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Abstract 

Obesity leading to hyperlipidaemia and atherosclerosis is recognised to induce 

morphological and metabolic changes in many tissues. However, both hyperlipidaemia and 

atherosclerosis can occur in the absence of obesity. The impact of the latter scenario on 

skeletal muscle and liver is not understood sufficiently. In this regard, we used the 

Apolipoprotein E-deficient (ApoE-/-) mouse model, an established model of hyperlipidaemia 

and atherosclerosis, that does not become obese when subjected to a high-fat diet, to 

determine the impact of Western-type diet (WD) and ApoE deficiency on skeletal muscle 

morphological, metabolic and biochemical properties. To establish the potential of 

therapeutic targets, we further examined the impact of Nox2 pharmacological inhibition on 

skeletal muscle redox biology. We found ectopic lipid accumulation in skeletal muscle and 

the liver, and altered skeletal muscle morphology and intramuscular triacylglycerol fatty acid 

composition. WD and ApoE deficiency had a detrimental impact in muscle metabolome, 

followed by perturbed gene expression for fatty acid uptake and oxidation. Importantly, there 

was enhanced oxidative stress in the skeletal muscle and development of liver steatosis, 

inflammation and oxidative protein modifications. Pharmacological inhibition of Nox2 

decreased reactive oxygen species production and protein oxidative modifications in the 

muscle of ApoE-/- mice subjected to a Western-type diet. This study provides key evidence to 

better understand the pathophysiology of skeletal muscle in the context of hyperlipidaemia 

and atherosclerosis and identifies Nox2 as a potential target for attenuating oxidative stress 

in skeletal muscle in a mouse model of obesity-independent hyperlipidaemia and 

atherosclerosis.   

 

Key words: Atherosclerosis, Western-type diet, NADPH oxidase, skeletal muscle, oxidative 

stress 
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Abbreviations: 2-OH-E+: 2-hydroxyethidium; 3NT: 3-nitrotyrosine; 4HNE: 4-hydroxy-2-

nonenal; 8OH-dG: 8-hydroxy-2'-deoxyguanosine; ApoE-/-: Apolipoprotein E knockout; CD36: 

Cluster of differentiation 36; CSA: Cross-sectional area; DHE: Dihydroethidium; EDL: 

Extensor digitorum longus; F4.80: EGF-like module-containing mucin-like hormone receptor-

like 1; H2O2: Hydrogen peroxide; LDL: Low density lipoprotein; MHC: Myosin heavy chain; 

ND: Normal diet; Nox: Nicotinamide adenine dinucleotide phosphate oxidase; Nox2ds-tat: 

Nox2 docking sequence-tat; O2
•-: Superoxide; PAD: Peripheral arterial disease; ROS: 

Reactive oxygen species; TA: Tibialis anterior; TG: Triacylglycerols; Tnfα: Tumour necrosis 

factor α; WD: Western-type diet; WT: Wild type 

 

 

Introduction 

Hyperlipidaemia is an established risk factor for atherosclerosis and cardiovascular disease 

[1]. Most studies have shown that obesity per se induces elevated levels of circulating free 

fatty acids - deriving mainly from adipose tissue - that lead to ectopic fat accumulation in the 

liver and skeletal muscle [2]. Evidence also suggests that obesity-dependent 

hyperlipidaemia is a risk factor for non-alcoholic fatty liver disease and adipose tissue 

inflammation, conditions that in turn are associated with atherosclerosis [3, 4]. However, the 

obesity-independent impact of hyperlipidaemia and atherosclerosis on metabolically active 

tissues has only recently begun to be unravelled [5, 6].  

Atherosclerosis and hyperlipidaemia may also exert effects on skeletal muscle [7, 8]. For 

example, the effect of atherosclerosis and hyperlipidaemia on skeletal muscle morphology 

and function has been investigated in the context of peripheral arterial disease (PAD). PAD 

is characterised by vascular deficits leading to restriction and blockage of the arteries in the 

lower extremities and myopathy [9]. PAD myopathy is characterised by increased oxidative 

damage, altered myofibre morphology, desmin accumulation, loss of force generating 
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capacity and mitochondrial deficits [10-12]. However, many PAD patients exhibit 

comorbidities, such as hypertension and type II diabetes that may have a modifying role in 

skeletal muscle pathophysiology. 

In this regard, sparse evidence from the ApoE-/- mouse suggests that obesity-independent 

hyperlipidaemia and atherosclerosis may have an impact on skeletal muscle physiology [13-

16]. The ApoE-/- mouse is an established model of atherosclerosis that develops 

hyperlipidaemia and atherosclerotic lesions from the age of 3-4 months accompanied by 

increased oxidative stress [17]. Administration of a high-fat diet in ApoE-/- mice further 

increases plasma cholesterol and promotes earlier lesion development [17]. In addition, 

ApoE-/- mice on either a high-fat diet or a Western-type diet (i.e. high-fat with cholesterol) 

show a modest increase in body weight compared to wild-type mice [16, 18]. Limited data on 

skeletal muscle of ApoE-/- mice reported reduced capillary density and increased lipid 

peroxidation products, suggesting that hyperlipidaemia and possibly atherosclerosis may 

impact on skeletal muscle biology and redox homeostasis [13, 14].  

NADPH oxidases (Noxs) are reactive oxygen species (ROS) generating enzymes and their 

role in physiological cellular responses as redox mediators is currently being investigated 

[19]. In particular, Nox2 contributes to physiological responses, such as wound healing, and 

is also involved in pathological conditions, such as atherosclerosis [20]. For example, Nox2 

deficiency in ApoE-/- mice led to smaller atherosclerotic lesion area in the aorta [21]. 

However, the impact of Nox2 on skeletal muscle of ApoE-/- mice has not been established. 

Nox2 is considered an important source of ROS in response to skeletal muscle contraction 

and mechanotransduction as well as in insulin signalling [22]. In wild-type mice under a high-

fat diet, Nox2 protein expression and activity are increased in skeletal muscle, suggesting 

that dietary challenges may represent a key independent factor that may lead to oxidative 

stress [23-25]. Since Nox2-derived ROS production is increased under dietary challenges, 

inhibition of Nox2 may be a useful means to attenuate skeletal muscle oxidative stress. 

Nox2ds-tat is a chimeric 18-amino acid peptide that inhibits Nox2 enzymatic activity and is 
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known to suppress superoxide production in endothelial cells [26]. Specifically, the Nox2ds-

tat peptide inhibitor has been shown to decrease ROS production and oxidative stress and 

improve vasorelaxation and nitric oxide production in arteries of rodents [27-29]. 

Furthermore, treatment of diet-induced obese mice with the Nox2ds-tat peptide inhibitor after 

femoral artery ligation accelerated collateral growth and hindlimb reperfusion [30]. 

Accordingly, inhibition of Nox2 with the Nox2ds-tat peptide in ApoE-/- mice fed a Western-

type diet, resulted in decreased atherosclerotic lesions throughout the aorta and the carotid 

arteries [31]. However, the impact of Nox2 in vivo inhibition on skeletal muscle oxidative 

stress has not been studied so far.  

In this study we hypothesised that hyperlipidaemia and atherosclerosis would have a 

negative impact on skeletal muscle and liver homeostasis due to the production of ROS, a 

situation worsened by a Western-type diet. Our main findings are that ApoE-/- mice exhibit 

ectopic fat accumulation in both skeletal muscle and the liver, with hepatic steatosis being 

aggravated by Western-type diet. Intramyocellular lipid accumulation leads to enlarged 

myofibres and to a possible functional adaptation characterised by a transition from fast-

twitch to slower fibre type and enhanced capillary density. Nonetheless, this remodelling is 

not adequate to prevent oxidative stress as shown by enhanced ROS production, perturbed 

antioxidant gene expression and oxidative modifications. Interestingly, administration of a 

Western-type diet did not reveal any synergistic effect with genotype for the majority of the 

parameters studied (e.g. myofibre size, capillary density and oxidative stress). Most 

importantly, Nox2 seems to contribute to skeletal muscle oxidative stress under 

hyperlipidaemic and atherosclerotic conditions, since pharmacological inhibition of Nox2 

resulted in attenuation of oxidative stress.    

 

Materials and methods 

Detailed experimental methods are provided in the online supplement. 
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Animal Maintenance 

Male C56Bl/6J (wild-type, WT) and ApoE-/- mice on the same genetic background were 

housed under standard environmental conditions (20–22°C, 12–12 hr light–dark cycle) and 

were provided standard chow (normal diet, ND) and water ad libitum. At the age of 8 weeks 

some mice from both genotypes were switched to a Western-type diet (WD, composed of 

21% (w/w) fat and supplemented with 0.15% (w/w) cholesterol; Special Diet Services 

#829100; Braintree, UK) for 12 weeks. A subgroup of ApoE-/- mice was fed the Western-type 

diet for 8 weeks before being implanted with an osmotic minipump (model 1004, ALZET, 

Charles River, UK) at the back of the animal that was prefilled with either Nox2ds-tat 

(RKKRRQRRRCSTRIRRQL - NH2) or Nox2ds-tat scrambled (RKKRRQRRRCLRITRQSR - 

NH2) to provide a dose of 10 mg/kg/day i.p. as described previously [32]. Animals were kept 

on the Western-type diet for another 4 weeks, a total of 12 weeks. Each experimental group 

consisted of 5-6 mice.  

The experiments were performed under a project license from the United Kingdom Home 

Office in agreement with the revised Animals (Scientific Procedures) Act 1986. The 

University of Leeds Animal Care and Ethical Review Committee approved all procedures. 

Animals were humanely sacrificed via Schedule 1 killing under terminal anaesthesia 

between 9:00–13:00. 

 

Immunohistochemistry 

Immunohistochemistry was performed on 10 μm cryosections as described previously [33]. 

Antibodies against myosin heavy chain isoforms, cluster of differentiation 31 (CD31), 3-

nitrotyrosine (3NT), laminin, 8-hydroxy-2'-deoxyguanosine (8OH-dG) and E06 were used. 

Details of primary and secondary antibodies are given in Supplementary Table 1. F4.80 was 

detected using the Vector Laboratories ImmPRESS Excel Staining Kit. 

 



7 

 

Histology 

Succinate dehydrogenase (SDH) staining of extensor digitorum longus (EDL), tibialis 

anterior (TA) and soleus was performed as described previously [34]. Similarly, for Oil Red O 

(Sigma-Aldrich, UK) and Bodipy 493/503 (ThermoFisher Scientific, USA) staining transverse 

muscle sections were fixed in 4% paraformaldehyde, incubated with either 75% Oil Red O 

working Solution or 20 μg/mL Bodipy 493/503 solution for 30 min and subsequently mounted 

with hydromount mounting medium (Fisher Scientific, UK). Masson’s trichrome staining was 

used to detect tissue fibrosis following the manufacturer’s instructions (EMD Millipore, USA). 

 

Morphometrics 

Images were captured using an AxioImager fluorescence microscope and Axiocam digital 

camera. Coloured mages were captured with a Zeiss Axiom 105 microscope camera, 

coupled with ZEN imaging software (Zeiss, Germany). Quantification of myofibre type and 

cross-sectional area (CSA) measurements were performed manually using Zen software. All 

fibres negative for MHC IIA and IIB on double-stained sections were considered as type IIX, 

upon subtraction of the type I stained fibres from serial sections. 

 

Quantitative PCR 

Quantitative PCR was performed as described previously [34]. Total RNA was prepared 

from skeletal muscles using the EZNA Total RNA Kit I (Omega Biotek, USA). Total RNA 

(5 μg) was reverse-transcribed to cDNA with RevertAid H MinusFirst Strand cDNA synthesis 

kit (ThermoFisher Scientific, USA) and analysed by quantitative real-time RT-PCR on a 

StepOne Plus cycler (Applied Biosystems, UK), using the Applied Biosystems SYBRGreen 

PCR Master Mix. Details of primers are given in Supplementary Table 3. Relative expression 

was calculated using the ΔΔCt method with normalisation to the housekeeping genes 

encoding cyclophilin-B (Cyp) and hypoxanthine-guanine phosphoribosyltransferase (Hprt).  



