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2 KAUST Supercomputing Laboratory

Abstract. While parallel file systems often satisfy the need of applica-
tions with bulk synchronous I/O, they lack capabilities of dealing with
metadata intense workloads. Typically, in procurements, the focus lies
on the aggregated metadata throughput using the MDTest benchmark3.
However, metadata performance is crucial for interactive use. Metadata
benchmarks involve even more parameters compared to I/O benchmarks.
There are several aspects that are currently uncovered and, therefore, not
in the focus of vendors to investigate. Particularly, response latency and
interactive workloads operating on a working set of data. The lack of ca-
pabilities from file systems can be observed when looking at the IO-500
list, where metadata performance between best and worst system does
not differ significantly.
In this paper, we introduce a new benchmark called MDWorkbench
which generates a reproducible workload emulating many concurrent
users or – in an alternative view – queuing systems. This benchmark pro-
vides a detailed latency profile, overcomes caching issues, and provides
a method to assess the quality of the observed throughput. We evaluate
the benchmark on state-of-the-art parallel file systems with GPFS (IBM
Spectrum Scale), Lustre, Cray’s Datawarp, and DDN IME, and conclude
that we can reveal characteristics that could not be identified before.

1 Introduction

The benchmarking of storage systems fosters understanding of performance be-
havior in order to identify performance bottlenecks in the storage landscape and
to tune applications towards the capabilities of the systems. The benchmarking
of metadata operations of a parallel file system characterizes the performance
when creating, accessing and searching directories and files. Typical user work-
loads on HPC systems include the bulk creation of output files from a parallel
application, intensive I/O operations on a single file, the post-processing of a
subset of files, and the interactive navigation/searching for relevant output files.
Since HPC file systems are designed to deal with large files, they typically do not
perform well on workloads involving many small files. Such workloads are, how-
ever, common and not the exception. This pattern emerges, for example, when
home directories and software packages are stored on the shared file system, as

3 https://www.vi4io.org/tools/benchmarks/mdtest
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2 Julian M. Kunkel and George S. Markomanolis

some sites manage them. Container solutions also suffer from metadata issues.
Additionally, some domain-specific workflows, e.g., from genomics involve many
small files. This lack of performance has been finally recognized by the vendors
and, for example, in the US CORAL pre-exascale initiative, IBM improved the
metadata performance of Spectrum Scale (GPFS) significantly. However, there
is still the need to drive the effort in the right direction.

Procurement procedures for HPC systems cover metadata requirements of-
ten by declaring a certain minimal throughput when running the MDTest bench-
mark. However, deployed systems still lack mandatory requirements of the users.
For example, access to files is sensitive to latency; waiting up to 10 seconds to
list 100 files or touch a new file is hindering the interactive data navigation and
preparation of scientific software. The high latency is also apparent when host-
ing software on a shared file system. To overcome the metadata bottleneck, data
centers implement workarounds like storing a container or a local file system
image on the parallel file system, for example, by serving the software tree as a
(read-only) EXT4 image on a Lustre file system. An image can then be mounted
(typically read-only) on the clients turning the metadata workload into a well-
aligned data workload for the parallel file system. The container solution Singu-
larity4 uses this approach, too. However, concurrent modifications to such image
from multiple nodes are not possible for consistency reasons. Unfortunately, the
burst buffer solution IME from DDN and Cray’s DataWarp utilize the meta-
data infrastructure from the backend file system depending on the underlying
file system’s capabilities.

Besides latency, the phase oriented execution of MDTest leads to several
shortcomings: First of all, a production file system will rarely see a phase ori-
ented pattern ever in practice because typically several jobs run concurrently
(acceptance testing is an exception). A phase execution of, e.g., file creates or
stats in isolation, however, may lead to a different performance behavior as some
resources of the parallel file system are not used within a phase, and internal locks
are often not utilized. For example, in Lustre, the creation of files does mostly
affect the metadata server – the MDT pre-creates a pool of zero-length objects.
Moreover, bulk synchronous workloads of many benchmarks are well optimized
even for disk-based storage technology, allowing benchmarks to report metrics
that are artificially high and not achievable in any production environment as
background processes cause interference. Additionally, a storage system that of-
fers separated path for the individual metadata operations (which is desirable)
has a disadvantage when performance of each phase is measured individually.
Depending on the optimization in place, e.g., the caching strategy, results of a
benchmark may vary significantly.

