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Abstract. Flooding is a major hazard in both rural and urban areas worldwide, but it is in urban
areas that the impacts are most severe. High-resolution synthetic aperture radar (SAR) sensors
are able to detect flood extents in urban areas during both day- and night-time. If obtained in
near real time, these flood extents can be used for emergency flood relief management or as
observations for assimilation into flood forecasting models. A method for detecting flooding
in urban areas using near real-time SAR data is developed and extensively tested under a variety
of scenarios involving different flood events and different images. The method uses an SAR
simulator in conjunction with LiDAR data of the urban area to predict areas of radar shadow
and layover in the image caused by buildings and taller vegetation. Of the urban water pixels
visible to the SAR, the flood detection accuracy averaged over the test examples is 83%, with a
false alarm rate of 9%. The results indicate that flooding can be detected in the urban area to
reasonable accuracy but that this accuracy is limited partly by the SAR’s poor visibility of the
urban ground surface due to shadow and layover. © The Authors. Published by SPIE under a Creative
Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part
requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JRS.12.045011]
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1 Introduction

Flooding is a major hazard in both rural and urban areas worldwide, but it is in urban areas that
the risks to people and the economic impacts are most severe. High-resolution synthetic aperture
radar (SAR) sensors are now commonly used for flood detection because of their ability to pen-
etrate the cloud that is often present at times of flood and to image at night-time as well as during
the day. In the absence of significant wind or rain, flooded urban areas generally appear dark in
an SAR image due to specular reflection from the water surface. A number of active SARs with
spatial resolutions as high as 3 m or better have been launched that are capable of detecting urban
flooding. They include TerraSAR-X, RADARSAT-2, and the four satellites of the COSMO-
SkyMed constellation. The latter is particularly useful because it allows image sequences of
urban flooding to be built up with 12- or 24-h revisit intervals. Most recently, the Sentinel-1
constellation has been launched, though the 5 × 20 mpixels that gives in its normal interfero-
metric wide swath mode have somewhat too coarse a resolution for urban flood detection,
making it more suited to detecting rural flooding.

The Sentinel-1 and RADARSAT-2 missions provide the user with processed multilook
georegistered SAR images about 1 h after image reception at the ground station. Although
this is not yet possible for TerraSAR-X and COSMO-SkyMed, it shows that the trend is toward
providing near real-time processed imagery to the user. If the SAR image can be obtained in
near real time, an important use of the flood extent is as a tool for operational flood relief
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management. The Pitt report1 pointed out the need to have near real-time flood visualization
tools available to enable emergency responders to react and to manage fast-moving events
and to target their limited resources at the highest priority areas. The English Environment
Agency (EA) now uses SAR images to detect the extent of flooding and the depth of floodwater
as the flood evolves. A second important use is to provide near real-time data for assimilation
into urban flood inundation models. Assimilation may be used to correct the model state and
improve estimates of the model parameters and external forcing. Distributed water levels may be
estimated along the SAR flood extents by intersecting them with the floodplain topography, and
the water levels at various points along the modeled reach may be assimilated into the model
run.2–4 Alternatively, Giustarini et al.5 have recently proposed the assimilation of probabilistic
flood inundation maps that bypass the need to determine water levels explicitly.5

A substantial amount of work has been carried out developing methods of flood detection in
rural areas.6–19 Several organizations including the EA and Copernicus Emergency Management
Service have developed semiautomatic systems to extract the flood extent from an SAR image.
These systems tend to work well in rural areas but not so well in urban areas. A difficulty of
urban flood detection using SAR is that substantial areas of urban ground surface may not be
visible to the SAR due to radar shadowing and layover caused by buildings or taller vegetation.
Shadow will appear dark, similar to most water, so it may be misclassified as water if the ground
in shadow is dry. Layover will generally appear bright, possibly leading to misclassification of
flooded ground as unflooded.

As a result, the problem of urban flood detection has received less attention. Mason et al.20

developed a near real-time algorithm for flood extent delineation in both urban and rural areas of
a high-resolution SAR scene. The method was based on the analysis of the SAR backscatter
values, as the backscatter from undisturbed water in a flooded street should be low compared
to that from much of the surrounding urban area. To cope with the shadow/layover effect in urban
areas, the algorithm used an SAR simulator to estimate regions in the SAR image, in which water
would not be visible due to shadow or layover. The urban area that may be flooded but not visible
to the SARmay be significant (e.g., 39% in the study of Ref. 15). A further difficulty is that roads
and tarmac areas also exhibit low backscatter, though often not as low as undisturbed water.15

Undisturbed water is smoother than tarmac, and the real part of its dielectric constant is con-
siderably larger than that of tarmac, implying an increase of surface reflectivity and consequent
reduction in backscatter.21 In Ref. 20, a reasonable urban flood detection accuracy of 75% was
achieved in urban areas that were visible to the SAR, with a false alarm rate of 19%. Following
on from this, Mason et al.22 used the same SAR image, LiDAR data, and SAR simulator to
investigate whether urban flooding could be detected in layover regions (where flooding
may not normally be apparent) using double scattering between the (possibly flooded) ground
surface and the walls of adjacent buildings. Observations of the strengths of double scattering
lines were compared to the predictions from an electromagnetic scattering model, and the
method proved successful in detecting double scattering in urban areas due to flooding.

Giustarini et al.15 detected urban flooding using a change detection technique, in which
an SAR image containing flooding was normalized using a second image acquired during
dry conditions, with the second image having the same look angle, orbit inclination, frequency,
and resolution as the first. This enabled the identification of regions not visible to the SAR (e.g.,
shadow) or that systematically behaved as specular reflectors (e.g., smooth tarmac and perma-
nent water bodies). This reduced the over-detection of inundated areas, giving a flood detection
rate of 82% with a false alarm rate of 2.6%.

