However, the nature of evolutionary
methods integrated within parametric design software are yet taafiiligss the first
namely that architecture, as a study of place, should not be reduced to minimising or
maximising objective functions within a black box. Instead, the process of evolution in



architectural design should be adaptable, mediated and gisl&krix asks with

regards an evolignary architecture [5] *KRZ FDQ D GHVLJQHU EHWWHU LQW
computational heuristics and understand the search struggle, offering the opportunity for
LGHQWLILFDWLRQ EHWZHHQ GHVLIJGNUVYYWIOMORIXH DQG FI

2. Background

Parametric modelling software for visually constructing algorithms is now becoming
commonplace, opening up computational methods to a much broader audience. A form of
dataflow programming, visual programs define the developmédotrmofthrough a series

of associated explicit functions, commonly taking the form of a Directed Acyclic Graph
(DAG). The structure of the DAG describes a mapping of number to geometry, setting

out a possible design space to be explored when parametadjleted6].

A combination of parametric modelling and performance analysis tools allow for
designs to be evaluated both quantitatively and qualitatively istire@lwhen adjusting
parameter§/]. Again, this process is now wé&lhown, with many thireparty analysis
plug-ins, including environment§8] and structural analys|8] for example, being
developed for visual programming tools such as Rhino Grasshopper and Autodesk
Dynamo.

2.1. A flexible shape grammar

A parametric definition (or schema) degsthe development of form explicitly as well as

providing a cognitive artifact for the design team to interact with. Parametric modelling

therefore shifts focus on final form to the development of form through a sequential
process. As Oxman statd®9, p243] 3,Q GLJLWDO GHVLJQ VLJQLILFDQW SU
frequently been represented as+eamplicit in traditional design models must now be
FRQVLGHUHG H[SOLFLW’

Nodes in the graph (or components) can essentially encapsulate, groas@dr
rules that can be repeated, manipulated and copied from project to project. Such
components essentially act like shape gramijddisthat are either preompiled or open
to custanisable imperative code, able to be combined within the overall dataflow
schema. Parametric models therefore provide a valuable cognitive artifact for design
teams working at the level of computational process, enabling algorithmic routines to be
integratel at \various hierarchies of scale;-between specialismand traditional design
stageg12].

2.2. Metaheuristics in parametric design

Although a DAGbased parametric modelling software is based on dataflow
programming, many kdirectional metaheuristic b@rs are now available that allow for
numeric parameter search based on performance optimisation via evaluation feedback
(figure 1). For Grasshopper, these include Galapagos for evolutionnanietsid

annealing [1B Goat[14] for multiple gradienfree optimisation algorithms from the



NLopt opensource librarfl5] D QG p 2 F WdR Buitvohjeetiv@ optimisation using
the Strength Pareto Evolutionary Algbm (SPEA2) withinRhino Gasshopper

The latter approach introduces user interaction in clhinggdhe weighting
between objectives at each generatiamith objective functions dictating a nen
dominated set of candidate solutioNghilst allowing user input, such approaclsa#
emphasse performance criteriaccording tadefinabk metris, somavhat different to
interactiveevolutionwherdy in theory no definable performanaziterianeed exist.
Indeed, at the early design statpfining explicit metrics too early can often lead to
constraining the problem before itQR Z Q 3L falsedehs® af hawng optimized
a design which may be fundamentallyabinceived [1, p.18].

Initial conditions Design option

Feedback
tric Tcomb'natorial

Metaheuristic Evaluation

Figure 1. Metaheuristic algorithm operating on metric parameters and/or the whole
definition.

2.3. Interactive evolution

Outside of methods integrated with paramedasign environments, interactive

evolutionary computation (IEC) has been researched for over thirty years. Whereas

metaheuristic search algorithms commonly use an objective function to evaluate designs

DW HDFK JHQHUDWLRQ D Udfibh répfaces his Rith splec W bByUDFWLYH V
human participant(s) who need not make their motivations explicit and/or constant,

perhaps changing during the evolutionary process itself.