8 

 

 

SDS PAGE and Immunoblotting 

Frozen muscles and liver were homogenised in RIPA lysis buffer supplemented with 

protease inhibitors. Protein content was quantified using the Pierce™ BCA Protein Assay Kit 

(ThermoFisher Scientific, USA). 30 μg of muscle or liver protein extracts were used for 

immunoblotting as described previously [32, 34]. Details of antibodies are given in 

Supplementary Table 2. For detection of protein carbonyls the Oxidized Protein Western Blot 

Detection Kit (Abcam, UK) was used according to the manufacturer’s instructions. 

Densitometric analysis was performed on ImageJ Software. 

 

Intramuscular lipid contents by gas chromatography 

Intramuscular triacylglycerols and phospholipids were analysed by a combination of thin-

layer chromatography and gas chromatography on an Agilent 7890A gas chromatograph 

(Santa Clara, CA), equipped with a 30 m-long AT-WAX capillary column (Alltech, Deerfield, 

IL) and flame ionization detector, as described previously [35].  

 

1H nuclear magnetic resonance spectroscopy-based (NMR) metabonomic analysis 

Aqueous metabolites were extracted from gastrocnemius muscle as described in previous 

protocols [36, 37]. Principal components analysis (PCA) was performed with Pareto scaling 

in MATLAB using in-house scripts. 

 

TBARS and protein carbonyls 

Thiobarbituric Acid Reactive Substances (TBARS) were evaluated with the OXItek TBARS 

Assay Kit (Enzo Life Sciences, USA) according to the manufacturer’s instructions. Protein 
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carbonyl content was assayed in whole muscle and liver lysates with the Protein Carbonyl 

Content Assay Kit (Sigma-Aldrich, UK) according to the manufacturer’s instructions. 

 

Liquid Chromatography Mass Spectrometry (LC-MS) detection of 2-hydroxyethidium 

Muscle tissue sections were incubated with 5 µmol/L of dihydroethidium (DHE) in PBS, for 

30 min at 37°C and were subsequently washed with PBS-diethylenetriaminepentaacetic acid 

(DTPA). LC-MS analysis for skeletal muscle was performed as described previously [32]. 

 

Statistical analysis 

The results in this study are reported as mean ± SD. This study took into consideration the 

ARRIVE guidelines for reporting animal research [38]. Sample size was determined by using 

the G*Power software to achieve 80% power in any given parameter at the p < 0.05 

significance level [39]. Significant differences among groups for dependent variables were 

detected by using two-way ANOVA (genotype x diet) followed by the Bonferroni post hoc 

tests when a main effect or interaction was significant. Differences between two groups (i.e. 

ApoE-/- Nox2ds-tat versus ApoE-/- scrambled peptide) were detected by the Student’s t test. 

Non-parametric tests were used if the data did not pass the Shapiro-Wilk normality test as 

indicated in the figure legends. Chi square (χ2) test was used to detect differences in lipid 

droplet size and CSA. Significant differences were considered for p < 0.05. Statistical 

analysis was performed in GraphPad Prism 6 (two-way ANOVA and Mann-Whitney U test) 

or IBM SPSS software version 24 (chi-square test).    

 

Results 

The impact of Western-type diet and ApoE deficiency on skeletal muscle 

morphological properties 
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Muscle fibre typing: The effect of systemic atherosclerosis and hyperlipidaemia on skeletal 

muscle features of the ApoE-/- mouse remains largely unexplored. Therefore, we assessed 

the skeletal muscle fibre composition and size in wild-type and ApoE-/- mice subjected to 

either a standard chow diet (normal diet, ND) or a Western-type diet (WD) for 12 weeks. 

Fibre type composition of the superficial TA muscle was unaltered amongst groups (Fig. 1A-

B). However, there was a 20% decrease of IIB fibres in the deep region of the TA in 

response to ApoE deficiency, without any changes in WT WD mice (Fig. 1A-B). A 

cumulative effect was found when ApoE-/- mice were administered a WD for 12 weeks, 

resulting in a 30% decrease of IIB fibres compared to WT ND (Fig. 1A-B). Decrease in the 

proportion of IIB fibres was accompanied by increase of IIX fibres that reached levels of 

significance in the ApoE-/- ND and ApoE-/- WD compared to WT ND. To expand the 

significance of this finding, the EDL and soleus fibre type composition was also examined. 

We found a 10% decrease of IIB fibres in EDL of ApoE-/- ND compared to WT ND without a 

synergistic effect when ApoE-/- mice were subjected to Western-type diet (Supplementary 

Fig. 1). Similarly, there was a significant drop in IIB fibres in the soleus of all groups 

compared to WT ND, while ApoE-/- ND mice showed an increase in the proportion of slow-

twitch type I fibres (Supplementary Fig. 1).  

Metabolic profiling of skeletal muscle: Given the partial fibre type transition in response to 

ApoE deficiency and Western-type diet, the proportion of SDH positive fibres and 

mitochondrial DNA content was assessed as a measure of muscle mitochondrial activity and 

mitochondrial biogenesis respectively. SDH positive fibres were significantly higher in all 

groups compared to WT ND in the EDL, but not in the other muscles studied (superficial and 

deep TA, and soleus). There was not any compromise in skeletal muscle mitochondrial 

biogenesis in response to either ApoE deficiency or Western-type diet (Supplementary Fig. 

2).  

Muscle fibre area: Cross-sectional area analysis of specific fibre types in superficial and 

deep TA as well as the EDL and the soleus muscles showed differences in fibre size. Type 
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IIX fibres were significantly larger in superficial TA for all experimental groups compared to 

WT ND (Fig. 1C-D). Similarly, there were significantly larger IIX fibres in the deep TA of 

ApoE-/- independent of diet, while IIB fibres were significantly smaller in response to 

Western-type diet for both genotypes as compared to WT ND (Fig. 1C-D). Larger IIA fibres 

were also found in ApoE-/- WD compared to WT and ApoE-/- ND. Consistent with the 

increased fibre size in the TA, we found increased cross-sectional area of IIA and IIX fibres 

in EDL as well as IIA in soleus for all three groups compared to WT ND (Supplementary 

Fig. 1). In addition, IIB fibres were significantly larger in the EDL muscle in ApoE-/- mice 

independent of diet as compared to WT ND. Finally, diet had an impact on the size of type I 

fibres in soleus independent of genotype.  

Body mass: There was no difference in body weight at baseline between WT ND and ApoE-

/- ND. However, 12 weeks of Western-type diet induced an almost three times-higher 

increase of body weight in wild-type mice compared to ApoE-/- (i.e. 35 vs. 15% body weight 

increase in WT WD and ApoE-/- WD respectively; Supplementary Fig. 1).  

Muscle capillary density and fibrosis: It is known that oxidative myofibres are surrounded 

by more capillaries than glycolytic fibres to support their metabolic activity [40]. Given the IIB 

fibre transition to IIX, a slower phenotype, capillary density was next determined in EDL and 

TA muscles. CD31 staining revealed higher capillary-to-fibre ratio of 20% and 15% in EDL 

and superficial TA respectively in response to diet and genotype compared to WT ND mice 

(Fig. 2A-B). This increase was accompanied by increased mRNA levels of the angiogenic 

genes Vegfa165 and Fgf1 in gastrocnemius muscle (Fig. 2C). High-fat diet has been 

associated with extracellular matrix remodelling and collagen deposition in skeletal muscle 

[41, 42]. Therefore, the potential of skeletal muscle fibrosis was examined in the TA by 

Masson’s trichrome staining. We did not find any evidence of muscle fibrosis in any of the 

experimental groups studied (Supplementary Fig. 3A). Our findings suggest that neither 

Western-type diet nor ApoE deficiency induce skeletal muscle fibrosis. 
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The effect of Western-type diet and ApoE deficiency on intramuscular fat contents 

and skeletal muscle metabolic signature 

Intramuscular fat contents: ApoE-/- mice are hyperlipidaemic showing increased blood 

triacylglycerol and cholesterol levels that are further increased in response to a Western-type 

diet [17, 18]. Given the increased capillary density in skeletal muscle of ApoE-/- mice, we 

hypothesised that excessive fat may be available for uptake and ectopic deposition. 

Transcript levels of genes that regulate fatty acid uptake in skeletal muscle, i.e. Cluster of 

differentiation 36 (Cd36) and Fatty acid transport protein 1 (Fatp1), two major fatty acid 

transporters and Cell death activator (Cidea), a regulator of triacylglycerol deposition, were 

found consistently higher in all experimental groups compared to WT ND mice in 

gastrocnemius muscle (Fig. 3A). There was a profound CD36 staining both in the cytoplasm 

and on the plasma membrane of fibres other than type IIB, indicating a robust upregulation 

both at transcript and protein levels of this fatty acid transporter (Fig. 3B). Intramyocellular 

fat contents were increased in WT WD, ApoE-/- ND and ApoE-/- WD compared to WT ND as 

evidenced by Bodipy 493/503 (Fig. 3C) and Oil red O staining (Supplementary Fig. 3B). 

Quantification of muscle triacylglycerol contents with gas chromatography revealed 400-

500% higher total triacylglycerol levels in WT WD, ApoE-/- ND and ApoE-/- WD compared to 

WT ND (Fig. 3D). In particular, there were significantly higher levels in saturated fatty acids 

in response to Western-type diet (Supplementary Table 4). More importantly, there was an 

increase in monounsaturated fatty acids and decrease in polyunsaturated fatty acids mainly 

in response to Western-type diet and to a lesser degree to ApoE deficiency (Supplementary 

Table 4). Taken together, these findings indicate that ApoE deficiency and Western-type diet 

independently increased intramuscular fat accumulation without any synergistic effects. 

Given this remarkable accumulation of intramuscular fat and considering the increasing body 

of evidence that oxidised phospholipids are key players in the development of chronic 

inflammatory disease and potentially atherosclerosis, we next focused on skeletal muscle 

phospholipids [43]. Quantification of total phospholipids in skeletal muscle specimens did not 
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reveal any significant differences in response to either ApoE deficiency or dietary 

challenges, despite significant effects on some individual fatty acids (Supplementary Fig. 

3C and Supplementary Table 5). We next determined whether there were oxidised 

phospholipids in skeletal muscle specimens. Increased levels of oxidised phospholipids were 

found in ApoE-/- WD muscles compared to all other experimental conditions 

(Supplementary Fig. 4A). There was a co-localisation of oxidised phospholipid staining with 

CD31 staining that identifies muscle capillaries, suggesting that the oxidised phospholipids 

were probably from circulating oxidised LDL (Supplementary Fig. 4B). 

Metabonomics: Muscle metabolite profiles were determined by 1H nuclear magnetic 

resonance spectroscopy. The scores plot from the PCA model revealed distinct metabolic 

signatures among experimental groups (Fig. 4A). WT WD and ApoE-/- ND mice appeared to 

have common metabolic profiles however, the combination of genotypic and dietary 

differences in the WT ND and ApoE-/- WD mice resulted in remarkable metabolic differences 

in the muscles of these mice. Unsupervised hierarchical clustering analysis of the metabolic 

variation that was associated with the different genotypes and dietary regimes is presented 

in Figure 4B. WT ND and ApoE-/- WD mice form the most distinct clusters in the clustergram 

whereas WT WD and ApoE-/- ND share a great degree of metabolic similarity. Metabolic 

differences originate in increases in taurine, creatine and lysine in ApoE-/- WD (Fig. 4B) and 

concomitant decreases in branched chain amino acids (valine, leucine, isoleucine), choline 

metabolites (dimethylglycine, TMA), 3- and 4- hydroxybutyrate, intermediates of oxidative 

metabolism (succinate, malate, citrate) and products of glycolytic metabolism (lactate). 

Decreases in anserine, AMP, malonate, glycerol, NAD+, tyrosine, aspartate, glucose and 

acetate were also observed in the muscles of ApoE-/- mice fed a Western-type diet. 