An alternative method of detecting urban flooding was developed in Ref. 23, which per-
formed river flood mapping in urban areas by combining RADARSAT-2 and flood return period
data derived from flood inundation models. The method finds the flood level in rural areas using
the SAR data, then uses the flood return period data to calculate where the flooding should be in
the urban area. No use is made of the SAR data in the urban area, so no urban shadow/layover
calculation is necessary. A high urban flood detection accuracy (87%) and low false alarm rate
(14%) were achieved, and the results highlighted the ability of flood return period data to over-
come limitations associated with SAR-based urban flood detection. The method does require
the availability of accurate flood return period data and assumes that the rainfall pattern across
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the catchment that caused the particular flood being investigated is the same as that used to
calculate the flood return period data.

The studies of Refs. 21 and 24 showed that a significant improvement in the detection of
urban flooding could be made by using SAR coherence in conjunction with backscatter to detect
the flooding. Coherence was measured using the phases and amplitudes of interferometric pairs
of COSMO-SkyMed (CSK) images, with one image being obtained during the flooding, and
the other prior to the flooding. An urban area that is not flooded should have high coherence,
whereas if there is flooding the coherence should be low. The technique is likely to be of great
assistance in detecting urban flooding in the future, though the spatial resolution of the coherence
is less than that of the SAR backscatter, and shadow and layover are still present.

An advantage of the method of Ref. 20 is that it requires only a single-polarization SAR
image acquired during the flooding. In addition, while it could be applied in a change detection
mode, in a near real-time situation it may be difficult to acquire a suitable SAR reference image
over unflooded ground. However, to date the method has only ever been tested on only a single
high-resolution SAR image from a single flood event. The object of this paper is to test the
method further on a variety of scenarios using other images of other events and to modify it
if necessary to make it more robust. In the event, we find that a number of improvements
can be made, in particular to the estimation of the flood elevations and to the method of
delineating the flooding in the urban area.

2 Design Considerations

The algorithm design assumes that high-resolution LiDAR data are available for at least the
urban regions in the scene, in order that the SAR simulator may be run in conjunction with
the LiDAR data to generate maps of radar shadow and layover in urban areas. The algorithm
is, therefore, limited to urban regions of the globe that have been mapped using airborne LiDAR.
However, in the UK, most major urban areas in flood plains have now been mapped, and
the same is true for many urban areas in other developed countries.

The approach adopted involves first detecting the flood extent in nearby rural areas, and then
detecting it in the urban areas using a secondary algorithm guided by the rural flood extent.20

A rural area is considered to be one not significantly affected by building shadow and layover.
Note that this means that the method will not work in a situation where a flood is totally con-
tained within an urban area. But even in a city, rural areas (e.g., parks) can generally be found not
far away from urban ones.

The method is object-based and adopts the approach of segmenting the SAR image into
regions of homogeneity and then classifying them, rather than classifying each pixel independ-
ently using a per-pixel classifier. The use of segmentation techniques provides a number of
advantages compared to per-pixel classification. Because of the high resolution of these
SARs, individual regions on the ground may have high spectral variances, reducing the accuracy
of per-pixel classifiers. In addition, because the segments created correlate well with real regions
of the earth’s surface, further object-related features such as object size, shape, texture, and
context may be used to improve the classification accuracy. The approach used for rural flood
detection in Refs. 6 and 7 is adopted, which involves segmentation and classification using
the eCognition Developer software.25

As well as being used in the SAR simulator, a further advantage of the LiDAR data is that
they can be used to estimate a mean backscatter threshold for segmented homogeneous regions
(objects) of the SAR image, such that objects with mean backscatter less than the threshold are
assigned to the class “flood.” The SAR image will invariably contain water regions, which will
generally give no LiDAR return because they have acted as specular reflectors that have gen-
erated no backscatter at the sensor. These regions can be used as training areas for water and can
also be identified as permanent bodies of water that can be eliminated from the flooding if
required. Similarly, it is possible to select nonwater training pixels by searching in unshadowed
areas above the level of the flooding. A simple two-class Bayes classifier using the probability
density functions (PDFs) for water and nonwater can then be used to select the threshold, assum-
ing equal prior probabilities for both classes.
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3 Study Events and Data Sets

Three different SAR images of two different flood events were studied. The locations of the three
study sites in southern Britain (Wraysbury, Staines, and Tewkesbury) are shown in Fig. 1.

The first two examples are based on the Thames flood of February 2014 in West London,
which caused substantial urban flooding.26 In January and February 2014, heavy and persistent
rainfall left large parts of southern England under water. The flooding resulted from a long series
of Atlantic depressions caused by the jet stream being further south than usual. The peak of
the flooding in West London occurred around February 11, 2014, with peak flow being
404 m3∕s. A substantial amount of urban flooding occurred in a number of towns, in particular
Wraysbury and Staines. Two CSK (X-band) 2.5-m resolution Stripmap images of the flooding
were acquired covering the flooded areas. Their processing level was geocoded terrain corrected
(level 1D). A limited number of aerial photos acquired by the press were available to validate
the SAR flood extents. These tended to cover small areas with substantial flooding. No high-
resolution visible band satellite (e.g., WorldView-2) data having sufficiently low cloud cover
were available for validation.