Broadly speaking, there are two forms of IEC: the first where the user cltheges
weightings between known objectives as part of a robliective search, the second
where the user has input to the selection of the designs to go through at each generation
[16]. The former requiremultiple objective functions be constructed withesion
taking place from a Pareto optimal Rdominated s€tl7-19], whereas the latter requires
no such objectives and is the main focus of this research.

Historically, Dawking20] was the first to implement this latter approach, using
computation and a selection interface to evolrdFD OO HG P% LRPRUSKVY 8VLQJ C
encoding from a bit string, various patterns resembling common creatures or new ones
could be explored without arget being defined. This work has inspired many artists



interested in computation since, such as the work of LagrahTodd21] and more
recent applications such as exploring fashion de$&ftjsthe evolution of 2D images
[23] and 3D forms by combingqwith Compositional Pattern Producing Networks, so
called CPPNNEAT [24, 25. A thorough historical record is given by Steadrfizg].

The two most commonly used evolutionary algorithms are Evolutionary
Strategies and Genetic Algorithms, both suited toatisnuous, noisy or Htlefined
objective functions. For genetic algorithms, manipulation using crossover and mutation
occurs at the level of the genotype, and with selection based on the resulting phenotype.
As selection occurs by the human designentg}yface design becomes a crucial part of
any interactive approach.

Methods to display populations need to be legible and allow designs to be
displayed to enable the quality of the solution to be assessed in some way. Whereas
targetbased evolutionary coputation favours relatively large populations, this can
overwhelm the humrauserand fence smaller populations are often used for interactive
evolution or else the population reduced in size at each generation to prevent user
fatigue. A thorough reviewf selection methods is given by Shackelford and Simons
[27], including the sacalled ClusteiOrientated Genetic Algorithm (COGA), first
developed by Bonham and Parnj2g].

2.4. Interactive evolution in architecture

In architectural design, interactiveatution was pioneered by FraZéi and Coatest

al.[29] using genetic programming with Lindenmayer systems, with the latter combining
both interactive and performanbased selection methods, albeit not as part of the same
evolutionary run. More recemtl Piasecki & Hann§0] used an interactive genetic
algorithm to counter the paradox of choice at the early design stagd,cared al.[31]

have used interactive evolution to explore a Biomimetic Space installation.

Despite these applications, umgcently the development of a generic tool for a
parametric environment has not been specifically developed for wider general use. To the
D XW KR UV {e,A0IR &xanazExists that enables interactive evolution within
Grasshopper, developed by the BagiStructures Group at MI[B2]. Known as
MEWRUPFORXGY WKLV WRRO KDV EHHQ UHFHQWO\ PDGH DY
time to the work discussed here, howevés geared mainly to the evolution of structures
in its phenotype display, ambesnot include mixeemode evolutionary searching a
clusteroriented approach.

3. Biomorpher

The lack of a suitably available tool led to the authors to develop a new freely available
plug-in for Rhino Grasshopper known as Biomorpher, inspired by the piomg work of
Dawkins. The choice of development within Grasshopper was partly due to its current
popularity as an environment for integrating both modelling and analysis. In addition,
models that have been evolved can easily be manually adjusted erihgrtbe search
process or during a peptoduction phasesomething often lacking in staiadbne



applications Such adjustments need not be limitegharameters only, with topological
adjustments to the gragivailable to the designésllowing design ewolution.