The contributions of this paper are: the introduction of the MDWorkbench
benchmark to reveal relevant characteristics of storage systems; and the investi-
gation of latency factors on existing parallel file systems.

This paper is organized as follows: First, related work is provided in Section 2.
Next, the benchmark MDWorkbench is introduced together with its workload

4 http://singularity.lbl.gov/
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Understanding Metadata Latency with MDWorkbench 3

description in Section 3. In the evaluation (Section 4), we first describe the
experimental setup together with four different platforms where the evaluation
of the benchmark is conducted, and then present and discuss the results in
Section 5. Finally, the paper is wrapped up in Section 6.

2 Related Work

The main reasons for benchmarking a computer system is to understand its per-
formance behavior and compare it with other systems. From the user perspective,
benchmarks are of interest that are representative for the applications run on
a system. The importance of analyzing and improving metadata performance is
illustrated in various studies, for example, in [1] and [2].

In [5], standards for building a good benchmark are discussed. According to
Huppler, any good benchmark should have the most of the following criteria:
to be relevant, i.e., represent something important, to be repeatable – that the
benchmark can deliver same results across various executions, to be fair – not
to be optimized for specific platform only, to be able to verify the output, and
to be affordable for any user. In [7], an I/O system evaluation is proposed that
takes into account both application requirements and the I/O configuration. The
methodology is constituted of three phases: In the first one, the characterization
of the application I/O requirements is extracted by measuring bandwidth and
I/O operations per second (IOPs). In the second phase, the I/O configuration
analysis, factors that impact the I/O system performance are identified, such as
file system and I/O node connection. Finally, important metrics of application
execution are collected in the evaluation phase under different configurations.

Several metadata benchmarks have been used to investigate parallel file sys-
tems. MDTest is the most common MPI benchmark for evaluating the metadata
performance of a file system. The benchmark runs in phases, measuring bulk-
synchronous workloads. It can be executed on any POSIX-compliant file system;
the newest version is integrated into the IOR benchmarking suite supporting ad-
ditional interfaces. The benchmark can create various workloads, file-only tests,
and nested directory trees. Fs mark5 is a multi-threaded benchmark for measur-
ing concurrent activity on a POSIX file system, e.g., mimicking a mail server.
It measures the time for each operation individually and reports an average
throughput for each operation type. PostMark [6] is similar but primarily aims
to simulate workload of a mail server by utilizing a stochastic model for the
operations like creating, reading and deleting of files.

In the web server market, for OLTP workloads and low-latency applications
like banks, latency is very important as, e.g., customers tend to leave slow re-
sponding web pages. Therefore, the Storage Performance Council6 designed the
SPC-1 benchmark [8]. This specification defines a workload, benchmark, and a
test methodology to ensure reproducible results. A standardized workload is

5 https://sourceforge.net/projects/fsmark/
6 http://www.storageperformance.org/
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4 Julian M. Kunkel and George S. Markomanolis

modeled based on real-world applications and the benchmark measures and
reports response time and IOPS that are crucial. However, the benchmark is
designed to measure a single storage system connected to a client; it is not ap-
plicable to an HPC environment.

The Yahoo Cloud Serving Benchmark (YCSB) is widely used to measure the
response time of a web application on top of a NoSQL interface offering CRUD
operations. YCSB varies the number of requests issued concurrently and mea-
sures the latency. However, when responses take unexpectedly long, the threads
are unable to create the necessary request rate. As a consequence, it typically
reports a too optimistic value. The issue of stragglers hiding latency issues has
been well summarized by Schuetze from Azul systems in a presentation7. The
NoSQLMark [3] is an extended version of the YCSB intended to fix this issue.

