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Abstract

Morphological classification of living things has challenged science for several centuries and

has led to a wide range of objective morphometric approaches in data gathering and analy-

sis. In this paper we explore those methods using apple cultivars, a model biological system

in which discrete groups are pre-defined but in which there is a high level of overall morpho-

logical similarity. The effectiveness of morphometric techniques in discovering the groups is

evaluated using statistical learning tools. No one technique proved optimal in classification

on every occasion, linear morphometric techniques slightly out-performing geometric

(72.6% accuracy on test set versus 66.7%). The combined use of these techniques with

post-hoc knowledge of their individual successes with particular cultivars achieves a

notably higher classification accuracy (77.8%). From this we conclude that even with pre-

determined discrete categories, a range of approaches is needed where those categories

are intrinsically similar to each other, and we raise the question of whether in studies where

potentially continuous natural variation is being categorised the level of match between cate-

gories is routinely set too high.

Introduction

With more than 7,000 apple cultivars described [1](some authors estimate 10,000 cultivars

[2]), fruit of all shapes, sizes, colours, flavour, and texture exist. This diversity makes identifica-

tion a challenging task. From hominid stone implement design [3] to the identification of fossil

sharks from their teeth [4], the extensive development of morphometric tools in the past few

decades [5–7], has resulted in many exciting discoveries across scientific disciplines. In areas

such as forensics and palaeontology, morphometrics may be the only tool available to research-

ers [4,8]. For over 2000 years morphology has remained the primary tool for field classification

[9] although the tools used to gather data and analyse them have changed substantially. The

classification of objects in general is a natural reaction of humans to the complexity of the

world that surrounds them. Humans excel at pattern matching [10], a skill often exploited for
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security systems [11,12] and essential to classification. Arguably, this tendency can result in

pareidolia, the misclassification of features to fit a preconceived model of limited scope [13].

Nevertheless, advanced pattern matching remains a crucial tool for navigating day to day life

[14]. Many of the uses of pattern recognition (e.g. number plate reading [15] in carparks) rely

heavily on statistical classification techniques, and have many potential biological applications

[16–21]. Here we explore non-destructive sampling for classification of apple cultivars, the

identity of which traditionally relies on a small number of acknowledged apple experts, usually

working with large collections of named and curated apple trees, who have gained years of

practical experience of those apples cultivars yet the correct classification of an apple has

immediate economic impact. Government figures show the wholesale price of ‘Gala’ versus

‘Braeburn’, for instance, can differ by 20% or more per kilo [22].

Continuous development in collection, recording, and analysis methods has given mor-

phology a very sophisticated toolkit for taxonomists. Many recent taxonomic publications

have exploited morphology under the umbrella of integrative taxonomy [23] which relies on

the use of multiple data sources for inference [23]. The techniques most commonly combined

with morphometrics are molecular [24], but can also include cytometry [23,25], chromosome

counts [25] or the chemical composition of secreted compounds [26], all of which involve

destructive sampling. The most important aspect of integrative taxonomy is the use of the

appropriate data sources for the organisms in question. Combination of morphometrics and

molecular markers can prove very successful in the delimitation of closely related taxa, both

within botanical [27] and zoological [28–30] research. This success is taxon and technique

dependent, as illustrated by the absence of morphometric resolving power in the works by

Mamos et al. [31] and Lecocq et al. [26]. Diagnostic characters are often difficult to determine

and quantify, and the selection process is challenging. Some examples of this difficulty include

selecting the appropriate life stage [32]—contrasting larval stages to adults on Culex species—

or morphological character—contrasting overall shape to specific landmarks in Cobitis
populations [33]. Although the majority of these examples focus on shape description and

quantification, colour may also be a vital source of morphometric data [24,29].

Talented human experts can take years to master apple cultivar identification. By studying

both internal and external morphological characters, apple experts rely on their in-depth

knowledge of hundreds of cultivars, contextual awareness, and their understanding of biologi-

cal variation within those cultivars to classify unknown samples [34–36]. They also commonly

analyse their observations in a flexible manner, focusing on some aspects of the morphology

more heavily in some cases than in others. To illustrate this, we present the hypothetical case

of an expert identifying an apple that is uniformly dark red. In that case the expert would not

consider cultivars which are almost exclusively green or yellow in colour, such as ‘Granny

Smith’ and ‘Golden Delicious’, even if the shape and size of the sample fruit matches those cul-

tivars; the expert would simply ignore the similarities in shape and focus on shape characters

for apples that can be dark red in colour.