3.1. Process Overview

Biomorpher allows for any parametric definitioanstructedn Grasshopper to be
explored using an IGA. Figureshows a typical simple setipgfore evolution:
Parameter sets (al® are combined to produce mesh geometrywith a simple volume
measure taken (d). These #ren connectetb the Biomorpher component before
evolution begins by launching tiggaphical useinterface. One should notbat
performance measures are optional (see Section 3.4. for how these are used

Figure 2.Typical implementation within Rhino Grasshopper

At present, all parameters, even integers, are encoded into normalised real number
(double precision) format between 0.0 and 1.0, thus forming a genotype for each design.
Once Biomorpher isaunched, the user may select a population size, single point
crossover and random mutation rate. Selecting these parameters depends on the problem
in hand, which can vary dramatically depending on the nature of the parametric model
itself, the (unknown) s&ch space and the sensitivity of the mapping between genotype
and phenotype. By default however, population is set to 100, mutatich@atand
crossover set to zernoting that withsome genotyp@henotype mappings crossover can
be often be disruptivésee Sectiod.6.2). An overview of the process underpinning
Biomorpher is given in figure 3.
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Figure 3: Overview of process, with human interactitagesighlighted.

3.2. Developmental mapping

The mapping between genotype and phenotype has an intpaffesot on the nature of

the evolution. For example (figure 4), if a numeric slider control the radius of a sphere,
then mapping is direct (a). However, if the same parameter is used instead as a random
seed which then controls the radius of a sphere,ttieemapping is highly indirect and
discontinuous (b}i.e. a small change in the genotype can lead to an unpredictable
change in the phenotype.

Figure 4. An extra component makes a large difference in terms of gespbtgpetype
mapping

With a toolthat can in theory be applied to many different parametric models, the
mapping directness is hard to predict, however in general as DAGs follow an explicit
form (or embryogeny) and therefore their suitability for evolutionary search is highly



likely [33]. As Coate=t al. stée[29, p339] SWKH GHYHORSPHQW DQG LPSURY|
DUWLILFLDO HPEU\RJHQ\ LV FUXFLDO" ZLWK PRVW SDUDPH
some direct relationship between altering a parameter and altering forroakeso

1 G HYPHD@RW D O T-phen@tRoe/m&pdindn simple examples using Biomorpher,

model parameters are encoded to real numbers, however it is possible to encode entire
parametric definitions themselves and hence evolve them. This is distwriserin

Section 4.6

3.3. Population display

Biomorpher thus begins by either generating a new population of genes, using an existing
set from a previous evolutionary run, or finally by copying the current parameter state
across the whole population. This latter option fold betatesting of the tool, where it

was found that most users will incorporate Biomorpher to look for alternatives from an
existing state.

As selection could be either performance based or manual at each generation, a
conflict on population size museladdressed. Large populations are useful for
performancebased optimisation and relatively small populations for interactive selection.
As Shackleford and Simons st§#7, p1431] *QDLYHO\ SUHVHQWLQJ HDFK LQG
large population at each geneoaticauses evaluation fatigue and a subsequent non
OLQHDULW\ RI XVHU IRFXV PDNLQJ VHDUFK WUDMHFWRU\ LC

A compromise is therefore to maintain a large population, but represent the whole
space of possible designs by clustering lsimoutputs. Methods to incorporate Cluster
Orientated Genetic Algorithms (COGAS), were first outlinedBbyham and Parmee
using solution space measuf28]. Due to the likelihood of a relatively direct genotype
phenotype mapping, paramefgenotypekpace clustering was chosen for Biomorpher,
usingkPHDQV ZAMDKQNWN 1 VHHGLQJ WiReab@itsblE tesfdjHU JXDUD
A similar method was used by Stasiuk e{3%)] for design exploration of funicular
vaults. In future, a choice to enablestering of the phenotypeould be implemented,
however the measures on which this is based could be difficuiti¢ej especially if the
phenotypes have no performance measures displayed.

Biomorpher obtains a phenotype from Grasshopper by automatcilisting
parameters, calculating the solution and importing the geometry and performance
measures. For manual selection, this is only necessary for cluster centroids increasing
speed at each generation, however if performance measure(s) are selected to be
optimised, phenotypes must be calculated for the total population.
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Figure 5. Biomorpher GUI: (a) clustering of 200 designs, (b) phenotype closest to
centroid.