3 MDWorkbench

This MPI parallel benchmark8 mimics the concurrent access to typically small
objects. It comes with the following features: deterministic access pattern mim-
icking interactive users or producer/consumer queues; configurable working set
size to fit into a cache of a given size or exceed it; performance regression testing
by preserving the working set between runs; support for various storage backends
(POSIX, MPI-IO, S3, MongoDB, PostgreSQL), and report of throughput and la-
tency statistics including timing individual I/O operations. Since the benchmark
supports object storage, the naming conventions for the pattern are datasets (di-
rectories in POSIX) and objects (files in POSIX).

The benchmark executes three phases: precreation, benchmark, and cleanup.
The precreation phase setups the working set and the cleanup phase removes
it. A precreated environment that is not cleaned can be reused for subsequent
benchmarks to speed up regression testing, i.e., constant monitoring of perfor-
mance on a production system. During the benchmark run, the working set is
kept constant: in each iteration, a process produces one new object and then con-
sumes a previously created object in FIFO order. The pattern is parameterized
with the following variables:

N: The number of MPI processes
D: Working set size: number of datasets to create per process
P: Working set size: number of objects to create per dataset
I: Benchmarking phase – iterations to perform per dataset
S: Size per object
O: Offset in ranks between writer and reader

For the ease of understanding, the created working set is illustrated as direc-
tory tree in Figure 2. During the precreation phase the structure is created; each

7 https://www.azul.com/files/HowNotToMeasureLatency LLSummit NYC 12Nov2013.pdf
8 MDWorkbench is available under: https://github.com/JulianKunkel/md-
workbench
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1 for(p=0; p < P; p++){
2 for(d=0; d < D; d++){
3 dataset = (rank , d) // POSIX namespace is: rank/d/p
4 write(dataset , p)
5 }
6 }

Fig. 1: Pseudocode: Creation phase

process generates a directory labeled with its rank and with D datasets, each of
the datasets is populated with P objects, each of size S. On object storage, the
rank directory is virtual – the D datasets are typically prefixed by the rank. The
objects are created in order of their number (0 to P-1), see Figure 1. After the
benchmarking phase, each process is responsible for cleanup its datasets. Since
I objects have been created per dataset in the meantime, the offset of these
objects is shifted by I (see the files in Figure 2).

In the benchmarking phase, each process iterates over D · I objects as de-
scribed in Figure 3. In each iteration, file information from a previously created
object is fetched9, then the object is retrieved and deleted. Then a new object
is created. A process reads from datasets created by the D ranks before him
and writes to those D ranks after him appending a new object. Objects of a
rank’s initially created dataset are accessed by 2D other ranks. It is assumed
that N > D·O to prevent that datasets previously created by a rank are accessed
later by itself, but users may test this pattern intentionally.

The outer loop iterates over the object number, thus, if all processes proceed
at the same speed, a FIFO pattern of object accesses emerges. Since the suc-

9 A backend like MPI-IO may implement this operation as NoOp if it is not supported.

Rank 0

0 ...
...

... 0(P-1)

(D-1)

...0 0(P-1)

0

Rank (N-1)

0 ...... 0(P-1)

(D-1)

...00 0(P-1)

(N-1)

0 0

Fig. 2: The content of the working set (directory tree) after pre-creation phase,
the ranks responsible for creating/deletion are indicated on the datasets. After
benchmark phase all files (red boxes) are offset by I

1 for(i=0; i < I; i++){
2 for(d=0; d < D; d++){
3 // The "rank" directories owning the files
4 read_rank = (rank - O * (d+1)) % N
5 write_rank = (rank + O * (d+1)) % N
6 // Access previously created data in FIFO order
7 dataset = (read_rank , d)
8 stat(dataset , i)
9 read(dataset , i)

10 delete(dataset , i)
11 // Append new data to increase the working set size
12 dataset = (write_rank , d)
13 write(dataset , P + i)
14 }
15 } Fig. 3: Pseudocode: Benchmarking phase
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6 Julian M. Kunkel and George S. Markomanolis

cessful run of the benchmarking phase, the working set looks identical besides
that all objects are shifted by I, the benchmark run can be repeated on the same
working set simply using an offset to the object number. The pattern can be
interpreted as N users working concurrently on shared project directories or as
a producer/consumer system where each process retrieves jobs from D waiting
queues, processes them and issues them into D further queues.