1. A CSK image was acquired on February 12, 2014 just after the flood peak and shows
flooding in the Wraysbury area. An aerial photo for validation was acquired on February
16 (Fig. 2). The SAR subimage covering the area is shown in Fig. 3.

2. Another CSK image showing flooding in Staines was acquired on February 13, 2014,
when flow was only 5% less than the peak. An aerial photo for validation was acquired
on February 16, showing flooding in Blackett Close, Staines.

3. The third example was based on the 1-in-150-year flood that took place on the lower
Severn around Tewkesbury, UK, in July 2007.27 This resulted in substantial flooding of
urban and rural areas, about 1500 homes in Tewkesbury being flooded. Tewkesbury lies

Fig. 1 Locations of the three study sites in southern England (main rivers in blue).

Fig. 2 Aerial photo of flooding in Wraysbury, West London (about 300 × 300 m) (© Getty Images
2014).
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at the confluence of the Severn, flowing in from the northwest, and the Avon, flowing in
from the northeast. The peak of the flood occurred on July 22, and the river did not return
to bankfull until July 31. On July 25, TerraSAR-X (TSX) (X-band) acquired a 3-m
resolution StripMap image of the region, in which urban flooding was visible. The
image was multilook ground range spatially enhanced. Aerial photos of the flooding
were acquired on July 24 and 27, and these were used to validate the flood extent
extracted from the TerraSAR-X image.28

Table 1 gives the parameters of the SAR images considered in the study. All images were HH
polarization, which for flood detection is preferable to vertical or cross polarization because it
gives the highest contrast between open water and unflooded regions.29 For each area, the EA
LiDAR digital surface model (DSM) and “bare-earth” digital terrain model (DTM) of the area
were obtained at 2-m resolution. The DTMwas generated from the DSM using the EA’s process-
ing algorithm.

4 Method

Steps in the processing chain are shown in Fig. 4. These include preprocessing operations carried
out prior to image acquisition, and near real-time operations carried out after the georegistered
SAR image has been obtained. The steps are illustrated using the SAR image for Wraysbury
(Fig. 3). Processing is carried out using SAR and LiDAR data resampled to 1-m pixel size. This
resampling naturally does not generate any additional spatial resolution in the SAR image but
has the effect of maintaining resolution during the region-growing process ultimately performed
in the urban flood detection.

Fig. 3 CSK subimage (1 × 1 km) of Thames flood in Wraysbury, West London [pixel intensities
are digital number (DN) backscatter values; dark areas are water]. Red outline shows the area
covered by aerial photo of Fig. 2. Yellow rectangle is high urban area.

Table 1 Parameters of SAR images.

Date River (location) SAR
Resolution

(m) Pass

Angle of
inclination

(deg)

Angle of
incidence
(deg)

12/02/2014 Thames
(Wraysbury)

COSMO-SkyMed 2.5 Descending 97.9 43.4

13/02/2014 Thames
(Staines)

COSMO-SkyMed 2.5 Descending 97.9 31.6

25/07/2007 Severn/Avon
(Tewkesbury)

TerraSAR-X 3.0 Descending 97.4 24
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4.1 Preprocessing Operations

a. Delineation of urban areas: The main urban areas are delineated (Fig. 5). Currently, this
process is performed manually as it is a preprocessing operation that is not time-critical.

b. Calculation of radar shadow and layover: The calculations of radar shadow and layover
are performed using an SAR simulator in conjunction with the LiDAR DSM.28 Substantial areas
of urban floodwater may not be visible to the SAR because of the presence of radar shadow and
layover due to buildings or taller vegetation. The effect is described in Ref. 28 and illustrated in
Fig. 5 of that paper. In summary, sections of the image in radar shadow will appear dark in the
SAR images and may simulate water even if they are unflooded. Other sections of ground may
be subject to layover from adjacent structures such as walls, generally leading to a bright return
even if the ground is flooded.

The RaySAR SAR simulator30 is used to estimate regions of the SAR image, in which water
will not be visible due to the presence of shadow or layover. The estimation of these regions is
purely geometrical and uses the LiDAR DSM of the scene’s surface as well as the radar flight
trajectory and incidence angle. RaySAR is open-source software written in MATLAB and is
based on the open-source POV-Ray software. POV-Ray31 is a ray tracing program developed
for use with incoherent visible light. RaySAR extends POV-Ray by adding functions that

Fig. 5 Urban areas (white).

Fig. 4 Steps in the processing chain.
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allow it to cope with coherent SAR ray-tracing. RaySAR has been developed to support the
understanding and interpretation of signal multiple reflections occurring at man-made objects.
One of RaySAR’s capabilities is that it is able to model distortion effects in SAR images, such as
layover and shadow. An important requirement when choosing the simulator was that it should
not be too computationally intensive, so that the shadow/layover map can be generated in near
real time as soon as the radar flight trajectory and incidence angle of the incoming SAR image
are known. The RaySAR processing time on a Windows PC is of the order of minutes per scene.

Tao32 developed RaySAR further to produce an enhanced SAR simulator GeoRaySAR that
specializes using LiDAR DSMs as input data and provides geocoded simulated SAR images for
direct comparison with the real SAR image. Exploiting this simulator, different layers (e.g., lay-
over and shadow) can be generated for different digital elevation models (DEMs) (whole DSM,
individual buildings, and walls) by combining simulated images. In order to estimate shadow
and layover maps, the method suggested in Chapter 4.2 of Ref. 32 (developed from the work of
Ref. 33) was used (Fig. 6). A normalized DSM (nDSM) is constructed by subtracting the DTM
from the DSM. Then simulated ground-range-projected SAR images are generated for DSM,
DTM, and nDSM. Layover is where backscatter > 0 in the nDSM SAR image. The layover layer

Fig. 6 (a) DSM, DTM, and nDSM, (b) simulated ground-range-projected SAR images generated
from DEMs (looking west at DEMs, azimuth = horizontal, range = vertical), and (c) separate layers
constructed from the simulated images (after Ref. 32).
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includes not only building wall reflections but also signals from building roofs. Shadow is where
backscatter ¼ 0 in the DSM SAR image and backscatter > 0 in the DTM SAR image.

