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Key Points:  10 

• The normalized distribution of power input to the magnetosphere is set by IMF 11 

orientation variability via magnetopause reconnection rate  12 

• 3-hourly normalized power input obeys a Weibull distribution with shape parameter 13 

k=1.0625 and scale parameter =1.0240 for all years  14 

• Annual means can give the probability of space weather events in the largest 10% and 15 

5% to within one-sigma errors of 10% and 12%, respectively 16 

 17 

Abstract   18 

Paper 1 in this series [Lockwood et al., 2018b] showed that the power input into the 19 

magnetosphere Pα is an ideal coupling function for predicting geomagnetic “range” indices that 20 

are strongly dependent on the substorm current wedge and that the optimum coupling exponent α 21 

is 0.44 for all averaging timescales, , between 1 minute and 1 year.  The present paper explores 22 

the implications of these results. It is shown that the form of the distribution of Pα at all 23 

averaging timescales  is set by the IMF orientation factor via the nature of solar wind-24 

magnetosphere coupling (due to magnetic reconnection in the dayside magnetopause) and that at 25 
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 = 3hrs (the timescale of geomagnetic range indices) the normalized Pα (divided by its annual 26 

mean, i.e. <Pα> =3hr /<Pα> =1yr) follows a Weibull distribution with k of 1.0625 and  of 1.0240. 27 

This applies to all years to a useful degree of accuracy.  It is shown that exploiting the constancy 28 

of this distribution and using annual means to predict the full distribution gives the probability of 29 

space weather events in the largest 10% and 5% to within uncertainties of magnitude 10% and 30 

12%, respectively, at the one-sigma level.  31 

1.  Introduction 32 

In Paper I [Lockwood et al., 2018b] in this series, it was established that the power input into the 33 

magnetosphere, Pα, computed from near-Earth interplanetary data using the physics-based 34 

formulation of Vasyliunas et al. [1982], is highly correlated with both the am geomagnetic index 35 

over a range of averaging timescales  between a 3-hours and one year, with an optimum 36 

coupling function of α = 0.44.  In addition, the SME auroral index was used to show that this 37 

also applies down to  = 1 min. (Note that allowance for response lag is required at these higher 38 

time resolutions to account for the effect of energy storage in the geomagnetic tail and its 39 

subsequent release during the substorm cycle).  The averaging timescale employed is an 40 

important, but often overlooked, consideration in solar wind-magnetosphere coupling studies yet 41 

its effects on behaviour and conclusions can be considerable [Finch and Lockwood, 2007; 42 

Badruddin and Aslam, 2013].  In the current paper, we study the distribution of 3-hourly Pα 43 

values ( = 3 hrs.) and investigate why it has the form that it does.  The reasons for studying this 44 

distribution are associated with reconstructions of past space weather conditions (see sections 1.1 45 

– 1.3 below), which exploit an important empirical result – namely that the annual distributions 46 

of values of various space weather parameters, X, averaged over an interval  and divided by 47 

their annual mean, <X> /<X>=1yr, are surprisingly constant over time [Lockwood et al., 2017, 48 

2018a].  This is an extremely valuable result, but one which would have greater predictive power 49 

(and in which we could have greater confidence) if we understood why it applies and what its 50 

limitations are.  In Paper 3 of this series [Lockwood et al., 2018c], we study the evolution of the 51 

distribution of Pα with  from the 3 hrs. studied here up to  = 1 year. Together, these papers 52 

supply much of the understanding of the empirical result that we are searching for.  53 



    Confidential manuscript submitted to Space Weather  

3  
  

1.1 Space Climate: reconstructions of annual means of space weather parameters  54 

Recent years have seen the development of reconstructions of past annual mean conditions in 55 

near-Earth space. These have been made from historic solar and geomagnetic observations, 56 

interpreted using understanding derived from modern measurements made by spacecraft and 57 

solar magnetographs.  Initially these reconstructions employed single or multiple regression fits 58 

of co-incident data, but they have subsequently grown more complex and now also employ 59 

physical understanding and model simulations and have been checked using independent 60 

datasets, such as observed abundances of cosmogenic isotopes found in terrestrial reservoirs.  61 

The first attempt to reconstruct the interplanetary conditions of the past was made by Feynman 62 

and Crooker [1978] who used the geomagnetic aa index, which extends back to 1868.  This 63 

index is based on the range of variation in the horizontal component of the geomagnetic field in 64 

3-hour windows (as introduced by Bartels [1939]) and has, like all such “range” indices, an 65 

approximately square-law dependence on the speed of the solar wind impinging on Earth, VSW 66 

[see Lockwood, 2013].  However, on annual timescales, aa also depends on the near-Earth IMF 67 

field strength, B, changes in which therefore also contribute to its long-term drift. Feynman and 68 

Crooker considered various combination scenarios of B and Vsw, including assuming that B was 69 

constant, in order to derive a long-term variation in VSW.  The first separation of these two factors 70 

was made by Lockwood et al. [1999] who used the relationship between the 27-day recurrence of 71 

aa and the annual mean VSW to remove the dependence on VSW.  Rather than computing the near-72 

Earth IMF B, Lockwood et al. evaluated the open solar flux (OSF, a global parameter, being the 73 

total magnetic flux leaving the top of the solar corona, whereas B is a local parameter as it only 74 

applies to the near-Earth heliosphere). In order to achieve this, these authors used the Ulysses 75 

result that the radial component of the heliospheric field is largely independent of heliographic 76 

latitude [Smith and Balogh, 1995; Lockwood et al., 2004; Owens et al., 2008].  Solanki et al. 77 

[2000] reproduced the OSF variation deduced by Lockwood et al. using the global OSF 78 

continuity equation, with sunspot number quantifying the global OSF production rate and with a 79 

constant fractional loss rate. This model has subsequently been developed, refined, and used 80 

many times [Solanki et al., 2002; Schrijver et al., 2002;  Lean et al., 2002;  Wang and Sheeley, 81 

2002;  Mackay et al., 2002; Mackay and Lockwood, 2002;  Usoskin et al., 2002; Lockwood, 82 

2003; Wang et al., 2002; 2005; Vieira and Solanki, 2010, Steinhilber et al., 2010;  Demetrescu et 83 
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al., 2010; Owens et al., 2011; Owens and Lockwood, 2012; Goezler et al., 2013;  Lockwood and 84 

Owens, 2014a;b ; Wang and Sheeley, 2013;  Karoff et al., 2015;  Rahmanifard et al., 2017;  85 

Asvestari et al., 2017].  The continuity model allows us to reconstruct the annual mean OSF 86 

variation using sunspot number as a proxy for the OSF emergence rate. Hence the OSF variation 87 

depends on the integral of the sunspot number and will only be influenced by relatively long-88 

lived differences between the sunspot series employed. Over the interval for which we have 89 

reliable and homogeneous geomagnetic data (c. 1845 - present), almost identical results are 90 

obtained using the various sunspot number composites available, and all give good matches to 91 

the geomagnetic OSF reconstruction [Lockwood et al., 2016a; Owens et al., 2016a].  However, 92 

before 1845 the divergence of the various sunspot number reconstruction is greater and this does 93 

introduce changes to the derived OSF variation, particularly between the Maunder and Dalton 94 

minima (i.e. between about 1710 and 1790) [Lockwood et al., 2016a; Owens et al., 2016b].    95 

The continuity model applies to OSF but has also been used to derive reconstructions of the near-96 

Earth IMF, B [e.g. Rahmanifard et al., 2017], which requires understanding of how OSF and B 97 

are related. It is often assumed, either explicitly or implicitly, that the two are linearly related 98 

[e.g., Svalgaard and Cliver, 2010]. In fact, proportionality is a much better assumption than 99 

linearity as it avoids the nonsensical possibility of a non-zero, near-Earth IMF B when its source, 100 

the OSF, is zero: assuming linearity yields a false “floor” minimum value to B (the intercept 101 

value).  An assumption of proportionality was made in the analytic equations used in the first 102 

reconstruction of OSF by Lockwood et al. [1999] – however, this could be done only because the 103 

difference between the real OSF-B relation and the assumed proportional one was accounted for 104 

in the regressions that were then used to derive OSF from the data [Lockwood and Owens, 2011]. 105 

