
Towards green scientific data
compression through high-level I/O
interfaces

Conference or Workshop Item

Accepted Version

Alforov, Y., Novikova, A., Kuhn, M., Kunkel, J. and Ludwig, T.
(2018) Towards green scientific data compression through
high-level I/O interfaces. In: SBAC-PAD 2018, 24-27
September, Lyon, France, pp. 209-216. Available at
http://centaur.reading.ac.uk/79584/

It is advisable to refer to the publisher’s version if you intend to cite from the
work. See Guidance on citing .
Published version at: https://ieeexplore.ieee.org/document/8645921

Publisher: Springer

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement .

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://centaur.reading.ac.uk/licence

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading

Reading’s research outputs online

http://www.reading.ac.uk/centaur

Towards Green Scientific Data Compression
Through High-Level I/O Interfaces

Yevhen Alforov∗, Anastasiia Novikova†, Michael Kuhn†, Julian Kunkel‡, Thomas Ludwig∗

∗Deutsches Klimarechenzentrum GmbH, Hamburg, Germany, {alforov, ludwig}@dkrz.de
†Universität Hamburg, Hamburg, Germany, {michael.kuhn, novikova}@informatik.uni-hamburg.de

‡University of Reading, Reading, England, juliankunkel@googlemail.com

Abstract—Every HPC system today has to cope with a deluge
of data generated by scientific applications, simulations or large-
scale experiments. The upscaling of supercomputer systems and
infrastructures, generally results in a dramatic increase of their
energy consumption. In this paper, we argue that techniques like
data compression can lead to significant gains in terms of power
efficiency by reducing both network and storage requirements. To
that end, we propose a novel methodology for achieving on-the-
fly intelligent determination of energy efficient data reduction
for a given data set by leveraging state-of-the-art compression
algorithms and meta data at application-level I/O. We motivate
our work by analyzing the energy and storage saving needs
of real-life scientific HPC applications, and review the various
compression techniques that can be applied. We find that the
resulting data reduction can decrease the data volume transferred
and stored by as much as 80 % in some cases, consequently
leading to significant savings in storage and networking costs.

Index Terms—HPC, I/O interfaces, data reduction, compres-
sion, energy consumption

I. INTRODUCTION AND MOTIVATION

Energy saving became an imminent problem for many
researchers and computer scientists. Their aim is to reduce
energy consumption in supercomputers as far as possible
without decreasing the runtime performance. Even though
a number of approaches and mechanisms to reduce energy
consumption in supercomputers have been suggested at the
different levels of computing systems (CPU and GPU, storage
disks, I/O, network, etc.), more and more HPC applications still
produce enormous volumes of data sets that need more storage
space to keep information saved. This also results in additional
costs for energy because new hardware used in computing
systems (for example, SSDs and HDDs) requires additional
power. Therefore, storage, energy and overall costs increase for
supercomputing facilities. For instance, for each PB of HDD
storage space, the German Climate Computing Center (DKRZ)
roughly has to pay investment costs of 100,000 C and annual
electricity costs of 3,680 C; for its 54 PiB storage system, this
amounts to almost 200,000 C per year for electricity alone.1

These costs do not even include maintenance (approximately
15 % of storage costs) and tapes for long term archives (70
000 tape slots) [1].

Reduction of data volumes is a straight-forward solution
to minimize energy consumption in storage systems. It can

1One PB of storage needs 3 kW of power and 1 kWh of energy costs 0.14 C.

be achieved by leveraging different data reduction techniques
like compression, transforms or deduplication. For storage
systems, data reduction directly results in less storage hardware
that has to be procured and operated. The main benefits of
reduction techniques are storage capacity optimization, network
bandwidth reduction, minimization of operational costs and,
of course, energy saving.

In this connection, HPC users have a great interest in data
reduction. Especially in those methods and algorithms that are
the most appropriate for their data sets. Of course, the chosen
data reduction must be able to provide the highest reduction
ratio without decreasing the whole runtime performance or
using additional resources including energy consumption. In
our paper, we are focusing on scientific applications (typical
users of HPC) where choosing reduction strategies with high
performance and energy efficiency for the generated deluge
of scientific data is a challenging task today. For these users,
the choice of a compression algorithm is a technical decision
that is difficult to make, since a well suited algorithm for one
data set might be suboptimal for another data set or on another
machine. Therefore, we aim to automatize the decision making
process on behalf of the users.

In this work, we aim to define the methodology for
intelligent selection of algorithms from a variety of state-of-
the-art reduction techniques with an emphasis on their energy
consumption. This methodology will be applied in the further
development of our framework for scientific data reduction.
Regarding this purpose, we make the following contributions
in this paper:

• We first highlight in Section II main drawbacks and
benefits of reduction techniques deployment on determined
levels of data path through the common HPC I/O stack.
After that we introduce our framework for scientific data
compression though high-level I/O interfaces.