Figure 5shows how a population of 200 designs is reduced to just 12 clusters,
with a representative (closest to the cluster centroid in parameter space) displayed (c).
Each design (d) has a checkbox for selection, a 3d orientable display aside from the main
Gras$iopper display, and a colour coded bar indicating the relative score of each
(optional) performance measure. The colours are designed to give the user more
LQIRUPDWLRQ WKDW PD\ LQIOXHQFH WKH FKRLFHV PDGH DV
without enforcng a particular objective function as with traditional optimisation. If
SHUIRUPDQFH pRSWLPLVDWLRQY LV WR EH LQFOXGHG KRZH
minimise eah isavailable(e). It is therefore possible to have selection madbdii
human and nmzhine at each generation.

3.4. Mixedmode selection

Depending on both human selection and performance based criteria, at each generation a
fitness score is assigned to each phenotype from 0.0 to 1.0. These are then used for
roulette wheel (fithess propastiate) selectiof86], although in future tournamebtised
selection may be implemented. The process at each generation is as follows:

1. Reset all fitness scores to zero.

2. If a manual selection is made, set the fithess score for all designs in that oluster t
1.0. If no performancbased criteria are specifieskip to roulettewheel

3. If one performancéased criteria is specified, then normapseformance values
for the whole population based on minimum and maximum values, and assign this
as the fitness. Note that if a performance value is to minimised, set fithegs to 1
If the fitness for any design is already 1.0 (due toumbgeelection)hen do
nothing.

4. If two or more performanebased criteria are used, then normalise values and
take the weighted sum with equal weighting between criteria.

At present, multiple criteria are assumed an equal weighting and combined to a
single objective,asc-DO OB HIHRUHQFHY PHWKRG )XWXUH GHYHORS
Pareto front exploration between alternative weights could be implemented, however



careful consideration must be takerttdas may bias any selection procedure towards

those measures that cam defined by metrics to the detriment of qualitative aspects
influencing manual selection. Maintaining that one could in theory evolve something that
is poorly performing for all performandsased objectives (i.e. nowhere near a Pareto
front), simply becase it subjectively feels righwasconsideredmportart to the authors.

3.5. Evolution history

Biomorpher records the evolution history and displays this to the user, including optional
performance data. As the solution space could be completely unknogmimitialising a
search, there is potential to steer evolution towards undesirable patteed, this is
inevitable for any wide design exploration. With this in mind, some way to return to
previous generations and begin a new search branch beconmetaimpFigure 6 shows

how each population (in this simple example for exploring a textured Mobius band) is
displayed at each generation, with an option to reinstate previous populations to begin a
new search.

“eso *eo  foo  foooo o

- j@ﬁé& 2 “"ODCD """" o : O O
- Q O DO - o D _ﬂﬂ E (5 ji? o - o O

- D O O “Oﬂ.‘)‘@ - O O o O

Figure 6. Search tree example. Each newckea formed from a previous population.

4. Application

A series of expg@ments were conductdd test the effectiveness of the tool in a variety of
situations from individual trials, workshops and real projetie examples given in this
section involvd defined parametric models (i.e. parameter based search.dRatler
thanfocusingon one particular use, the aim of these tests were to establish the benefits of
locating an IGA within a parametric design environment which could in theory lead to



manydifferent types of applicatioricxamples set out in sections 4.1 and 4.2 are work
solely by the authors, examples 4.3 and 4.4 the result of worksmajesxamples 4.5

and 4.6 argealworld projecs. The final example investigates the evolution of
parameULF GHILQLWLRQV W KHMDVHMPHHIWU X ¥ibexQ i@ tHe/D
earlier design stage.

ID\RXW pRSWLPLVDWLRQY

Automating floor plan layouts has a long history in architectural computing, however
these have mostly focus on ascribingcsiiefunctions to spaces and/or specifying
targetbased goalf37]. Whilst valuable, these studieanturn design into a series of
logical steps with prelefined semantics that often run counter to the complexity of how
designers work in pracec One mat strive to béast andlexible when constructingule
setsthat may or may not have semantic meaning, or else derive méatiragjvely

through their application, not a priori. This again highlights benefits of basing
interactive evolution withim parametrienodellingenvironmentt the early design stage

In this test, a simple arrangement of lines,-descript rectangles and soft
landscaping featura@sspired by the work of architect Junya Ishigameireconstructed
parametricallyin orderto quickly generate plan compositionshe model was controlled
by 156 parameters, in this case directly mappingtheethe 2D location of poinisr
rectangular widths and heightgving rise to a combinatoriallych design space.