The fundamental challenge in identification of an individual apple by an expert is much

greater than that, for instance, of identification of many bird species which can be done rou-

tinely at great distance using binoculars, due to the presence of consistent landmarks of shape,

size, colour, etc. Fine-grained recognition algorithms are successful in identifying different

species of birds in a variety of environments and from a variety of angles because the object

being identified is fundamentally consistent in size, shape, and colour [37]. Similarly, the con-

sistency of size, shape, and colour in flowers of the same taxon leads to routine benchmarking

of fine-grained algorithms against floral datasets [37,38]. This has caused these characters to be

used extensively in plant classification. Even the very well-studied British flora has only

recently gained an identification guide that does not depend on features flowers provide [39],

Pick and mix morphometrics
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despite the fact that experienced field botanists have long been able to identify plants in a vege-

tative state through knowledge and intuition. In the case of apples there is a need to identify

individual fruit separated from the parent tree. The identification is at the level of cultivar and

not species, and therefore the expected level of difference is small. As such it becomes crucial

to standardise the imaging approach of the apples, such that variation detected is that of the

fruit and not of its surroundings and the angle at which it is viewed.

Apple variety identification provides an ideal model to test the limits of morphological clas-

sification in biology because apple cultivars are usually clones and therefore the variation

found is likely to be environmental in cause, and not genetic. By analysing clonal cultivars, we

can be confident that there is a single correct answer to any identification. Both the challenge

and novelty of this work is to discover whether apple cultivars can be identified accurately and

reliably based on visual cues alone, in the absence of taste and smell. The challenge closest to

our work is the collection of studies by Corney and colleagues [40–42] on automatic classifica-

tion tools for Tilia leaves. The absence of sufficient landmarks for apple cultivars inspired us to

study them from first principles, returning to basic morphometric tools and concepts in order

to design a classification protocol.

Here we aim to discover whether the currently available arsenal of morphometric

approaches is capable of grouping individual apples into their correct cultivar. We demon-

strate that through the use of combined approaches a success rate of 78% can be achieved in

this particularly challenging biological identification problem.

Materials and methods

Fruit of twenty-seven apple cultivars were collected at the National Fruit Collection in Brog-

dale, Kent during the 2013 and 2014 growing seasons. These were collected when considered

ready to harvest by the professional pickers, who routinely use appearance and flavour as indi-

cators of ripeness. The list of cultivars sampled is presented in S1 Table. Maximum length and

maximum diameter were measured for each fruit using Vernier callipers (Mitutoyo Corpora-

tion, Japan). Weight, after removal of pedicel, was measured using precision scales calibrated

to 0.01g (Denver Instrument S-402, New York). All measurements were made within 24 hours

of harvest.

Each apple was placed against a blue (RGB: 0, 0, 255) background on a Kaiser Phototechnik

R1 photographic stand and was photographed using a Nikon D5100 camera with a Nikon

AF-S 40mm Micro NIKKOR f/2.8 DX G lens. The blue background was selected because it

would interact to the smallest degree with apple skin colour, which is predominantly a combi-

nation of red and green pixels. The camera was positioned 0.50 m above the base of the stand,

a setting that was not altered during the data collection and allowed capture of the entire out-

line of even the largest apples in the sample, at the same time retaining sufficient resolution for

detailed digitisation. Each fruit was photographed a total of six times (Fig 1): one image for the

calyx end, one for the pedicel end and four side-images (fruit rotated by 90˚ clockwise for

every image), resulting in a total of 3,240 images (original image dimensions 4928x3264 pix-

els). Of the four side-images per fruit only the first two (the original and the 90˚ rotation from

the original) were unique in terms of shape, the other two being their mirror images.

On each image, landmarks were recorded manually using the tpsDig2 software [43]. Land-

mark selection relied on the ability to consistently obtain the same landmarks on all the fruit.