• In Section III, we introduce experimental setup for inves-
tigation of application-level data compression techniques.

• We present in Section IV the preliminary results obtained
from a series of experiments and outline the main princi-
ples of our methodology for reduction method selection.

• After a concise review of related work in Section VI, we
conclude in Section VII with a summary of our findings,
and describe our future work on this topic.

I/O hardware driver

Parallel file system

POSIX

MPI-IO

HDF5

NetCDF

Application

High-level I/O libraries

I/O middleware

Storage backend

Figure 1. HPC I/O stack commonly used in life sciences

II. DATA REDUCTION THROUGH HIGH-LEVEL I/O

All data has to cross the full I/O stack during manipulation
or retrieval. It consists of a file system, middleware and I/O
libraries as depicted in Figure 1.

Two of the most popular and common high-level I/O
interfaces in the scientific community to access data in both
serial and parallel manner are HDF5 (Hierarchical Data
Format 5) [2] and NetCDF (Network Common Data Form) [3].
They allow HPC applications written in various programming
languages (e.g., C, C++, Fortran, Python, etc.) to manipulate
data and store it in a self-describing portable way by using
multidimensional arrays [4]. Using self-describing data formats
gives the opportunity to store a description of the data file
layout as an additional meta information in the header part.

HDF5 and NetCDF perform I/O in a layered manner. The
NetCDF programming interface delegates data storing to HDF5,
and HDF5 uses the I/O implementation of MPI (Message
Passing Interface) [5]. MPI employs the I/O operations of
the underlying parallel file system (backends for specific file
systems or the more generic POSIX backend [6]). In the end,
I/O is performed by the I/O driver. If the application performs
data writing, it uses the high-level I/O library, and the data is
going through the stack down until it is placed in the driver
layer. A data read works in the opposite direction.

It must be also clearly noticed that NetCDF and HDF5
interfaces provide parallel I/O. In this case it is necessary to
use HDF5’s MPI-IO backend and have an underlying parallel
file system which allows multiple processes to access a file.
Otherwise, the I/O operations will be serialized.

On the basis of these considerations, it is possible to
determine in general two main levels of the data path where
data reduction mechanisms can be deployed. They are system
(low) and application (high) levels. Depending on where in
the I/O stack data reduction is employed, different benefits
and drawbacks become apparent. As can be seen from Table I,
data reduction usage on higher levels of HPC I/O stack is
advantageous. Unlike low layers, it is possible to access and
exploit additional meta information stored in the header part
of files like data types. Different HPC applications (e.g. for
climate change and weather forecasting, bioinformatics, etc.)
are using a common I/O stack (Figure 1), making it easier to
employ application-level data reduction for them. Thus, data

Table I
DRAWBACKS AND BENEFITS PROVIDED BY DEPLOYMENT OF REDUCTION

TECHNIQUES IN HIGH AND LOW LEVELS OF I/O

SYSTEM LEVEL APPLICATION LEVEL

D
R

A
W

B
A

C
K Uncertainty Clarity

due to the lack of access to insight into the code and
application-specific semantic requirements of applications is

information (e.g., data structures, needed for tuning the
important variables, etc.) only performance of data reduction

lossless reduction can be considered techniques

B
E

N
E

FI
T

Transparency Flexibility
no need to modify applications, semantic information is easily
even if they are very diverse or accessible, hence more reduction

do not use a common I/O techniques can be leveraged
software stack (even for specific portions of data)

reduction leverage at the application level is possible to be fine-
tuned by taking application requirements and meta data into
account. Techniques which can be deployed in a way that is
transparent for users of these applications are deduplication [7],
compression and transforms [8], [9].

With regards to the problem mentioned before and bearing in
mind the data path, we are developing Scientific Compression
Library (SCIL)2 - a framework for data reduction though high-
level I/O interfaces (see Figure 2). Its main goal is providing the
most appropriate data reduction strategy for a given scientific
data set on the basis of semantic information and performance
of algorithms. It currently supports different lossless and lossy
techniques.

SCIL is a meta-compressor that aims to exploit knowledge
on the application level [10], [11]; it decouples the selection of
various error quantities and the expected performance behavior
from the selection of the algorithm. For example, a newer
and better algorithm could be selected by the library without
change in the application code once it becomes available. The
library should ultimately pick a suitable chain of algorithms
yielding the user’s requirements. Initially, this is done based
on the capabilities of the algorithms but the ongoing work is
a preliminary stage for the design of an improved algorithm
selector that could benefit from energy-aware selection of the
algorithms.

An application can either use the NetCDF4, HDF5 or the
SCIL C interface, directly. As the majority of climate models
is stored in NetCDF file format, but NetCDF doesn’t have
compression feature itself, and uses for this purpose HDF5
compression filters, a new one was developed. Using this filter
and some others we are launching our tests.