An initial population ofLO0 random designs, with a decreasindgation rate from
0.20 to 0.01ghown to be effective for COGARS8]) wastrialed, with the results of one
example run shown in Figure 7. After three generations during the first evolutionary
branch (0), it was decideo return to the original population upon which two suitable
candidates (clusters) appeared that subjectively felt like a balanced composition of
elements, with the mutation rate reduced and arriving at a final design at generation 1.4.
Again, by basinghe IGA within Grasshopper, parameters could then be manually
adjusted in the model following evolution, as shown in Figufeg@&n constructing the
model, exploring through evolution, and ppstduction, the study took little more than
tenminutes to corplete.
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Figure 7. Evolution of Junya Ishigami inspired compositwith final design
highlighted

Figure 8. Refininghe evolutionaryesultmanually using the parametric model

4.2. Henry Moore sculptures

Combing the IGA within a parametric design software means otheiinduand adebns

can be used as part of the modelling process. In this example, a combination of Kangaroo
Physicqd39] and marching cubes were combined to generate fleshed funiculausesiipt
inspired by the artist Henry Moore. A surface area measurement was taken to give a
rough estimate of relative material cost.

The parametric setup consisted of a series of five points situated around a
perimeter curve are connected by lines, replaaédsprings and forafound into
parabolic shapes similar to that described by Stasiuk [@5hl.Parameters controlled the
location of the five boundary points and the thickness of the mesh. Gembigpetype



mapping in this example wgsGHYHORSPHQWDOY EHWZHHQ GLUHFW DQ
during evolutioni.e. a small mutation could sometimes give rise to a large phenotypic

change, but only rarely. An example evolutionary history is given in Figure 9, with three

outputs from sepata evolutionary branches shown.
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Figure 9. Evolving Henry Moore Sculptures by combining with Kangaroo 2 Physics.

4.3. CoOptimise workshop

As well as the various modelling benefits from situating Biomorpher within Grasshopper,

analysis plugns such as Kmmba3D structural analysis tdél] can be easily integrated.

7KLV ZDV LQYHVWLJDWHG GXULQJ WKH p&R2SWLPLVHYT VWX
eCAADe conference 2017, run by Mariam Khademi and Kristjan Nielsen. The resulting

in at structural layout follving evolution was driven by both subjective and

performancebased critaa using the selection method outlined in Section Bigure 10

shows a screenshot from an initial set of designs, showing relative performance of each

shown by the strength of theloured circles (a) and indicated numerically for a

highlighted design (b).

Feedback from the workshop indicated that participants struggled with the
intractability between generations. For example, if manually selecting a cluster centroid,
it was not guaanteed to be in the next generation due to the nature of fithess
proportionate selection. Incorporating elitism in the selection process could counter this
in future. In addition, it was found that starting with an initial random population caused
problemswith intractability, leading to the authors to add a facility to copy the current
parameter state to the first generation following this workshop. In addition, the
Biomorpher component was modified to output the historic data of parameter states (in



additon to the display) within Grasshopper, thus allowing any past parameter states to be
recalled and calculated from historic data.

JLIXUH 6FUHHQVKRW WDNHQ IURP WKH p&R2SWLPLVHY ZF
Rome,2017.

4.4. CITA workshop

In October 27, 26 Masters level students took part in a week long workshop at the
Centre for Information Technology and Architecture (CITA), Copenhagen. During the
workshop, participants investigated steering the growth of plants using Vascular
Morphogenesis Contr@ts (VMCs) B0], with an agent based model simulated within
Grasshopper, and resultant forms explored using Biomorpher. Growth of the plants was
nontdeterministic, with several possible outcomes of a similar nature displayed as the
phenotype to the usegther than a single design.