RaySAR was developed for analyzing local urban scenes where the incidence angle of the
radar signal is assumed constant over the scene (flat wave front assumption in the far field of the
antenna). Therefore, a signal source emitting parallel light is defined in POV-ray for representing
the radar signal emitter and an orthographic camera receiving parallel light for representing
the radar receiver. Thereby, the coordinates of signals in the far field can be directly simulated
without modeling the synthetic aperture.

The processing of the nDSM begins using RaySAR to produce a Delaunay triangulation of
the nDSM, as required by POV-Ray. Noise triangles of low height (<1 m) are suppressed in
the output. RaySAR is then used to simulate the SAR reflectivity map, using the SAR flight
trajectory and incidence angle. A 2-D histogram of scatterers is created, which contains
a map of the number of scattering surfaces contributing at each pixel.

After the generation of these images, the method uses the geoinformation in the nDSM as
well as the orbit and projection parameters of the real SAR image to geocode the simulated
image, which enables a comparison with the real SAR image.

A similar processing sequence is then applied to the DSM and DTM images. When all three
DEMs have been processed, the layover and shadow maps can be calculated. Figure 7 shows the
DSM, DTM, and nDSM for the SAR image of Fig. 3. The LiDAR data are 1 × 1 km, 2-m res-
olution. Figure 8 shows the shadow and layover maps produced, which seem sensible. The radar
is travelling approximately north–south and looking west. It can be seen that most shadow and
layover occur in streets that are parallel to the satellite direction of travel, whereas streets
perpendicular to this have less shadow/layover.

c. Construction of compound DEM: A compound DEM is constructed for the whole area,
being the DSM in the urban areas and the DTM in the rural areas of the image. The compound

Fig. 7 (a) LiDAR DSM, (b) DTM, and (c) nDSM.
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DEM is required because different processing is applied in the urban and rural areas. The local
slope of the DTM is also calculated in the rural areas.

d. Identification of high land height threshold: In order to identify a set of pixels in regions of
high land that potentially contain no water, the height (hh) identifying the 90th percentile of pixel
heights in the compound DEM is calculated.

e. Identification of training areas for water and high land: The water training area is where
there are unassigned heights in the LiDAR data, where the water has acted as a specular reflector.
So the LiDAR automatically provides training pixels for the water class, which is a further ad-
vantage of using it. The high land is the highest 10% of pixels in the area, which must not contain
unassigned heights so that they are not water. The high land is not likely to be flooded. In the
high land class, regions of shadow are omitted so that the high land class does not contain pixels
having low backscatter values similar to water. High land pixels are suppressed only in shadow
and not in layover regions. If the region is flat, it will also contain roofs of houses, which would
be suppressed if a layover map was used as well as a shadow map to suppress high land pixels.
The training areas selected are shown in Fig. 9.

4.2 Near Real-Time Processing Operations

f. Calculation of SAR backscatter threshold: As soon as the processed georegistered SAR image
becomes available, the threshold that best separates the SAR backscatter values of the water and
high land pixels in the training classes can be calculated. A histogram of the backscatter values in
each class is constructed. Each histogram is normalized to form a PDF and equal prior

Fig. 8 (a) Shadow map (radar looking west, bright areas are shadow) and (b) layover map (bright
areas are layover).

Fig. 9 Water (blue) and high land (red) training regions.
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probabilities are assumed for each class. The backscatter threshold Tu giving the minimum
misclassification of water and high land (nonwater) pixels is calculated from the measured
histograms using Bayes rule,34 i.e.,

EQ-TARGET;temp:intralink-;e001;116;452if Pðω1jgÞ > Pðω2jgÞ classify g as ω1; else as ω2; (1)

where PðωijgÞ is the posterior probability of a pixel with DN value g being from class ωi, where
ω1 is the water and ω2 is the nonwater. For the Wraysbury example, the minimum error rate was
obtained with a threshold Tu of 52 DN units (Fig. 10).

g. Flood detection in rural areas: The SAR image in the rural areas was segmented using the
multiresolution segmentation algorithm of the eCognition Developer software.25 This employs
an iterated bottom-up segmentation technique based on pair-wise merging of adjacent regions.
The merging is governed by a local mutual best fitting algorithm. This aims to achieve the lowest
increase in object heterogeneity by merging the two adjacent regions separated by the smallest
distance in a feature space determined by mean spectral and textural features. The maximum
allowable heterogeneity of the objects is set by a user-defined scale parameter, homogeneity
criterion h, which is comprised of object spectral homogeneity hc and shape homogeneity
hs factors, with hs in turn being made up of object compactness hcompact and object smoothness
hsmooth factors. The larger the scale parameter is, the larger the image objects are. All resulting
objects with a mean SAR backscatter intensity less than the threshold Tu are classed as “flood.”