In general, there are two competing effects that make the OSF-B relationship more complex than 106 

either proportional or linear: for a given OSF, the near-Earth heliospheric magnetic field 107 

(hereafter called the interplanetary magnetic field, IMF) will decrease with increasing VSW 108 

because of the unwinding of the Parker spiral. Secondly, as the mean VSW increases its 109 

longitudinal structure also increases which enhances kinematic “folding” of open field lines, 110 

increasing B for a given OSF [Lockwood et al., 2009a; b; Lockwood and Owens, 2009; Owens et 111 

al., 2017].  The resulting relationship of OSF and B has been studied by Lockwood and Owens 112 

[2011] and Lockwood et al. [2014a] and allows us to employ the continuity model, which can 113 
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only apply to a global parameter such as OSF and not to a local one such as B, to model past 114 

variations of the near-Earth IMF B from sunspot numbers.  115 

Svalgaard and Cliver [2005] developed their IDV geomagnetic index from Bartels’ u-index 116 

[Bartels, 1932] and noted that it depended on B, with very little influence of VSW.  Indeed, 117 

several indices constructed from hourly mean geomagnetic data have this property, whereas 118 

range indices depend on both B and VSW [Lockwood, 2013]. This is a very important result as it 119 

means that combinations of different indices can be used to derive both B and VSW.  The long-120 

term variation of B that was derived by Svalgaard and Cliver [2005] was questioned by 121 

Lockwood et al. [2006] because their analysis employed non-robust regression procedures and 122 

also because it filled large data gaps in the observed IMF and solar wind speed time-series with 123 

interpolated values. (As demonstrated in Paper 1 [Lockwood et al., 2018b], a much more reliable 124 

option is to mask out the geomagnetic data during data gaps when the interplanetary data are 125 

missing [Finch and Lockwood, 2007]).  However, the insight provided by Svalgaard and Cliver 126 

is extremely valuable: Rouillard et al. [2007] used it in their reconstruction of both B and VSW, 127 

and Lockwood [2014a] used 4 different pairings of different indices to derive both (as well as the 128 

OSF), with a full Monte-Carlo uncertainty analysis, back to 1845. Once the distinction between 129 

OSF and near-Earth IMF B is allowed for, there is a growing convergence between the different 130 

geomagnetic reconstructions of heliospheric parameters [Lockwood and Owens, 2011], and also 131 

with those from cosmogenic isotopes [Asvestari and Usoskin, 2016; Asvestari et al., 2017; 132 

Owens et al., 2016b]. 133 

Svalgaard and Cliver [2010] extended the geomagnetic reconstructions back to 1835 using 134 

Bartels’ work on diurnal variations. However, this results in a data series that is not 135 

homogeneous and Lockwood et al. [2014a] argue that geomagnetic reconstructions are only 136 

reliable for 1845 onwards. What is certain is that the start date cannot be before 1832, when 137 

Gauss introduced the first properly-calibrated magnetometer. To extend the series before the start 138 

of reliable geomagnetic data we have to employ the models based on sunspot number and the 139 

OSF continuity equation. These models can be run from the start of regular telescopic sunspot 140 

observations in 1612. Lockwood and Owens [2014a] extended the OSF modelling to compute the 141 

OSF in the both the streamer belt and in coronal holes and so computed the streamer belt width. 142 
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The results match well the streamer belt width derived from historic eclipse images [Owens et 143 

al., 2017].  From this, and from modern magnetograph observations of the streamer belt width, 144 

Lockwood and Owens [2014b] made deductions about the annual solar wind speeds during the 145 

Maunder minimum. The reconstructed streamer belt width and OSF were used by Owens et al. 146 

[2017], in conjunction with 30 years’ output from a data-constrained magnetohydrodynamic 147 

model of the solar corona based on magnetograph data, to reconstruct VSW, B and solar wind 148 

number density, NSW from sunspot observations.  From these reconstructions, annual means of 149 

power input into the magnetosphere, Pα, have been computed by Lockwood et al. [2017].  150 

1.2 The use of annual means in space climate reconstructions  151 

There are a number of reasons why all of the reconstructions discussed in section 1.1 have been 152 

restricted to annual means.  The first, but least compelling, reason is that the correlations 153 

exploited to make the reconstructions are higher for annual means than for data of higher time 154 

resolution. This is, at least in part, caused by the cancellation of observation noise in the annual 155 

means but there are also some systematic variations that are averaged out. For example, there is a 156 

seasonal variation in the ionospheric conductivities influencing any one geomagnetic observatory 157 

[Wallis and Budzinski, 1981; Nagatsuma, 2006; Finch, 2008; Koyama et al., 2014]. In the aa 158 

index, this effect is reduced by averaging data from two sites, one in each hemisphere, but better 159 

cancellation of seasonal effects is achieved by the ap index with its greater number of stations 160 

and the use of conversion tables that allow for season.   However, there is still a remnant annual 161 

variation in ap because the sites are not distributed uniformly or equally in the two hemispheres 162 

[Finch, 2008] and the am index provides a much flatter time-of-day and time-of-year response 163 

pattern because of its more even geographical distribution of stations.  Other systematic annual 164 

variations are introduced by the effects of Earth’s dipole tilt and the variation of the Earth’s 165 

heliographic latitude over the year (see Lockwood et al. [2016b], and references therein). 166 

However, the fundamental limit that prevents the Pα reconstructions being of higher time 167 

resolution than annual is the importance of orientation of the near-Earth IMF in driving 168 

geomagnetic activity. This issue has been discussed by Lockwood [2013] and Lockwood et al. 169 

[2017b].  It is well known that on short timescales, because of the dominant role of magnetic 170 
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reconnection, the coupled magnetosphere-ionosphere-thermosphere responds to the polarity and 171 

magnitude of the southward component of the IMF (in a suitable frame oriented with respect to 172 

the geomagnetic field axis, such as Geocentric Solar Magnetospheric, GSM).  As discussed in 173 

Paper 1 [Lockwood et al., 2018b], there are two time constants of response. The first is the 174 

directly-driven system which responds on a timescale of order a few minutes. The other response 175 

is the storage-unloading system, whereby the directly-driven flows store magnetic flux and 176 

energy in the magnetospheric tail which is released and deposited in the nightside auroral 177 

ionosphere and thermosphere via the substorm current wedge. This generates a second response 178 

after a delay of between about 30 and 60 min. The polarity of the southward field component 179 

rarely remains constant for more than about 1 hour [Hapgood et al., 1981] and is always 180 

fluctuating under the influence of transient events such as coronal mass ejections, co-rotating 181 

interaction regions, smaller-scale stream-stream interactions, and turbulence (see review by 182 

Lockwood et al. [2016b] and references therein). There is very little historical evidence available 183 

that could be exploited further to improve reconstructions of timescales shorter than annual 184 

means. Matthes et al. [2017] have used the (extended) aa index to improve time resolution back 185 

to 1845 (with consideration of the known limitations of aa) and provide a set of plausible 186 

scenarios for the Dalton and Maunder minima which occurred before this date.  Another 187 

potential source of daily information is auroral observations [Legrand and Simon, 1987; 188 

Silverman, 1992; Kataoka et al., 2017]. However, there are severe complications introduced by: 189 

(1) the great differences between observing sites in the annual variations in hours of darkness and 190 

its effect on observation probability; (2) the effect of both secular drift in the Earth’s field and of 191 

human migration on the numbers of people available to record sightings at latitudes where 192 

aurorae occur most frequently; (3) secular change in cloud cover at a given site; (4) the social 193 

factors that make recording of sightings fashionable and accurate; (6) subsequent loss of data 194 

through catastrophic events such as fires and wars; and (6) the increased use of street lighting in 195 

centers of population [Lockwood and Barnard, 2015]. Alternatively, and only after a great deal 196 

of further research, it may become possible to also use modelling of the solar corona, and its 197 

extension into the heliosphere, based on daily sunspot numbers; however, such applications 198 

remain in the future.  199 
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None of these possibilities are viable at the present time and so there is no source of historic 200 

information on IMF orientation at sub-annual times that can be applied back to the Maunder 201 

minimum. Hence the interplanetary time series, and their terrestrial space weather responses, 202 

cannot be reconstructed. The only solution is to average out the fluctuations in IMF orientation, 203 

such that only a dependence on the IMF magnitude, B, remains [Lockwood, 2013].  Averaging 204 

over sufficiently long intervals reduces the IMF orientation factor to an approximately constant 205 

factor.   Lockwood et al. [2017] show that employing a single, overall average value for an IMF 206 

orientation factor in GSM causes only a 4% error in annual means (as opposed to 10% error for 207 