It was found that the interactive method helped explore a wide design space by
automating multiple parameters associated with the VMCs during evolution, rather than
participants individually adjusting single parameter statetail@d information on the
worksh@ is given by Heinrich et al4fl].

4.5. Pollen sculptures

Working alongside Format Engineers and the artist Lee Simmons in the UK, various
potentialconfigurations of a private artwork in London were explored using Biphesr
The sculptures consist of stainless steel ellipsoids depicting pollen grains, welded
WRIJHWKHU WR |RQIPNG B WD\ pRERDADRININng atriaMinimising



bending moment in the structures was desirable, hence funicular shapes working
predominantly in axial tension were proposed.

$ PHWKRG IRU JHQHUDWLQJ SRWHQWLDO JHRPHWULHYV
experiments was constructed within Grasshopper, using a combination of parametrically
defined points, subsequent Voronoi pattefoam-finding methods and meshing
techniques. Again, the genotypbenotype mapping was developmental rather than
direct, which helped with adding vety to the design exploration.

5DWKHU WKDQ DFW DV DQ H[SOLFLW FRg@Ne@/asDLQW WKI
a performance measure, guiding the design search by minimising for one or two
generations should the sculptures become too large. Here, the mmixiedselection
method proved useful, as indicated in generations 0.5 and 0.6 of the example11).
This passage of performanbased evolution acted as negative feedback for the search
ZLWK WKH DY-HUDLR FRKQOMHQRI WKH SRSXODWLRQ EURXJKW
without requiring a restart, with desirable individual members of thelatuo still
being retainedit was found that whilst running the computational model gave rise to a
varied design searchpweverassessing phenotypes ideally required physical models be
constructed. In future, ease of exporting for 3d printing coulad® porated, although
in reality thepracticaltime for manufactre wouldhave to be considered.

Figure 11. Evolvindhangingpollengrain sculpturedy the artist Lee Simmons



4.6. MetaParametric example

So far theexamples givehaveinvolved adjusting parameters in a static parametric

definition. Although in theory an infinite amount of designs can often be generated by a

parametric system, they are bounded by the topological structure of the graph. As Aish

and Woodbury6] VW DWH Qe \Wdate@id afparametric system for which a

designer has not explicitly externalised... this runs counter to thedsdtdrerate

FXOWLYDWLRQ RI DPELJXLW\ WKDW DSSHDUV WR EH SDUW |

In responsga previous paper hiye fird author B2] highlighteda possible
method of widening the design search by evolving whole parametric definitions
themselves, treating Grasshopper components as easily interchangeab lgr maper
rules, similar to the visual approach set out by Stralad.[43]. By opening up the
search to topological changes, the search space becomes broader than the examples given
in Sections 4.1 to 4,%t the cost of problem ideation being harder to define. Grammar
rules become combinatorial, suited to a widesgn spaceftenrequired at the early
design stageDespite promising results, difficulties arose in not being able to compare
phenotypes associativelyyusrequiring integration witlBiomorpher.

4.6.1. Encoding

Harding and Shepheid4] describe a method of encoding a parametric model within a

single numeridist, opening the topology of a parametric model itself for evolution.

Encoding the model is similar to that used in Cartesian Genetic Programming (CGP)

[45], which has been shown be suitable for evolutionary methods due to its
GHYHORSPHQWDO PDSSLQJ IURP JHQRMNAB PHWRJ ISKK{H B IR W KRH5
have recently been investigated Joyce and Ibr@i@infor the combinatorial search of

parametric models.

The genome consists of three parts: External parameters (for example numeric
sliders, external geometry, etc.), the pool of components in the graph (nhodes) and the
topological structure that forms associations between components (edges). These three
categoies form the basis of the genotype usedlsgparate Grasshopper plagalled
Embryofwhen constructing a parametric model:

1. Metric genes (double): control the parameter values for generated sliders and have
a direct numerical mapping. These can beegitnteger or floating point values.
These metric parameters are the first things generated by Embryo.