The benchmark supports an additional waiting factor (throttling) parameter
T ≥ 0, that forces a process to wait T times the observed runtime after each
operation. Thus, it simulates a processing time and reduces the number of sub-
mitted requests; a waiting factor of 1 effectively means that a process performs
I/O only half the time. The benchmark can be executed in an adaptive mode
that uses this feature several times that scans various waiting factors allowing
to investigate the latency of storage depending on the number of concurrent
requests (not discussed in this paper). As we will see, this allows identifying
overloaded servers.

4 Experimental Setup

Benchmark configuration: The MDWorkbench is executed from a script where
several runs are executed individually: 1. Precreation of the working set; 2.
Benchmarking phase; 3. Benchmarking phase (this one serves the purpose to
verify the results); 4. Benchmarking phase in read-only mode; 5. Cleanup phase.
Each benchmark run repeats the measurement three times with a file size of
3901 bytes10 and reports the individual latencies of each operation. We vary:
processes per node (PPN=1 or 10), the number of datasets (D=1 or 10), and
the working set size per process (either 10k objects precreated and 2k objects
for the benchmarking phase or 1k and 200 objects). Most tests were executed
with 10 nodes as these typically suffice to extract near peak performance. In all
cases, we run during production, so we cannot exclude interference of concurrent
jobs in individual measurements. However, since each measurement is repeated
3 times and the benchmarking phase is repeated several times, outliers can be
identified.

Cooley at ACLF: Cooley is the visualization cluster of Mira on the Argonne
Leadership Computing Facility. It provides 126 nodes with two Intel Haswell
processors (E5-2620v3 @2.4 GHz). Interconnected with FDR Infiniband, the
GPFS (v3.5.0) home directory is used.

Mistral at DKRZ: The supercomputer Mistral provides 3000 compute nodes
each equipped with an FDR Infiniband interconnect and a Lustre storage sys-
tem with 54PByte capacity distributed across two file systems. DKRZ’s Lustre
version is based on a Seagate fork of Lustre 2.5 with several backports from
2.7. We harness DNE phase I, thus have several metadata servers. However, in

10 This value is used in the IO-500 benchmark as it prevents inode stuffing; for com-
parison, we choose it.

6/13



Understanding Metadata Latency with MDWorkbench 7

the experiments, we use only one metadata server for comparison reasons. The
directories are configured with a stripe count of 1; data is stored on 62 Cluster-
Stor L300 appliances providing 124 OSTs. The nodes used for the testing are
equipped with two Intel Broadwell processors (E5-2695v4 @2.1 GHz).

IME at Dsseldorf: DDN provided access to their test cluster in Dsseldorf on
which 8 nodes could be used for testing. Each node is equipped with two Sandy
Bridge processors (8 cores, E5-2650v2 @2.60GHz). They are interconnected with
a Mellanox Connect-X-3 card providing 100 Gb/sec (4x EDR). As storage, a
DDN ES14K (Exascale 3.1) with 2 metadata servers and Lustre 2.7.19.12 is
provided; the storage is complemented by an IME system consisting of 4 servers.
The flash native data cache of IME acts as a burst buffer and is drained to the
ES14K Lustre, performance reported with IOR is 85GB/s in write mode. In the
conducted tests, IME is used via its FUSE mount.

Systems at KAUST and NERSC: Both KAUST Supercomputing Laboratory
and NERSC provide access to Cray XC-40 supercomputers, called Shaheen II [4]
and Cori, respectively. Both systems deploy Lustre and Cray DataWarp (DW)
technologies. Also, a Sonexion 2000 is installed with a peak performance of 500
GB/s and 700 GB/s of throughput for KAUST and Cori, respectively. Shaheen
II is constituted of 268 DW nodes, amounting to 1.5 PB capacity and peak
performance 1.6TB/s, while Cori uses 288 DW nodes with 1.6 PB and 1.7TB/s
peak performance. In both installations, each of DW nodes is constituted by 2
Intel P3608 SSDs. On Cori the latest Cray Linux Environment (CLE v6.0.4) is
installed, while Shaheen uses CLE v5.2; this comparison is relevant for us.