27-day means and a 42% error for 1-day means). 208 

1.3 Space Climatology: reconstructions of distributions of space weather parameters  209 

From the discussion in Section 1.2, it is apparent that we cannot, for the time being at least, 210 

construct a time series of data at sub-annual resolution to study the space weather conditions far 211 

enough into the past to cover grand minimum conditions.  However, this does not mean that we 212 

cannot construct a space weather climatology, giving the probability of events exceeding a 213 

certain size, by reconstructing the Probability Distribution Functions (PDFs) of space weather 214 

parameters.  In this area, a surprising and powerful new empirical result has recently emerged:  215 

the annual distributions of many space weather indices for a given averaging timescale, , as a 216 

ratio of its annual mean, (i.e., the PDFs of <X>/<X>1yr for a generic space weather index X) are 217 

remarkably constant for a given .  The distributions are quite close to lognormal at all  but the 218 

variance decreases with increasing  (i.e. the distribution becomes more Gaussian-like).  219 

Lockwood et al. [2017] showed this result held for daily means ( = 1 day) during the space age 220 

of the power input into the magnetosphere, Pα, and of the ap geomagnetic index. This is despite 221 

the fact that the relative contributions to geomagnetic activity of recurrent disturbances such as 222 

Corotating Interaction Regions (CIRs) and random events (such us impacts by Coronal Mass 223 

Ejections) varied considerably during this interval [Holappa et al., 2014].  Lockwood et al. 224 

[2018a] have shown that this result also holds for all of the full ap index data sequence (i.e., for 225 

1932-2016) and all years of the aa index data (for 1868-2016).   226 
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Figure 1 stresses how ubiquitous this result is for space weather indices. Because the 227 

distributions maintain an almost constant shape, the number of events in each year above a given 228 

fixed threshold show a monotonic variation with the average value for that year [see Lockwood et 229 

al., 2017].  Figure 1 is for an example  of 1 day, showing scatter plots of f[X>Xo], the fraction 230 

of days for a given year in which the daily mean of a parameter X exceeds its 95 percentile (X > 231 

Xo, where Xo is computed from the whole dataset), as a function of the annual mean of that 232 

parameter <X>. Figure 1(a) is for the ap index using all the available data (for 1932-2016); 1(b) 233 

is for the Dst index (1957-2016); (c) the AE index (1968-2016); (d) the AU index (1968-2016); 234 

(e) the AL index (1968-2016); and (f) the power input into the magnetosphere, Pα, computed 235 

from interplanetary data for a coupling exponent α = 0.44 (1996-2016, although some years are 236 

not used as data gaps are too numerous and too long, see Paper 1 and Lockwood et al. [2017]). In 237 

each case, an increase in the average disturbance level (which means increasingly negative in the 238 

cases of AL and Dst) is associated with an increase in the fraction of days with disturbance in the 239 

top 5% of the overall distribution for that parameter. The scatter is greatest for Dst, but very 240 

small for AL, but this finding is of value to the climatology of a wide range of terrestrial space 241 

weather disturbance indices.  The mauve lines in each panel of Figure 1 are third-order 242 

polynomial fits to these data points, constrained to pass through the origin (so that ffit[X>Xo] = 0 243 

when <X>=1yr = 0).  The Table in Part 5 of the Supporting Information gives the coefficients for 244 

these fits for each index and also the values of rms, the root-mean-square (r.m.s.) of the 245 

fractional fit residuals. These confirm that the AL index has the lowest scatter. In fact the rank 246 

order by rms is very revealing and shows a dependence on the latitudinal difference of the 247 

observing stations from the auroral oval.  If we consider that the origin of this behaviour is the 248 

power input into the magnetosphere, the close adherence to the relationship by AL is consistent 249 

with this index being a good indicator of power released from the geomagnetic tail lobes as part 250 

of the storage/release behavior.  If this is indeed the case, the fact that AU agrees slightly less 251 

well indicates that the power input to the magnetosphere is a slightly less good predictor of the 252 

directly-driven current system. The AE index is midway between AL and AU in its behaviour, 253 

being the difference of the two (AE = AUAL where AL is negative). The next closest agreement 254 

is the Ap index, which is a planetary index recorded at middle latitudes that is very sensitive to 255 

the substorm current wedge and so well correlated with AL (see Supporting Information file 256 

attached to Paper 1).  The agreement for the Dst index is still good but not as good for the other 257 
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geomagnetic indices. Ideally, if the relationships shown in Figure 1 all arose from the power 258 

input to the magnetosphere, then the relationship for Pα/Po would be stronger than for all the 259 

geomagnetic indices.  However, the scatter is greater for Pα/Po than for any of the geomagnetic 260 

indices except Dst.  We have repeated the analysis for Gα/Go where Gα = Pα/sin4(/2), and hence 261 

is the power input without the IMF orientation factor, and Go is the overall average of Gα.  Note 262 

that whereas the geomagnetic indices have availability of essentially 100%, that of Gα is 96% 263 

and that of Pα is 86% for daily means (because, as described in Paper 1, we require just 9 264 

samples in an hour to give an error below 5% for all the parameters used to compute Gα, whereas 265 

for the IMF orientation factor the same error requires 50 samples in an hour). Interestingly, rms 266 

is considerably smaller for Gα/Go than for Pα/Po and so much of the scatter for Pα/Po is 267 

introduced by the IMF orientation factor. This may be associated with the limitations of the 268 

IMF orientation factor used, but it seems likely that data gaps also contributed to the 269 

additional scatter for Pα/Po.   What does seem to be clear is that the scatter gets increasingly 270 

larger for geomagnetic indices which are influenced by currents other than the nightside auroral 271 

electrojet because they employ stations that are further away from it.    272 

We stress here that although the bulk (or “core”) of the PDFs are usually best fitted by something 273 

like a lognormal distribution [e.g., Riley and Love, 2017], the extreme tail of the distribution is 274 

not generally well described by the core distribution and so the result will not, in general, hold 275 

for the number of the most extreme events [Redner, 1990]. In studies of extreme events using 276 

“Extreme Value Statistics” (EVS), a lognormal distribution has often been combined with a 277 

differently-shaped tail [e.g. Vörös et al., 2015; Riley and Love, 2017].   Hence, although the use 278 

of this result can tell us about the occurrence of “large” events (in the top 5%), we should not 279 

expect it to hold well for the most extreme events.  The relationship of large storms in the tail of 280 

the core distribution to extreme-event “superstorms” is discussed further in Paper 3 [Lockwood et 281 

al., 2018c].  282 

In the present paper, we exploit a number of findings that were presented in Paper 1 [Lockwood 283 

et al., 2018a], namely: (1) that statistical studies of solar wind -magnetosphere coupling and 284 

coupling functions that employ data from before 1995 are unreliable and likely to be seriously in 285 

error because of the presence of more and longer gaps in the interplanetary data series; (2) the 286 
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coupling exponent determining the power input to the magnetosphere, α, shows no significant 287 

variations with averaging timescale, , and the optimum value is α = 0.44 at all  studied (which 288 

was varied between 1 minute and 1 year); (3). annual values of power input to the magnetosphere 289 

Pα derived from combining annual means of the component interplanetary factors (the “average-290 

then-combine” method) are not exactly the same as annual means of Pα that are computed at high 291 

time resolution and then averaged (the “combine-then-average” method); however, they are a 292 

usable approximation to within an error of about 5%; and (4) the uncertainty in the α estimate 293 

influences the magnitude of the average power into the magnetosphere , Po ,  but has negligible 294 

effect on the waveform of the variation in Pα and hence on the ratios Pα/<Pα>=1yr . The last point, 295 