By observing collections of images from each cultivar, six landmarks were selected for the digi-

tisation: two on the crown apices, two on the shoulder apices, one on the calyx and one on the

pedicel attachment point (illustrated in Fig 2).

Pick and mix morphometrics
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To establish the degree of digitisation error, all 3,240 images were digitised twice, with a

two-week gap, to ensure that the second digitisation was not affected by muscle memory.

Analysis of digitisations was conducted using MorphoJ [44]. Digitisation error was calculated

using Procrustes ANOVAs and found to be negligible across all samples. The Procrustes ANO-

VAs for the two separate digitisations had a smaller and significantly different mean square

error estimate for digitisation than for individuals, suggesting that digitisation error was negli-

gible. The result was similar for the comparison of the two sets of side-view images (original

and 90˚ versus 180˚ and 270˚) confirming that the digitisation error was negligible.

The first image of each fruit could have been used exclusively to describe its shape. This,

however, would ignore the variation that the 90˚ rotation could provide. To be able to include

the variation from the two views as well as to standardise between fruit, the landmark positions

from the two views after a Procrustes superimposition were averaged. This process was

repeated for the 180˚ and 270˚ views and the two datasets were then compared to establish

possible digitisation error, which was also found to be negligible. After the Procrustes superim-

position, the centroid size for each fruit was recorded. The Procrustes coordinates were then

used to perform a Principal Components Analysis (PCA), the scores from which were

recorded for each fruit.

Colour measurements were obtained by estimating the overall Red, Green and Blue (RGB)

intensities per pixel for each image using ImageJ [45]. To reduce the dimensionality of the

RGB colour measurements and remove the variation caused by the auto-white balance, a PCA

was performed and the first principal component was retained as the overall colour measure-

ment. The calyx images for each fruit were used to measure calyx area and the calyx “eye” (an

opening in the calyx). This was performed using the tpsDig2 [43] by manually outlining the

relevant edges.

From these measurements, two datasets were compiled, a linear morphometrics dataset

including: maximum length; maximum diameter; weight; first principal component of colour;

Fig 1. Example of all six captured images for one apple. a) calyx, b-e) side-views, each at 90˚ to each other, f) pedicel.

https://doi.org/10.1371/journal.pone.0205357.g001
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calyx area, and calyx (“eye”) aperture area, and a geometric morphometrics dataset including:

weight; first principal component of colour; calyx area; calyx (“eye”) aperture area; Principal

Component scores of Procrustes Coordinates, and centroid size. The datasets were then sepa-

rated into training and testing sets with a 75–25% (15 fruit per cultivar in training, 5 in testing)

Fig 2. Selected landmarks for the geometric morphometrics dataset. Six landmarks were selected per image: two on

the crown apices, one on the calyx, one on the pedicel attachment point and two on the shoulder apices.

https://doi.org/10.1371/journal.pone.0205357.g002
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[46] allocation respectively using identical partitions for comparability. The training sets were

then used on 12 classifiers (Table 1). Using the same partition for both datasets ensured that

the accuracy estimate for the test set of the best performing linear morphometrics classification

was directly comparable to the accuracy estimate for the test set of the best performing geomet-

ric morphometrics classification.

Training used three repeats of 10-fold cross-validation. Each classifier was then tested using

the test set and the classification confusion matrix, as well as the accuracy, kappa value, positive

predictive rate, negative predictive rate, specificity, and sensitivity values were recorded. Paired

t-tests on accuracy and kappa values were performed to compare between classifiers. The final

model for each classification technique was selected in terms of highest accuracy and kappa

values. Classification accuracy and kappa values using only colour are presented in S9 Table.

All classification analysis was performed using the caret (Classification and Regression Train-

ing) package [60] in R [61].

To emulate the flexibility in character weighting shown by experts, who for instance might

swap between using colour and size as a primary classifier, an ensemble approach was taken.

When different datasets were used to train multiple classifiers, the success of each classifier

with each cultivar could be recorded. For an unknown fruit tested against all the trained classi-

fiers, the reliability of each prediction was assessed based on the accuracy of each classifier for

the predicted cultivar. This process is illustrated in Fig 3. This replicated part of the expert flex-

ibility by permitting the use of different characters for each classifier.