 

The impact of Western-type diet and ApoE deficiency in skeletal muscle oxidative 

stress  
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Ectopic lipid accumulation is linked to increased oxidative stress and pathogenesis [44, 45]. 

We found significantly higher mRNA levels of Nox2, Tnfα and Il1b - involved in oxidative 

stress and inflammation - in gastrocnemius muscle of all experimental groups compared to 

WT ND (Fig. 5A). There were significantly lower mRNA levels for a number of known 

antioxidant genes; glutathione peroxidase 1 (Gpx1), glutathione peroxidase 4 (Gpx4), 

peroxiredoxin 1 (Prdx1), superoxide dismutase 1 (Sod1) and microsomal Glutathione S-

Transferase 1 (Mgst1) in response to diet (Gpx1, Gpx4, Prdx1 and Mgst1) and ApoE 

deficiency (Gpx4, Prdx1, and Mgst1) (Fig. 5A). Catalase mRNA levels were however over 

400% upregulated in response to either ApoE deficiency or diet (Fig. 5A). Transcript levels 

of two DNA repair enzymes [Poly (ADP-ribose) polymerase 1 (Parp1) and 8-Oxoguanine 

glycosylase (Ogg1)] were significantly higher in all three groups (WT WD, ApoE-/- ND and 

ApoE-/- WD) compared to WT ND (Fig. 5A). These findings suggest perturbations in genes 

regulating oxidative stress, inflammation, antioxidant properties and DNA repair of the 

skeletal muscle in response to ApoE deficiency and Western-type diet without any 

interaction between these two factors. 

Dihydroethidium (DHE) staining as a read out of free radicals revealed significantly higher 

levels in response to ApoE deficiency or Western-type diet (Fig. 5B). Superoxide 

quantification by LC-MS showed higher levels in response to Western-type diet 

(Supplementary Fig. 5A). Specimen treatment with the free-radical scavenger polyethylene 

glycol-superoxide dismutase (PEG-SOD) revealed, as expected, no DHE staining indicative 

of staining specificity (Supplementary Fig. 5B). Consistent with the finding of increased free 

radicals, significantly higher levels of protein carbonyls and tyrosine nitration, as well as lipid 

peroxidation by means of TBARS and 4-hydroxy-2-nonenal (4HNE) adducts were found in 

the quadriceps and TA of WT WD, ApoE-/- ND and ApoE-/- WD as compared to WT ND (Fig. 

5C-E, Supplementary Fig. 5C-E). 

Evidence suggests that increased ROS production in the aorta is accompanied by 

upregulation of extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) and p38 



15 

 

mitogen-activated protein kinases (MAPKs) in response to high-fat diet as well as 

atherosclerosis [46, 47]. Therefore, we determined the phosphorylation levels of various 

MAPKs in the skeletal muscle using a phospho-MAPK array kit [48]. We found that 

phosphorylation levels of ERK1 and ERK2 were increased in response to genotype and diet 

(Supplementary Figure 6A). Phosphorylation levels of p38α, γ and δ were increased only 

in the WT WD group (Supplementary Figure 6A). To validate the findings for p38, 

immunoblotting for phospho- and total levels of p38 was conducted. Indeed, phosphorylation 

of p38 MAPK was increased only in the WT WD group (Supplementary Figure 6B). 

Furthermore, phosphorylation levels of protein kinase B (Akt) isoforms, total Akt, Glycogen 

synthase kinase-3 alpha and beta (Gsk3α/β) as well as cAMP response element binding 

protein (CREB) were upregulated in response to both ApoE deficiency and western-type 

diet. MKK6 phosphorylation was increased two-fold by western-type diet in both genotypes 

(Supplementary Figure 6A). 

Staining of muscle specimens with an antibody against 8-OHdG, an oxidised derivative of 

deoxyguanosine, showed increased fluorescence in WT WD and ApoE-/- WD muscles 

compared to WT ND (Supplementary Fig. 7). Given the increased transcript levels of Tnfα 

in all groups compared to WT ND, we also studied macrophage infiltration in skeletal muscle 

by conducting F4.80 staining. There was no evidence of macrophage infiltration in skeletal 

muscle in any of the experimental groups (Supplementary Figure 8). Taken together, these 

findings show that ApoE deficiency and Western-type diet independently increase oxidative 

stress in skeletal muscles originating in high ROS, protein carbonylation, tyrosine nitration, 

lipid peroxidation and DNA damage. 

 

Western-type diet and ApoE deficiency promote the development of liver steatosis, 

inflammation and oxidative stress 

Given the robust data of increased oxidative stress in skeletal muscle of mice subjected to 

either Western-type diet or ApoE deficiency and increased intramuscular lipid accumulation, 
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we next sought to establish whether there was evidence of steatosis, inflammation or 

oxidative stress in another metabolically active organ, the liver. Oil Red O staining provided 

strong evidence of liver steatosis in response to Western-type diet and ApoE deficiency, 

while fat droplets were largest in ApoE-/- WD, revealing a synergistic effect of ApoE 

deficiency and dietary challenge (Supplementary Fig. 9A). We also found evidence of 

inflammation by increased macrophage accumulation in the liver in response to both diet 

and ApoE deficiency (Supplementary Fig. 9B). Transcript levels of genes regulating fatty 

acid uptake and oxidation were significantly higher in response to both ApoE deficiency and 

diet (Cd36, Stearoyl-CoA desaturase; Scd1) or in response to ApoE deficiency only 

(Hydroxyacyl-CoA dehydrogenase; Had and Lipoprotein lipase; Lpl) (Supplementary Fig. 

9C). There were large inter-individual differences within experimental groups for 

inflammatory genes (Tnfα, Mcp1 and F4.80) and significantly higher levels were evident only 

in wild-type mice subjected to Western-type diet (Tnfα, Mcp1) (Supplementary Fig. 9C).  

DHE staining showed increased fluorescence in ApoE-/- WD compared to WT ND 

(Supplementary Fig. 10A). Conversely, mRNA levels of antioxidant genes (Gpx1, Gpx4, 

Sod1, Sod2 and Prdx1), lipid peroxidation levels, assessed by means of TBARS, and protein 

carbonyls were not significantly altered by diet or genotype (Supplementary Fig. 10B-C). 

However, there was evidence of significantly higher tyrosine nitration in ApoE deficient mice 

independent of their dietary status for a protein at 25kDa (Supplementary Fig. 10D). Lastly, 

4HNE adducts in histidine residues were higher in response to both ApoE deficiency and 

Western-type diet (Supplementary Fig. 10E).  

 

The impact of NADPH oxidase 2 inhibition on levels of oxidative stress in skeletal 

muscle and the liver of ApoE deficient mice 

NADPH oxidases are known to be key players in ROS production and induction of cellular 

oxidative stress [20]. Nox2 inhibition has been employed as a tool to reduce oxidative stress 

in the aorta of atherosclerotic mice [21, 31]. We determined the impact of Nox2 
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pharmacological inhibition by means of the Nox2ds-tat peptide on the levels of oxidative 

stress seen in ApoE-/- mice exposed to a Western-type diet (Fig. 6A). DHE staining was 

significantly lower in skeletal muscle of Nox2ds-tat treated mice compared to scrambled 

peptide (Fig. 6B). There was no effect on the mRNA levels of antioxidant genes (data not 

shown), but we found significantly lower mRNA levels of Parp1 (Fig. 6C). We next examined 

the effect of Nox2 inhibition on oxidative protein modifications in two skeletal muscle beds. 

Nox2 inhibition resulted in significantly lower levels of protein carbonylation in the quadriceps 

and tibialis anterior without any effect on tyrosine nitration or 4HNE adducts in histidine 

residues (Fig. 6D and Supplementary Fig. 11A). Interestingly, we found reduced 8-OHdG 

immunofluorescence (Supplementary Fig. 11B), in the absence of any other differences in 

response to Nox2ds-tat treatment in terms of body weight, fibre type, SDH activity, capillary 

density in EDL and TA muscles and intramuscular triacylglycerol contents (Supplementary 

Fig. 12A-E). 

We also sought to determine whether treatment with Nox2ds-tat peptide revealed no 

differences in the levels of steatosis and macrophage accumulation in the liver (Fig. 7A-B). 

Except for a decrease of the DHE staining there was no significant difference in oxidative 

protein modifications in response to Nox2 inhibition (Fig. 7C-E). These findings suggest that 

Nox2 inhibition did not exhibit any major effect on oxidative stress, steatosis and 

inflammation in the liver. Therefore, we propose here that ApoE deficiency combined with an 

atherogenic diet leads to hyperlipidaemia, ectopic fat accumulation and oxidative stress. In 

turn, Nox2 inhibition can mitigate oxidative stress in skeletal muscle but not the liver.  

 

Discussion 

The obesity-independent impact of hyperlipidaemia and atherosclerosis has only recently 

gained scientific attention [6, 49]. Thus, it is unclear whether hyperlipidaemia and 

atherosclerosis affect skeletal muscle biology in the absence of obesity, since, in most 

studies, obesity and other comorbidities are present [50, 51]. Here, we sought to determine 
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for the first time whether hyperlipidaemia and atherosclerosis impact on skeletal muscle 

metabolic and redox homeostasis in the absence of obesity. The differential effect of 

western-type diet on body mass of ApoE-/- and WT mice reported here appears to be in 

contrast with a previous study where ApoE-/- mice gained more body weight compared to WT 

mice on a western-type diet [52]. However, our findings are in line with several previous 

studies showing that ApoE-/- mice gain less body weight on a western-type or high-fat diet as 

compared to wild-type mice [16, 18, 53, 54]. In addition, ApoE deficiency on an obese 

background shows a milder weight gain as compared to obese mice [55, 56]. This may 

possibly be explained by both lower synthesis and increased hydrolysis of triacylglycerols 

from ApoE-/-adipocytes [16, 18, 57]. 

Expression of specific myosin isoforms is considered as a major determinant of both 

contractile and metabolic properties which, in turn, are controlled by distinct signalling 

pathways [40]. Of note, the effect of a high-fat diet supplemented with cholesterol on skeletal 

muscle morphology has not been investigated so far. We have shown that ApoE deficiency 

results in a partial fibre type transition from IIB to IIX independent of dietary challenge. From 

a biological point of view this may represent a functional adaptation to a hyperlipidaemic 

environment, where the fast-twitch glycolytic IIB fibres are not able to obtain energy from fat 

in contrast to fast-twitch IIX fibres that can rely on oxidative metabolism [40]. Western-type 

diet in wild-type mice induced a transition to more oxidative myofibres only in the soleus. 

Numerous studies have investigated the effect of high-fat diet on skeletal myofibre 

composition of wild-type mice, with contrasting results [58-62]. This discrepancy may be 

accounted for by differences in diet composition (i.e. percentage of total energy from fat and 

type of fatty acids) and the particular muscle beds examined [63].  

In turn, coordinated changes between myofibre type and mitochondrial oxidative capacity 

are not uncommon under physiological conditions [64]. However, the present study has 

shown that under hyperlipidaemic and atherosclerotic conditions, a transition to slower 

myofibres is not accompanied by a concomitant increase in mitochondrial activity, possibly 
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due to metabolic perturbations or mitochondrial dysfunction (as shown below by 

metabonomics). 

Capillaries supply myofibres with oxygen and nutrients and their number may change in 

response to altered oxygen and nutrient demands of the myofibre [40]. ApoE deficiency and 

Western-type diet independently induced a higher capillary-to-fibre-ratio in the glycolytic EDL 

and superficial TA, followed by increased mRNA levels of key angiogenic factors. These 

findings may be explained by recent data suggesting that local capillarisation is determined 

by the size and metabolic products of the myofibre [65, 66].  