(4), comes from further consideration of Figure 7 of Paper 1. Part (b) of that figure shows that 296 

the estimate of the average power into the magnetosphere, Po, rises hyperbolically with α such 297 

that the maximum range of fitted α (0.40-0.48) causes a variation in Po between 0.31019W and 298 

0.61019W.   However, part (d) of that figure shows the distributions of Pα/Po are very similar for 299 

this range of α, all being lognormal in form. This is quantified in part (c) of the figure which 300 

plots the ratios of Pα/Po to the values for the optimum α = 0.44.  This weak dependence of Pα/Po 301 

on the precise values of α around the optimum value is also reflected in the flat-topped nature of 302 

the correlograms shown in Figures 4a and 5a of Paper 1.  Thus, although the estimate of the 303 

absolute level of power input to the magnetosphere (averaging Po for all data and <Pα>=1yr  tor 304 

annual means) depends strongly on the value of α, the waveform of the variation in Pα (that is 305 

tested by correlation studies) is only weakly dependent on α in the uncertainty range around the 306 

optimum value. 307 

2. Analysis of the contributions to the magnetospheric Power input  308 

The derivation of the equation for the power input to the magnetosphere (given in Paper 1), is 309 

reprised in the Supporting Information file attached to this paper for completeness. This file also 310 

includes a review of why the IMF magnitude is used (B) instead of the component transverse to 311 

the sun-Earth line (BT) and a confirmation that the best IMF orientation factor is sin4(GSM/2), 312 

using 20 years’ data of both 1-minute and 3-hour resolution and with many fewer, and much 313 

shorter, data gaps. 314 
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The result that the annual distribution of the normalized power input into the magnetosphere 315 

<Pα> /<Pα>=1yr  has an approximately constant, quasi-lognormal form is a purely empirical one.  316 

Figure 2 gives an initial indication of why it applies, by looking at the annual distributions of R = 317 

log10(<X>=1min /<X>=1yr) where X is one of the parameters of near-Earth space that contributes to 318 

Pα.  Equation (6) of Paper 1 (equation (S7) in the Supporting Information) shows that relevant 319 

parameters are: the mean ion mass of the solar wind, msw;  its number density, Nsw; its speed, Vsw; 320 

the strength of the IMF frozen-in to the solar wind flow, B; the clock angle that the IMF makes 321 

with the north in the GSM frame of reference, GSM (defined by GSM = arctan(|ByM|/BzM), where 322 

ByM and BzM are the Y and Z components of the IMF in the GSM frame); Earth’s magnetic 323 

moment, ME; and a constant k3.  We here group terms according to their exponent in the 324 

expression for Pα.  If the ratio (<X>/<X>=1yr) is lognormally distributed, R will be normally 325 

distributed about a mode and mean value of zero. Parts (a), (c), (e) and (g) of Figure 2 show the 326 

annual distributions of R for 1996-2017 (inclusive) for 1-minute averages ( = 1min) where X is, 327 

respectively: the IMF, B; the solar wind mass density, mSWNSW; the solar wind speed, VSW; and 328 

the IMF orientation factor, sin4(GSM/2). In each case, the vertical axis gives N/1000, where N is 329 

the number of 1-minute averaged samples in bins of R that are 0.01 wide.  There are 11.13 330 

million 1-minute samples for which all parameters in Pα are available out of a possible total of 331 

12.10 million for this interval, an availability of 92.1%.  All the plots show similar distributions 332 

in the different years. Those for B, mSWNSW, and VSW, in parts (a), (c) and (e) do indeed reveal 333 

near-Gaussian forms (on the logarithmic scale, R). They are not exactly Gaussian: that for VSW is 334 

slightly asymmetric and the peaks for mSWNSW tend to be slightly below the ideal value of zero 335 

(however, as noted below, the weighting of the mSWNSW factor in Pα is small).  The 336 

corresponding right hand plots (b), (d) and (f) show the variations in the variances of these 337 

distributions in R, R for each year (normalized to their overall means for all years, i.e. R/<R>).  338 

By definition, the mean of each of these variations is unity, shown by the horizontal black line in 339 

each plot, and the surrounding grey areas show plus and minus one standard deviation about this 340 

mean. These show the variance is constant from year to year to within 6.9% (at the 1-sigma 341 

level) for B, 7.9% for mSWNSW, and 11.2% for VSW.  342 



    Confidential manuscript submitted to Space Weather  

13  
  

The distribution is quite different for the sin4(GSM/2) factor shown in Figure 2g. The annual  343 

distributions of R in Figure 2g show that sin4(GSM/2) is far from lognormal in form (note the 344 

very large number of samples at R = 1, corresponding to sin4(GSM/2) = 0: the peak N is always 345 

for the extreme bin plotted at R = 1 (which is for  ≤ R <0.99).  Note that R =  and R = 346 

0.99 correspond to (<X>=1min /<X>=1yr) of 0 and 0.1036: given that the average sin4(GSM/2) for 347 

all years is 0.355 to within about 5% [Lockwood et al., 2017], this bin covers a range of 348 

sin4(GSM/2) of just 0 to 0.036 and yet 21% of 1-minute samples lie in this small range of 349 

sin4(GSM/2) (which is for northward IMF with GSM less than about 51.8º).   N varies between 350 

57530 and 68225 for this sin4(GSM/2) bin, depending on the year.  However, Figure 2h shows 351 

the year-to-year variability is low for sin4(GSM/2), with R/<R> being constant to within 3.2% 352 

at the 1-sigma level. To understand the implications for the Pα /<Pα>=1yr  distribution we note 353 

that from the equation for Pα (equation (6) of Paper 1 and (S7) of the Supporting Information):  354 

log10(Pα /<Pα>=1yr)  =  log10(Pα)  log10(<Pα>=1yr)   355 

= log10(k3)+alog10(B)+blog10(mswNsw)+clog10(Vsw)+dlog10(sin4(GSM/2))  log10(<Pα>=1yr)   356 

             (1) 357 

 Where for the best-fit α of 0.44 found in Paper 1  358 

a = 2α = 0.88                        (2) 359 

 b = (2/3- α) = 0.227                       (3) 360 

 c = (7/3- α) = 1.893                       (4) 361 

and d = 1                          (5)  362 

Figure 9b of paper 1 shows that, to a good approximation (error  ±5%), annual “average-then-363 

combine” values of Pα are equal to the “combine-then-average” values, hence 364 
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<Pα>=1yr   k3 (<B>=1yr)2α  (<mswNsw>=1yr)(2/3- α) (<Vsw>=1yr)(7/3- α) <sin4(GSM/2)>=1yr       (6)  365 

Substituting for log10(<Pα>=1yr) in (1) using (6) gives   366 

 log10(Pα /<Pα>=1yr)   alog10(B/<B>=1yr) + blog10(mswNsw/<mswNsw>=1yr) +  367 

clog10(Vsw/<Vsw>=1yr) + dlog10(sin4(GSM/2) /<sin4(GSM/2>=1yr)                                         (7)  368 

Equation (7) shows that the distribution of log10(Pα/<Pα>=1yr) is the weighted sum of those 369 

shown in Figure 2.  The combined contribution of the terms in B, mswNsw, and Vsw remains close 370 

to Gaussian (on the logarithmic scale of R), dominated by the distribution of VSW. However, the 371 

corresponding distribution for sin4(GSM/2) is very far from Gaussian. From equations (2) - (5) 372 

this last term has a weighting of d/(a+b+c+d) = 1/4.  Thus the dependence of  Pα on sin4(GSM/2) 373 

perturbs the distribution of Pα /<Pα>=1yr from the quasi-lognormal form that it would otherwise 374 

have had.  However, the right hand panels of Figure 2 explain the small year-to-year variation in 375 

the shape of the distribution of Pα /<Pα>=1yr because each parameter has a quite constant 376 

standard deviation of its R variation, i.e. the standard deviation of X is approximately 377 

proportional to the mean.  It should be remembered that Figure 2 is for 1-minute averaged data, 378 

and it becomes important to understand the effect of the averaging timescale, .  It is not, in itself 379 

of great importance or application in this paper that some of the parameters in Pα are quasi-380 

lognormally distributed at high time resolution; however, it does make their evolution with   381 

more understandable. This is because on averaging over a larger , the Gaussian distributions in 382 

the logarithmic R parameter remain Gaussian and become narrower because of the central limit 383 

theorem [Heyde, 2006;  Fischer, 2011]. As a result, the distributions of the X parameters remain 384 

lognormal but evolve in shape, becoming less asymmetric. However, shown by Figure 2 of 385 