As an alternative approach to the manual ensemble procedure, the linear and geometric

morphometrics datasets were combined to create a “kitchen sink” [62] dataset, to investigate

whether the concatenation of raw data led to a more successful classification. The concatenated

dataset was partitioned in the same way as the linear and geometric morphometrics datasets.

All the images used in the above study are deposited in the Reading Apple Image Library,

accessible through the University of Reading Herbarium webpages. Together with the fully

matured fruit presented in this study, the Image library also contains standardised images for

fruit sampled from 12 of the cultivars at different time points from anthesis (weekly for the

first two months from anthesis, and fortnightly later on). For each time-point, ten fruit were

sampled and photographed as described here. Additionally, longitudinal sections from calyx

to pedicel were performed and each side was photographed. For six cultivars, sampling was

repeated for a second year. This resulted in 13360 images for 27 cultivars.

Table 1. Classifiers used to analyse linear and geometric morphometric datasets.

Classifier Abbreviation

Adaptive Mixture Discriminant Analysis [47] AMD

Bagged Classification and Regression Tree [48] BCART

C5.0 Classification Tree [49] C5.0

Classification and Regression Tree [50] CART

Conditional Inference Random Forest [51] CIRF

Feature Selection Random Forest [52] FSRF

K-nearest Neighbor [53] KNN

Naïve Bayes [54] NB

Neural Network [55] NN

Penalized Discriminant Analysis [56] PDA

Robust Discriminant Analysis [57] RDA

Random Ferns [58] RF

Support vector Machine [59] SVM

https://doi.org/10.1371/journal.pone.0205357.t001
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Results

Prior to training and testing of classifiers, the RGB colour values were reduced using principal

component analysis (PCA). As the first principal component explained 94.3% of the overall

colour variation, it was deemed a sufficient colour proxy, and was the only component

retained for the remainder of the analysis. Classifier comparison was performed using accu-

racy and kappa values over the collected datasets. Classifiers were tested over four different set-

tings: first against the linear morphometrics dataset, second against the geometric

Fig 3. Flowchart of the manual ensemble process described in this work. After training the two classifiers and recording the cross-validation

accuracy values for each cultivar, the unknown fruit is classified. The predicted class for the unknown fruit for each classifier is compared to the

cross-validation accuracy for this class and the final prediction is selected according to which scenario applies.

https://doi.org/10.1371/journal.pone.0205357.g003
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morphometrics one, third using the manual ensemble approach, and finally against the

kitchen-sink dataset. As benchmark, highest classification accuracy using colour alone was

using a Support Vector Machine (accuracy: 27.4%, kappa:0.246) The remainder of this section

is split to accommodate these four approaches.

Linear morphometrics

Of the 12 classifiers studied, Penalised Discriminant Analysis (PDA) had the highest mean

accuracy and kappa values (accuracy: 73.0%, kappa: 0.722) for cross-validation of the training

set and for this reason it was selected as the most appropriate classification technique. Follow-

ing this, the test set, which comprised 135 fruit (5 from each cultivar) was analysed using the

trained PDA classifier resulting in a percentage accuracy estimate over all classes (overall accu-

racy percentage) of 72.6%. Individual misclassifications for each fruit in the test set are in S4,

S5 and S6 Tables.

Geometric morphometrics

Of the 11 classifiers tested, the best performing was the Feature Selection Random Forest

(FSRF) as it had the highest mean accuracy and mean kappa values (accuracy: 66.5%, kappa:

0.654). Individual misclassifications for each fruit in the test set are in S7 and S8 Tables.

Manual ensemble

For manual ensemble, the predictions for the test set of the PDA on linear morphometrics

were combined with the predictions of the FSRF classifier of the geometric morphometrics by

using the accuracy estimates of cross-validation for each class (the detailed manual ensemble

protocol is described in Materials and methods). The confusion matrix for the test set classifi-

cation, which is the per-class performance of the trained classifier, is illustrated in Fig 4.