2. Function genes (integer): when a component is added to the graph, the function
genes controls the type of component is selected from the pool.

3. Topologial genes (integer): map the output location for each component input
when forming the graph. Altering these genes changes the topology of the graph.

Figure 12 gives an outline of the process with a simple example. A component
pool is specified (a), whicmiaddition to the genotype is used by the Embryo component
(b) to generate a parametric model (c). The functional and topological aspects of the
genotype are shown, indicating how each component input is mapped back to an output



as the model is constructddore details on the method can be found in Harding and
Shepherd44].

Figure 12. Encoding a parametric definition into a real number list

As an explicit embryogeny is used, the genotype is mapped directly onto the
topological structure of the graplhs apposed to an implicit method with ldevel rules.
This leads to a closer mapping between the genotype and phenotype than with an implicit
embryogeny, assisting with evolvabilfg7]. The numeric parameters that encode the
graphnow form the genotypesed by Biomorpherdudgement during evolution is now
involvestwo forms of phenotypic representation: the generated design and the graph
itself (i.e. the user may wish to retain legibility). Maintaining this engageeraiileghe
evolved models to be furer developed manually followirgyolution

4.6.2 Application

It was decided to retn toan earlier study by the first auth@?2] and compare the search
process now using Biomorpher to establishtiveethe limitations identifietiad been
overcome- namely now usingan interface that displayed populas@ssociatively. In

the earlier study, a series of bespoke grammar rules were created, specific tonéiakside
project in collaboration with 3D Reifirchitects, LondonAs with genetic programming,
thegrammar rules were both parametric and combinatorial, hence offering a wider design
space than that enabled by parameters alone. Importantly, the rules could be formed
bespoke to the project during an early design team meetimg) were then

encapsulated in bespoke Grasshopper compeifegtre 13.



Figure 13. Two residential blocks (a, b) and circulation link bridge (c).

Parametric definitions generated contained 9 numeric parameters and 16
componentswith massing designs evolvadcoding to qualitative judgment and
guantitative measureBerformancecriteriaindicating total number of apartments and
proportion with adequate access to daylight were included, helping to nudge the
evolution to approximately 500 apartmerfggure 14. shes a typical evolution history,
with initial (a) and final (b) parametric definitions shown for the population. An initial
mutation rate of 0.20 was used, which was gradually reduced to 0.05 until generation 5,
whereby the rate was returned to 0.20 ayé#niety of designs had become stagnant. It
was found that including crossover with tperticularmethod of encoding led to
frequent disruptive changes to the phenotype (likely due to the mapping technique), and
hence mutation alone was used.



Figure 14 Massing study evolution with initial (a) and final (b) parametric definitions.

The resulting massing studies and parametric definitions were once again simple
to manipulate manually following evolution, as the complexity of the graphs was kept
relativelysimple xindeedgraph complexitypecame part of the evaluation itself
Increasing the component number decreases legibility to the user. With this in mind, a
shape grammar that included iteration or recursion, without requiring a component be
used multipé times in the same graph would help to increase legibility and reduce the
genotype sizeAs opposed to the earlier study without Biomorpher [42], associative
evaluation of phenotypes was possible without iterating through each possibility thus
enabling anore fluid experience during evolution.

One of the issues identified during the study was that the cluster centroids did not
fully represent the nature of the population as a whole. For example, if in a total
population of 100 designs, 70 of these werg wmilar they were then only represented
by a single design in the phenotype display. As noted by Bonham and Fagne69,
the sampling naturécan lead to promoting ovaealous exploration of areas that do not



lie within any of the defined high peRUPDQFH UHJLRQV"™ 7KLV OHDG WR Wtk
setup being @opulation of justwelvedesigns (on@er cluster) being used in favour of

enabling any performance based optimisation benefitting from a large population.

Potential methods to counter thisussarediscussedn Section5.1.