Lockwood et al. [2017], the highly non-Gaussian distribution of sin4(GSM/2), shown here in 386 

figure 2g, varies in a complex way as the averaging timescale, , is increased.  387 
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In order to analyze the behavior of the distribution of power input into the magnetosphere Pα 388 

with averaging timescale , we here break equation (6) in Paper 1 [Lockwood et al., 2018b] into 389 

five terms  390 

 Pα =   (k3ME
2/3) FB FV FN F                  (8) 391 

 where  FB = B2α ,                                     (9)  392 

FV = Vsw
(7/3- α)  ,                     (10)  393 

FN = (msw Nsw)(2/3- α)  ,                    (11) 394 

 and F = sin4(GSM/2)                   (12)  395 

We now analyze the variation of annual means of these terms and their distributions around those 396 

means. In each case, we take the distribution of 3-hourly means ( = 3hr., the resolution of range 397 

geomagnetic indices, which is longer than the average substorm cycle duration so we are 398 

integrating over substorm cycles) as a ratio of the annual mean value. This lets us look at the 399 

contributions of the various terms, not only to the variation in annual means of Pα, but also to the 400 

distributions of <Pα>=3hr /<Pα>1yr.    401 

2.1 The effect of the IMF   402 

Figure 3 analyses the behavior of the term in Pα that depends on the IMF magnitude B, FB 403 

(equation 9).  Paper 1 shows that 0.44±0.02 for  = 3hrs gives the optimum agreement with the 404 

am index [Lockwood et al., 2018b], the best estimate of FB reduces to B0.88.   In Figure 3a, the 405 

annual distributions of 3-hourly values of FB (normalized for convenience to its overall mean for 406 

1995-2017 [FB]o) are shown as vertical slices and as a function of year along the horizontal axis. 407 

We use the criterion for a valid 3-houly mean established in Paper 1. The number N of the 61126 408 
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valid 3-hourly means of FB/[FB]o obtained during 1995-2017 (a data availability of 91.0%) is 409 

color-coded in bins of FB/[FB]o that are 0.01 wide. The back line gives the mean values of these 410 

distributions and displays a clear solar cycle variation, with larger values at sunspot maximum 411 

(around 2002 and 2014), as expected. The distribution for all years is shown in Figure 3b by the 412 

gray histogram which shows N/Nmax as a function of FB/[FB]o, where Nmax is the peak value of N.  413 

Lockwood et al. [2017; 2018a] have shown that the annual distributions of <Pα>=3hr /<Pα>=1yr 414 

are remarkably constant from year to year and Figure 3c investigates the corresponding 415 

contribution of the IMF term by showing the distributions of FB/<FB>=1yr (where the means FB 416 

are also taken over  = 3hrs: note that, hereafter, values given without the average symbols and a 417 

 value subscript are 3 hourly values), in the same format as Figure 3a and the number N is again 418 

counted in bins 0.01 wide. The black line shows the annual means which, by virtue of the 419 

normalization, are always unity.  The distributions for the different years are very similar and the 420 

logarithm of their variances v is close to constant, as shown in Figure 3e. The distribution for all 421 

years is shown by the gray histogram in Figure 3d, where N is again normalized to its peak value. 422 

As expected from Figure 2a, this distribution is well matched by the best-fit (using least squares) 423 

log-normal distribution shown in mauve which has unity mean and a variance v of 0.120.   The 424 

r.m.s. deviation of the fitted lognormal from the observed N/Nmax distribution is B,logn = 425 

2.4102: we use this parameter to compare the quality of this fit to others presented in the 426 

subsequent sub-sections. Note that the largest values are not as well fitted, as tends to be the case 427 

for all the fits to the core distribution presented in this paper, indicating the need to use extreme 428 

value statistics to add an appropriate tail to the distribution.  429 

Figures 4-7 are equivalent to Figure 3 for the other factors in the equation (8). Note that the y 430 

axis scales are the same for each panel within each figure but are not the same for all figures. We 431 

noted that some of the parameters showed largest deviations in 2003, a solar maximum year in 432 

which the major series of  “Halloween” storms occurred during the interval 19th  October – 7th 433 

November. The energetic particles associated with these storms themselves caused some data 434 

gaps, but as a test we removed the whole interval and found no detectable differences in Figures 435 

3-7.  Hence even the largest storms do not perturb the distributions shown. 436 
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2.2 The effect of the solar wind speed   437 

Figure 4 is the same as Figure 3 but for the term in Pα that depends on the solar wind speed, FV 438 

(equation 10).  As for the IMF term, taking the distribution of 3-hourly values and dividing by 439 

the annual mean gives a near lognormal distribution that is very similar from year to year. The 440 

solar cycle variation in FV has almost been removed by this normalization; however, there is 441 

some residual effect of the dominance of recurrent fast streams in the declining phase of the solar 442 

cycle when Earth intersects long-lived, fast solar-wind streams [Cliver et al., 1996; Tsurutani et 443 

al., 2006] emanating from coronal holes that have expanded to low heliospheric latitudes [Wang 444 

et al., 1996] and rotating with the equatorial photosphere approximately every 25 days. They 445 

slightly raise the distribution variances in the declining phases (seen in Figure 4e, and also as the 446 

increased difference between the mode and mean values in Figure 4c, particularly around 2008).   447 

The normalized distribution of FV/<FV>=1yr  for  = 3hrs and all years is shown in Figure 4d by 448 

the grey histogram which has been fitted with log-normal distribution with a mean of unity and 449 

variance v = 0.127  (mauve line).  This is a similar, but slightly higher, variance than for the IMF 450 

factor FB. The RMS deviation of the fitted lognormal from the observed N/Nmax distribution is 451 

V,logn = 3.6102 which is a 50% larger than that for FB.  452 

2.3 The effect of the solar wind mass density  453 

Figure 5 is the same as Figure 3 but for the term in Pα that depends on the solar wind mass 454 

density, FN (equation 11).   Figure 4a shows that there is a very slight solar cycle variation in the 455 

distributions and mean of FN, but none for FN/<FN>=1yr.  Note that Figure 5a shows an increase 456 

in FN for 2017, but the distribution of FN/<FN>=1yr in Figure 5c is the same as for previous years. 457 

The overall distribution of FN/<FN>=1yr (Figure 4d) is much narrower than that for either 458 

FB/<FB>=1yr or FV/<FV>=1yr and has here been fitted with a lognormal of mean unity and 459 

variance v = 0.009 (mauve line). For such a low variance-to-mean ratio, the lognormal 460 

distribution is very close to Gaussian.  The RMS deviation of the fitted lognormal from the 461 

observed N/Nmax distribution is N,logn = 2.6102 which is almost the same as that for FB.  462 
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2.4 The effect of the IMF orientation  463 

Figure 6 is the same as Figure 3 but for the term in Pα that depends on the IMF orientation, F   464 

(equation 12).  The shape of the distributions of both F/[F]o and F/<F>=1yr for this  of 3 465 

hours is not well described by any of the standard parameterizations.  Figure 2 of Lockwood et 466 

al. [2017] shows that this distribution evolves from having a singular and large peak at zero for  467 

= 5 min, into a lognormal form as  increases to  6 hrs., which then falls in variance v as  468 

further increases, becoming close to Gaussian for  > 1 day and a low-variance Gaussian tending 469 

to a delta function at unity as  approaches 1 year.  Figure 6a shows that there is a very slight 470 

variation in the distributions and means of F/[F]o but it does not follow the solar cycle and has 471 

almost completely been suppressed in F/<F>=1yr [Stamper et al., 1999;  Lockwood, 2003; 472 