Through the use of a heat-map, Fig 4 contrasts the actual class (cultivar) to which each fruit in

the test set belonged (Reference) against what class it was predicted as (Prediction) by the

trained classifier. Correct classifications are on the diagonal of the heat-map, with darker

shades of blue illustrating greater success rates.

Kitchen-sink

Of the 11 classifiers tested with the “kitchen sink” dataset, the best performing was the Adap-

tive Mixture Discriminant Analysis (AMD) with mean accuracy of 70.5% and a kappa value of

0.692 for cross-validation.

The predictions of the test set samples for each classifier by cultivar are summarised in

Fig 5, which demonstrates that every cultivar could be correctly classified using one of the four

techniques. If one technique failed to classify a cultivar, another often turned out to be success-

ful. The success of the classification techniques varied between the cultivars. For example, in

the case of ‘Adam’s Pearmain’ (Ada), all four approaches had a very high success rate, with

three of them reaching 100% accuracy, and the lowest one reaching 80%. Findings were similar

for ‘Cloden’ (Clo), with two methods reaching 100% accuracy and the remaining two 80%.

Less successful was the case of ‘Bovarde’ (Bov), for which the FSRF classifier relying on the

geometric morphometrics dataset failed to correctly identify any of the samples in the test set.

Although none of the other classifiers succeeded in correctly identifying all five ‘Bovarde’ sam-

ples in the test set, they successfully identified three.

Pick and mix morphometrics
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Discussion

The advantage of studying apple cultivars which are clonally propagated was that we could be

certain of the correct classification for each individual apple. This contrasts with equivalent

studies of variation in species because species are conceptual constructs which may change

over time [63,64]. For instance Compton and Hedderson [65] required 17 morphometric vari-

ables to separate a single variable species into four distinct ones, and those supported by corre-

lation with geographic distribution. Despite the clonal identity within apple cultivars and the

Fig 4. Confusion matrix from the Manual ensemble classification using the test set. The colours of the heat map correspond to the

percentage of classification in each category. The accuracy obtained from the manual ensemble was 77.8% compared with 66.7% for

the FSRF and 72.6% for the PDA on the same test set.

https://doi.org/10.1371/journal.pone.0205357.g004
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variety of morphometric measurements used in this study, our classifications still resulted in

misidentifications of many individual apples. Here we consider some of the underlying rea-

sons for these.

We learned two major lessons during the process of automating classification.

Fig 5. Summary of prediction rates of test set by cultivar for the classifiers using the same colours as the heatmap

in Fig 3. Classifier abbreviations are explained in Materials and methods.

https://doi.org/10.1371/journal.pone.0205357.g005
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Lesson 1: There is no free lunch

The performance and choice of classifier depends on the nature of the underlying data. For

example, using linear morphometric techniques the best performing classifier was a PDA

(accuracy 72.6%); for geometric morphometrics it was a FSRF (accuracy 66.7%). This finding

is consistent with the “No free lunch” theorem. Stated formally by Wolpert and Macready

[66], the theorem suggests that the performance of all classifiers is equal when the totality of

possible problems is considered. This means that for every classifier there exists a possible

problem where that classifier outperforms every other classifier. In our study two different

morphometric datasets created two different classification problems, each analysed most effec-

tively by a different classifier. This strong interaction between dataset and classifier is one of

many examples of the no-free lunch theorem. Adding to the complexity is the impact of culti-

var as a variable on the classifier and dataset interaction. As demonstrated in Fig 4, some culti-

vars were more accurately identified using one classifier and others by another. This suggests

that in addition to selecting the appropriate classifier for the dataset, it is important to establish

for every cultivar how accurately each combination performs. To illustrate this, four apples

(‘Arlet’, ‘Bovarde’, ‘Jonathan’, ‘Kaiser Franz Joseph’) which were all part of the test set, are

shown in Fig 6.

All of ‘Arlet’ (Arl) and ‘Kaiser Franz Joseph’(Kai) samples in the test set were accurately

classified using FSRF. Some ‘Arlet’ and ‘Kaiser Franz Joseph’ samples were misclassified using

PDA (which had 40% success rate for ‘Arlet’ and 60% for ‘Kaiser Franz Joseph’). ‘Jonathan’

(Jon) and ‘Bovarde’(Bov) were classified more accurately by the PDA than the FSRF (100%

and 60% respectively with the PDA as opposed to 20% and 0% with FSRF). Why are some cul-

tivars more identifiable using one classifier than with another? For the cultivars that performed

better with geometric morphometrics, such as ‘Kaiser Franz Joseph’, we propose that the dis-

tinctive fruit geometry failed to translate into recorded parameters in linear morphometrics.