Apart from this, SCIL is rich of useful features. It provides
tools to:

• Create random patterns or add noise.
• Compress CSV or NetCDF3 files.
• Compress/Decompress and plot the results.

In this paper, the main focus of our research will be on
energy consumption of data compression techniques widely
used to safe storage space.

2The current version of library under LGPL license:
https://github.com/JulianKunkel/scil

Figure 2. General architecture of Scientific Compression Library SCIL

III. EXPERIMENTAL SETUP

Apart from the points described above, a question still to
be examined in detail are there any dependencies between
performance of compressor (including its energy efficiency)
and the structure of the data. If yes, then it will be extremely
useful to know how such dependencies can be employed in
selection of power-aware reduction techniques for a given data
set when its meta data is available at the hand.

In the next sections, we will try to find an answer through
evaluation of HDF5 filters at the high-level I/O and their
distinct performance and energy consumption characteristics.
Algorithms like LZ4 [12] and Zstd [13] are fast and provide
high throughputs. However, their compression ratios can be
lower compared to slower algorithms that consume more energy
(such as LZMA [14]).

Environment setup. In order to investigate the performance
of data compression at the application level, we used a cluster
which operates with the parallel distributed file system Lustre.
The maximum throughput was limited to roughly 110 MB/s
due to using only one node (outfitted with two 2.80 GHz
quad-core Intel Xeon X5560 processors and 12 GB of RAM).
The experiments were conducted by repacking the source files
located on the same node and storing them in a local file system.
For the energy consumption measurements, the ArduPower [15]
wattmeter was used. It is designed to simultaneously measure
the DC power consumption of different components (e.g.,
motherboard, CPU, GPU, disks) inside computing systems
even at very large scale. ArduPower provides 16 channels to
monitor the power consumption with a sampling rate varying
from 480 to 5,880 Hz.

Metrics. The main metrics in which we were interested are
the compression ratio (CR)3 to quantify the data reduction,

3We define compression ratio as CR =
size original

size compressed .

Cluster operated by FS Lustre ArduPower wattmeter

Maximum throughput - 110 MB/s 1 node usage

Figure 3. Experimental setup

runtime of each algorithm to see how slow or fast is it, average
CPU utilization and consumed energy.

Dataset and workload. For data reduction techniques
evaluation at the high-level, two data sets with roughly the
same size have been chosen and one smaller data was taken
for additional experiments:

• 17 GB data set of 3-dimensional ecosystem model for
the North Sea ECOHAM [16], [17], [18] (from Climate
Science)

• 14 GB data set of tomography experiments from PETRA
III’s PCO 4000 detector [19] (from High Energy Physics)

• 4 GB data set of ECHAM atmospheric model [20] (from
Climate science)

Evaluated techniques. To perform the reduction of data sets,
different HDF5 compression filters have been leveraged. In
experimental evaluation we compared the following algorithms:

• off: No filtering is applied. This represents the baseline.
• blosc: The Blosc meta-compressor using LZ4 compres-

sor. Additionally, Blosc’s shuffle pre-conditioner was used.
• mafisc: The MAFISC compression algorithm that uses

several pre-conditioners and LZMA compressor [21].
• lz4: The LZ4 compression algorithm using its default

acceleration factor.
• zstd: The Zstd compression algorithm using its default

aggression parameter. The zstd-11 and zstd-22
variants represent Zstd with aggression parameters of
11 and 22, respectively.

• scil: HDF5 plugin applying LZ4 compression algorithm
with some pre-conditioners to each variable in a data set.

IV. PRELIMINARY RESULTS AND DISCUSSION

The obtained results of compression ratio and consumed
energy for the ECOHAM and PETRA III data sets are plotted
in Figure 4. Average CPU utilization for both data sets are
plotted in Figure 5 and Figure 6 accordingly. Figure 7 shows
that overall the runtimes vary wildly, even though both data sets
have roughly the same size (17 GB for ECOHAM and 14 GB
for PETRA III). This gives rise to the view that it is related
to the different data set structures: While the ECOHAM data
set contains more than 300 4-dimensional variables of double
precision floats, the PETRA III data set contains around ten

off blosc-lz4 mafisc lz4 zstd zstd-11 zstd-22 scil
0

2

4

6

1

3.82

5.97

5.09

5.78 5.85 5.98

5.24

1

1.56

2.57

1.28

2.03 2.12 2.16

1.35

R
a
ti
o

Achieved compression ratios

off blosc-lz4 mafisc lz4 zstd zstd-11 zstd-22 scil
0

200

400

26 17

190

14 16
44

508

13

103 101

318

100 105
142

309

108

(k
J) Consumed energy

17 GB data set of ECOHAM 14 GB data set of PETRA III

Figure 4. Average compression ratios and energy consumption depending on
the HDF5 filter used for compression

3-dimensional variables of 16-bit integers.4 Consequently, the
pre-conditioners were tuned for the data sets where appropriate.
Blosc was set up to use a 8-byte data size for ECOHAM and a
2-byte data size for PETRA III. In addition, ECOHAM contains
many (repeating) fill values, which explains higher compression
ratios in comparison to the PETRA III data set.