Lockwood et al., 2017].  473 

2.5 The resulting distribution of Pα 474 

Figure 7 is the same as Figure 3 but for the combination of these terms, Pα (equation 7). Given 475 

that the normalized factors in Pα (FB/<FB>=1yr,  FV/<FV>=1yr, FN/<FN>=1yr,  and  F/<F>=1yr) 476 

all show very little year-to-year variation it is not surprising that neither does Pα /<Pα>=1yr. The 477 

overall distribution shown in Figure 7d is quite close to a lognormal (the mauve line is the best 478 

fit with mean 1 and variance v = 1.788).  Lognormal distributions arise when factors described 479 

by Gaussian or lognormal distributions are multiplied together. In this case, given that 480 

FB/<FB>=1yr,  FV/<FV>=1yr, and FN/<FN>=1yr are described by three lognormal distributions (the 481 

last of which is of such low variance it is essentially Gaussian), so FBFVFN /<FBFVFN>=1yr is a 482 

(higher variance) lognormal.   483 

However, the normalized IMF orientation factor F/<F>=1yr at  = 3hrs does not follow a 484 

lognormal distribution and this has a major influence on the shape of the Pα /<Pα>=1yr 485 

distribution.  The RMS deviation of the fitted lognormal from the observed N/Nmax distribution of 486 

Pα is P,logn = 6.5102 which is roughly three times larger than that for FB and FN and twice that 487 

for FV. Visual inspection of Figure 7d shows that the reason why this fit to the Pα distribution is 488 
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less good is that the lognormal distribution cannot match both the long tail of the observed 489 

distribution and the low mode value, which suggests a Weibull distribution. The best-fit Weibull 490 

distribution is described by a shape factor, k, of 1.0625, which with a scale factor, , of 1.0240 491 

gives the required mean of unity, and is shown by the blue line in Figure 7d.  For this fit, the 492 

RMS deviation from the observed N/Nmax distribution for Pα is P,Wb = 6.4104 which is 1% of 493 

that for the lognormal distribution.   494 

Hence we have established that the power input into the magnetosphere, normalized to its annual 495 

mean value, does not change greatly from year to year because the same is true for each of the 496 

terms that multiply together to form it. The shape of the overall distribution of Pα (at   = 3hrs) is 497 

better fitted with a Weibull form than a lognormal form because of the influence of the IMF 498 

orientation factor F. In the next section we study why, for   = 3 hrs., the Pα distribution has the 499 

form shown in Figures 7c and 7d.  In comparing the relative widths of the factors in Pα, notice 500 

that the y-axis scales in Figures 4 -7 are different and have been chosen to show relative 501 

differences visually, yet also not supress any small scale features.   Note also that the constancy 502 

of the Pα distribution is not absolute but is a usable approximation (accuracies that are discussed 503 

in section 4). For example, we note that in Figure 4 there is an anomalous feature in the 504 

distribution of FV in 2003 and in Figure 6 there is an anomalous feature in F in the same year. 505 

Figure 7 shows that this does percolate through to an anomaly (albeit of smaller magnitude) in 506 

the distribution of Pα for this year.  507 

3. The origins of the magnetospheric power input distribution  508 

Figure 8 studies the evolution of the distributions of Pα /<Pα>=1yr and of the factors FB/<FB>=1yr,  509 

FV/<FV>=1yr, FN/<FN>=1yr, and F/<F>=1yr  with averaging timescale   between 1 minute and 510 

3 hours.  In each panel, the probability density function is color-coded as a function of the 511 

normalized parameter (vertical axis) and averaging timescale   (horizontal axis). Panels (b), (d)  512 

and (e) (for, respectively,  FB/<FB>=1yr,  FV/<FV>=1yr, and FN/<FN>=1yr) show that the 513 

distributions of normalized terms in FB, FV and FN hardly change at all between   = 1 min. and  514 



    Confidential manuscript submitted to Space Weather  

20  
  

 = 3 hrs., and so the plots shown in Figures 3d, 4d and 5d apply, to a good degree of 515 

approximation, to all timescales below 3hrs (at least down to the 1 min limit studied here). On 516 

the other hand, Figure 8a shows that the distribution of the normalized power input Pα does 517 

change considerably over this range of , and Figure 8c shows that this change for Pα in large 518 

part mirrors that for the IMF orientation factor F. At  = 1min., the distribution is dominated by 519 

a very large number of zero and near-zero F samples and, because F appears as a multiplicative 520 

term in Equation (8), this generates a very large number of zero and near-zero Pα samples. For 521 

both Pα /<Pα>=1yr and F/<F>=1yr, the distributions evolve in accordance with the central limit 522 

theorem [Heyde, 2006;  Fischer, 2011], as discussed in Paper 3 [Lockwood et al., 2018c].   523 

Figure 2g shows that for  = 1 min. there is a secondary peak in the occurrence of values of R = 524 

log10(<F>1min/<F>1yr) around R of 0.45 associated with IMF orientations close to southward 525 

(explained below by Figure 9 and associated text). This peak is smaller in magnitude but broader 526 

than the corresponding one for R near 1 because of the sin4(GSM/2) function used for F.  This 527 

feature is off-scale in Figure 8c which plots <F>/<F>1yr (i.e. on a linear scale rather than the 528 

logarithmic scale of R) as a function of .  Rather than expand the scale in all panels of Figure 8 529 

and lose important detail,  in Figure S14 of Part 4 of the Supporting Information  we repeat 530 

Figures 8a and Figure 8c on a y-axis doubled length and scale which enables us to see this 531 

feature and track its evolution with . The feature is seen in S14(b)  at <F>/<F>1yr 2.8 and  532 

= 1min. As the averaging timescale is increased it disperses and moves towards average values 533 

for the same reasons that the large peak at <F>1min/<F>1yr  0 disperses and moves towards 534 

average values, namely intervals of prolonged strongly southward and northward IMF become 535 

rarer as  increases.  536 

Hence the key to understanding the distribution for Pα at   = 3 hr. is understanding the 537 

distribution of F = sin4(GSM/2) at   = 1 min. This investigated by Figure 9 which shows the 538 

distributions of one-minute averages of various IMF parameters. There are 10207789 valid 539 

1minute samples of the IMF and its components obtained in the years 1996-2016 (inclusive) – an 540 

availability of 92.4%.  Figure 9a shows the distribution for the IMF BY component in the GSM 541 

frame, [BY]GSM ; Figure 9b for the IMF BZ component, [BZ]GSM ; and Figure 9c for the ratio, 542 
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[BY]GSM /[BZ]GSM.  The arctangent of this ratio is IMF clock angle in the GSM frame, GSM   = 543 

arctan(|[BY]GSM|/[BZ]GSM), the distribution of which is shown in Figure 9d.  Figure 9d shows that 544 

IMF pointing due north ([BY]GSM = 0, [BZ]GSM > 0, GSM  = 0) is as common as IMF pointing due 545 

south ([BY]GSM = 0, [BZ]GSM < 0, GSM  = 180º), but IMF in the GSM equatorial plane ([BZ]GSM = 546 

0, GSM  = 90º) is twice as common. Figure 9e demonstrates what happens when the clock angle 547 

is divided by 2 and convolved with a sine function in sin(GSM/2): the directly northward case 548 

gives sin(GSM/2) = 0, the directly southward IMF gives sin(GSM/2) = 1, and [BZ]GSM = 0 gives 549 

sin(GSM/2)  0.71. Note that the distribution becomes less smooth than the distribution of GSM, 550 

which is the combined effect of binning the data into equal-width bins of sin(GSM/2) and of 551 

sin(GSM/2) being a non-linear function of GSM.  What is not intuitive is what has happened to 552 

the occurrence frequency of these values. The distribution in Figure 9e is dominated by the shape 553 

of the sine function, the slope of which approaches 1 when GSM/2    0 and approaches 0 when 554 

(GSM/2)   90º.  This means that bins of equal width in sin(GSM/2) cover a smaller range of 555 

GSM at GSM/2  0 (and so contain fewer samples), whereas they cover a larger  range of GSM 556 

at GSM/2   90 º (and so contain a greater number of samples). This effect is convolved with the 557 

distribution of samples with GSM. This greatly reduces the number of samples with sin(GSM/2) 558 

near 0 (the quasi-northward IMF case) and greatly enhances the number of samples with 559 

sin(GSM/2) near 1 (the quasi-southward IMF case). This can be seen in Figure 9e. Figure 9f 560 

presents the distribution of sin4(GSM/2) values. It can be seen that the peak near sin(GSM/2) = 0 561 

has been greatly enhanced whereas that near sin(GSM/2) = 1 has been greatly diminished.  The 562 

reason is that raising to the 4th power moves values (which are all less than unity) towards zero. 563 