For the cultivars that performed better with the linear morphometrics, such as ‘Jonathan’, we

propose that the overall geometry of the fruit was not as distinctive as the length and diameter

measurements.

Lesson 2: Pick and mix

Improved accuracy results from the flexible combination of linear and geometric morpho-

metrics classifiers. The successful protocol used as inspiration the flexibility of information

that human identification experts can employ, by combining different data-sources (in this

case linear and geometric morphometrics). The explanation for the superiority of this method

(over both linear and geometric classifications) lies in the differences of accuracy per cultivar

for each classification. The successful protocol gives different weights to the predictions

depending on how accurate each classifier has been in the past for that particular prediction.

For example, if an unknown fruit was predicted as ‘Jonathan’ by the FSRF and as ‘McIntosh’

by the PDA then the manual ensemble would classify it as a ‘McIntosh’ since the FSRF is weak

at predicting ‘Jonathan’ (or ‘McIntosh’), whereas the PDA is strong for both cultivars. By using

this method and effectively relying on each classifier for the cultivars they were good at, the

classification performance improved to an overall 77.8%. As a technique, it was particularly

effective when there was a marked difference in the classification accuracy for a cultivar (e.g.

with ‘Jonathan’). When the classifiers performed at similar levels (e.g. ‘Florina’ with 40% with

PDA and 60% with FSRF) then the approach chosen was sometimes the weaker one (‘Florina’

in manual ensemble had 40% accuracy). This was a result of the training accuracy being used

to make a decision on the classifier for the test data in cases where training data did not sup-

port a clear decision.
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Although the “kitchen sink” approach was more accurate (71.1%) than the FSRF, it was less

accurate than the PDA or manual ensemble. This indicates that the simple concatenation of

both datasets increased noise. Aside from performance there was a fundamental difference

between the “kitchen sink” and the manual ensemble. Both techniques used all the information

available by including linear and geometric morphometrics but whereas the “kitchen sink”

merged raw data, the manual ensemble exploited the strengths of each dataset.

Conclusions

The primary objective of this work was to discover whether apple cultivars could be identified

using automated processes by exploiting some of the strategies apple experts employ in combi-

nation with current morphometric approaches. We conclude that computers can effectively

simulate the approach used by apple experts, prioritising some data over others, in a cultivar-

and situation-specific way.

Fig 6. Four fruit examples that were misclassified by one of the two classifiers. In the top two rows Arl and Kai were

misclassified by the PDA but were successfully classified by the FSRF. In the bottom two rows, Bov and Jon were

misclassified by the FSRF but successfully classified by the PDA.

https://doi.org/10.1371/journal.pone.0205357.g006
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The most impactful novelty of this work is methodological; specifically, the use of explicit

geometric and linear morphometrics in combination with statistical learning has great rele-

vance to wider biological research in identification and classification. It is not clear why such

an ensemble method is not routinely used for biological identification as it combines the

strength of several approaches. Ensemble learning techniques started gaining popularity in the

1990s for statistical learning specifically because they can combine weak learners (classifiers

with low accuracy) to create a strong learner (classifier with high accuracy) [54]. Modern plant

taxonomy could embrace this approach and take advantage of current computing power. This

would permit the re-evaluation of data-sources which on their own may only lead to weak

learners, but in thoughtful combinations have the potential to provide novel insight into classi-

fication of the organism under study. Crucially, the incorporation of multiple datasets towards

a single classification problem is not about simply combining raw data from multiple sources;

it is about the careful integration of such data and multiple approaches to analysis to improve

insight and understanding.
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33. Buj I, Šanda R, Marčić Z, Ćaleta M, MrakovčićM. Combining morphology and genetics in resolving tax-

onomy-a systematic revision of spined loaches (genus Cobitis; Cypriniformes, Actinopterygii) in the

adriatic watershed. PLoS One. 2014; 9. https://doi.org/10.1371/journal.pone.0099833 PMID: 24918426

34. Clark S, Cleal Q. A manual key for the identification of apples based on descriptions in Bultitude (1983).

Yorkshire; 2005.