Indeed, myofibre cross-sectional area was larger in response to ApoE deficiency and 

hypertrophic myofibres were observed in all muscle beds studied independently of the 

individual muscle metabolic phenotype. ApoE deficiency, combined with diet had a 

synergistic effect on myofibre size (Fig. 1D). Changes in myofibre size were accompanied 

by increased mRNA levels of the major skeletal muscle fatty acid transporters and 

intramuscular lipid accumulation, indicating that ectopic lipid accumulation and/or myofibre 

transition towards slower types may both account for the enlarged myofibres. Surprisingly, 

the increase in plasma membrane-bound CD36 was greater in wild-type mice on Western-

type diet than in ApoE-/- mice irrespective of the administered diet. This may be explained by 

the absence of previous high-fat exposure of cells in wild-type mice, which resulted in 

stronger upregulation of Cd36 than in cells of ApoE-/- mice which had been exposed to high 

plasma levels of atherogenic lipids since early life. In support of this notion, ApoE-/- mice 

exhibited 100% higher in CD36 gene and protein expression in the heart at the age of 6 

weeks compared to wild-type mice, whereas at the age of 20 weeks, CD36 gene and protein 

expression were only 30% and 40% higher respectively [67]. Another possible explanation is 

that ApoE deficiency affects CD36 gene and protein expression in skeletal muscle indirectly. 

However, further research is needed to elucidate the exact mechanisms, since ApoE is 

present not only in capillaries but also in skeletal muscle stem cells [68, 69]. Gas 

chromatography for triacylglycerol fatty acid composition revealed significantly higher levels 
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in saturated fatty acids mainly in the Western-type diet groups. This finding recapitulates 

unfavourable intramuscular lipid changes attributed mainly to the dietary challenge as 

described previously [63, 70]. 

Absence of striking changes in phospholipid fatty acid composition was followed by 

investigation of the abundance of oxidised phospholipids. Oxidised phospholipids are key 

players in the development of chronic inflammatory disease [43]. Oxidised phospholipids 

were found mostly in ApoE-/- WD muscles and they were localised in muscle capillaries. It 

has been shown that ApoE-/- mice have a transient increase in plasma oxidised LDL at the 

age of 20 weeks old, which coincides with the age of the mice of the present study [71]. This 

may explain the high abundance of oxidised phospholipids in ApoE muscles given that 

ApoE-/- mice have oxidised LDL that is exacerbated by Western-type diet. 

Considering the intramuscular lipid accumulation and concomitant positive myofibre 

remodelling, we investigated the metabolic signature of skeletal muscle. Previous studies in 

wild-type mice on a high-fat diet have shown that accumulation of intramyocellular lipids 

leads to increase, decrease or no effect on fatty acid oxidation and mitochondrial respiration 

[61, 72-75]. This lack of agreement may be attributed to factors, such as age of the animals 

at diet commencement, sex and strain of mice, duration and composition of diet. 

Metabonomic analysis unveiled a reduction of lactate, metabolites of tricarboxylic acid cycle 

(malate, citrate and succinate) and branched-chain amino acids in response to either ApoE 

deficiency or Western-type diet. Importantly, ApoE deficiency combined with atherogenic diet 

had the most profound impact on skeletal muscle metabolites. Thus, it can be assumed that 

there may be a shift in energy production at the expense of anaerobic carbohydrate 

breakdown (i.e. lactate), indicating skeletal muscle metabolic perturbations. Furthermore, the 

creatine increase in response to both ApoE deficiency and Western-type diet may be linked 

to a previously reported antioxidant effect [76]. Taurine, a peptide implicated in antioxidant 

defence and stress responses, was increased in response to either ApoE deficiency or 

Western-type diet and was greatest in the ApoE-/- WD group [33, 77]. This increase may be 
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useful to scavenge products of oxidation due to lipid accumulation. On the other hand, 

anserine, a peptide also involved in antioxidant defence was increased in response to 

Western-type diet in wild-type mice and ApoE deficiency but was decreased in ApoE-/- mice 

when administered a Western-type diet, possibly due to impaired redox homeostasis [33, 

37]. Taken together, our findings indicate that the transition to slower myofibres and 

enhanced capillarisation caused by ApoE deficiency and Western-type diet, possibly as a 

compensation for the excess fat, were not adequate to increase the utilisation of the excess 

fat, as shown by decreased metabolites of the tricarboxylic acid cycle and subtle effects on 

SDH activity, suggesting that there may be impaired fatty acid β oxidation.  

Similarly, ectopic fat accumulation was evident in the liver in line with previous studies [18, 

78, 79]. Steatosis was accompanied by increased mRNA levels of genes involved in fatty 

acid uptake and oxidation as well as hepatic inflammation that was not aggravated by 

Western-type diet. This finding suggests that ApoE deficiency alone is a major contributor in 

development of inflammation independent of diet as reported previously [78]. Overall, our 

data support the notion that hyperlipidaemia is the main factor for the development of 

hepatic steatosis and inflammation and a diet supplemented with cholesterol exacerbates 

steatosis and increases genes involved in fatty acid metabolism.  

Ectopic fat accumulation has been associated with redox imbalance in skeletal muscle of 

wild-type mice on high-fat diet [51, 80]. We provide robust evidence that ApoE deficiency 

and Western-type diet separately induce skeletal muscle oxidative stress as shown by 

increased ROS production, perturbed antioxidant gene expression and elevated oxidative 

protein modifications in quadriceps and tibialis anterior. This finding is expanded by evidence 

on increased DNA damage in response to Western-type diet and elevated mRNA levels of 

DNA-repair enzymes in response to either ApoE deficiency or Western-type diet. 

Consequently, it can be concluded that hyperlipidaemia and atherosclerosis induce oxidative 

stress in skeletal muscle. However, the diet appears to have a more profound effect on DNA 

damage. Conversely, increased oxidative modifications of hepatic proteins appear to depend 
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more on the genotype. This finding is in agreement with previous studies that reported 

increased markers of hepatic oxidative stress in ApoE deficient mice compared to wild-type 

mice [13, 78].  

In this study, phosphorylation of ERK1/2 and CREB was upregulated by ApoE deficiency 

and western-type diet, whereas phosphorylation of p38α and γ was upregulated by western-

type diet only in the wild type mice. MAPKs are important regulators of various cellular 

functions, such as proliferation, differentiation and survival [81]. ERK and p38, are known to 

be activated by oxidative stress and Nox2 has been previously shown to upregulate vascular 

MAPKs in rats administered high-fat diet [46, 82]. Similarly, free fatty acids induce 

upregulation of the above MAPKs both in C2C12 cells and high-fat diet in humans [83, 84]. 

Collectively, these data indicate that the effects of western-type diet can, at least in part, be 

mediated by MAPKs (ERK1/2, p38 and CREB) highlighting their potential role in adult 

skeletal muscle maintenance [85, 86]. 

Surprisingly, there was not any did not have a cumulative effect of western-type diet on 

skeletal muscle of ApoE-/- mice for most parameters studied apart from metabonomics and 

triacylglycerol species. However, these findings are in line with previous studies that 

reported similar findings on skeletal muscle of ApoE-/- mice on either a standard chow or 

high-fat diet [13, 16]. In both studies, high-fat diet in ApoE-/- mice failed to induce any 

cumulative effect on skeletal muscle markers of oxidative stress and inflammation. We 

showed that ApoE-/- mice under basal conditions (i.e. chow diet) have enhanced fat contents 

but greater lipid accumulation in skeletal muscle under WD was not evident. This 

assumption is further supported by the unaltered expression of CD36 in ApoE-/- mice on a 

WD compared to ApoE-/- mice on a chow diet. Further investigation is needed to gain a 

mechanistic insight on how western-type diet and ApoE deficiency affect cholesterol 

accumulation in skeletal muscle.     

Based on the studies that show an important role of Nox2 in ROS production, we examined 

whether Nox2 inhibition would attenuate oxidative stress in skeletal muscle and protein 
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modifications in the liver [24, 87, 88]. Consistent with our hypothesis, Nox2 inhibition had a 

striking effect on oxidative stress in skeletal muscle by reducing superoxide production and 

protein carbonylation. Protein 4HNE adducts and tyrosine nitration were not altered, 

suggesting that other enzymes contribute to oxidative stress. Transcriptional levels of the 

proinflammatory cytokine Tnfα were also decreased. Therefore, Nox2 is a major contributor 

of ROS production and oxidative damage in skeletal muscle of ApoE-/- mice. Nox2 inhibition 

had no impact on myofibre composition which is to be expected given the duration of the 

treatment and the low turn-over rate of MHC. Moreover, Nox2 inhibition did not appear to 

impact on hepatic steatosis, inflammation or oxidative protein modifications in the liver. 

However, it cannot be ruled out that the duration of treatment in the present study may have 

not been sufficient to induce changes in hepatic physiology. It can be assumed that the lack 

of changes in the liver of ApoE-/- mice treated with the Nox2ds-tat inhibitor may be attributed 

to: i) the duration of treatment or the chosen dosage not being sufficient to induce changes 

in the liver or ii) Nox2 not being a prominent source of hepatic oxidative modifications in 

ApoE-/- mice. 

 

Conclusions 

This is the first study to investigate in depth the obesity-independent effect of 

hyperlipidaemia and atherosclerosis on skeletal muscle biology. Hyperlipidaemia and 

atherosclerosis, independent of obesity, induced intramuscular lipid accumulation. Skeletal 

muscle, as a highly adaptive tissue, responded with enhanced capillarisation and a transition 

to more oxidative myofibres. However, this adaptation was not sufficient to overcome the 

lipid accumulation that, at least partially, led to decreased mitochondrial metabolites and 

increased oxidative stress. Treatment with a potential Nox2 inhibitor resulted in attenuation 

of muscle oxidative stress, demonstrating that Nox2 is an important contributor to skeletal 

muscle oxidative stress under hyperlipidaemic conditions. Our results have translational 

implications for the use of muscle-targeted treatment to attenuate oxidative stress.  
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Figure 1. ApoE deficiency and Western-type diet induce a mild transition to oxidative 

myofibres. Myofibre composition and myofibre size in tibialis anterior was assessed in 

C57Bl/6J (wild-type, WT) and ApoE-/- mice fed a standard chow diet (normal diet, ND) or 

Western-type diet (WD) for 12 weeks. (A) Representative images of MHC immunostaining in 

superficial and deep TA (x10 magnification, scale bar 200 µm). (B) Quantification of myofibre 

type in superficial and deep tibialis anterior. Data are expressed as mean ± SD. (C) 

Representative images of MHC immunostaining in superficial and deep tibialis anterior (x20 

magnification, scale bar 100 µm). Arrow heads show type IIX myofibres and asterisks show 

hybrid IIX/IIA myofibres. (D) Quantification of myofibre size in superficial and deep TA. Data 

are expressed as frequency distribution. Statistical analysis was performed by two-way 

ANOVA for myofibre type (Main effects: Genotype: p<0.01 for MHCIIB and MHCIIX; Diet 

p<0.01 for MHCIIB, and MHCIIA; Interaction; p=0.042 for MHCIIX in deep TA) followed by 

the Bonferroni post hoc tests for myofibre type and by χ2 square for myofibre size 

distribution, *p<0.05, **p<0.01, ***p<0.001 vs WT ND, #<0.05 vs ApoE-/- ND and ¶<0.05 vs 

WT WD (n=6/group). In superficial TA: WT WD versus WT ND: χ2=8.105;df=9;p=0.524 for 

type IIB and χ2=17.217;df=6;p<0.01 for type IIX. For ApoE-/- ND versus WT ND; 

χ2=8.078;df=9;p=0.526 for type IIB and χ2=17.957;df=6;p<0.01 for type IIX. ApoE-/- WD 

versus WT ND: χ2=17.116;df=11;p=0.104 for type IIB and χ2=21.201;df=7;p<0.01 for type 

IIX. Moreover, ApoE-/- WD versus ApoE-/- ND; χ2=30.787;df=12;p=0.064 for type IIB and 

χ2=19.863;df=7;p<0.01 for type IIX. In deep TA: WT WD versus WT ND; 

χ2=15.372;df=8;p<0.05 for type IIB, χ2=41.191;df=9;p<0.001 for type IIX and 

χ2=11.065;df=9;p=0.064 for type IIA. ApoE-/- ND versus WT ND; χ2=8.568;df=8;p=0.38 for 

type IIB, χ2=36.292, df=10, p<0.01 for type IIX and χ2=4.507;df=8;p=0.809 for type IIA. 

