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Abstract 

Understanding what constitutes peaks and identifying areas of effective load shifting intervention 

becomes vital to the balancing of demand and supply of electricity. Whilst there is information 

about the aggregate level of consumption of electricity, little is known about residential peak 

demand and what levels of flexibility might be available. Specifically, methodologies linking 

people’s activities and residential electricity load profiles are typically under-investigated. The 

overall aim of this paper is to introduce methodologies which capture the variation in sequences of 

activities taking place at times of peak electricity demand. The paper introduces a set of analytical 

tools which can be deployed when examining time use survey data in energy demand research. It 

presents the state of the art with modelling load profiles based on time use data and design 

methodological modifications to improve modelling around peak periods. It is demonstrated how 

the methodologies presented in the paper can be applied to specific understanding of distributional 

effects of Time of Use tariffs. The paper discusses issues associated with validation between 

synthetic data, survey data and electricity metered data and concludes with policy implications and 

some observations for future research. 
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1 Introduction 

Peak electricity demand is becoming an increasingly significant problem for UK networks as it 

causes imbalances between demand and supply with negative impacts on system costs and the 

environment. The residential sector is responsible for about one third of overall electricity demand 

and up to 40% of peak demand (DECC, 2013). During peak demand, electricity prices in wholesale 

markets could fluctuate from less than €0.04/kWh to as much as €0.35/kWh (Torriti, 2015). In the 

future the peak problem is expected to worsen due to the integration of intermittent renewables in 

the supply mix as well as high penetration of electric vehicles and electric heat pumps. 

Understanding what constitutes peaks and identifying areas of effective load shifting intervention 

becomes vital to the balancing of demand and supply of electricity. Whilst there is information 

about the aggregate level of consumption of electricity, little is known about residential peak 

demand and what levels of flexibility might be available. Specifically, methodologies linking 

people’s activities and residential electricity load profiles are typically under-investigated.  

 

The overall aim of this paper is to introduce methodologies which capture the variation in 

sequences of activities taking place at times of peak electricity demand for temporal aggregation 

purposes. This is with a view to identify clusters of residential users which might provide flexibility 

for peak shifting intervention. Specific objectives consist of (i) introducing methodologies for 

analysing variation of activities taking place at times of residential peak electricity demand; and (ii) 

identifying clustering techniques in order to determine groups of users whose sequences of 

activities might provide flexibility for peak shifting intervention. 

 

Weekdays domestic electricity load profiles are cyclical with recurrent morning and evening peaks. 

This paper derives examples of electricity demand profiles for UK residential consumers from 10-

minute resolution time use activity data from the UK 2014-2015 Office for National Statistics Time 

Use Survey. This enables to derive information about occupancy and synchronisation of activities. 

Sequence analysis is used to mine activities at periods of peak electricity demand. This paper will 

put forward techniques to cluster respondents according to sequences of activities and analyse to 

what extent appliance-specific control variables explain activities at specific times of the day. 

Findings on sequence analysis are expected to feed into algorithms for explicit Demand Side 

Response (DSR), implicit DSR (through Time of Use tariffs) or automated demand management. 

 

After this introduction, the paper briefly reviews research on time use data and residential 

electricity demand (Section 2). It introduces a set of analytical tools which can be deployed when 

examining time use survey data in energy demand research (Section 3). It presents the state of the 

art with modelling load profiles based on time use data and design methodological modifications to 

improve modelling around peak periods (Section 4). It is demonstrated how the methodologies 

presented in the paper can be applied to specific understanding of distributional effects of Time of 
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Use tariffs (Section 5). The paper discusses issues associated with validation between synthetic 

data, survey data and electricity metered data (Section 6), before concluding with some 

observations for future research (Section 7). 

 

 

2 Time use data and residential electricity demand 

Researchers have been investigating for the most effective methods and data to measure the 

timing of residential electricity demand for some time. Various models have been deployed, from 

stochastic predictions of appliance use to weather-related deterministic models. Based on reviews 

in the area of residential electricity demand (Suganthi and Samuel, 2011; Swan and Ugursal, 

2009), the most frequently collected data consist of type of building, occupants' income, appliance 

ownership and bill-related price of electricity. These variables capture the size of electricity 

demand, but are not able to explain in-day load profiles as they do not reveal when different socio-

demographic groups of people are at home and what they are doing at peak and off-peak times.  