35. Sanders R. The Apple Book. 1st ed. London: Frances Lincoln Limited Publishers; 2010.

36. Morgan J, Richards A. The Book of Apples. 1st ed. London: Ebury Press; 1993.

37. Angelova A, Zhu S. Efficient object detection and segmentation for fine-grained recognition. Proc IEEE

Comput Soc Conf Comput Vis Pattern Recognit. 2013; 811–818. https://doi.org/10.1109/CVPR.2013.

110

38. Nilsback ME, Zisserman A. Automated flower classification over a large number of classes. Proc - 6th

Indian Conf Comput Vision, Graph Image Process ICVGIP 2008. 2008; 722–729. 10.1109/

ICVGIP.2008.47

39. Poland J, Clement EJ. The Vegetative Key to the British Flora. Botanical Society of the British Isles;

2009.

40. Corney DPA, Tang HL, Clark JY, Hu Y, Jin J. Automating digital leaf measurement: The tooth, the

whole tooth, and nothing but the tooth. PLoS One. 2012; 7: 1–10. https://doi.org/10.1371/journal.pone.

0042112 PMID: 22870286

41. Corney DPA, Clark JY, Tang HL, Wilkin P. Automatic extraction of leaf characters from herbarium spec-

imens. Taxon. 2012; 61: 231–244.

42. Clark JY, Corney DPA, Wilkin P. Leaf-based automated species classification using image processing

and neural networks. In: Lestrel PE, editor. Proceedings of the 4th International Symposium on Biologi-

cal Shape Analysis (ISBSA). World Scientific; 2017. pp. 29–56.

43. Rohlf FJ. tpsDig 2.17 [Internet]. Stony Brook; 2013. http://life.bio.sunysb.edu/morph/soft-dataacq.html

Pick and mix morphometrics

PLOS ONE | https://doi.org/10.1371/journal.pone.0205357 October 15, 2018 16 / 17

https://doi.org/10.1073/pnas.1524473113
http://www.ncbi.nlm.nih.gov/pubmed/26951664
https://doi.org/10.1093/sysbio/syu083
http://www.ncbi.nlm.nih.gov/pubmed/25358968
https://doi.org/10.1093/sysbio/syu016
http://www.ncbi.nlm.nih.gov/pubmed/24603127
https://doi.org/10.1111/boj.12214
https://doi.org/10.1111/boj.12214
https://doi.org/10.1111/zsc.12107
https://doi.org/10.12705/631.4
https://doi.org/10.1111/zoj.12092
https://doi.org/10.1016/j.ympev.2014.09.020
https://doi.org/10.1016/j.ympev.2014.09.020
http://www.ncbi.nlm.nih.gov/pubmed/25451802
https://doi.org/10.1111/bij.12213
https://doi.org/10.1111/bij.12213
https://doi.org/10.1111/jzs.12062
https://doi.org/10.1007/s00435-015-0271-x
https://doi.org/10.1007/s00435-015-0271-x
https://doi.org/10.1371/journal.pone.0099833
http://www.ncbi.nlm.nih.gov/pubmed/24918426
https://doi.org/10.1109/CVPR.2013.110
https://doi.org/10.1109/CVPR.2013.110
https://doi.org/10.1371/journal.pone.0042112
https://doi.org/10.1371/journal.pone.0042112
http://www.ncbi.nlm.nih.gov/pubmed/22870286
http://life.bio.sunysb.edu/morph/soft-dataacq.html
https://doi.org/10.1371/journal.pone.0205357


44. Klingenberg C. Morpho J: an integrated software package for geometric morphometrics. Mol Ecol

Resour. 2011; 11: 353–7. https://doi.org/10.1111/j.1755-0998.2010.02924.x PMID: 21429143

45. Abràmoff MD, Magalhães PJ, Ram SJ. Image processing with ImageJ. Biophotonics Int. 2004; 11:

36–41.
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