The parameters were set by a process of trial-and-error based on visual interpretation of the
segmentation results, in order to produce objects such as fields corresponding to those visible in
the SAR image. No special interpretation skills were required in this process. It was found that
good results could be obtained using a large scale parameter (h ¼ 100), coupled with a larger
shape homogeneity (hs ¼ 40%) and larger compactness (hcompact ¼ 40%) than the eCognition
Developer default settings, in order to select for compact objects that were not over-segmented.
These parameters were used in this and subsequent multiresolution segmentations in the process-
ing chain and are viewed as constants that do not need to be reset by the user, at least for these
SAR image types.

h. Rural flood refinement: The segmentation of the rural flood generated in step (g) is then
refined. Details of the method are given in Ref. 20 and are only summarized in this section.
Shadow/layover objects adjacent to flood objects in the rural areas are reclassified as flooded,
as they are often adjacent to rows of trees along field boundaries, which are likely to be flooded.
In a similar manner, unclassified objects in rural areas that are long and thin and adjacent to flood
objects are often hedgerows that are likely to be flooded even though emergent, so these are also
reclassified as flooded. Although flood water usually appears dark compared to the surrounding

Fig. 10 Variation of misclassified water and nonwater (high land) pixels with pixel intensity
threshold Tu .
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unflooded land because of specular reflection from the smooth water surface, wind, or rain may
cause roughening of the water such that the backscatter from it may rise to similar or greater
levels than the surrounding land. Because different parts of the flooded reach may have different
exposures to wind and rain, it is unlikely that a single mean SAR backscatter intensity threshold
will be appropriate for all flood objects along the reach. This problem does not appear to be
particularly widespread, and as a result a simple iterated rule is introduced to the effect
that an unclassified object bordering the flood with mean SAR backscatter intensity ≤Tu

0

(where Tu
0 ¼ 1.1Tu) is reclassified as flooded. Figure 11 shows the refined rural flood classi-

fication for the Wraysbury example.
i. Calculation of local waterline height threshold map: As a precursor to flood detection in

urban areas, a local waterline height threshold map is calculated using the rural flood map. It
seems reasonable to assume that water in the urban areas should not be at a substantially higher
level than that in the nearby rural areas. Unless there is significant ponding (e.g., on the falling
limb of the hydrograph), there should be very little water at higher urban levels. However, unless
a height threshold is imposed, there could be a substantial false alarm rate of water at these
levels.28

Waterlines are detected by applying the Sobel edge detector to the binary flood map. Because
the flood map has errors at this stage, edges will be present at the true waterlines but also in the
interior of the water objects due to regions of emergent vegetation and shadow/layover (giving
water heights that are too low), as well as above the waterline due to higher water alarms. To
increase the signal-to-noise ratio of true edges, a dilation and erosion operation is performed on
the water objects to eliminate some of the artefacts. Water objects are first dilated by 12 pixels,
then eroded by the same amount. It is required that an edge pixel is present at the same location
within a 2-pixel-wide buffer before and after dilation and erosion. The buffer is required because
an edge that has been dilated and eroded may be smoother than the original edge and may be
slightly displaced from it as a result. This tends to select for true waterline segments on straighter
sections of exterior boundaries of water objects. To suppress false alarms further, waterline
heights in regions that are sufficiently far (20 m) from high (>0.5) DSM slopes are selected,
provided that they are also within �1.5 m of the mean water height. This avoids false alarms
near high DSM slopes, which may give rise to shadow/layover areas.

In order to find the mean waterline height in the rural area, a histogram is constructed of the
waterline heights, and the positions of the histogram maxima are found, including that of the
global maximum. Generally, the mean waterline height in the quadrant is set to correspond to
the height of the global maximum. However, if any substantial maxima greater than half that of
the global maximum is present at a higher waterline height, the highest of these is chosen instead.
This latter rule copes with the situation where a substantial number of erroneous low waterline
heights in the interior of water objects have not been eliminated. An example histogram is shown
in Fig. 6 of Ref. 20. An additional (guard) height of 0.6 m is added to the mean waterline height
to allow a height tolerance.

Fig. 11 Flood classification (blue) in rural areas after refinement, overlaid on SAR image
of Fig. 3.
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This waterline height calculation holds provided the area under consideration is not too large,
yet able to supply sufficient waterline heights to construct a sensible histogram. This is true for
the 1-km2 area of Wraysbury considered. However, if it is required to detect local mean waterline
heights in a larger urban area, the method divides the area into nonoverlapping tiles of area about
1 km2, and the local mean waterline heights in adjacent tiles are interpolated to a spatially vary-
ing height threshold image ht threshðx; yÞ using bilinear interpolation. The spatial variability of
this threshold reflects the fact that different parts of a larger area can be flooded to different
heights.28

j. Flood detection in urban areas: A revised approach to that of Ref. 20 was developed for
flood detection in urban areas, which in the analysis proved superior to the original method. The
urban flood detection algorithm is of necessity different from the rural one, because it has been
found that the PDF of pixels in flooded urban streets has a substantial tail toward higher back-
scatter values compared to the PDF of rural water pixels.20 For the Wraysbury example, the
median value was 78 DN units compared with 50 DN units for the water training area. This
appears to be caused by high backscatter from cars and street furniture, as well as inaccuracies
in image registration and in the shadow/layover calculation caused by the limited resolution of
the LiDAR.

Unclassified pixels in the urban area are first classified as water seeds if they have SAR
backscatter less than Tu, heights that are less than the (possibly spatially varying) waterline
height threshold ht threshðx; yÞ calculated in step (i) and do not lie in shadow/layover areas.