ApoE-/- WD versus WT ND; χ2=14.962;df=7;p<0.01 for type IIB, χ2=42.547;df=9;p<0.001 for 

type IIX and χ2=29.592;df=9;p<0.001 for type IIA. ApoE-/- WD versus ApoE-/- ND: 

χ2=3.696;df=8;p=0.883 for type IIB, χ2=4.844;df=9, p=0.848 for type IIX and 

χ2=27.910;df=9;p<0.05 for type IIA. 
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Figure 2. ApoE deficiency and Western-type diet induce an increase in capillary 

density and angiogenic gene expression. Capillary density of skeletal muscle was 

assessed in C57Bl/6J (wild-type, WT) and ApoE-/- mice fed a standard chow diet (normal 

diet, ND) or Western-type diet (WD) for 12 weeks. (A) Representative images of CD31 

immunostaining - a marker of endothelial cells - and laminin - a protein of the extracellular 

matrix - in EDL and superficial TA (x20 magnification, scale bar 100 µm). (B) Quantification 

of capillary density in EDL and superficial TA muscles. Data are expressed as mean ± SD. 

(C) mRNA levels of key angiogenic factors in the gastrocnemius. Data are expressed as 

mean ± SD and shown as fold increase relative to WT ND in arbitrary units. Statistical 

analysis was performed by two-way ANOVA (Main effects: Genotype: p<0.05 for CD31 in 

both muscles; Diet p<0.05 for CD31 in both muscles and Vegfa165 and Fgf1; Interaction; 

p<0.01 for CD31 in both muscle beds and Fgf1 gene) followed by Bonferroni post hoc tests, 

*p<0.05, **p<0.01, ***p<0.001 vs WT ND, #<0.05 vs ApoE-/- ND and ¶<0.05 vs WT WD 

(n=6/group).  
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Figure 3. ApoE deficiency and Western-type diet increase independently 

intramyocellular fat content. Ectopic fat accumulation in skeletal muscle was assessed in 

C57Bl/6J (wild-type, WT) and ApoE-/- mice fed a standard chow diet (normal diet, ND) or 

Western-type diet (WD) for 12 weeks. (A) mRNA levels of genes involved in fatty acid 

transport and lipid droplet regulation. Data are expressed as mean ± SD and shown as fold 

increase relative to WT ND in arbitrary units. (B) Representative images of MHCIIB and 

CD36 in the TA (x20 magnification, scale bar 100 µm) and quantification of CD36 

fluorescence intensity. Data are expressed as mean ± SD. (C) Representative images of 

Bodipy staining for lipids in the Tibialis Anterior (x20 magnification, 100 µm for Bodipy 

staining). (D) Triacylglycerol (TG) content in tibialis anterior as determined by gas 

chromatography. Data are expressed as mean ± SD. Statistical analysis was performed by 

two-way ANOVA (Main effects: Genotype: p<0.05 for Fatp1 and Cidea, triacylglycerol 

content and CD36 fluorescence intensity; Diet p≤0.01 for Cd36 and Cidea, triacylglycerol 

content and CD36 fluorescence intensity; Interaction; p≤0.01 for Cd36 and Fatp1 and 
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triacylglycerol content) followed by Bonferroni post hoc tests, *p<0.05, **p<0.01, ***p<0.001 

vs WT ND, #<0.05 vs ApoE-/- ND and ¶<0.05 vs WT WD (n=6/group).  
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Figure 4. ApoE deficiency and Western-type diet independently induce changes in 

metabolic phenotype of skeletal muscle. (A) PCA scores plot of the metabolic profiles 
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obtained from skeletal muscle of C57Bl/6J (wild-type, WT) and ApoE-/- mice fed a standard 

chow diet (normal diet, ND) or Western-type diet (WD) for 12 weeks. (B) Unsupervised 

hierarchical clustering heat-map of the metabolites from the skeletal muscles of all mice. 

Each row represents a metabolite and each column represents a sample. The row Z-score 

of each metabolite is plotted, representing the intensity of each metabolite across samples 

(n=6/group).  
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Figure 5. ApoE deficiency and Western-type diet independently increase oxidative 

stress in skeletal muscle. Oxidative stress in skeletal muscle was assessed in C57Bl/6J 

(wild-type, WT) and ApoE-/- mice fed a standard chow diet (normal diet, ND) or Western-type 

diet (WD) for 12 weeks. (A) mRNA levels in the gastrocnemius of a gene involved in 

oxidative stress (Nox2), inflammatory genes (Tnfα, Il1b), antioxidant genes (Gpx1, Gpx4, 
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Prdx1, Sod1, Mgst1 and Cat) and genes involved in DNA repair (Parp1, Ogg1). Data are 

expressed as mean ± SD and shown as fold increase relative to WT ND in arbitrary units. 

(B) Representative images for free radical staining with 10 μM DHE and quantification of 

DHE fluorescence intensity (x20 magnification, scale bar 100 µm). (C) Protein carbonyl 

contents and TBARS assay in protein lysates of quadriceps. Data are expressed as mean ± 

SD after normalisation to protein content. (D) Immunoblot in protein lysates of quadriceps 

(QD) for tyrosine nitration (3NT). Data are expressed as mean ± SD and data are shown as 

fold increase relative to WT ND after normalisation to β tubulin. (E) Immunoblot in protein 

lysates of quadriceps for 4HNE adducts in histidine residues. Data are expressed as mean ± 

SD and shown as fold increase relative to WT ND after normalisation to β tubulin). Statistical 

analysis was performed by two-way ANOVA (Main effects: Genotype: p<0.05 for DHE 

fluorescence, for all protein oxidative modifications and all genes except for Sod1 and Gpx1; 

Diet p<0.05 for DHE fluorescence, TBARS, 3NT and 4HNE  protein oxidative modifications 

and all genes except for Tnfα and Ogg1; Interaction; p<0.05 for TBARS, carbonyls, 3NT and 

for all genes, except for Tnfα, Cat, Parp1 and Ogg1) followed by Bonferroni post hoc tests, 

*p<0.05, **p<0.01, ***p<0.001 vs WT ND (n=6/group). 
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Figure 6. Nox2ds-tat peptide decreases oxidative stress. (A) Oxidative stress was 

assessed in skeletal muscle of ApoE-/- mice fed Western-type diet (WD) for 12 weeks and 

treated with either Nox2ds-tat peptide (ApoE-/- WD + Nox2ds-tat) or scrambled peptide 

(ApoE-/- WD + scrambled) for the last 4 weeks of feeding. (B) Representative images for free 

radical staining was assessed with 10 μM DHE in the EDL (x20 magnification, scale bar 100 

µm) and superoxide production as measured by LC-MS. Data are expressed as mean ± SD 

in arbitrary units after normalisation to protein content. (C) mRNA levels of genes involved in 
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inflammation and DNA repair of modified bases. Data are expressed as mean ± SD and 

shown as relative fold increase ApoE-/- WD treated with scrambled sequence in arbitrary 

units. (D) Immunoblot in protein lysates of quadriceps for protein carbonylation. Data are 

expressed as mean ± SD and data are shown as fold change relative to ApoE-/- WD treated 

with scrambled sequence after normalisation to total protein content. Statistical analysis was 

performed by Student’s t test, *p<0.05, **p<0.01 vs ApoE-/- WD treated with scrambled 

sequence (n=6/group). 
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Figure 7. Nox2ds-tat peptide does not alleviate hepatic steatosis and inflammation 

and decreases ROS. Hepatic fat accumulation, inflammation and oxidative stress was 

assessed in ApoE-/- mice fed Western-type diet for 12 weeks and treated with either Nox2ds-

tat peptide (ApoE-/- WD + Nox2ds-tat) or scrambled peptide (ApoE-/- WD + scrambled) for the 

last 4 weeks of feeding. (A) Representative images of Oil Red O staining of lipids in the liver 

and quantification of lipid droplet size and frequency (x20 magnification, scale bar 100 µm). 

Data are expressed as percentage of lipid droplet size distribution. (B) Representative 

images of F4.80 staining in the liver and relative quantification of macrophages per area (x20 

magnification, scale bar 100 µm). Data are expressed as mean ± SD. (C) Representative 

images for free radical staining, assessed with 10μM DHE in the liver (x20 magnification, 

scale bar 100 µm) and quantification of fluorescence intensity in arbitrary units. Data are 

expressed as mean ± SD. (D) Immunoblot in liver protein lysates for 4HNE adducts in 

histidine residues and quantification of density. Data are expressed as mean ± SD and 

shown as fold increase relative to ApoE-/- WD group treated with scrambled sequence after 

normalisation to β tubulin in arbitrary units. (E) Immunoblot in liver protein lysates for 

tyrosine nitration (3NT) and quantification of density. Data are expressed as mean ± SD and 

shown as fold increase relative to ApoE-/- WD group treated with scrambled sequence after 

normalisation to β tubulin in arbitrary units. (F) TBARS assay and protein carbonyl content in 

liver. Data are expressed as mean ± SD. Statistical analysis was performed by Student’s t 

test for inflammation and oxidative stress assays with p<0.05 and by χ2 square for lipid 

droplet size distribution with χ2=11.34;df=5 and p=0.93 vs ApoE-/- WD treated with scrambled 

sequence (n=6/group).  
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Online supplementary file  

 

1. Detailed Methods 

Histology 

For succinate dehydrogenase (SDH) staining, transverse muscle sections of extensor 

digitorum longus (EDL), tibialis anterior (TA) and soleus were incubated in a sodium 

phosphate buffer containing 75 mM sodium succinate (Sigma-Aldrich, UK) and 1.1 mM 

nitroblue tetrazolium (Sigma-Aldrich, UK). Samples were then fixed in 4% paraformaldehyde 

(Sigma-Aldrich) and mounted with hydromount mounting medium (Fisher Scientific, UK).  

For Masson’s trichrome staining, sections were fixed with 4% PFA and subsequently 

incubated with 1% (v/v) acetic acid followed by incubation with azophloxine. Sections were 

then incubated with tungstophosphoric acid orange G solution and light green solution for 

collagen staining. Dehydration was performed by increasing concentrations of ethanol. 

Slides were incubated with HistoChoice clearing agent (Sigma-Aldrich, UK) and mounted 

with DPX (Fisher Scientific, UK). 

 

SDS PAGE and Immunoblotting 

Frozen muscles and liver were homogenised in RIPA lysis buffer containing 1% (v/v) 4-

nonylphenyl-polyethylene glycol (Sigma- Aldrich, UK), 10% (w/v) sodium dodecyl sulphate 

(SDS, Fisher Scientific, UK), 0.5% (w/v) sodium deoxycholate (Fisher Scientific, UK) and 

1XRoche Complete Protease Inhibitor Cocktail in PBS. 30 μg of muscle or liver protein 

extracts were resolved in 10% SDS-PAGE gels and transferred onto polyvinylidene 

difluoride membranes (Amersham, USA). Membranes were blocked for 60 minutes with 5% 

(w/v) milk dissolved in Tris-buffered-saline-Tween (0.1%) and incubated with primary 

antibodies. Chemiluminescent substrate 1 containing final concentrations of 2.5 mM luminol, 

0.45 mM P-Coumaric acid and 0.1 M Tris was mixed in a 1:1 ratio with Chemiluminescent 
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substrate 2 containing final concentrations of 0.1% (v/v) hydrogen peroxide (H2O2) and 0.1 M 

Tris for detection of signal. Blots were stripped using buffer containing 1.5% (w/v) SDS and 

glycine, pH 2 and were re-probed if necessary. Details of antibodies are given in 

Supplementary Table 2. For detection of protein carbonyls the Oxidized Protein Western Blot 

Detection Kit (Abcam, UK) was used according to the manufacturer’s instructions. 3-4 μg of 

muscle and liver protein lysates were denatured with 12% SDS and either derivatised with 

2,4-dinitrophenylhydrazine (DNPH) or treated with control solution for 15 minutes. The 

derivatisation was neutralised with addition of equal volume of neutralisation buffer. The 

derivatised samples and their controls were resolved in 10% SDS-PAGE gels and 

transferred onto polyvinylidene difluoride membranes. Membranes were blocked for 60 

minutes with 5% milk dissolved in PBS-Tween (0.05%) and incubated with anti-DNP primary 

antibody (1:5000) overnight. Subsequently, membranes were incubated with HRP 

conjugated secondary antibody (1:5000) and signal was detected with chemiluminescence.  