 

The starting point of methodologies based on time use data is that the timing of people’s activities 

plays a vital role in explaining the timing of residential electricity demand and the potential effects 

of ToU tariffs. This approach is in line with recent inter-disciplinary studies which consist of 

employing time use data (i.e. tracking residential users in and out of the household) and linking 

them to residential electricity demand based on previous work by Wood and Newborough (2003) 

and Firth et al (2008) who distinguished between deterministic and stochastic timing of appliance 

use. Time use data have been used before in energy demand research in the UK (Richardson et 

al, 2008; Richardson et al, 2010; Torriti et al, 2015), France (Wilke et al, 2013), Spain (López-

Rodríguez, 2013) and Sweden (Widén and Wäckelgård, 2010; Widén et al, 2009). The general 

approach of these studies tends to rely on either time use diary data or stochastic models. Whilst 

time use data have proven effective at re-generating electricity load profiles for domestic dwellings, 

they have never been used to infer distributional impacts of dynamic tariffs. Whilst Markov chains 

have proven effective at re-generating electricity load profiles for domestic dwellings, their temporal 

distribution at peak time needs to be addressed further (Duffy et al, 2010; Torriti, 2014), as 

explained in Section 4 of this paper. Recent work on time use data and peak residential electricity 

demand has focused on comparing active occupancy across different countries (Torriti, 2012); 

measuring flexibility through synchronisation, occupancy and number of time use activities (Torriti 

et al, 2015); analysing specific activities, such as laundry (Anderson, 2016); and measuring time 

dependence of social practices (Torriti, 2017).   

 

In essence, both analytical tools applied to time use diary data and modelling of residential 

electricity load profiles deserve further methodological reflection as explained in the section below.   
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3 Time use survey data: analytical tools 

Weekdays domestic electricity load profiles are cyclical with recurrent morning and evening peaks. 

This suggests that methods and data able to capture the activities which take place in everyday life 

offer high value to research on residential electricity demand. As explained in Section 2, time use 

data can shed light on the activities underpinning energy demand. This section shows 

methodological approaches and techniques to derive electricity demand profiles for UK residential 

consumers from time use data.  

 

Two specific techniques are introduced below. First, peak occupancy variance estimates are 

estimated with a view to give an indication of how much occupancy varies within peak periods. 

Second, sequence analysis techniques can be deployed with a view to examine activity patterns 

across different socio-demographic characteristics of those individuals carrying out frequent 

activities.  

3.1 Peak occupancy variance and synchronicity index 

Peak occupancy variance measures by how much occupancy varies within peak periods as 

𝛽𝑡,𝑡+1 =  
𝜔𝑡

𝜔𝑡+1
, where βt,t+1 is the variance measured between time intervals at peak time and ωt is 

the level of active occupancy (i.e. number of people in the household not sleeping) at the time t. 

 

The synchronicity index measures the extent to which the same activities are taking place across 

the population. It is generally based on the Shannon’s H entropy index: 𝐻𝑡 = − ∑ 𝛾𝑡𝑖 𝑙𝑛(𝛾𝑡𝑖)
𝜆
𝑖=1 , 

where λ is the number of different states, i (i.e. activity codes considered), t is the time of interest 

(i.e. 10-minute time slot) and γti is the number of individuals who are in state i at t. 

 

3.2 Sequence analysis 

Innovative ways of analysing time-use activities consider these not as happening in isolation, but 

rather as sequences. Sequence analysis can be implemented with a view to identify the most 

frequent successions of activities at different times of the day. Sequence analysis, which is 

common for analysing internet transaction, has not been applied extensively to energy demand. In 

the past sequence analysis techniques, like Optimal Matching, have been applied in the social 

sciences (Abbott, 1984), but have also been criticised for misrepresenting the duration of key 

parameters (Elzinga, 2003). In order to obviate this problem, matching techniques can be deployed 

using duration inputs from time use data with a view to identifying similarities in sequences of 

activities. Data mining algorithms (i.e. VISUAL-TimePAcTS1 and CLUSTAL) facilitate the 

automatic identification of sequences across the data. Sequence analysis could be applied among 

activities taking place at peak time (one 10 minute interval to the next) with a view to understand 

the most dominant activities taking place at peak time. This is equivalent to analysing a time 
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window containing an activity pattern, minimum and maximum occurrences of the activity, and 

number of people that perform it. This enables bottom-up clustering of people in terms of 

commonalities in activities during the same periods of the day. 