Blosc’s pre-conditioners shuffle the data in such a way
that compressors should achieve higher compression ratios.
In case of PETRA III, this approach works well because
blosc-lz4 achieves a compression ratio of 1.56 while lz4
only achieves a compression ratio of 1.28. Due to a very similar
runtime and CPU utilization (and thus, energy consumption),
the additional pre-conditioning provides benefits. However, in
case of ECOHAM, Blosc’s pre-conditioner significantly reduces
the achievable compression ratio from 5.09 for lz4 to 3.82
for blosc-lz4. In addition to that, it also increases the
runtime and CPU utilization and, therefore, consumes 50 %
more energy.

For both data sets, Zstd achieves significantly better com-
pression ratios than LZ4 even with its lowest compression level.
The increases in runtime and energy consumption are negligible
for the PETRA III data set. Zstd has also been tested with levels
11 and 22 besides its lowest compression level. As can be seen
from Figure 4 and Figure 7, level 11 improves both the achieved
compression ratios and runtimes moderately. Level 22 gives
even higher compression ratios but with significantly increased
runtime and, thus, energy consumption.

MAFISC achieves the highest compression ratios in both
cases due to its advanced pre-conditioners. However, this
achievement is expensive because runtime and CPU utilization
are increased significantly. Regarding energy consumption, it

4This runtime difference only occurs when using h5repack but not when
using the simpler h5copy.

25%
50%

75%

0% 100%

off (10%)

blosc-lz4 (21%)
lz4 (17%)

zstd (32%)

zstd-11 (76%)

mafisc (93%)
zstd-22 (97%)

scil (24%)

Figure 5. Average CPU utilization with ECOHAM data set

25%
50%

75%

0% 100%

off (84%) scil(85%)
blosc-lz4, lz4 (87%)
zstd (92%)
zstd-11 (95%)

mafisc, zstd-22 (98%)

Figure 6. Average CPU utilization with PETRA data set

needs 8x and 3.5x the energy compared to running without
compression for ECOHAM and PETRA III, respectively.

Concluding, SCIL was run with only one algorithm - LZ4
for all variables. Comparing to LZ4, its compression ratio is
slightly better. This happened because more pre-conditioners
were applied to algorithm in SCIL filter. However, as for
the average energy consumption, also for the average CPU
utilization, the values are almost the same as in the case of
LZ4. Thus, we can state that SCIL itself makes almost no
influence on the performance of chosen algorithm.

Additionally we have tested ECHAM data which is smaller
(4 GB only) than ECOHAM and PETRA III data (see Table II).
ECHAM data set contains 135 double and float variables.
Average CPU utilization is 99 % for all the algorithms,
excluding SCIL, where CPU utilization equals 71 %. The blosc-
lz4 saves more energy for this dataset than others.

Data set Filter Comp. Runtime CPU Energy

ECOHAM

off 1.00 06:58 10 % 24 J
blosc-lz4 3.82 04:48 21 % 16,5 J
mafisc 5.97 49:25 93 % 189,4 J
lz4 5.09 04:05 17 % 14,2 J
zstd 5.78 04:35 32 % 16,2 J
zstd-11 5.85 11:47 76 % 44,3 J
zstd-22 5.98 2:11:50 97 % 508 J
scil 5.24 03:47 24 % 15 J

PETRA III

off 1.00 27:28 84 % 103 J
blosc-lz4 1.56 26:58 87 % 101 J
mafisc 2.57 1:23:04 97 % 318 J
lz4 1.28 26:57 87 % 100 J
zstd 2.03 28:12 92 % 105.4 J
zstd-11 2.12 38:08 95 % 142 J
zstd-22 2.16 1:20:49 98 % 309 J
scil 1.35 29:03 85 % 108 J

ECHAM

off 1.00 2:59 99 % 11 kJ
blosc-lz4 1.95 3:05 99 % 11,7 kJ
mafisc 2.36 20:12 99 % 77 kJ
lz4 1.5 3:03 99 % 11,7 kJ
zstd 1.8 3:17 99 % 12,6 kJ
zstd-11 1.82 4:50 99 % 18,2 kJ
zstd-22 1.91 34:30 99 % 132 kJ
scil 1.5 4:58 71 % 18 kJ