 

Intramuscular lipid contents by gas chromatography 

Intramuscular lipids were analysed by a combination of thin-layer chromatography and gas 

chromatography. Lipids were extracted from muscle samples with chloroform-methanol 2:1 

(v/v) in the presence of 0.005% (w/v) butylated hydroxytoluene, as an antioxidant, and fixed 

amounts of triheptadecanoyl glycerol (Sigma, St. Louis, MO), as triacylglycerol internal 

standard, and diheptadecanoyl phosphatidyl choline (Larodan, Solna, Sweden), as 

phospholipid internal standard. An aliquot of each lipid extract was spotted on a high-

performance silica gel plate (Macherey-Nagel, Düren, Germany), which was then developed 

in petroleum ether - diethyl ether - acetic acid 80:20:1 (v/v/v). Lipid spots were visualised 

under ultraviolet light after spraying the plate with 0.2% (w/v) dichlorofluorescein in ethanol. 

The triacylglycerol and phospholipid spots were scraped off and transferred to screw-cap 

tubes. Fatty acid methyl esters (FAMEs) were produced by the addition of 1 ml of methanol - 

sulfuric acid 96:4 (v/v) and heating at 64°C overnight. The FAMEs were then extracted with 
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1 ml of hexane and were separated in an Agilent 7890A gas chromatograph (Santa Clara, 

CA), equipped with a 30 m-long AT-WAX capillary column (Alltech, Deerfield, IL) and flame 

ionization detector. The column temperature was programmed from 140° to 270°C at 40°C 

min−1 and the run was held at 270°C for 4 min. The carrier gas was helium at a flow rate of 

1.6 ml min−1. FAMEs were quantified in the chromatograms obtained with the aid of the 

Agilent ChemStation software by comparing the area under their peaks to that of methyl 

heptadecanoate (derived from the internal standards). 

 

1H NMR spectroscopy-based metabonomic analysis 

Aqueous metabolites were extracted from gastrocnemius muscle. 40-50 mg of muscle tissue 

were snap frozen in liquid nitrogen and finely ground in 300 μL of chloroform: methanol 2:1 

(v/v) using a tissue lyser. The homogenate was combined with 300 μL of water, vortexed 

and centrifuged (13,000 x g for 10 minutes) to separate the aqueous (upper) and organic 

(lower) phases. The water and methanol from the aqueous phase was removed using a 

vacuum concentrator (SpeedVac) before reconstitution in 550 μL of phosphate buffer (pH 

7.4) in D2O containing 1 mM of the internal standard, 3-(trimethylsilyl)-[2,2,3,3,-2H4]-

propionic acid (TSP).  

For each sample, an one-dimensional NMR spectrum was acquired with water peak 

suppression using a standard pulse sequence (recycle delay (RD)-90°-t1-90°-tm-90°-acquire 

free induction decay (FID). RD was set as 2 s, the 90° pulse length was 12.06 μs, and the 

mixing time (tm) was 10 ms. For each spectrum, 4 dummy scans were followed by 64 scans 

with an acquisition time of 2.7 s per scan and collected in 64K data points with a spectral 

width of 12.001 ppm. 1H nuclear magnetic resonance (NMR) spectra were manually 

corrected for phase and baseline distortions and referenced to the TSP singlet at δ 0.0. 

Spectra were digitised using an in-house MATLAB (version R20016a, The Mathworks, Inc.; 

Natwick, MA) script. To minimise baseline distortions arising from imperfect water saturation 
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the region containing the water and TSP resonances was excised from the spectra. Principal 

components analysis (PCA) was performed with Pareto scaling in MATLAB using in-house 

scripts. 

 

TBARS, protein carbonyls and phospho-MAPK Proteome Profiler Array 

Thiobarbituric Acid Reactive Substances (TBARS) were evaluated with the OXItek TBARS 

Assay Kit (Enzo Life Sciences, USA) according to the manufacturer’s instructions. The 

product of thiobarbituric acid plus malondialdehyde (MDA) was measured by fluorometry 

with excitation at 530 nm and emission at 590 nm in a TECAN Infinite M200 plate reader 

(Tecan, Switzerland). The TBARS values were normalised to protein content.  

Protein carbonyl content was assayed in whole muscle and liver lysates with the Protein 

Carbonyl Content Assay Kit (Sigma-Aldrich, UK) according to the manufacturer’s 

instructions. Muscle and liver lysates were treated with 10% Streptozocin for 15 minutes 

followed by derivatisation with DNPH for 10 minutes. The derivatised proteins were 

precipitated with 20% trichloroacetic acid and the pellets were washed with acetone for 

removal of free DNPH prior to resolubilisation in 6 M guanidine solution. Carbonyl content 

was measured spectrophotometrically at 375 nm in a TECAN Infinite M200 plate reader 

(Tecan, Switzerland). Results were calculated as nmol carbonyl/mg protein using an 

extinction coefficient of 22,000 M-1 cm-1.  

MAPK phosphorylation was determined with the human phospho-MAPK proteome profiler 

array according to the manufacturer’s instructions (R&D, UK). Pooled samples of three 

quadriceps muscles from the same experimental group were homogenised in lysis buffer 

and adjusted to 300 mg protein per 300 mL lysate. Signals were detected with 

Chemiluminescent Substrate.  
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DHE staining and Liquid Chromatography Mass Spectrometry (LC-MS) detection of 2-

hydroxyethidium 

Muscle and liver tissues were incubated with 5 µmol/L of dihydroethidium (DHE) in PBS, for 

30 min at 37°C and were subsequently washed with PBS and mounted. For LC-MS analysis, 

muscle sections were stained with DHE and washed with PBS-

diethylenetriaminepentaacetic acid (DTPA). Four volumes of methanol were added to the 

tissues followed by incubation at -20°C overnight. The resulting lysates were centrifuged at 

15,000 x g for 10 minutes at 4°C. The supernatant was evaporated to dryness using a 

vacuum concentrator (Genevac MiVac, Genevac, Ipswich, UK), and the resulting residue 

was dissolved in 1:1 water:stabilisation solution (33.3% methanol, 5 µmoL/L final 

concentration fluorescein internal standard, 0.1 mmoL/L-DTPA, and 5 mmoL/L sodium 

ascorbate) with a final volume of 120 µL for LC-MS analysis. The pellet was dissolved in 50 

µL of sodium hydroxide (0.1 M) and the protein content quantified using the Pierce™ BCA 

Protein Assay Kit (ThermoFisher Scientific, USA) as directed by the manufacturer. For LC-

MS analysis of DHE oxidation products, the specific superoxide reaction product 2-

hydroxyethidium (2-OH-E+) was detected at an m/z ratio of 330.3. Separation was achieved 

using a Shimadzu prominence LC20 quaternary pump and autosampler, a Shimadzu CTO10 

column oven, and an Agilent Eclipse XDBMC18 column (5 µm, 4.6 x 150 mm) at a flow rate 

of 0.5 mL/min. Fluorescein was used as an internal standard, at an m/z ratio of 333.0 and a 

retention time of 11.25 minutes. Peaks corresponding to 2-OH-E+ and fluorescein were 

integrated and peak areas were calculated. The ratio of 2-OH-E+ to fluorescein was 

normalised to the total protein content. 
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2. Supplementary Tables 

Supplementary Table 1. Primary and secondary antibodies for immunofluorescence 

Antigen  Species  Dilution Supplier, Cat Number 

MHCI Mouse 1:1 DSHB A4.840 

MHCIIA Mouse 1:200 DSHB  A4.74 

MHCIIB Mouse 1:1 DSHB  BF.F3 

Laminin Rabbit 1:400 Sigma L9393 

CD31 Rat 1:40 AbD serotec MCA2388 

F4.80 Rat  1:100 Bio-RAD MCA4978 

CD36 Rabbit 1:100 Novus Biologicals NB400-144 

3NT Mouse 1:500 Santa Cruz 32757 

8-OHdG Mouse 1:100 Santa Cruz 393871 

E06 Mouse 1:100 Avanti lipids 330002S  

Alexa fluor 633 anti-mouse  Goat 1:200 Life Technologies A20146 

Alexa fluor 488 anti-mouse  Goat 1:200 Life Technologies A11029 

Alexa fluor 488 anti-rabbit Goat 1:200 Life Technologies A11034 

Alexa fluor 594 anti-rabbit Goat 1:200 Life Technologies A11037 

  

Supplementary Table 2. Primary and secondary antibodies for immunoblotting 

Antigen  Species  Dilution  Supplier, Cat Number 

3NT Mouse 1:200 Cayman 189542  

4HNE Mouse 1:1,000 R&D Systems MAB3249 

p-p38 Mouse 1:1000 Santa Cruz 166182 

p38 Mouse 1:800 Santa Cruz 7972 

β tubulin Mouse 1:1,000 EMD Millipore 05-661 

HRP Conjugated anti-mouse  Goat 1:10,000 Sigma A9044  
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Supplementary Table 3. qPCR primers sequence 

Oligo 
Name 

Forward Reverse 

Catalase GGATTATGGCCTCCGAGATCTT TAAAACGTCCAGGACGGGTAA 

Cd36 AGATGACGTGGCAAAGAACAG CCTTGGCTAGATAACGAACTCTG 

Cidea CATGGTTTGAAACTCGAAAAGGG TGACATTCATGGGATTGCAGAC 

Cyp TGGAGAGCACCAAGACAGACA TGCCGGAGTCGACAATGAT 

Fatp1 AGGTCAATGAGGACAACGATGGAG CTGGTACATTGAGTTAGGGTCCAAC 

Fgf1 GAAGCATGCGGAGAAGAACTG CGAGGACCGCGCTTACAG 

F4.80 CTGCACCTGTAAACGAGGCTT GCAGACTGAGTTAGGACCACAA 

Gpx1 AATGTCGCGTCTCTCTGAGG TCCGAACTGATTGCACGGG 

Gpx4 GCCTGGATAAGTACAGGGGTT CATGCAGATCGACTAGCTGAG 

Had GCTGGGCCTAACTTTGAGTATG CAAAATCAGCGTCATCAGGAGAA 

Hprt  GCTCGAGATGTCATGAAGGAGAT AAAGAACTTATAGCCCCCCTTGA 

LPL  GCTGGGCCTAACTTTGAGTATG  CAAAATCAGCGTCATCAGGAGAA 

Mcp1 TAAAAACCTGGATCGGAACCAAA GCATTAGCTTCAGATTTACGGGT 

Mgst1 CCTCCTATGCAACGATCATTCTT ACCTTGTTGGTTATCCCTCTGG 

Nox2 TGAATGCCAGAGTCGGGATT CGAGTCACGGCCACATACA 

Ogg1 CAACAACATTGCTCGCATTACTG TCAAGCTGAATGAGTCGAGGT 

Parp1 GGTCTTTAAGAGCGACGCTTAT TTCTGTGTCTTGACCATGCAC 

Prdx1 CTGGCATGGATTAACACACCC GGTGCGCTTGGGATCTGAT 

Scd1 TTCTTGCGATACACTCTGGTGC CGGGATTGAATGTTCTTGTCGT 

Sod1 TATGGGGACAATACACAAGGCT CGGGCCACCATGTTTCTTAGA 

Sod2 TGGACAAACCTGAGCCCTAAG CCCAAAGTCACGCTTGATAGC 

Tnfa CAGGCGGTGCCTATGTCTC CGATCACCCCGAAGTTCAGTAG 

Vegfa165 TGCAGGCTGCTGTAACGATG GAACAAGGCTCACAGTGATTTTCT 
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Supplementary Table 4. ApoE deficiency and Western-type diet independently alter 

intramuscular triacylglycerol distribution.  