 

3.3 Activity schemes 

 

Table 1-Time use activities and associated appliances, including electrical load and 
proportion of dwellings with appliance (Adapted from Powells et al., 2014) 

 

 

 

 

Activity schemes are probability conversions form time use data to electricity consumption profiles. 

This is a pre-modelling, parameter-intense exercise which typically involves parameter gathering 

and activity schemes. Table 1 provides an example of time use activities and associated 

appliances, including electrical load and proportion of dwellings with appliance. 

 

Empirical-based activity schemes originate from linking time use codes with appliance use, as 

shown in Figure 1. Time-use activity data are subsequently converted to electricity load profiles 

Activity Employed 

electricity 

appliances 

Typical electrical 

load (kW) 

Proportion of dwellings 

with appliance (%) 

Preparing food and 

washing the dishes 

 

Hob 2.40 46.3 

Oven 2.13 61.6 

Microwave 1.25 85.9 

Kettle 2.00 97.5 

Dish washer 1.13 33.5 

Washing Electric shower 9.00 67 

Central heating 

pump 

0.60 90 

Cleaning Vacuum 2.00 93.7 

Washing clothes 

 

Tumble dryer 2.50 41.6 

Washing machine 0.41 78.1 

Washer dryer 0.79 15.3 

Iron 1.00 90 

Watching TV and listening 

to the radio 

 

TV 0.12 97.7 

TV receiver box 0.03 93.4 

Radio n/a n/a 

Using computer Personal 

computer/console 

0.14 70.8 
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through conceptual activity schemes (i.e. assuming basic electricity demand patterns for every 

end-use category).  Alternatively the connections between household and appliance use could be 

based on household type (Fisher et al, 2015). 

 

Figure 1- Example of activity scheme linking time use codes with appliance use 

 

In their modelling work, Widén and Wäckelgård (2010) suggest that activity schemes can be 

classified according to: (i) power demand not defined by activities (i.e. cold appliances, 

modelled as a base load); (ii) power demand constant during activity (i.e. cooking, ironing, 

cleaning, use of TV, audio appliances and computer); (iii) power demand constant after activity 

(i.e. dish-washing, washing and drying); and (iv) activities with time-dependent power demand 

(i.e. lighting with power varying with time dependent on day lighting levels). However, Mc 

Kenna et al. (2017) note that to a wealth of data on the timing of activities and individual 

appliance usage (Zimmermann et al., 2012), does not correspond a clear relationship between 

the two.   

 

4 Modelling load profiles from time use data 

Large time use surveys have the merit of being nationally representative and offer a wealth of 

attributes in terms of socio-economic variables and geographical location of respondents. 

However, in most developed countries they are not conducted frequently. For instance, in the 

UK large National Time Use Surveys are only performed once a decade. This calls for more 

cost-effective representations of time use data, including synthetic time use data. In the UK, 

one of the most often cited time use models was developed by the University of Loughborough.  

This domestic electricity demand model is based on occupant time-use data and maps 

occupant activity to appliance use and stochastically creates synthetic demand data with a 1-

minute time resolution.  

 

The use of Markov Chain modelling is widespread in this research area. At one level, Markov 

chains determine the probability of a household’s electricity demand taking place at different 

times of the day. At another level, Markov chains generate occupancy profiles through a 

stochastic process making use of probability distributions. 
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Markov chains develop transitional probability matrixes where the transition from one discrete 

state to another discrete state is represented in terms of its probability. The transition 

probabilities vary with time to reproduce daytime variations.  

 

An individual performs one of the time use activities in every time step α=1,…,𝑁𝛼. When moving 

from α k to α+1 there is a transition probability pij(α) of going from state i to j (including the 

probability pii(α) of remaining in state i).  