Table II
ECOHAM, PETRA III AND ECHAM DATA SETS COMPRESSED USING

DIFFERENT HDF5 FILTERS

00:00:00 00:33:20 01:06:40 01:40:00 02:13:20

off

blosc-lz4

mafisc

lz4

zstd

zstd-11

zstd-22

scil

00:06:58
00:27:28

00:04:48
00:26:58

00:49:25
01:23:04

00:04:05
00:26:57

00:04:35
00:28:12

00:11:47
00:38:08

02:11:50
01:20:49

00:03:47
00:29:03

17 GB data set of ECOHAM

14 GB data set of PETRA III

Figure 7. Runtime T(HH:MM:SS) of evaluated compressors

V. OUTCOME AND METHODOLOGY

After collecting all the metrics for each of applied compres-
sors, now it is possible to look at the dependencies between
metrics. It is possible to compare results for all combinations
(CR vs. Time, CR vs. Energy, CR vs. CPU, Time vs. CPU, Time
vs. Energy, CPU vs. Energy), however most of the graphs show
chaotic results, except of one, which is depicted on Figure 8
where energy E is directly proportional to time T. This can
be easily explained by the formula: Energy=Power*Time.
Therefore, the less time an algorithm needs for compression,
the less energy it consumes. This can be taken as a base line
for a power-aware compression selection. To this end, we can
now observe that the most efficient by energy, time and CPU
usage for both data sets is lz4 compressor with acceptable
compression ratio (CR). Hence, this algorithm can be employed
for data compression by default.

As can be seen from the evaluation results, there is a trade-
off between compression ratio and energy consumption. With
defined accuracy for these metrics (when small increases may
be negligible) more appropriate algorithms can be mapped for
each data set by all the parameters: ZSTD-11 for ECOHAM
with CR=5.85 and ZSTD for PETRA III with CR=2.03. In this
way, if the input data has approximately the same data structure
as ECOHAM for instance, SCIL can leverage ZSTD-11.
Thus, based on the results of performed compression for
given datasets we can describe basic steps at the beginning of
reduction strategy selection:

• LZ4 is set up by default. This option takes into account
all the metrics.

• If only CR is important for a user then MAFISC can be
applied to the data set.

• If CR is important for a user with taking into account
the energy consumption, then the data structure must be

00:00:00 00:33:20 01:06:40 01:40:00 02:13:20

0

100

200

300

400

500

lz4 (14 kJ)
scil (15 kJ)

zstd-11 (44 kJ)
zstd (16 kJ)

lz4 (100 kJ)
scil (108 kJ)

zstd-11 (142 kJ)

mafisc (190 kJ)

zstd-22 (309 kJ)

mafisc (318 kJ)

zstd-22 (508 kJ)

(k
J)

17 GB data set of ECOHAM
14 GB data set of PETRA III

Figure 8. Consumed Energy vs. Runtime of compressors

checked and compared to the obtained results (here user
can establish the accuracy and semantic meta information
should be available):
– Regarding the characteristics of input data set one of

the following compressors can be used (BLOSC-LZ4,
ZSTD, ZSTD-11).

All these observations are of great significance for the
methodology of compression algorithm selection. MAFISC
can be employed when only the ratio matters, and LZ4 or
ZSTD when runtime, energy or CPU load are also important.
Thus, if the given data set at the input has a similar structure as
ECOHAM or PETRA III, we already have a defined reduction
strategies. In order to make the strategy selection more precise,
evaluation of various compressors on different data must be
performed with collection of various metrics. For taking an
intelligent decision on what compression can be applied to
the given data it is possible to leverage a trained decision tree
from machine learning which can provide to the user these
different options in algorithm selection based on the meta data
and performance of algorithms. Design and implementation of
such a decision support unit is an ongoing work and is out of
scope in this paper.

VI. RELATED WORK

The impact of compression on I/O throughput is studied
in [22]. The results show that the achievable throughput is
highly dependent on the chosen algorithm and data because
slow algorithms or incompressible data can decrease throughput
significantly.One way to compensate for this drawback is
to implement these algorithms in hardware [23]. Authors
of [24] have implemented gzip on FPGAs using OpenCL.
Their implementation offers a throughput of 3 GB/s in com-
parison to 300 MB/s for a highly-optimized CPU implementa-
tion. Moreover, performance-per-watt ratio from the FPGA
implementation is twelve times better than the one from
the CPU implementation. However, not all accelerator-based

implementations are faster than CPU-based implementations.
In [25], the authors have implemented bzip2 on an NVIDIA
GTX 460 and found that their implementation is more than
two times slower than the original. One of the reasons for
this is the fact that all data has to be transferred via the PCIe
bus to the GPU and back. Thus, compressing data already on
the compute nodes can be much more beneficial than porting
compression methods to the accelerators.

It is furthermore important to foresee which reduction
method will produce the best results. For example, [26] presents
a decision algorithm for MapReduce users to decide whether
to use compression or not. The key factor here is a data
compressibility which determines the cases when compression
is worthwhile. With the introduced algorithm, the MapReduce
framework becomes a more powerful tool for data centers.
After studying the impact of compression on performance and
energy efficiency for MapReduce data-intensive workloads, the
authors of this work reported that compression provides up to
60 % energy savings for some jobs. Therefore, prediction is
crucial.