  Wild type ApoE-/- 

  Normal Diet Western Diet Normal Diet Western Diet 

12:0 Lauric acid  0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.98 ± 0.19a,b,c 

14:0 Myristic acid 1.51 ± 1.39 5.47 ± 3.11 1.91 ± 2.34 6.8 ± 0.63a,b 

14:1n-9 Myristoleic 
acid 

0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 1.13 ± 0.18a,b,c 

15:0 Pentadecano
ic acid 

0.0 ± 0.0 0.56 ± 0.51 0.3 ± 0.32 0.93 ± 0.07a,b 

16:0 Palmitic acid 25.31 ± 2.78 28.39 ± 3.00 23.54 ± 2.24 23.56 ± 1.57 

16:1n-7 Palmitoleic 
acid 

11.96 ± 4.19 18.11 ± 2.03a 13.74 ± 3.62 17.86 ± 1.31a 

18:0 Stearic acid 6.68 ± 2.14 2.27 ± 0.17a 2.68 ± 1.82 a 1.81 ± 0.25a 

18:1n-9 Oleic acid 29.22 ± 1.37 37.04 ± 1.97a 37.37 ± 1.79 a 38.48 ± 1.49a 

18:1n-7 cis-Vaccenic 
acid 

2.63 ± 1.57 2.69 ± 0.44 3.74 ± 1.15 1.77 ± 1.01 

18:2n-6 Linoleic acid 19.09 ± 2.82 5.19 ± 0.73a 17.71 ± 2.04 6.11 ± 0.77a,b 

18:3n-3 α-Linolenic 
acid 

3.60 ± 1.47 0.25 ± 0.34a 0.40 ± 0.40a 0.58 ± 0.10a 

20:3n-3 Dihomo-α-
linolenic acid 

0.00 ± 0.00 0.04 ± 0.09 0.19 ± 0.18 0.00± 0.00 

 SFA 
 

26.82 ± 2.77 34.42 ± 4.37a,b 
 

25.75 ± 3.14 
 

32.26 ± 2.24a,b 
 

 MUFA 
 

42.87 ± 3.27 
 

57.84 ± 4.28a 
 

54.85 ± 3.65a 
 

59.24 ± 1.99a 
 

 PUFA 
 

23.50 ± 2.09 
 

5.47 ± 0.98a,b 
 

16.71 ± 3.90a 
 

6.69 ± 0.76a,b 
 

Fatty acid distribution of skeletal muscle triacylglycerols was assessed in C57Bl/6J (wild 

type, WT) and ApoE-/- mice fed a standard chow diet (normal diet, ND) or Western-type diet 

(WD) for 12 weeks. Data are expressed as mean ± SD of percentage of fatty acids as well 

as percentage of total saturated fatty acids (SFA), total monounsaturated fatty acids (MUFA) 

and total polyunsaturated fatty acids (PUFA) in intramuscular triacylglycerols. Statistical 

analysis was performed by two-way ANOVA (Main effects: Genotype: p<0.05 for lauric, 

myristoleic, pentadecanoic, stearic, oleic and α-linolenic acids, MUFA and PUFA; Diet 

p<0.01 for lauric, myristic, myristoleic, pentadecanoic, palmitoleic, stearic, oleic, linoleic and 

α-linolenic acids, SFA, MUFA and PUFA; Interaction; p<0.05 for lauric, myristoleic, stearic, 

oleic and α-linolenic acids, MUFA and PUFA) followed by Bonferroni post hoc tests; a, 

p<0.05 vs WT ND; b, p<0.05 vs ApoE-/- ND; c, p<0.05 vs ApoE-/- WD (n=6/group).      
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Supplementary Table 5. ApoE deficiency and Western-type diet independently alter 

intramuscular phospholipid distribution.  

  Wild type ApoE-/- 

  Normal Diet Western Diet Normal Diet Western Diet 

14:0 Myristic acid 0.91 ± 0.05 2.56 ± 0.18a,b 1.82 ± 0.39a 2.72 ± 0.34a,b 

15:0 Pentadecano

ic acid 

0.32 ± 0.06 0.66 ± 0.05 0.47 ± 0.10 0.77 ± 0.12a,b 

16:0 Palmitic acid 33.4 ± 2.9 33.3 ± 1.3 32.5 ± 1.8 34.4 ± 5.6 

16:1n-7 Palmitoleic 

acid 

1.7 ± 0.23 3.2 ± 0.22a,b 2.4 ± 0.34 2.6 ± 0.40a,b 

18:0 Stearic acid 17.29 ± 0.94 17.88 ± 1.46 18.67 ± 2.20 17.94 ± 2.69 

18:1n-9 Oleic acid 5.11 ± 0.32 9.15 ± 1.07a 7.78 ± 2.28a 8.04 ± 1.10a 

18:1n-7 cis-Vaccenic 

acid 

3.46 ± 0.17 4.40 ± 0.26a,b,c 3.90 ± 0.21 3.23 ± 0.18 

18:2n-6 Linoleic acid 10.8 ± 0.58 8.7 ± 0.70 11.0 ± 1.79a 10.3 ± 2.12 

18:3n-3 α-Linolenic 

acid 

0.60 ± 0.1 0.28 ± 0.1a 0.34 ± 0.1a 0.27 ± 0.02a 

20:3n-6 Dihomo-γ-

linolenic acid 

0.53 ± 0.3 1.55 ± 0.08a,b 0.84 ± 0.64 1.59 ± 0.39a,b 

20:3n-3 Dihomo-α-

linolenic acid 

8.95 ± 0.78 8.43 ± 0.88 8.24 ± 1.47 8.0 ± 1.94 

22:4n-6 Docosatetrae

noic acid 

0.77 ± 0.12 0.42 ± 0.07a 0.50 ± 0.16a 0.29 ± 0.16a 

22:5n-3 Docosapenta

enoic acid 

1.14 ± 0.43 0.74 ± 0.27 0.85 ± 0.26 0.58 ± 0.26 

22:6n-3 Docosahexa

enoic acid 

12.55 ± 1.50 7.23 ± 1.08a 9.18 ± 2.53 7.33 ± 2.14a 

24:0 Lignoceric 

acid 

1.19 ± 0.67 1.61 ± 0.20 1.20 ± 0.49 2.03 ± 0.52 

 SFA 53.14 ± 4.01 55.84 ± 2.28 54.63 ± 3.40 54.33 ± 2.43 

 MUFA 10.29 ± 0.61 16.75 ± 0.93a,b 14.06 ± 2.25a 14.45 ± 0.67a 

 PUFA 36.58 ± 4.15 27.42 ± 2.67a 31.31 ± 5.53 31.22 ± 2.39 

Fatty acid distribution of skeletal muscle phospholipids was assessed in C57Bl/6J (wild type, 

WT) and ApoE-/- mice fed a standard chow diet (normal diet, ND) or Western-type diet (WD) 

for 12 weeks. Data are expressed as mean ± SD of percentage of fatty acids as well as 

percentage of total saturated fatty acids (SFA), total monounsaturated fatty acids (MUFA) 

and total polyunsaturated fatty acids (PUFA) in intramuscular phospholipids. Statistical 

analysis was performed by two-way ANOVA (Main effects: Genotype: p<0.05 for myristic, 

pentadecanoic, palmitoleic, cis-vaccenic and α-linolenic acids, MUFA and PUFA; Diet 
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p<0.05 for myristic, pentadecanoic, palmitoleic, oleic, linoleic, α-linolenic, dihomo-γ-linolenic, 

docosatetraenoic and docosahexaenoic acids, SFA, MUFA and PUFA; Interaction; p<0.05 

for myristic, oleic and cis-vaccenic acids, MUFA and PUFA) followed by Bonferroni post hoc 

tests; a, p<0.05 vs WT ND; b, p<0.05 vs ApoE-/- ND; c, p<0.05 vs ApoE-/- WD (n=6/group). 
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3. Supplementary figures 
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Supplementary Fig. 1. ApoE deficiency and Western-type diet induce a mild 

transition to slower myofibres. Myofibre composition and mitochondrial activity in EDL 

and soleus was assessed in C57Bl/6J (wild-type, WT) and ApoE-/- mice fed a standard 

chow diet (normal diet, ND) or Western-type diet (WD) for 12 weeks. (A) Representative 

images of MHC immunostaining in EDL and soleus (x10 magnification, scale bar 200 

µm). (B) Quantification of myofibre type in EDL and soleus. Data are expressed as mean 

± SD. (C) Quantification of myofibre size in EDL and soleus. Data are expressed as 

frequency distribution. (D) Body weight of mice at the age of 20 weeks on either ND or a 

WD. Data are expressed as mean ± SD. Statistical analysis was performed by two-way 

ANOVA for myofibre type and body weight (Main effects: Genotype: p<0.05 for MHCIIB 

in both soleus and EDL, MHCIIX in EDL, MHCI in soleus and body weight; Diet p≤0.01 

for MHCIIB, MHCIIX and MHCIIA in soleus and body weight; Interaction; p<0.05 for 

MHCIIB, MHCIIX, MHCI in soleus, MHCIIB and MHCIIA in EDL and body weight) 

followed by Bonferroni post hoc tests for myofibre type with *p<0.05, **p<0.01, 

***p<0.001 vs WT ND, #<0.05 vs ApoE-/- ND and ¶<0.05 vs WT WD (n=6/group). 

Statistical analysis for myofibre size was performed by χ2 square (n=6/group). For EDL: 

WT WD versus WT ND: χ2=8.561;df=9;p=0.479 for type IIB, χ2=59.546;df =7;p<0.001 for 

type IIX and χ2=53.982;df=6;p<0.001 for type IIA. ApoE-/- ND versus WT ND: 

χ
2=86.338;df=14;p<0.001 for type IIB, χ2=127.109;df=10;p<0.001 for type IIX and 

χ
2=118.243;df=4;p<0.001 for type IIA. For ApoE-/- WD versus WT ND: 

χ
2=37.620;df=9;p<0.001 for type IIB, χ2=19300;df=10;p<0.001 for type IIX and 

χ
2=11.000;df=6;p<0.001 for type IIA. Moreover for ApoE-/- WD versus ApoE-/- ND: 

χ
2=9.293;df=9;p=0.812 for type IIB, χ2=26.301;df=10;p<0.05 for type IIX and 

χ
2=27.012;df=14;p<0.05 for type IIA. For soleus, WT WD versus WT ND: 

χ
2=56.683;df=5;p<0.001 for type I and χ2=71.358;df=4;p<0.001 for type IIA. ApoE-/- ND 

versus WT ND: χ2=23.787;df=5;p<0.001 for type I and χ2=33.788;df=4;p<0.001 for type 

IIA. ApoE-/- WD versus WT ND: χ2=200.000;df=4;p<0.001 for type I and χ2=28.000;df=5, 

p<0.001 for type IIA. ApoE-/- WD versus ApoE-/- ND: χ2=6.663;df=4;p=0.068 for type I 

and χ2=9.692;df=4;p=0.046 for type IIA.   
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Supplementary Fig. 2. ApoE deficiency and Western-type diet do not affect 

mitochondrial activity or biogenesis. Myofibre composition and mitochondrial activity 

in skeletal muscle was assessed in C57Bl/6 (wild-type, WT) and ApoE-/- mice fed a 

standard chow diet (normal diet, ND) or Western-type diet (WD) for 12 weeks. (A) 

Representative images of SDH staining in EDL, soleus and TA (superficial and deep) 

(x20 magnification, scale bar 100 µm for EDL and soleus and x5 magnification, scale bar 