5 Results

5.1 Impact of concurrent execution of several metadata operations

This experiment fosters the understanding of the impact when running differ-
ent operations concurrently vs. the execution in phases. Additionally, it demon-
strates how fine grained measurements provide insights into the understanding
of behavior. Therefore, we analyze the performance when bulk is creating the
files, i.e., starting at an empty directory tree, each process generates 10k files in
an explicitly owned private directory. Additionally, the creation rate during the
mixed workload of the benchmarking phase is computed with maximum per-
formance and one with a waiting factor of 4. The throughput as computed by
overall benchmark runtime is shown in Table 1. Note that during the benchmark
phase not only files are created but also read, delete, and their information is
queried using stat, so the observed metadata throughput of this mixed work-
load is 4x the creation rate listed in the table. With a waiting factor of 4, after
each operation, we wait 4x the execution time. This, in essence, throttles the
load on the metadata server to 1/5, i.e., instead of 100 processes issuing opera-
tions, roughly 20 issue requests at any time. Therefore, we compute a corrected
(virtual) creation rate by multiplying the measured creation rate by 5.

7/13



8 Julian M. Kunkel and George S. Markomanolis

Creation rate (creates/s)
System Nodes PPN D Precreate Benchm. T=0 Benchm. T=4

ALCF Cooley (GPFS) 10 10 1 6,500 5,640 8,300

Dsseldorf (Lustre) 8 10 1 47,600 12,600 30,700

Dsseldorf (IME+Lustre) 8 10 1 4,500 1,550 4,460

DKRZ Mistral (Lustre) 10 10 1 21,800 2,380 2,220

KAUST (1 DataWarp BB) 10 10 1 3,800 3,390 14,600

KAUST (8 DataWarp BB) 10 10 1 25,600 8,190 32,000

NERSC (8 DataWarp BB) 10 10 1 19,000 8,560 35,100

Table 1: Aggregated performance comparing precreation and benchmarking
phase. Benchmarking phase using a waiting factor T of 0 or 4.

From the table, it can be observed that for Lustre based systems the perfor-
mance of the benchmarking phase with T=0 is < 1/4 precreation phase, where
for Mistral it drops to 10%. KAUST with one DataWarp node is not able to
provide enough metadata throughput while 8 nodes do. The GPFS on Cooley
does not suffer much during the benchmarking phase and, thus, allows overlap-
ping the different operation types more efficient than Lustre. The new hardware
of the DDN system at Dsseldorf yields the best performance since it uses DNE2
and utilizes two metadata servers. However, the IME performance is significantly
lower than the underlying Lustre system. The reason is the FUSE mount and
that IME uses a Lustre file system for the metadata handling and needs to
manage the flash storage.

Now comparing the benchmarking phase with T=0 and T=4, there are sev-
eral cases: The virtual creation rate of T=4 is higher, this is caused by a decrease
in request latency since the load to the file system is reduced to one fifth – the
servers have a small queue of pending operations. GPFS benefits minimal (25%),
while other systems the rate increases to 3x. Mistral is different: its performance
decreases when the request rate is throttled. The reason for this performance
loss of Mistral is that the file system is accessed by many users and background
operations issued by other users still lead to waiting queues. The burst buffers
at KAUST and NERSC deliver similar results albeit different client nodes are
deployed. More details are discussed in the next sections.

This alone is not sufficient to illustrate the difference in precreation and
benchmarking phase. Therefore, the density of each individually timed create
operation is plotted for selected systems and these phases in Figure 4. A density
graph can be considered a smoothened histogram – x-axes shows the observed
runtime and the y-axes the number of occurrences, the x-axes uses the same
scale for all three examples, the first diagram is printer larger for better ex-
ploration. It can be seen, that the overall system behavior changes between
precreate and benchmarking phase. For Mistral, the change is minimal, while
for the benchmark run they are executed typically below 1ms, the precreation
phase shows a right shift in the response time and some operations take now
up to 10ms; however, the computed average performance on the benchmarking
phase is lower compared to precreate! As we will see, this is due to the fact