In [27], the authors present a compression algorithm for
arrays of 64-bit floating-point values. It predicts the next value
in the array based on previous values and uses XOR to encode
the difference between the predicted and actual value. For
this, data analysis is very useful and also helps to determine
appropriate reduction and to avoid negative information loss.
In [28], the authors examine properties of every individual
variable of a data set produced by Community Earth System
Model (CESM) [29] and suggest to apply compression on a per
variable basis. Further, they target to implement an automated
tool for appropriate lossy compressor identification which,
however, focuses only on CESM’s workflow [30]. Suchlike
approach has been considered in [31] when semantic data from
high-level I/O can be taken into account, which is unfortunately
problematic for the underlying file system.

However, to the best of our knowledge, almost none of the
previous works focus on data reduction at the high levels of the
HPC I/O stack with usage of additional meta information for
tuning the chosen technique or for identifying an appropriate
reduction strategy. Moreover, energy consumption is not
considered as a rule. It is precisely this gap we aim to address
in our work.

VII. CONCLUSION AND FUTURE WORK

Our preliminary results show that the amount of data which
can be saved after using reduction techniques like compression
heavily depends on the structure of data. Pre-conditioners such
as byte- and bit-shuffling might work well for one data set, but
they might worsen data savings for others. Moreover, one can
observe that there is a delicate trade-off between compression
ratio and energy consumption. Data reduction algorithms like
MAFISC can provide high compression ratios but at the same
time increase energy costs and reduce throughput. In addition,
different approaches are appropriate depending on the use case.
Files for archival can be compressed with slower algorithms
while parallel I/O should be handled as fast as possible.

In the future, we plan to extend our evaluation of compression
algorithms on various data sets in order to build more
strategies and to discover what exactly influences on energy
consumption during reduction process. Besides this, we aim
also to experiment with additional application-specific data
reduction techniques. Using semantic information available
at the application level about data enables other techniques
such as lossy compression or other transforms to reduce their
precision. Moreover, deploying data reduction at the high
levels of the HPC I/O stack allows their fine-tuning to take
application requirements into account (different compression
algorithms could be used for different types of variables). For
instance, lossy compression could be used for less important
variables. We also plan to experiment with techniques that are
complex and/or expensive to employ at the system level such
as deduplication. Using it only on a per-variable basis could
help significantly reduce the costs in terms of memory that is
required for the deduplication tables.

Obtained preliminary results in our paper now can be
taken into account during ongoing work when implementing
the decision unit for intelligent algorithms selection in a
SCIL framework for scientific data reduction. It will identify
appropriate data reduction strategies for HPC users based on
relevant semantic information and performance metrics. For
our purposes, collected metrics of lz4, mafisc and zstd
algorithms will be employed at the start.

ACKNOWLEDGMENT

This work is part of the “BigStorage: Storage-based Conver-
gence between HPC and Cloud to handle Big Data” project,
funded by the European Union under the Marie Skłodowska-
Curie Actions (H2020-MSCA-ITN-2014-642963). This work
was supported in part by the German Research Foundation
(DFG) through the Priority Programme 1648 “Software for
Exascale Computing” (SPPEXA) (GZ: LU 1353/11-1). We
would also like to thank André Rothkirch from DESY for
providing us with access to parts of their data.

REFERENCES

[1] N. Hübbe and J. M. Kunkel, “Reducing the HPC-datastorage
footprint with MAFISC - Multidimensional Adaptive Filtering
Improved Scientific data Compression,” Computer Science - R&D,
vol. 28, no. 2-3, pp. 231–239, 2013. [Online]. Available: https:
//doi.org/10.1007/s00450-012-0222-4

[2] HDF Group, “HDF5 home page,” https://support.hdfgroup.org/HDF5/,
2017.

[3] UCAR, “NetCDF,” http://www.unidata.ucar.edu/software/netcdf/, 2017.
[4] C. Bartz, K. Chasapis, M. Kuhn, P. Nerge, and T. Ludwig, “A Best

Practice Analysis of HDF5 and NetCDF-4 Using Lustre,” in High
Performance Computing, ser. Lecture Notes in Computer Science,
J. M. Kunkel and T. Ludwig, Eds., no. 9137. Switzerland: Springer
International Publishing, 06 2015, pp. 274–281.