 

Figure 2 provides an example of how state transition (from one activity to another or to the 

same activity) occurs in each time step. The probability pij(α) will vary as activity patterns 

because a random uniform number is generated and compared to the transition probabilities to 

determine which transition is taking place. The example is drawn on three activities only for 

simplicity. The fact that transition probabilities vary over the day is particularly significant for 

peak periods which experience higher velocity of transition between time steps (hence the 

introduction of Hybrid Monte Carlo modelling as explained below). An assumption needs to be 

made regarding the initial activity, which typically involves attributing ‘sleeping’ at the early 

hours of the night.  
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Figure 2-Example of state transition in 4 different time steps (for 3 activities) 
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4.1 Hybrid Monte Carlo modelling for peak periods 

The Markov chain technique is suited to modelling systems where the current state of a sequence 

is highly correlated to the state immediately preceding it and where a large sample size of data 

exists. It is applied as an autoregressive process which can generate synthetic sequences for 

modelling stochastic residential electricity consumption. Hence, Markov chains can be applied to 

compare individual metered activities with modelled load profiles. The stochastic Markov-chain 

process generates high-resolved synthetic activity sequences to which appliance loads are 

connected to create power demand data for a variety of end-uses. Whilst Markov chains have 

proven effective at re-generating electricity load profiles for domestic dwellings in terms of the 

magnitude component of the load profile, it has been noted that the temporal distribution can be 

improved significantly (Duffy et al, 2010). In order to obviate this problem, this paper suggests that 

Hybrid Monte Carlo techniques could be deployed. Hybrid Monte Carlo techniques could introduce 

an auxiliary momentum vector so that modelled demand would move in larger steps during peak 

periods. This is to reflect the fact that activities at peak time are less correlated and converge to the 

target distribution more rapidly. Given a set of activities {|n⟩}, the activities at peak time t may be 

expanded as: 

 

 |ѱ (t)⟩ = ∑ 𝑎𝑛
 
𝑛  (t) |n⟩    where   𝑎𝑛(𝑡) = ⟨n| ѱ (t)⟩. 

 

The coefficients 𝑎𝑛(𝑡) consist of both time-independent parameters (e.g. appliance efficiencies 

from activity schemes) and time-dependent dummies (e.g. peak and off-peak times). The 

introduction of the auxiliary momentum vector will enable to capture the higher velocity of activity 

transitions at peak time and will address an existing mismatch between Markov chains and load 

profiles in terms of simultaneity of appliance use at peak time. The presence of a higher speed 

transition probability of moving from one state to the next for peak periods will feed into the activity 

schemes, hence modelling a reality in which people can carry out an activity at the time, but have 

multiple electric loads on at the same time. 

 

4.2 Parameters 

The first step when choosing parameter values from the data sources detailed in Section 3 is to 

find an ‘average’ parameter set that gives a mean energy use by an appropriate geography -i.e. 

country or region, depending on the spatial scope of the study- to all households in the time-use 

dataset. Estimates of standard powers and runtime for electrical appliances can be gathered 

making use of product tests, depending on the types of appliances available at different times of 

the day.  

Because it may be difficult to obtain consistent data on the actual scope of appliances throughout a 

large population of households, the estimates obtained by using average parameters would be 
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extremely approximate. To reflect the distribution of different appliance sets, the second step will 

consist of applying frequencies of actual appliance diffusion based on data from country-specific 

National Household and Environment Surveys. Specific parameter values can also be attributed to 

proportions of household types, age of building and floor area using country-by-country data from 

the Buildings Performance Institute Europe. In order to determine the lighting power scheme, 

Europe-wide data on daylight and solar radiation can be obtained from the Satel-Light database.  

   

4.3 Clustering 

Data mining softwares can be employed to facilitate the automatic identification of same time use 

patterns across the data. They can be implemented among activities taking place at peak and off-

peak times (one 10-minute interval to the next). 

 

This is equivalent to analysing (peak and off-peak) time windows containing an activity pattern, 

minimum and maximum occurrences of the activity, and number of people that perform it. This 

process enables bottom-up clustering of people in terms of commonalities in energy-related 

activities during the same periods of the day as shown in Figure 3. Clustering algorithms (e.g. 

through the implementation of the CLUSTAL software) can be used to define the size and 

composition of the cluster.  

 

Figure 3-Clustering time use activities   
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The clusters are typically determined using a finite mixture technique, which employs a Gaussian 

distribution for each feature, and for each cluster. In other words the probability of a value yj,k in 

cluster g is taken as 
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where μj,g is the mean and σj,g the standard deviation of the distribution. 