8/13



Understanding Metadata Latency with MDWorkbench 9

(a) Mistral (Lustre): 10 Nodes, 10 PPN

(b) Cooley (GPFS): 10 Nodes, 10 PPN (c) Dsseldorf (IME): 8 Nodes, 10 PPN

Fig. 4: Density of create operations: creation phase compared to the benchmark
phase with waiting factor of 0 and 4. Parameters: D=1, I=2000, P=10000

that delete and read operations of the mix take longer while create speeds up
in the mix. The GPFS system behaves totally different between precreate and
benchmarking phase. This is presumably caused by the locking strategy that has
an issue with shared directories. The throttled benchmark run with T=4 leads
to a similar latency distribution than T=0 for Mistral and GPFS. Furthermore,
for IME+Lustre the pattern changes, here precreation and benchmark run look
similar but T=4 decreases latency of the creates significantly. The reason is again
to be examined in the complex interplay with the FUSE client, IME and that
some operations cause a delay on IME.

We investigated many cases for 10 and 100 nodes (except for the Dsseldorf
cluster which had only 8 usable nodes), and from this analysis, it can be con-
cluded that the impact of the concurrent metadata access pattern is significant.
The typically significantly higher throughput of bulk creation demonstrates that
preserving a fixed working set by MDWorkbench is able to investigate more real
behavior and reveals caching and locking issues. To measure a system, one cannot
run a single phase alone as a production system will see a mixed workload.

9/13
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5.2 Overview of results for the benchmark phase

An overview of the performance of all systems (and T=0) is given in Table 2.
Note, we exceptionally include results of DKRZ’s Mistral first file system (phase
1) for comparison. The table describes the parameters for running the bench-
mark and provides several metrics: The creation rate of the mixed workload –
the actual metadata performance is 4x the creation rate, but since so far we dis-
cussed the creation rate, we sticked with it; the balance across processes which is
(tmin/tmax) – a value of 100% means all processes finish at the same time; next
is the maximum time for any individual operation across all processes; finally,
the latency in seconds of the 3rd quartile (Q3), i.e., below which 75% of all ob-
servations are – is given for each operation type. Albeit not a density diagram,
this enables a quantitative understanding of latency.

First, we look at the balance: Most runs achieve a balance of 90%, i.e., all
clients finish at the same time. However, the Mistral Lustre yields worse results,
just above 70%; even for 10 client processes (Nodes=10, PPN=1), the balance
is worse. The Dsseldorf DDN Lustre also is unbalanced, but significantly faster.
Looking into the rates, the DDN Lustre system yields the best results followed
by the Lustre systems with 8 DataWarp nodes. IME and the GPFS achieve the
worst performance. There are several remarkable observations that can only be
made analyzing the latencies: 1) First of all, on several systems a maximum
operation latency of one second is observable, which impacts users that work
interactively; 2) At Mistral, using Nodes=100 and PPN=10 doubles the overall
throughput of the benchmark from 2200 creates/s. But, at the same time, the
maximum waiting time increases to 16 seconds and the waiting time of individual
operations of the third quartile is increased by an order of magnitude (except for
stat which increases slightly). Since in all other cases for Mistral Q3 is similar,
this is a clear indicator of an overloaded file system and metadata server. This
is expected at some point since the servers need to queue up pending requests
increasing their latencies; 3) Q3 for IME system read is worse than for the under-
lying Lustre system, particularly when running multiple processes per node, so
for small files, there is no benefit from the flash based solution, yet. The reason is
presumably the overhead in FUSE and particularly the thread handling within
FUSE where other operations delay the execution of the read operation; 4) The
KAUST burst buffer can deal with a working set of 100k files well, but with 1
million files, the performance drops. This affects all Q3 statistics and the drop is
more severe for 8 burst buffer nodes than for one; 5) For all Lustre systems, the
number of directories does not influence the performance much, as long as the
total working set is the same (D=1, P=10k, I=2k vs. D=10, P=1k, I=200). For
GPFS, however, the performance behavior changes significantly, for PPN=1, the
case with D=1 is 3x faster than D=10. The Q3 for the stat does not change, but
all other operations are one order of magnitude slower. For interactive usage, the
importance of latency analysis is apparent when comparing GPFS and Mistral
100 nodes, the creation rate is similar; however, the maximum waiting time for
Mistral is 16s! For Lustre, the Q3 is slower by an order of magnitude for most
operations, but it also faces extreme slow stragglers (not shown).