[5] H. Taki and G. Utard, “MPI-IO on a Parallel File System for Cluster
of Workstations,” in 1st International Workshop on Cluster Computing
(IWCC ’99), 2-3 December 1999, Melbourne, Australia, 1999, pp. 150–
157. [Online]. Available: http://dx.doi.org/10.1109/IWCC.1999.810820

[6] The Open Group, “POSIX.1 FAQ,” http://www.opengroup.org/austin/
papers/posix_faq.html, 2011.

https://doi.org/10.1007/s00450-012-0222-4
https://doi.org/10.1007/s00450-012-0222-4
https://support.hdfgroup.org/HDF5/
http://www.unidata.ucar.edu/software/netcdf/
http://dx.doi.org/10.1109/IWCC.1999.810820
http://www.opengroup.org/austin/papers/posix_faq.html
http://www.opengroup.org/austin/papers/posix_faq.html

[7] W. Xia, H. Jiang, D. Feng, F. Douglis, P. Shilane, Y. Hua, M. Fu,
Y. Zhang, and Y. Zhou, “A Comprehensive Study of the Past,
Present, and Future of Data Deduplication,” Proceedings of the
IEEE, vol. 104, no. 9, pp. 1681–1710, 2016. [Online]. Available:
http://dx.doi.org/10.1109/JPROC.2016.2571298

[8] J. Schlachter, V. Camus, and C. C. Enz, “Design of energy-efficient
discrete cosine transform using pruned arithmetic circuits,” in IEEE
International Symposium on Circuits and Systems, ISCAS 2016, Montréal,
QC, Canada, May 22-25, 2016, 2016, pp. 341–344. [Online]. Available:
https://doi.org/10.1109/ISCAS.2016.7527240

[9] H. J. Nussbaumer, Fast Fourier transform and convolution algorithms.
Springer Science & Business Media, 2012, vol. 2.

[10] J. Kunkel, A. Novikova, E. Betke, and A. Schaare, “Toward decoupling
the selection of compression algorithms from quality constraints,” in
High Performance Computing, J. M. Kunkel, R. Yokota, M. Taufer, and
J. Shalf, Eds. Cham: Springer International Publishing, 2017, pp. 3–14.

[11] J. Kunkel, A. Novikova, and E. Betke, “Towards Decoupling the
Selection of Compression Algorithms from Quality Constraints –
an Investigation of Lossy Compression Efficiency,” Supercomputing
Frontiers and Innovations, pp. 17–33, 12 2017. [Online]. Available:
http://superfri.org/superfri/article/view/149

[12] Yann Collet, “lz4,” http://lz4.github.io/lz4/, 01 2017.
[13] Facebook, “Zstandard,” http://facebook.github.io/zstd/, 2018.
[14] Z. B. Tariq, N. Arshad, and M. Nabeel, “Enhanced LZMA and BZIP2

for improved energy data compression,” in SMARTGREENS 2015 -
Proceedings of the 4th International Conference on Smart Cities and
Green ICT Systems, Lisbon, Portugal, 20-22 May, 2015., 2015, pp.
256–263. [Online]. Available: https://doi.org/10.5220/0005454202560263

[15] M. F. Dolz, M. R. Heidari, M. Kuhn, T. Ludwig, and G. Fabregat,
“ArduPower: A low-cost wattmeter to improve energy efficiency of HPC
applications,” in IGSC. IEEE, 2015, pp. 1–8.

[16] U. H. Institute of Oceanography, “ECOHAM,” https://wiki.zmaw.de/ifm/
ECOHAM, 2015.

[17] F. Große, N. Greenwood, M. Kreus, H. Lenhart, D. Machoczek,
J. Pätsch, L. A. Salt, and H. Thomas, “Looking beyond stratification:
a model-based analysis of the biological drivers of oxygen depletion
in the North Sea,” Biogeosciences Discussions, pp. 2511–2535, 2015.
[Online]. Available: http://www.biogeosciences-discuss.net/12/12543/
2015/bgd-12-12543-2015.pdf

[18] I. Lorkowski, J. Pätsch, A. Moll, and W. Kühn, “Interannual variability
of carbon fluxes in the North Sea from 1970 to 2006–Competing effects
of abiotic and biotic drivers on the gas-exchange of CO 2,” Estuarine,
Coastal and Shelf Science, vol. 100, pp. 38–57, 2012.

[19] DESY, “PETRA III,” http://petra3.desy.de/index_eng.html, 2015.
[20] E. Roeckner, G. Bäuml, L. Bonaventura, R. Brokopf, M. Esch, M. Gior-

getta, S. Hagemann, I. Kirchner, L. Kornblueh, E. Manzini et al., “The
atmospheric general circulation model echam 5. part i: Model description,”
2003.

[21] N. Hübbe, “MAFISC,” https://wr.informatik.uni-hamburg.de/research/
projects/icomex/mafisc, 2016.