 

Each cluster population will be described by its mixing proportion and a normal distribution for each 

feature (McLachlan & Peel, 2004).

  

The parameters are optimised by an unsupervised learning process known as the EM algorithm. 

Once calibrated, the clusters will be numbered so that clusters between which customers most 

often pass will be adjacent. This numbering will also put the clusters in order of their average daily 

use. Because the clusters represent actual activity patterns, they provide a more accurate and 

responsive picture of end-users’ activities than possible with any demographic classification. 

5 Applications on Time of Use tariffs  

The roll-out of smart meter across all 26 million GB households will transform how consumers buy 

and use energy. Electricity smart meters should remove the need for profiling in electricity as they 

can provide accurate half-hourly meter readings. Part of this will involve the enrolment of a large 

number of consumers to new Time of Use (ToU) tariffs. However, the impact of more cost 

reflective ToU tariffs will vary between consumers. For example, those who consume electricity 

during the more expensive peak periods and those who are unable to change their consumption 

patterns (e.g. elderly pensioners and heating) could end up paying significantly more. The national-

level integration of dynamic tariffs (including ToU tariffs) has the potential to bring about significant 

reductions in prices, expand demand for renewables and limit carbon emission from dirty power 

plants. This poses questions around who will benefit and who will lose from increases in peak 

tariffs. Specifically, vulnerable households may be subject to increase in prices due to a 

combination of lower income and time scarcity. ToU tariffs offer significant potential benefits to the 

system by enabling responsive electricity demand and reducing peaks. For example, they could 

reduce the need for new generation and network capacity. However, the impact of more cost-

reflective pricing will vary between consumers. In particular, those who consume electricity at more 

expensive peak periods, and who are unable to change their consumption patterns, could end up 

paying significantly more. Understanding the distributional effects of ToU tariffs becomes vital to 

ensuring affordability of energy bills, at the same time as making demand more flexible. Whilst 
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there is significant research on fuel poverty in relation to aggregate level of consumption of 

electricity, little is known about the effects of dynamic tariffs on different socio-demographic groups. 

Time use methodologies presented in Section 4 can fill this gap.  

 

Applied work on time use data can analyse the distributional effects of ToU tariffs with a view to 

identify clusters of users which might significantly benefit or be disadvantaged through the 

provision of demand flexibility. Analysis on the distributional effects of ToU pricing is very limited. 

For instance, the Centre for Sustainable Energy (2015) carried out analysis of the distributional 

effects of ToU tariffs. This showed that most consumers would see relatively small changes in bills, 

but some could see increases in bills of up to 20%. However, this study did not consider the effects 

on different sociodemographic groups and did not consider whether households indeed had 

flexibility in terms of how their schedules are structured. Applications of time use methodologies 

imply deploying data on people’s activities to understand the economic effects of ToU tariffs on 

different groups of end-users. Specifically, this approach can assess the feasibility of time use data 

applications for deriving electricity load profiles; cluster residential end-users according to the 

timing of their energy-related activities; and measure the distributional effects of ToU tariffs on 

different clusters of end-users. 

 

Figure 4- Survey data, parameter data and Time of Use tariffs simulation  

 

 

This approach derives electricity demand profiles for UK residential consumers from time use and 

parameter data and activity schemes. Figure 4 provides an overview of the data flows, 

distinguishing between survey data, parameter data and time use simulation. Time Use Survey 

provides 10-minute resolution information on people’s activities. These are analysed in relation to 
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spatial and sociodemographic variables. Specific attention is paid to factors which are relevant to 

energy consumption and may vary significantly across different income groups. These include 

weekends/weekdays, winter/summer, urban/rural, households with/without children. With regards 

to ToU tariffs simulation, applying ToU tariffs to the average consumption behaviour of households 

in each group provides an indication of which groups may benefit from reduced electricity bills and 

which may face higher costs, absent behaviour change. Stylised ToU tariffs, as established, for 

example, by the Centre for Sustainable Energy (2014), can be applied to the load profiles derived 

for each cluster. Four stylised tariffs (standard flat rate tariff; higher tariff only for the evening peak 

period; higher tariff for evening peak and cheaper rate over night; and cheaper flat rate for 

weekends) can be modified marginally to be revenue neutral for all clusters. The modified tariffs 

are then applied to each load profile which is subject to be rebased to the cluster’s average load. 