The lowest bin of the histogram shown in figure 9f  (for sin4(GSM/2) < 0.02) contains 18.94% of  564 

all valid samples.  For sin2(GSM/2) the two peaks are of roughly the same magnitude (6.2% of 565 

the samples are at sin2(GSM/2) < 0.02), and for sin8/3(GSM/2) (as used by Newell et al. [2007]) 566 

the sin(GSM/2)  0 peak is greater than the sin(GSM/2)  1 peak, as in Figure 9f although to a 567 

lesser extent (10.5% of the samples are at sin8/3(GSM/2) < 0.02).   An insight into this distribution 568 

of sin4(GSM/2) is to compare it to an alternative IMF orientation factor that is often used, namely  569 

BS/B, where the southward field BS = [BZ]GSM when [BZ]GSM < 0 and BS = 0 when [BZ]GSM  0. 570 

This so-called “half-wave rectified” function means that all [BZ]GSM > 0 samples become zero in 571 
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BS/B, and Figure 9b shows that this is true for half of the samples. Hence the distribution of BS/B 572 

has an even larger peak at sin(GSM/2)  0 (51.1% of samples are at BS/B <0.02).     The 573 

distribution shown in Figure 9f is that shown by the vertical slice at the left-hand edge of Figure 574 

9c. It gives the distribution of <Pα>/<Pα>=1yr for   = 1min a form which, because of the Central 575 

Limit Theorem, evolves into the neo-Weibull distribution for <Pα>/<Pα>=1yr at   =  3yr, as 576 

shown in Figure 8a.  Because the distribution of <Pα>=1min/<Pα>=1yr is set by that for  577 

<F>=1min/<F>=1yr  (with its dominant occurrence of zero or near-zero values) it is, to a large 578 

degree, the nature of solar-wind magnetosphere coupling that the coupling function has to 579 

capture, which predominantly defines the form of the power input distribution at   = 1 min. As 580 

illustrated by Figures 8a and 8c, this also defines the form of the distributions at longer averaging 581 

timescales such as   = 3 hours.  Hence the shape of the distribution is set by the large variability 582 

of F on short timescales and although variations in FN, FV, and FB influence the mean value of 583 

Pα  (and hence the PDF at every Pα value) they have very little effect on the shape of the 584 

distribution.  585 

4. Uncertainties caused by assuming the distribution of normalized power input is constant   586 

As mentioned previously, the result that the distribution of normalized power input into the 587 

magnetosphere is almost stationary is a very useful one.  It has been used by Lockwood et al. 588 

[2017, 2018a] to predict the distributions of power input to the magnetosphere and of 589 

geomagnetic indices over the past 400 year from the annual means of solar wind parameters 590 

reconstructed by Owens et al. [2017].  The analysis carried out in the present paper gives us an 591 

opportunity to assess the accuracy of such applications of this result.  592 

The blue lines in Figure 10a shows the PDFs, d, of <Pα>/<Pα>=1yr for   = 3yr for the 21 593 

individual years of the 1996-2016 period. (Note that, by definition, PDFs are normalized, the 594 

integral of each curve along the y-axis being unity).  The black line is the mean and the orange 595 

area is between the mean plus and minus one standard deviation.  Figure 10b shows the 596 

deviations from the mean, expressed as a percentage, d = 100(d<d>)/<d> and in the same 597 

formats as Figure 10a. The horizontal lines show the limits of the upper 1% , 5%, 10% and 20% 598 
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of the cumulative distribution function (CDF, see Figure 11).  The 1- error in the PDF is below 599 

11% for the lower 80% of the Pα /<Pα>=1yr values (the error being ±11% for the 20% threshold), 600 

but rises to ±14.5% for the 10% threshold, ±28% for the 5% threshold and ±57% for the 1%. 601 

However, for space weather applications we are not as interested in the probability of a given 602 

<Pα> value as we are in the probability of <Pα> exceeding a certain threshold: in other words 603 

we are more interested in the CDFs, c , than the PDFs, d. The CDFs are shown in Figure 11a, 604 

using the same format as Figure 10a and the errors in the mean CDF, c = 100(c<c>)/<c> are 605 

shown in Figure 11b.  In this case, the 1- uncertainty in predicting an event in the top 20% of 606 

all events is ±8.5%; in the top 10% of all events is ±10%; in the top 5% of all events is ±12%; 607 

and in the top 1% is ±40%.     608 

2. Conclusions   609 

We have studied why the power input into the magnetosphere, Pα  (averaged over intervals of 610 

duration   = 3 hours), follows the distribution that is does by looking at the component terms. 611 

We use the optimum coupling function α = 0.44 which was shown in Paper 1 [Lockwood et al., 612 

2018b] to apply at all timescales between 1 minute and 1 year for the geomagnetic index, with 613 

the most uniform response, am.    614 

The solar wind mass density factor introduces the smallest variability into the Pα distribution (the 615 

variance/mean ratio for the distribution this factor being 0.009).  The factors depending on the 616 

IMF magnitude and on the solar wind speed follow quasi lognormal distributions of similar 617 

shape (the variance/mean ratios being 0.120 and 0.127, respectively). These factors all contribute 618 

to the shape of the Pα distribution, but the dominant one is the IMF orientation factor. We have 619 

shown how this arises from the nature of the optimum coupling functions and the role magnetic 620 

reconnection in the dayside magnetopause (the reconnection voltage being strongly dependent on 621 

the orientation of the IMF vector).  The distributions of the total mass density factor, the IMF 622 

magnitude factor and the solar wind speed factor hardly change between an averaging timescale 623 

of 1 minute and 3 hours, whereas the IMF orientation factor distribution changes rapidly. At  = 624 
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1 minute the distribution of the IMF orientation factor has a very large peak at near-zero values 625 

(see Figure 9f), which arises from the fact that for almost exactly half of all time the IMF points 626 

northward in the GSM frame (see Figure 9b) and so Pα is low. This peak is smoothed out as the 627 

averaging timescale as   is increased (in accordance with the central limit theorem).  As a result, 628 

the distribution of power input into the magnetosphere at any  is set by the distribution of the 629 

IMF orientation factor at very high time resolution.   630 

Given this great importance of the IMF orientation factor, it is sensible to check that we are using 631 

the best functional form in our analysis. A great many papers have deployed coupling functions 632 

using the form sinn(GSM), were GSM is the IMF clock angle in the GSM frame, but the optimum 633 

exponent, n, has been estimated to be anything between zero and 6.  The first coupling functions 634 

that allowed for IMF orientation were often referred to as “half wave rectifier” functions because 635 

they were set to zero the 50% of the time that the IMF had a northward component (see Figure 636 

9b) (a reference to the signal processing effect of software and devices that pass only one 637 

polarity of a parameter of the input signal into the output signal)  [Burton et al., 1975; 638 

Murayama, et al., 1980].  Bargatze et al. [1986] point out that in terms of IMF orientation 639 

studies using half-wave rectified BZM are using a factor of the form U(GSM)cos(GSM) where 640 

GSM is the IMF clock angle in the GSM frame and U(GSM) = 1 when GSM  90º and  U(GSM) 641 

= 0 when GSM < 90º. Because it is continuous in slope, and because it allows for the fact that 642 

low-latitude (between the cusps) magnetopause reconnection is not switched off whenever the 643 

IMF is northward [Chandler et al., 1999], the sinn(GSM) function has generally been seen as 644 

preferable, from  MHD magnetospheric modelling Hu et al. [2009] and Fedder et al. [2012] and 645 

found n  1, but statistical estimates from observations vary from n = 2 [Kan and Lee, 1979; 646 

Doyle and Burke,1983;  Lyatsky et al., 2007; Milan et al., 2008],  n = 2.67 [Newell et al., 2007], 647 

n = 4  [Perreault and Akasofu, 1978; Wygant et al., 1983; Scurry and Russell,1991;  Stamper et 648 

al., 1999], n = 4.5 [Milan et al., 2012], to n = 6 [Temerin and Li, 2006; Boynton et al., 2011]. 649 