[22] B. Welton, D. Kimpe, J. Cope, C. M. Patrick, K. Iskra, and R. B. Ross,
“Improving I/O Forwarding Throughput with Data Compression,” in
2011 IEEE International Conference on Cluster Computing (CLUSTER),
Austin, TX, USA, September 26-30, 2011, 2011, pp. 438–445. [Online].
Available: http://dx.doi.org/10.1109/CLUSTER.2011.80

[23] L. Benini, D. Bruni, A. Macii, and E. Macii, “Hardware-Assisted
Data Compression for Energy Minimization in Systems with
Embedded Processors,” in 2002 Design, Automation and Test
in Europe Conference and Exposition (DATE 2002), 4-8 March
2002, Paris, France, 2002, pp. 449–453. [Online]. Available:
http://dx.doi.org/10.1109/DATE.2002.998312

[24] M. S. Abdelfattah, A. Hagiescu, and D. Singh, “Gzip on a chip: high
performance lossless data compression on FPGAs using OpenCL,”
in Proceedings of the International Workshop on OpenCL, IWOCL
2013 & 2014, May 13-14, 2013, Georgia Tech, Atlanta, GA, USA /
Bristol, UK, May 12-13, 2014, 2014, pp. 4:1–4:9. [Online]. Available:
http://doi.acm.org/10.1145/2664666.2664670

[25] R. A. Patel, Y. Zhang, J. Mak, A. Davidson, and J. D. Owens, “Parallel
lossless data compression on the GPU,” in 2012 Innovative Parallel
Computing (InPar), May 2012, pp. 1–9.

[26] Y. Chen, A. Ganapathi, and R. H. Katz, “To compress or not to
compress - compute vs. IO tradeoffs for mapreduce energy efficiency,”
in Proceedings of the 1st ACM SIGCOMM Workshop on Green

Networking 2010, New Delhi, India, August 30, 2010, 2010, pp. 23–28.
[Online]. Available: http://doi.acm.org/10.1145/1851290.1851296

[27] P. Ratanaworabhan, J. Ke, and M. Burtscher, “Fast Lossless Compression
of Scientific Floating-Point Data,” in 2006 Data Compression Conference
(DCC 2006), 28-30 March 2006, Snowbird, UT, USA, 2006, pp. 133–142.
[Online]. Available: http://dx.doi.org/10.1109/DCC.2006.35

[28] A. H. Baker, D. M. Hammerling, S. A. Mickelson, H. Xu, M. B. Stolpe,
P. Naveau, B. Sanderson, I. Ebert-Uphoff, S. Samarasinghe, F. De Simone
et al., “Evaluating lossy data compression on climate simulation data
within a large ensemble,” Geoscientific Model Development, vol. 9, no. 12,
p. 4381, 2016.

[29] J. W. Hurrell, M. M. Holland, P. R. Gent, S. Ghan, J. E. Kay, P. J.
Kushner, J.-F. Lamarque, W. G. Large, D. Lawrence, K. Lindsay et al.,
“The community earth system model: a framework for collaborative
research,” Bulletin of the American Meteorological Society, vol. 94,
no. 9, pp. 1339–1360, 2013.

[30] A. H. Baker, H. Xu, D. M. Hammerling, S. Li, and J. P. Clyne, “Toward
a multi-method approach: Lossy data compression for climate simulation
data,” in High Performance Computing - ISC High Performance 2017
International Workshops, DRBSD, ExaComm, HCPM, HPC-IODC,
IWOPH, IXPUG, Pˆ3MA, VHPC, Visualization at Scale, WOPSSS,
Frankfurt, Germany, June 18-22, 2017, Revised Selected Papers, 2017, pp.
30–42. [Online]. Available: https://doi.org/10.1007/978-3-319-67630-2_3

[31] M. Kuhn, “A Semantics-Aware I/O Interface for High Performance
Computing,” in Supercomputing, ser. Lecture Notes in Computer Science,
J. M. Kunkel, T. Ludwig, and H. W. Meuer, Eds., no. 7905. Berlin,
Heidelberg: Springer, 06 2013, pp. 408–421.

http://dx.doi.org/10.1109/JPROC.2016.2571298
https://doi.org/10.1109/ISCAS.2016.7527240
http://superfri.org/superfri/article/view/149
http://lz4.github.io/lz4/
http://facebook.github.io/zstd/
https://doi.org/10.5220/0005454202560263
https://wiki.zmaw.de/ifm/ECOHAM
https://wiki.zmaw.de/ifm/ECOHAM
http://www.biogeosciences-discuss.net/12/12543/2015/bgd-12-12543-2015.pdf
http://www.biogeosciences-discuss.net/12/12543/2015/bgd-12-12543-2015.pdf
http://petra3.desy.de/index_eng.html
https://wr.informatik.uni-hamburg.de/research/projects/icomex/mafisc
https://wr.informatik.uni-hamburg.de/research/projects/icomex/mafisc
http://dx.doi.org/10.1109/CLUSTER.2011.80
http://dx.doi.org/10.1109/DATE.2002.998312
http://doi.acm.org/10.1145/2664666.2664670
http://doi.acm.org/10.1145/1851290.1851296
http://dx.doi.org/10.1109/DCC.2006.35
https://doi.org/10.1007/978-3-319-67630-2_3

	Introduction and Motivation
	Data Reduction through high-level I/O
	Experimental Setup
	Preliminary results and discussion
	Outcome and methodology
	Related work
	Conclusion and Future Work
	References