This enables the isolation of the relative benefits and costs for the groups and households within 

this sample. 

 

6 Validation of synthetic, survey and metered data  

Work capturing simultaneously smart metering (e.g. meter-level electricity consumption) data and 

time use activities is mostly missing in research. A couple of exceptions consist of work carried out 

in projects carried out by Électricité de France and the METER project being developed at the 

University of Oxford. Durand-Daubin (2013) measures people’s activities, appliances use, and 

electric consumption for 60 households in France deploying quantitative questionnaire, qualitative 

interviews, activity diaries, and real time energy consumption with sensor measurements. Overall, 

the methods provide a consistent description of the intensity and time of use of the three 

appliances studied even if some variations were found, depending on the indicator and appliance 

studied. Grünewald & Layberry (2015) combine the collection of time-use information with detailed 

electricity readings at the household level. The instrumentation and data collection methodology 

promises to improve on the insight gained from their collection in separation, reduces the cost of 

collection and minimises the burden on participants. 
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Figure 5 illustrates the steps associated with different types of analysis associated with survey and 

synthetic data, parameter data and metered data. Validation is critical in terms of verifying both the 

transition from time use activities to load profiles and synthetic representations of time use data. 

Modelled time use or occupancy data can be verified against actual time use data. For instance, 

López-Rodríguez et al (2013) validate their application of the Loughborough model (as explained in 

Section 4) to the Spanish Time Use Survey. The validation of synthetic and metered data presents 

similar challenges (Ramírez-Mendiola et al, 2017). With time use data the main challenge is that 

samples from smart metering data and time use surveys are not populated by the same 

respondents. This challenge is not uncommon in research attempting to join datasets and can be 

overcome by extracting salient statistical properties. In methodologies developed around time use 

data, this becomes less critical provided that the unit of analysis consists of the activities, rather 

than the individuals who perform the activities. This is possible especially if empirical work relying 

on time use data is backed by conceptual interpretations of activities as ‘social practices’ 

(Strengers, 2012). Figure 5 suggests the creation of a pseudo-panel by grouping socio-

demographic variables in the time use dataset according to contained in the metered electricity 

demand dataset. 

 

The comparison between time use and metered consumption data involves correlation analysis 

taking one statistic observation as one household and computing average rate or duration of use 
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Figure 5-Survey and synthetic data, parameter data and metered data  
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by day of experiment. The main tool to compare daily load curves will be the Normalized Variation 

Factor presented in Capasso et al (1994) as:  

 

Normalized Variation Factor = 
∑ (𝐷𝑀𝑎𝑟(𝑖)− 𝐷𝑚𝑒𝑎𝑠(𝑖))2𝑛

𝑖

𝑛((
1

𝑛
) ∑ 𝐷𝑚𝑒𝑎𝑠 (𝑖)𝑛

𝑖 )2
 

 

Where 𝐷𝑀𝑎𝑟(𝑖) is synthetic demand from Markov chains and 𝐷𝑚𝑒𝑎𝑠(𝑖) is metered demand. 

Variance analysis (ANOVA) and Duncan means comparisons are also calculated: (i) to assess the 

differences between the mean frequencies of revealed (i.e. time use) and measured usage of the 

appliances; (ii) to estimate differences between average durations by day; and (iii) to compare the 

mean electricity consumption of the appliance with standard parameters. 

 

7 Conclusions and policy implications 

In energy demand research there is a long tradition of methodologies developed to model 

residential electricity demand. In this larger literature, work on residential electricity load profiles 

and levels of flexibility are emergent research areas. Peak electricity demand is becoming an 

increasingly significant problem for power networks as it causes imbalances between demand and 

supply with negative impacts on system costs and the environment (Element Energy and 

DeMontfort University, 2012). Residential heat pumps and electric vehicles could further add to 

peak load contribution (Strbac et al, 2010). Existing research on storage, flexible systems and 

demand side participation cover significant aspects of peak electricity demand and flexibility. Data 

on peak demand is extremely relevant as its reliable provision has significant implications for 

system costs and decarbonisation options. Whilst there is information about the aggregate level of 

consumption of peak electricity demand, little is known about the activities, behaviours and 

practices which underpin this phenomenon. The paper presented methodologies which can 

combine time use data and metered data with a view to inform on the practices and sequences of 

activities taking place at times of peak electricity demand.  