A flooded region not in shadow/layover should have high-density clusters of seed pixels,
whereas an unflooded region should have a low density of these. A convolution approach is
used to help ensure that seed pixels survive if they are close to other seed pixels, as they reinforce
each other. A convolution window of half-side wsize is applied in a parallel transform over a
binary image, in which seed pixels have a value of 1, and nonseed pixels 0. Provided that the
number of surrounding seeds present in the convolution sum at a particular seed pixel is greater
than hitlim, the seed is retained, otherwise, it is set to zero. A sensitivity study indicated that
values of wsize ¼ 25 m and hitlim ¼ 6 seemed optimum.

Aweighted distance transform is used to grow the surviving seed pixels into larger clusters.20

In the normal Euclidean distance transform, each unflooded pixel’s distance value is the
Euclidean distance to the nearest flooded pixel, with the distances at flooded (seed) pixels
being set to zero. To approximate a Euclidean distance, distance increments of 2 and 3 are
used between adjacent pixels in the axial and diagonal directions, respectively.35 In the weighted
distance transform, the distance increment d between an unflooded pixel ðx; yÞ and its neighbor
is weighted by weight w, which depends on its SAR backscatter DNðx; yÞ:

EQ-TARGET;temp:intralink-;e002;116;316w ¼ DNðx; yÞ − Tu∕Tu if heightðx; yÞ < ht_threshðx; yÞ: (2)

However, if heightðx; yÞ ≥ ht_threshðx; yÞ, d is set to a large increment (the maximum allowed
distance). The technique assigns small distance increments to unflooded pixels in regions
with low backscatter that are less than ht_threshðx; yÞ. It ensures that flood regions are grown
preferentially, e.g., along roads with low SAR backscatter and low height.

Flood regions are also grown into shadow/layover areas if these have height < ht_threshðx;yÞ.
As SAR backscatter in shadow/layover may not be meaningful, the pixel DN values are ignored,
and w is simply set to 1 in these areas. This helps to overcome a limitation of urban flood
detection using SAR that the SAR cannot see into shadow/layover areas.

Pixels with weighted distance less than a threshold (dthresh) are then classed as urban flood.
Again, a sensitivity study was performed, which indicated that a value of dthresh ¼ 15 m

seemed optimum.

5 Processing of the Validation Data

For the first two examples, the flood extent used for validation could have been extracted from
the aerial photos by converting each aerial photo from an oblique projection to nadir, registering
to the DSM image, and classifying the water in the registered aerial image. Both the projection
change and the classification of water in visible band imagery are difficult. Instead, the technique
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used was to map the projection of the aerial domain onto the DSM image, find the position of the
flood edge in the aerial image manually, and then find the height of this position in the DSM
image. A difficulty was that the aerial photos were acquired several days after SAR imagery.
However, the flooding was long-lasting, and data from the Staines flood gauge indicated that the
river level had fallen only 20 cm in the intervening period. The mean waterline height was raised
by 20 cm to compensate for this. All pixels lower than this corrected height were then set to
“flood” in the aerial photo validation image. Some minor editing was necessary to correct
obvious errors.

A similar though more involved method was used to determine the validation flood extent
for the third example, and details are given in Ref. 28.

6 Validation of the Urban Flood Extents

The flood extent extracted from the SAR image was validated against the aerial photo flood
extent for each of the three example data sets.

6.1 Wraysbury

The high land height threshold in step (e) (hh) was 19.0 m. Figure 9 shows that, because the
Wraysbury area is rather flat, most high land was the roofs of houses (Fig. 9). In step (i), the local
waterline height threshold in the adjacent rural area (including the guard height) (ht_thresh) was
16.9 m. Table 2 gives the flood detection and false alarm rates for the Wraysbury image.

Figure 12 shows the correspondence between the SAR and aerial photo flood extents in the
Wraysbury validation area, together with an extract from the SAR image for comparison. If
shadow/layover areas are masked out in the validation in both SAR image and aerial photo
(shadow/layover flag ON), then 87% of the flooded urban pixels in the validation area are cor-
rectly detected by the SAR, with a false alarm rate of 4%. This detection rate is probably as good
as can be expected given the substantial variation of the SAR backscatter intensities in the
flooded urban area. It is noticeable that while a good deal of the flooding in the roads is detected,
in the gardens it is often hidden in regions of shadow and layover.

This detection accuracy is the percentage of the urban flood extent that is visible to the SAR
and also detected by it. However, it is more pertinent to consider the percentage of the urban
flood extent that is visible in the aerial photo that is detected by the SAR. This percentage will be
lower because flooded pixels in the shadow/layover regions must now be included. If shadow/
layover areas are not masked out in the validation (shadow/layover flag OFF), 84% of the
flooded urban pixels are now detected by CSK, with a false alarm rate of 5%. This is only
a small reduction from the 87% detection rate, implying that the method of growing the flooded
region into shadow/layover areas below the height threshold ht_threshðx; yÞ seems to be working
to some extent at least.

A difficulty in the Wraysbury case is that a substantial part of the validation area is flooded,
making it difficult to estimate an accurate false alarm rate. To improve the estimate of this, a
predicted false alarm rate has been measured using an urban area that is probably not flooded
because it is too high (the yellow area in Fig. 3), by switching off the height threshold in this area
and seeing what fraction of this is classed as flooded (there are no aerial data). This would give

Table 2 Flood detection and false alarm rates for Wraysbury.