10/13
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Nodes PPN D O P Rate balan- op max Latency of quartile 3
cre-
at/s

ce % in s read stat create delete

ACLF Cooley GPFS

10 1 1 2000 10k 1530 95.5 0.13 9.2E-3 8.4E-4 3.9E-4 3.0E-4

10 1 10 200 1k 500 99.8 0.17 1.4E-2 8.5E-4 8.1E-3 4.5E-3

10 1 10 2000 10k 540 100 0.17 1.4E-2 9.8E-4 7.6E-3 4.1E-3

10 10 1 2000 10k 5280 60.7 0.20 1.8E-2 8.3E-4 5.6E-4 2.8E-4

DKRZ Mistral Lustre

10 1 1 2000 10k 290 86.3 3.60 4.8E-3 6.4E-4 6.4E-4 5.8E-4

10 10 1 2000 10k 2180 68.2 3.50 4.6E-3 4.0E-4 6.7E-4 4.9E-4

10 10 10 2000 10k 2140 78.4 7.90 5.6E-3 4.2E-4 6.3E-4 3.4E-4

100 1 1 2000 10k 1610 72.2 4.60 4.8E-3 6.4E-4 6.5E-4 6.2E-4

100 10 1 2000 10k 4890 77.3 16.00 3.3E-2 6.9E-4 1.1E-2 9.9E-3

DKRZ Mistral Lustre (Procurement phase 1 file system)