 

It is concluded that work on the identification of determinants of electricity demand can contribute 

significantly to appropriate modelling and may serve to assess future policy pathways up to 2050. 

The methodologies outlined in this paper move the state of the art of research on residential 

electricity demand in three ways. First, the scope and size of time use studies offers the 

opportunity to pose largely generalizable questions about what triggers electricity demand behind 

the meter. This paper presented examples of large applications of activity-based data applied to 

residential electricity demand, making use of thousands of time-use records. Hence, studies using 

nationally representative time use data and applying the methodologies introduced in this paper 

have the potential to make a very authoritative assessment of what constitutes load profiles. 

Second, this paper introduced novel concepts of synchronicity and active occupancy through the 
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development of new metrics, such as entropy indexes and occupancy variances. This is a 

significant step forward compared with recent and ongoing metering-only studies (e.g. from Low 

Carbon Network Fund projects in the UK), as it enables to establish the causes for the timing of 

residential electricity demand and potential for intervention based on what people do. Third, this 

paper applies sequence analysis, optimal matching and clustering as innovative ways to improve 

time use research and to potentially allow significant comparison across different socio-economic 

groups of end-users.  

 

The policy implication of this paper are twofold and regard both explicit and implicit DSR 

programmes. 

  

Firstly, this paper developed sequence analysis methodologies which will potentially trigger future 

work on automated demand controllers’ algorithms, which may contribute to explicit DSR 

programmes. The integration of explicit DSR programmes has the potential to bring about 

significant reductions in prices, expand demand for renewables and limit carbon emission from 

dirty power plants. However, the electricity market has an underdeveloped residential DSR market 

as information about load profiles and shiftable loads is missing (Torriti et al, 2010). The 

effectiveness of future DSR penetration in the residential sector depends on accurate information 

about the timing of electricity demand and an understanding of what causes peaks in load profiles. 

This is because any price (e.g. dynamic pricing) or technology (e.g. smart appliances with delayers 

and remote controlling) will have to be developed starting from current practices (Wardle et al, 

2013). In the future, load management may comprise automated load controllers whose algorithms 

will require information about the activities of clusters of end-users.  

 

Secondly, with regards to implicit DSR, this paper demonstrated the potential value of time use 

methodologies applied to ToU tariffs, particularly with reference to the distributional effects these 

might trigger on different income groups of end-users. This means that incentives to change 

consumer behaviour and mitigate the magnitude of these peaks, such as Time of Use tariffs, offer 

significant potential benefits to the system as a whole. This includes reducing the need for new 

generation and network capacity, as well as enabling responsive electricity demand. Time of Use 

tariffs would also help ensure that relative household costs reflect the impact of their consumption 

levels and behaviour on the energy system. This flexibility comes at a price which ultimately has to 

be paid by households. In a negative scenario, the most vulnerable consumers will pay more for 

their bills because of ToU tariffs and information about how people consumer energy through the 

time use data and methodologies presented in this paper will become vital for policy-makers and 

utilities. There might also be solutions which do not penalise vulnerable consumers. For instance, a 

recent study commissioned by Citizens Advice suggests that critical peak rebates have been 

successful in other countries at reducing the risk of consumers’ being worse off from changes to 
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time of the day tariffs.  Under critical peak rebates, rather than charging a higher price during peak 

events, rebates are paid to customers for load reductions relative to an estimated baseline 

consumption level (Brattle Group and UCL, 2017). Lack of flexibility also comes at a price. Studies 

have estimated that, if flexibility is not pursued, and with 30GW of intermittent renewables and 

inflexible nuclear capacity in the system, up to 25% of wind energy may need to be curtailed to 

enable fossil fuel generation provide the required ancillary services (University of Cambridge and 

Imperial College London, 2016). Moreover, the National Infrastructure Commission (2016) 

estimates the value of the technical potential of the flexibility market at around £8 billion per year 

for flexible technologies such as generation, interconnection, network technologies, demand side 

response, and storage.  
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