400 µm for TA). (B) Quantification of SDH staining in EDL, soleus and TA (superficial and 

deep). Data are expressed as mean ± SD. (C) Ratio of mitochondrial to nuclear gene 

content for mitochondrial biogenesis in the gastrocnemius muscle. Data are expressed as 

mean ± SD. Statistical analysis was performed by two-way ANOVA (Main effects: Diet: 
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p<0.05; Interaction; p<0.001 for SDH staining in the EDL) followed by Bonferroni post hoc 

tests, *p<0.05 vs WT ND (n=6/group). 
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Supplementary Fig. 3. ApoE deficiency and Western-type diet increase 

intramyocellular lipid content but do not induce fibrosis and do not alter 

phospholipid contents. Fibrosis, intramyocellular lipid and phospholipid contents was 

assessed in skeletal muscle of C57Bl/6J (wild-type, WT) and ApoE-/- mice fed a standard 

chow diet (normal diet, ND) or Western-type diet (WD) for 12 weeks. (A) Representative 

images of Masson’s Trichrome staining in TA (x20 magnification, scale bar 100 µm). (B) 

Representative images of Oil Red O staining in tibialis anterior (x20 magnification, scale 

bar 50 µm). (C) Phospholipid content in tibialis anterior as determined by gas 

chromatography. Data are expressed as mean ± SD. Statistical analysis was performed 

by two-way ANOVA (n=6/group). 
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Supplementary Fig. 4. ApoE deficiency with Western-type diet increase oxidised 

phospholipids in capillaries of skeletal muscle. Oxidised phospholipid content was 

assessed in skeletal muscle of C57Bl/6J (wild-type, WT) and ApoE-/- mice fed a standard 

chow diet (normal diet, ND) or Western-type diet (WD) for 12 weeks. (A) Representative 

images of E06 and laminin staining in tibialis anterior (x40 magnification, scale bar 50 

µm). (B) Representative images of E06 and CD31 staining, CD31 staining and E06 

staining only in tibialis anterior (x40 magnification, scale bar 50 µm). 
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Supplementary Fig. 5. ApoE deficiency and Western-type diet independently 

increase oxidative stress in tibialis anterior. Oxidative stress in skeletal muscle was 

assessed in C57Bl/6J (wild-type, WT) and ApoE-/- mice fed a standard chow diet (normal 

diet, ND) or Western-type diet (WD) for 12 weeks. (A) Superoxide production as 

measured by LC-MS. Data are expressed as mean ± SD in arbitrary units and shown as 

relative fold increase to WT ND after normalisation to protein content. (B) Representative 

images for free radical staining with 10μM DHE and treated with 400 U/mL PEG-SOD 

prior to DHE staining (x20 magnification, scale bar 100 µm). (C) Protein carbonylation in 

lysates from tibialis anterior as determined by immunoblot. Data are expressed as mean 

± SD and data are shown as relative fold increase to WT ND after normalisation to total 

protein. (D) Immunoblot in protein lysates of tibialis anterior for tyrosine nitration (3NT) 

and immunostaining for 3NT (x40 magnification, scale bar 50 µm). Data are expressed 

as mean ± SD. For immunoblotting data are shown as relative fold increase to WT ND 

after normalisation to β tubulin. (E) Western blot in protein lysates of tibialis anterior for 

4HNE adducts in histidine residues. Data are expressed as mean ± SD and shown as 

relative fold increase to WT ND after normalisation to β tubulin. Statistical analysis was 

performed by two-way ANOVA (Main effects: Genotype: p<0.05 for protein 

carbonylation, 3NT at 50kDa and4HNE at 25kDa; Diet p<0.01 for 3NT and 4HNE; 

Interaction; p<0.05 for protein carbonylation) followed by Bonferroni post hoc tests, 

*p<0.05, **p<0.01, ***p<0.001 vs WT ND (n=6/group). Statistical analysis for 3NT 

staining was performed by Mann-Whitney U test, *p<0.05. 
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Supplementary Fig. 6. Western-type diet and ApoE deficiency modulate 

independently the activation of MAPKs in skeletal muscle. Phosphorylation levels of 

various MAPKs were assessed in skeletal muscle of C57Bl/6J (wild-type, WT) and ApoE-/- 

mice fed a standard chow diet (normal diet, ND) or Western-type diet for 12 weeks.(A) 

Results of Phospho-MAPK antibody array (R&D). The densitometric analysis was 

presented as fold change. Fold change was calculated as: the ratio of each of the 3 

groups to WT ND group (n=3/group). (B) Immunoblot for phospho-p38 and p38. Data are 

expressed as mean ± SD and shown as the ratio of phosphor-p38 to p38 after 

normalisation to β tubulin. Statistical analysis was performed by two-way ANOVA (Main 

effects: Genotype: p>0.05 genotype; Diet p<0.05 phospho-38; Interaction; p>0.05 for 
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phosho-p38) followed by Bonferroni post hoc tests, ***p<0.001 vs WT ND, #p<0.05 vs 

ApoE-/- ND and ¶ p<0.05 vs ApoE-/- WD (n=4/group). 
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Supplementary Fig. 7. Western-type diet but not ApoE deficiency induces 

guanosine oxidative damage induced from western-type diet in skeletal muscle. 

DNA damage was assessed in skeletal muscle of C57Bl/6J (wild-type, WT) and ApoE-/- 

mice fed a standard chow diet (normal diet, ND) or Western-type diet for 12 weeks. (A) 

Representative images of 8-OHdG and DAPI staining and 8-OHdG staining only in tibialis 

anterior (x20 magnification, scale bar 100 µm). (B) Quantification of fluorescence intensity 

of 8-OHdG in the tibialis anterior. Data are expressed as mean ± SD. Statistical analysis 

was performed by two-way ANOVA (Main effects: Diet p<0.001) followed by Bonferroni 

post hoc tests, **p<0.01 and ***p<0.001 vs WT ND (n=6/group). 
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Supplementary Fig. 8. ApoE deficiency and Western-type diet do not induce 

macrophage infiltration. Representative images for F4.80 staining in tibialis anterior 

(x20 magnification, scale bar 100 µm). Arrows depict macrophages in skeletal muscle. 

Macrophages were in low abundance on skeletal muscle as compared to liver tissue. 
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Supplementary Fig. 9. ApoE deficiency and Western-type diet independently induce 

hepatic fat accumulation and inflammation. Hepatic ectopic fat accumulation and 

inflammation was assessed in C57Bl/6J (wild-type, WT) and ApoE-/- mice fed a standard 

chow diet (normal diet, ND) or Western-type diet for 12 weeks. (A) Representative images of 

Oil Red O staining in the liver and quantification of lipid droplet size and frequency (x20 

magnification, scale bar 100 µm). Data are expressed as percentages of lipid droplet size 

distribution. (B) Representative images of F4.80 staining in the liver and relative 

quantification of macrophages per area (x20 magnification, scale bar 100 µm). Data are 

expressed as mean ± SD. (C) mRNA levels of genes involved in fatty acid uptake and 

oxidation, and inflammatory genes. Data are expressed as mean ± SD and shown as fold 

increase relative to WT ND in arbitrary units. Statistical analysis was performed by χ2 square 

distribution for lipid droplet size distribution and two-way ANOVA (Main effects: Genotype: 

p<0.01 for Cd36, Had, Lpl, and F4.80 and F4.80 staining; Diet p<0.05 for F4.80 staining and 

all genes except for Lpl and F4.80; Interaction; p<0.05 for F4.80 staining and for all genes, 

except for F4.80) followed by Bonferroni post hoc tests for gene expression and 

inflammation, *p<0.05, **p<0.01, ***p<0.001 vs WT ND (n=6/group). For lipid droplet size 

distribution: χ
2=150.877;df=6;p<0.001 for ApoE-/- WD versus ApoE-/- ND, 

χ
2=42.424;df=6;p<0.001 for WT WD versus ApoE-/- ND and χ2=54.903;df=5;p<0.001 ApoE-/- 

WD versus WT WD (n=6/group). 
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Supplementary Fig. 10. ApoE deficiency and Western-type diet increase hepatic 

oxidative protein modifications. Hepatic oxidative stress was assessed in C57Bl/6J (wild-

type, WT) and ApoE-/- mice fed a standard chow diet (normal diet, ND) or Western-type diet 

(WD) for 12 weeks. (A) Representative images of free radical staining with 10 μM DHE in the 

liver (x20 magnification, scale bar 100 µm) and quantification of fluorescence intensity. (B) 

mRNA levels of antioxidant genes. Data are expressed as mean ± SD and shown as fold 

increase relative to WT ND in arbitrary units. (C) TBARS assay and protein carbonyl content 

in liver. Data are expressed as mean ± SD. (D) Immunoblot in protein lysates of liver for 

tyrosine nitration (3NT). Data are expressed as mean ± SD and shown as fold increase 

relative to WT ND group after normalisation to β tubulin. (E) Immunoblot for 4HNE adducts 

in histidine residues. Data are expressed as mean ± SD and shown as fold increase relative 

to WT ND group after normalisation to β tubulin. Statistical analysis was performed by two-

way ANOVA (Main effects: Genotype: p<0.01 for DHE fluorescence and 3NT; Diet p<0.05 

for DHE fluorescence and 4HNE; Interaction; p<0.05 for 3NT and 4HNE) followed by 

Bonferroni post hoc tests, **p<0.01 and ***p<0.001 vs WT ND (n=6/group). 
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Supplementary Fig. 11. Nox2ds-tat peptide decreases oxidative stress in skeletal 

muscle. Oxidative stress was assessed in skeletal muscle of ApoE-/- mice fed Western-

type diet for 12 weeks and treated with either Nox2ds-tat peptide (ApoE-/- WD + Nox2ds-

tat) or scrambled peptide for the last 4 weeks of feeding (ApoE-/- WD + scrambled). (A) 

Immunoblot in protein lysates of quadriceps for 3NT and 4HNE adducts in histidine 

residues. Data are expressed as mean ± SD and data are shown as relative fold change 

to ApoE-/- WD treated with scrambled sequence after normalisation to β tubulin. (B) 

Immunoblot in protein lysates of tibialis anterior for protein carbonylation. Data are 

expressed as mean ± SD and data are shown as relative fold change to ApoE-/- WD 

treated with scrambled sequence after normalisation to total protein content. 
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Representative images of 8-OHdG and DAPI staining and 8-OHdG staining only in tibialis 

anterior (x20 magnification, scale bar 100 µm) and quantification of 8-OHdG fluorescence 

intensity. Data are expressed as mean ± SD. Statistical analysis was performed by 

Student’s t test, *p<0.05 vs ApoE-/- WD treated with scrambled sequence (n=6/group).    
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Supplementary Fig. 12. Nox2ds-tat peptide does not affect intramyocellular ectopic 

fat accumulation, capillary density or myofibre composition. Ectopic fat 

accumulation, myofibre composition, mitochondrial activity and capillary density was 

assessed in skeletal muscle of ApoE-/- mice fed Western-type diet for 12 weeks and 

treated either with Nox2ds-tat peptide (ApoE-/- WD + Nox2ds-tat) or scrambled peptide 

(ApoE-/- WD + scrambled) for the last 4 weeks of feeding. (A) Representative images of 
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MHC immunostaining and quantification of myofibre type in EDL and soleus (x10 

magnification, scale bar 200 µm). Data are expressed as mean ± SD. (B) Representative 

images of SDH staining and quantification of positive myofibres in EDL and soleus (x20 

magnification, scale bar 100 µm). Data are expressed as mean ± SD. (C) Representative 

images of CD31 immunostaining and quantification of relative capillary density by 

Axiovision software in EDL and superficial tibialis anterior (x20 magnification, scale bar 

100 µm). Data are expressed as mean ± SD and shown as relative fold increase to ApoE-

/- WD treated with scrambled sequence. (D) Body weight of ApoE-/- WD treated with 

scrambled sequence or Nox2ds-tat. (E) Triacylglycerol content in tibialis anterior as 

determined by Gas chromatography. Data are expressed as mean ± SD. Statistical 

analysis was performed by Student’s t test (n=6/group).  

 

 

 

 

 