10 1 1 2000 10k 1640 100 0.54 1.0E-3 5.9E-4 7.3E-4 5.3E-4

10 1 10 2000 10k 980 100 3.90 3.8E-3 4.4E-4 7.9E-4 2.9E-4

10 10 1 2000 10k 2660 100 7.40 1.2E-2 8.7E-4 5.4E-3 5.7E-3

Dsseldorf DDN Lustre

8 1 1 2000 10k 4750 92.4 0.00 5.0E-4 3.1E-4 4.5E-4 3.3E-4

8 1 10 200 1k 4980 95 0.01 5.6E-4 3.2E-4 4.5E-4 3.4E-4

8 10 1 2000 10k 11850 49.5 1.00 1.5E-3 8.1E-4 1.7E-3 1.7E-3

8 10 10 200 1k 10390 40.1 0.10 1.8E-3 9.7E-4 2.0E-3 2.0E-3

Dsseldorf DDN IME

8 1 1 2000 10k 820 94.9 0.05 7.4E-4 5.5E-4 4.2E-3 4.4E-3

8 1 10 200 1k 820 96.1 0.06 7.3E-4 5.5E-4 4.1E-3 4.4E-3

8 10 1 2000 10k 1540 89.7 0.86 5.4E-3 2.0E-2 2.6E-2 1.2E-2

8 10 10 200 1k 1460 93.4 0.20 8.8E-3 2.3E-2 2.8E-2 1.4E-2

Kaust DataWarp 1 burst buffer node

10 1 1 2000 10k 3170 99.2 0.03 6.7E-4 3.3E-4 2.2E-3 3.7E-4

10 1 10 200 1k 3130 98.8 0.06 7.5E-4 3.5E-4 2.1E-3 3.8E-4

10 10 1 2000 10k 3340 94.4 0.18 4.7E-3 7.6E-3 1.6E-2 7.9E-3

10 10 10 200 1k 3340 98.2 0.16 5.1E-3 7.3E-3 1.6E-2 8.3E-3

10 10 10 2000 10k 2190 98.4 0.43 5.0E-3 3.9E-3 2.3E-2 2.2E-2

Kaust DataWarp 8 burst buffer nodes

10 1 1 2000 10k 4650 97.6 0.01 5.3E-4 3.3E-4 1.2E-3 3.0E-4

10 1 10 200 1k 5000 96.9 0.01 4.7E-4 2.9E-4 1.1E-3 2.9E-4

10 10 1 2000 10k 7250 82.1 0.16 1.2E-3 4.8E-4 4.1E-3 1.3E-3

10 10 10 200 1k 6510 91.3 0.16 1.2E-3 3.9E-4 3.9E-3 1.2E-3

10 10 10 2000 10k 1860 91.9 0.43 1.2E-2 1.1E-3 1.8E-2 4.9E-3

NERSC DataWarp 8 burst buffer nodes

10 1 1 2000 10k 4000 95.3 0.03 5.2E-4 1.4E-4 8.8E-4 9.7E-5

10 1 10 200 1k 6670 93.4 0.02 4.2E-4 1.8E-4 8.2E-4 1.2E-4

10 10 1 2000 10k 8770 84.9 0.15 2.4E-3 2.0E-3 5.3E-3 1.2E-3

10 10 10 200 1k 8730 96.8 0.08 2.7E-3 1.9E-3 6.4E-3 1.3E-3

Table 2: Result overview; several performance metrics for the individual systems
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5.3 Understanding latencies

To understand the density diagrams better, the timelines for the individual op-
erations can be analyzed. In Figure 5, we selected timelines to investigate inter-
esting issues. A point represents a measured latency from any of the processes11.

First, we briefly investigate the difference in creation rate between precreation
phase (Figure 5a) and benchmarking phase with T=0 (Figure 5b) for Mistral.
One can see a periodic pattern – every 5 seconds, the operation execution stalls
and take about a second. This could be explained by the behavior of the under-
lying LDISKFS (EXT4), e.g., the metadata commit timer. When running the
mixed workload of the benchmark phase, intermediate waiting times are reduced
and slow operations are less likely. Still, the 5 second commit rate remains. Ac-
tually, the waiting time only appears for metadata modifying operations, when
running the read-only workload the periodic stalls disappear. Again this shows
the importance of running a mixed workload and the complexity of file systems.

For GPFS, two graphs are included: In Figure 5c, the timeline for the precre-
ation phase is shown. One can also see two classes of latency bands, one at 50
ms and one at 1ms. Additionally, in the beginning, with a nearly empty direc-
tory, the latency is substantially higher. Operating on multiple directories, i.e.,
increasing parameter D to 10 reduces performance significantly. For example,
with PPN=1 it falls from 1,500 creates/s to 500 creates/s. Figure 5d shows the
timings for D=10, here two bands can be observed at 10ms and at 1ms. With
same total working set size but D=1, the upper band vanishes (not shown).
Presumably, the reason is the locks involved in the directories (tokens in GPFS
speech). With D=10, each directory is written and read by 10 processes increas-
ing the looking overhead. During the precreation, each process operates on its
directory but periodically flushes the data leading to the higher latencies.

6 Conclusions

In this paper, we discussed several issues for metadata benchmarking and for
10 and 100 nodes showed the importance of latency measurements. Experiments
and the introduced methodology shows that with 10 nodes metadata servers
of all file systems (except on Mistral) are well utilized. We demonstrated that
phase-wise execution of a single operation type is unable to capture certain char-
acteristics like contention caused by metadata changes. MDWorkbench offers an
alternative workload emulating the sharing of datasets and objects combined
with several features useful for regression testing and data analysis. For exam-
ple, we identified issues and could understand the relation between observed
throughput and latency characteristics on several state-of-the-art systems bet-
ter. In the future, we will experiment with machine learning to mine interesting
patterns.

11 The plot is sparse, e.g., 100k data points of 1 million creates have been randomly
selected. Additionally, all measurements about 0.1s have been added.
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(a) Mistral: 10 PPN, D=1, I=2000,
P=10k, Precreation phase

(b) Mistral: 10 PPN, D=1, I=2000,
P=10k, creates of the benchmark phase

(c) GPFS: 10 PPN, D=1, I=2000, P=10k,
Precreation phase

(d) GPFS: 1 PPN, D=1, I=200, P=1000,
creates of the benchmark phase

Fig. 5: Timeline of individual measurements for 10 Nodes; sparse plot with ran-
dom points, but every point above 0.1s is added (qualitative view).
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