Shadow/layover flag
Flood detection
accuracy (%)

False alarm
rate (%)

Predicted false alarm rate
in high urban area (%)

(see this section)

ON in validation 87 4 22

OFF in validation 84 5 48

No shadow/layover map used in system 87 6 62
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a predicted false alarm rate in an area below the height threshold that was not flooded. In a
normal scene, probably only a small fraction of the scene would be below the height threshold
and not flooded, so this would be an upper limit on the false alarm rate. Areas above the height
threshold would have a zero false alarm rate. Using this high area, if the shadow/layover map is
used in the validation, the predicted false alarm rate of urban nonwater pixels visible to CSK and
incorrectly classified as water is 22% (Table 2). However, if the area within shadow or layover is
included, the predicted false alarm rate rises substantially to 48%.

A further question to ask is, is it actually necessary to use a shadow/layover map at all? This
can be achieved by not using the shadow/layover map in processing steps (b), (e), (h), (j) and in
the validation. If the shadow/layover map is not used at all, then the flood detection rate actually
rises slightly from 84% to 87%. Probably, this is due to the fact that, in this case, a large per-
centage of the validation area is flooded, and the shadow areas, which get detected as flood seed
pixels, in this case really are flooded. Other possible causes are the limited resolution of the SAR
and LiDAR, georegistration error, and errors in the shadow/layover map. The false alarm rate in
the validation area only rises from 5% to 6%. However, in the high urban area, there is a large
predicted false alarm rate of 62%. Probably, this is due to the fact that in contrast to the validation
area, the shadow areas in this case are actually unflooded but still get detected as flood seed
pixels. As a consequence, in the Wraysbury case, there does seem to be an advantage using
a shadow/layover map.

6.2 Blackett Close, Staines

For Blackett Close, the aerial photo used for validation is shown in Fig. 13 and the CSK sub-
image covering this in Fig. 14. The high land height threshold in step (e) was 18.0 m. The SAR
backscatter threshold in step (f) was 60 DN units. In step (i), the local waterline height threshold
in the adjacent rural area (including the guard height) was 14.2 m. Table 3 gives the flood
detection and false alarm rates for the Blackett Close image.

Figure 15 shows the correspondence between the SAR and aerial photo flood extents in the
Blackett Close validation area, together with an extract from the SAR image for comparison.
Assuming that the shadow/layover map is used in the validation, 82% of the flooded urban pixels
in the validation area are correctly detected by the SAR, with a false alarm rate of 1%. If the
shadow/layover map is not used in the validation, 79% of the flooded urban pixels are detected
by CSK, with a false alarm rate of 2%. This is only a small reduction from the 82% detection

Fig. 12 (a) Correspondence between the SAR and aerial photograph flood extents in urban area
of Wraysbury, superimposed on the LiDAR image (yellow, wet in SAR and aerial photos; red, wet
in SAR only; and green, wet in aerial photos only) and (b) extract from SAR image.
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rate, again implying that the method of growing the flooded region into shadow/layover areas
seems to be working.

Again, a difficulty in the Blackett Close case is that almost all the validation area is flooded,
making it difficult to estimate an accurate false alarm rate. As in the Wraysbury case, a further
estimate has been made in an urban area that is probably not flooded because it is too high (the
yellow area in Fig. 14). Using this high area, if the shadow/layover map is used in the validation,
the predicted false alarm rate of urban nonwater pixels visible to CSK and incorrectly classified
as water is 26%. If the area within shadow or layover is included, the predicted false alarm rate
rises to 30%.

If no shadow/layover map is used at all in the processing and validation, the flood detection
accuracy again rises slightly from 79% to 83%. This again is probably because a large percentage
of the validation area is flooded, and the shadow areas, which get detected as flood seed pixels, in
this case really are flooded. The false alarm rate remains at 2%. However, as in the Wraysbury

Fig. 14 CSK subimage (1 × 1 km) of Thames flood in Staines, West London (pixel intensities are
DN backscatter values, dark areas are water). Red outline shows the area covered by the aerial
photo of Fig. 13. Yellow rectangle is high urban area.

Fig. 13 Aerial photo of flooding in Blackett Close, Staines (about 150 × 150 m) (© Getty Images
2014).

Table 3 Flood detection and false alarm rates for Blackett Close, Staines.

Shadow/layover flag
Flood detection
accuracy (%)

False alarm
rate (%)

Predicted false alarm rate
in high urban area (%)

ON in validation 82 1 26

OFF in validation 79 2 30

No shadow/layover map used in system 83 2 61
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case, in the high urban area there is a large predicted false alarm rate of 61%, so that again the
shadow/layover maps seems to be serving a useful purpose.

For the Blackett Close case, it was also investigated whether, instead of using the weight w in
the weighted distance transform [Eq. (2)], there was any advantage using a weight w � w.
However, the flood detection rate reduced when the quadratic weight was used.

6.3 Tewkesbury

Figure 16 shows the TerraSAR-X image showing flooding in the urban areas of Tewkesbury in
July 2007. The aerial photos used for validation are shown in Fig. 3 of Ref. 28. The shadow/
layover map used is shown in Fig. 7 of Ref. 28. The high land height threshold in step (e)
was 17.5 m. The SAR backscatter threshold in step (f) was 64 DN units. In step (i), the
local waterline height threshold in the adjacent rural area (including the guard height) was a
spatially distributed height map. Table 4 gives the flood detection and false alarm rates for
the Tewkesbury image.

Figure 17 shows the correspondence between the SAR and aerial photo flood extents in the
urban areas of Tewkesbury. If the shadow/layover map is used in the validation, 80% of the
flooded urban pixels in the validation area are correctly detected by the SAR, with a false

Fig. 16 TerraSAR-X image showing flooding in the urban areas of Tewkesbury in July 2007 (pixel
intensities are DN backscatter values, dark areas are water, 2.6 × 2 km, © DLR). Yellow rectangle
covers unflooded urban area sample.

