Formulation of a live bacterial vaccine for stable room temperature storage results in loss of acid, bile and bile salt resistance

Article

Accepted Version

Figures


It is advisable to refer to the publisher's version if you intend to cite from the work. See Guidance on citing.

Published version at: http://dx.doi.org/10.1016/j.vaccine.2008.08.024
To link to this article DOI: http://dx.doi.org/10.1016/j.vaccine.2008.08.024

Publisher: Elsevier

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement.

www.reading.ac.uk/centaur

CentAUR
Figure 1

A) Graph showing the relative live cell count (CFU/ml) of dried cells, control cells, and recovered dried cells vs. pH. The y-axis is on a log scale.

B) Bar graph comparing the relative live cell count (CFU/ml) of dried cells and control cells under different conditions: Medium, 3mM DOC, 15mM DOC, 0.4% Bile, 2% Bile, and 10% Bile.

Figure 2

A) Bar graph comparing the relative live cell count (CFU/ml) of osmotically preconditioned cells and LB broth grown cells under different drying conditions: desiccator dried, vacuum dried, shelf frozen, and LN2 frozen.

B) Bar graph comparing the relative live cell count (CFU/ml) of LB broth grown cells under different pH conditions: Medium, pH 3.7, and 5% Bile.

C) Bar graph showing the relative live cell count (CFU/ml) of control cells.

D) Graph showing the relative live cell count (CFU/ml) of Dried bacteria before and after drying under different conditions: desiccator dried, vacuum dried, shelf frozen, and LN2 frozen.

E) Graph showing the relative live cell count (CFU/ml) of Dried bacteria before and after drying under different pH conditions: Medium, pH 3.7, and 1% Bile.

F) Graph showing the relative live cell count (CFU/ml) of Dried bacteria under different NaCl concentrations: 0, 250, 350, and 450 mM.