4.7. Discussion

The examples given are aimed to highlight the versatility of the tool for parametric

design, rather than focus on one particular application. The ability to display multiple
models in parallel enhances Beasshopper user environment and necessary for

assessing phenotypes. Some limitations during these tests were highlighted and
addressed, such as establishing a predefined initial population. Others require further
research: for example, it was found thespite selecting a design, it may get replaced in

the next generation due to fitness proportionate selection. Here, incorporating elitism
perhaps only for those designs explicitly selected (i.e. cluster centroids) would seem to be
a possible step foravd and will be discussed further iSection 51.

Biomorpher can be used at a variety of design stages, from exploring existing
parametric models in new ways, to exploring early stage massing coricépéesfinal
example, the use of Biomorpher in combinatiath a metaparametric approach enabled
awider combinatorial design space to be explored, albeit with a constraint on the
complexity of the graph for future legibility.

5. Conclusion

The purpose of this paper is to highlight the benefits of using interactive evolution
(including optional performance optimisation) within a parametric design environment.
The authors have developed the software Biomorpher, ampliog Rhino Grasshopper

that allows the no®xpert to engage in such evolutionary methods within an environment
that already boasts many modelling and analysis native tools anganiydplugins.

Two types of examples have been shown, for pararbased exploration and
explaration of parametric definitions themselves usingataparametriclapprach
bettersuited to the early design stattewas found that th&GA works effectivelyfor a
wide range of situations witraphbasedparametric definitionsdue to their often
developmental mappinigetween genotype and phenotymel their flexibility of use;
before, during and after evolution.

5.1. Outlook

Biomorpher is an ongoing project, with the results of the initial experiments informing

the future of the approbhcAny future enhancements should strike a balance between
MIHDWXUH FUHHSY DQG PDLQWDLQLQJ LQWXLWLRQ DKHDG F
future possible developmentslude the following:



X Incorporating multiobjective metods with interactive selection coulé
explored, whilst noting the dangers of preferencing measurable objectives as
discussed in Section 3.At presat an equal weightedum approach is used.

X As identified in Sectiod.6.2 COGAs tended to give equal weighting to a single
design if it wasunique rather than adequately bias many similar designs. An
associative method of dimensionality reduction of the parameter space would be a
possible solution to this, as opposed to discrete cluster methodsr@seifsing
maps, implemented for example Aynor and Rettingef48] for IGAs, and
Principal Component Analysis as used by Talton 448].in displaying large
populations of tree designs are possible alternatives. These methods could also be
used to select a large group of designs for high &trr@gher than the current
MFKHFNER[T DSSURDEFK

X As noted in the examples in Section 4, in order to address the issue with lost
designs even after selection, implementing elitism, either at the cluster level or
individual designs, may be beneficial.

X Investgate clustering of phenotypes based on notional performance, in addition to
parameter space. As noted, one must be careful not to overemphasise quantitative
metrics over qualitative measures with this approach.

X Include recursive structures in the generabd parametric definitions to reduce
the genotype size.

x Crossover causes a larger than expected disruption when used in combination
with generating parametric definitions. This was likely due to the CGP method of
encoding and using mutation alone may lweersuitable approach in future in
line with other CGP applicatior}50].

X As mentioned in Section 4.5, incorporating physical models in the selection
process as an alternative form of representation. As 3d printing is likely to be too
slow, a form of augnmeed reality may be a viable compromise.

As a final thought, by locating an IGA within a parametric design environment,
models and rules can be easily interchanged to create novel and interesting evolutionary
processes that include a variety of disciplitdswever, one must acknowledge that there
will always be limitations to an entirely computer basppraach to architectural design,
especially if enacted using 2D interfacBg][ Manual selection must be informed by the
experience of the architect withfluence from mixed modes of representation, such as
physical models, collage, sketches, &ather than reduce design to a systematic
process, grametric design methods tletcompasa wider approach tarchitectural
representatioappeara be the neixstep going forward.
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