Fig. 15 (a) Correspondence between the SAR and aerial photograph flood extents in urban
area of Blackett Close, superimposed on the LiDAR image (yellow, wet in SAR and aerial photos;
red, wet in SAR only; and green, wet in aerial photos only) and (b) extract from SAR image.
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alarm rate of 23%. If the shadow/layover map is not used in the validation, 74% of the flooded
urban pixels are detected by CSK, with a false alarm rate of 24%. The small reduction in the
flood detection rate from 80% again implies that the method of growing the flooded region into
shadow/layover areas seems to be working.

The object of this work has been to further develop the urban flood detection algorithm of
Ref. 20 to improve it and make it more robust. In Ref. 20, of the urban flood pixels that were
visible to TerraSAR-X, 76% were correctly detected, with an associated false alarm rate of 25%.
The equivalent flood detection accuracy in the present work is 80%, with a false alarm rate of
23%. Also in Ref. 20, if all the urban flood pixels were considered, including those in shadow
and layover regions, the flood detection accuracy fell to 57%, with a 19% false alarm rate. The
equivalent flood detection accuracy in the present work is 74%, with a false alarm rate of 24%.
For the Tewkesbury case at least, the present method of urban flood detection, therefore, seems
an improvement over that of Ref. 20.

The predicted false alarm rate in a sample of the higher urban area that is unflooded (the
yellow area in Fig. 16) is poor for the Tewkesbury image, being 58% whether the shadow/
layover map is used in the validation or not. This appears to be because the TerraSAR-X
image has more speckle than the CSK images. Unfortunately removal of the speckle using
an adaptive filter (e.g., Frost filter) causes significant blurring of the urban areas and reduces
the flood detection accuracy. It might be possible to perform directional despeckling using
a filter oriented along roads, but this was not attempted. The waterline height threshold appears
essential in this case to reduce false alarms in unflooded areas.

If no shadow/layover map is used at all in the processing and validation, the flood detection
accuracy again rises slightly from 74% to 78%, whereas the false alarm rate only rises from 24%
to 25%. However, in the sample high unflooded urban area, there is a very large false alarm rate

Fig. 17 Correspondence between the SAR and aerial photograph flood extents in urban area of
Tewkesbury, superimposed on the LiDAR image (yellow, wet in SAR and aerial photos; red,
wet in SAR only; and green, wet in aerial photos only).

Table 4 Flood detection and false alarm rates for Tewkesbury.

Shadow/layover flag
Flood detection
accuracy (%)

False alarm
rate (%)

Predicted false alarm
rate in unflooded urban

area sample (%)

ON in validation 80 23 58

OFF in validation 74 24 58

No shadow/layover map used in system 78 25 88
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of 88%. In the Tewkesbury case, there again seems to be an advantage in using a shadow/
layover map.

7 Discussion and Conclusion

The three test cases tend to exhibit rather similar results, and as such it seems fair to average
them. In the aerial photo validation areas, if the percentage of the urban flood extent that is
visible to the SAR and also detected by it is considered, the flood detection accuracy averaged
over the three test examples is 83%, with a false alarm rate of 9%. If the more pertinent measure
is considered, namely the percentage of the urban flood extent visible in the aerial photo that is
detected by the SAR, the average accuracy falls only slightly to 79%, with a false alarm rate of
10%. On this basis, it can be concluded that flooding can be detected in the urban area to good
but perhaps not very good accuracy, partly because of the SAR’s poor visibility of the ground
surface due to shadow and layover. It can also be concluded that the method of growing the
flooded regions into shadow/layover areas using the weighted distance transform seems to func-
tion reasonably well. On the other hand, a difficulty with the urban flood detection is that the
edge of the flooding may be rather imprecise, due to size of the distance transform threshold and
convolution window width.

An alternative approach would be to ignore the SAR returns in the urban area and use them
only in the rural area to determine the waterline height threshold ht_threshðx; yÞ. Flooding in the
urban area could be estimated by simply classifying all urban pixels with a height less than
ht_threshðx; yÞ as floodwater. This would obviate the need for an urban shadow/layover map
and would propagate the flooding into shadow/layover areas. This approach would work
well in the Blackett Close case, where almost all the urban area is flooded. But if low
urban areas were protected from the flooding by embankments, this would predict flooding
where there was none. In this case, the method of Ref. 23, which combines the use of high-
resolution SAR data with flood return period data generated by flood inundation models,
would have an advantage over the method discussed here as the flood return period map
would contain such information. A further advantage of the return period method is that it
could possibly use lower resolution SAR data than very high-resolution CSK or TSX data
(e.g., Sentinel-1 data at 5 × 20 m resolution in interferometric wide swath mode) since it is
does not require the flooding to be resolved in urban areas. On the other hand, the method
of Ref. 23 may be susceptible to error if the rainfall pattern of the particular flood being studied
differs from the rainfall pattern used by the flood inundation model to predict the flood return
period data. Such a situation might occur, when considering the flooding of a town at the
confluence of two rivers. The pattern of flooding in the town would probably be different
from that predicted by the return period data if there was extreme rainfall over one river catch-
ment and not the other so that the flood levels in the two rivers differed. Another example might
be where fluvial flooding correctly predicted by the return period data was combined with addi-
tional surface water flooding due to a blockage. In these cases, it should help to predict the urban
flooding using very high-resolution SAR data from within the urban area, even if these sensors
do have poor visibility of the urban ground surface. It is possible that a hybrid method could be
developed that could fuse the best elements of the method discussed in this paper and that
of Ref. 23.
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