The wide range in estimated n values may be because these studies employ different indicators 650 

of terrestrial disturbance but most studies employ interplanetary data with large data and many 651 

data gaps which, as shown by Paper 1, introduce considerable noise. The Supporting Information  652 

file contains an analysis of 20 years’ data of 1-minute auroral SML index values (the equivalent 653 
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of AL from the very extensive SuperMAG network of magnetometers) and interplanetary data 654 

with few data gaps that are dealt with rigorously, as detailed in Paper 1. The results clearly 655 

confirm that sin4(GSM) is indeed the best IMF orientation factor for use in Pα . 656 

We have shown that the distribution of power input into the magnetosphere (normalized to its 657 

annual mean value, i.e. of  <Pα>=3hr/<Pα>=1yr) on an averaging timescale of   = 3 hrs., is a 658 

Weibull distribution with k = 1.0625 and  = 1.0240 (which yields the required mean of unity).   659 

All the factors, when normalized to their annual mean value, show annual distributions which 660 

vary only slightly from year to year. Hence the multiplicative product of these factors, the power 661 

input to the magnetosphere, also behaves this way.  662 

We have studied the uncertainties inherent in using the fact that the normalized power input (and 663 

hence the geomagnetic activity indices that correlate highly with it) has a distribution of almost 664 

constant shape and variance. For the number of events in the largest 10% the one-sigma error is 665 

10% and for events in the largest 5% the one-sigma error is 12%. Hence the probabilities given 666 

in the space climatological study by Lockwood et al. [2018a] (which were in the largest 5% and 667 

based on reconstructed annual means) have an uncertainty of 12%, which has to be convolved 668 

with the uncertainty in the reconstructed mean value. Moving to the more extreme events, we 669 

show that the uncertainty in using the constant shape distribution rises to 40% for the top 1% of 670 

events. This stresses the unsuitability of this approach for the most extreme events and the fact 671 

that the extreme tail of the distribution may show a different form and that this tail can vary in 672 

ways different to the bulk of the distribution [e.g. Vörös et al., 2015].  Studies of extreme events 673 

in the tail of the distribution will be discussed in later papers, but here we study the bulk of the 674 

distribution and stress that the results, although useful for defining the occurrence of “large and 675 

extreme events” (for example in in the top 5% of the overall occurrence distribution), cannot be 676 

extended to cover the most extreme events without the use of Extreme Value Statistics (EVS). 677 

In paper 3 of this series [Lockwood et al., 2018s] we will study the how the distributions of 678 

power input into the magnetosphere and of geomagnetic indices continue to evolve with 679 

averaging timescale  between 3 hours and 1 year. The reason this is of interest to the 680 
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development of a space weather climatology is because several studies have shown that many 681 

geomagnetic storms are the response to the time-integrated solar wind forcing over an extended 682 

period [Echer et al., 2008; Turner et al., 2009; Lockwood et al., 2016; Mourenas et al., 2018] 683 

and also the time-integration of the geomagnetic activity response is important for space weather 684 

phenomena such as GICs (Geomagnetically Induced Currents) in systems like power grids 685 

[Gaunt and Coetzee, 2007;  Ramírez-Niño et al., 2016] and the growth of energetic particles that 686 

can be damaging or disruptive to spacecraft electronics [Mourenas et al., 2018]. Using solar 687 

wind power input Pα as a metric, integrated forcing over an interval of duration  is <Pα>.  688 

However, we note that <Pα> (or the time integral of another form of coupling function) is 689 

unlikely to be a fully adequate predictor because preconditioning or multiple events may be 690 

factors [see discussion by Lockwood et al., 2016] as may impulsive events, such as sudden 691 

increases in solar wind speed [Balan et al., 2017]. Furthermore, it is not yet clear what timescale 692 

 is most relevant to a given phenomenon. Figure 6 of Wygant et al. [1983] is significant because 693 

it shows that it can take of order 10 hours following a northward turning to return transpolar 694 

voltage to its baselevel values, which implies 4 or 5 substorms are required to reduce excess 695 

open flux (i.e. energy stored in the tail) even though the IMF is northward.  Periods of northward 696 

IMF of 10 hrs. duration or more are rare [Hapgood et al., 1991] and so it is likely that southward 697 

IMF will drive renewed energy storage in the tail before the magnetosphere has returned to a 698 

quiet state. Kamide et al. [1977] showed that although substorms were more common when the 699 

IMF pointed southward, they do occur during northward IMF if the polar cap was large 700 

(indicating large open flux and hence high energy storage in the tail) and Lee et al. [2010] show 701 

that substorms during northward IMF driven by stored tail energy can be as strong as events 702 

during southward IMF. The ability of the tail to accumulate stored energy means that longer 703 

periods of solar wind forcing have the potential drive extremely large events, even if the forcing 704 

is intermittent and bursty on shorter timescales.  Lockwood et al. [2016] estimate that the 705 

relevant  may be as large as 4-5 days. 706 
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Figures  1014 

 1015 

Figure 1. Scatter plots of f[X>Xo], the fraction of days in a given year for which the daily mean 1016 

of a parameter X exceeds its 95 percentile Xo computed over the whole dataset, as a function of 1017 

the annual mean of that parameter <X>=1yr. In each panel, the mauve line is a third-order 1018 

polynomial fit to the data points, constrained to pass through the origin. (a) For the Ap index (Ap 1019 

being daily means of ap, data available for 1932-2016), for which the 95 percentile is Apo = 38; 1020 

(b) for the Dst index (data for 1957-2016), for which the 5-percentile Dsto = 53nT (note in this 1021 

case, because Dst is increasingly negative as activity increases, Dsto is the 5-percentile and  1022 

f[Dst<Dsto] is shown); (c) for the AE index (data for 1967-2016), for which the 95 percentile is AEo 1023 

= 650nT; (d) for the AU index (data for 1967-2016), for which the 95 percentile is AUo = 228nT; 1024 

(d) for the AL index (data for 1967-2016), for which the 5-percentile ALo = 444nT (note in this 1025 

case, because AL is increasingly negative as activity increases, ALo is the 5-percentile and  1026 

f[AL<ALo] is shown); and (e) the power input into the magnetosphere for a coupling exponent of α 1027 

= 0.44, Pα (data for 1963-2016, although some years are omitted as data availability is too low – 1028 

see Paper 1), for which the 95-percentile is Pαo = 2.73 Po, where Po is the mean Pα for all 1029 

available data. In Paper 1 we derive an optimum value for Po  of 0.381019 W (although note that, 1030 

unlike Pα/Po, this value is very sensitive on the derived coupling function, α) which yields an 1031 

absolute estimate of the 95-percentile for the power input into the magnetosphere of  Pαo = 1032 

1.041019 W. 1033 
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1034 
Figure 2. Analysis of annual distributions of the 11046240 1-minute averages of 1035 

parameters contributing to the power input into the magnetosphere, Pα for 1996-2017 1036 

(inclusive).  The left hand plots show 22 superposed annual distributions for 1037 

individual years of R = log10(X/<X>=1yr) where X is (a) the IMF, B; (c) the solar wind 1038 
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mass density, mSWNSW; (e) the solar wind speed, VSW; and (g) the IMF orientation 1039 

factor sin4(GSM/2). <X>=1yr is the corresponding annual mean value in each case. 1040 

Lognormal distributions in X/<X>=1yr would give Gaussian distributions in R, 1041 

centered on zero. The vertical axis is N/1000, where N the number of 1-minute 1042 

averaged samples in bins of R that are 0.01 wide. Note that in these left-hand plots 1043 

the extreme bins are for R ≤ 0.99 and R  +0.99 and the numbers of samples in 1044 

these extreme bins are given for individual years by colored tick marks on the left 1045 

and right (respectively) vertical axes of (a), (c), (e) and (g).  There are negligibly few 1046 

samples in the R  0.99 bin for all four cases (7 for B, 1770 for mSWNSW, and none for 1047 

either sin4(GSM/2) or VSW). The same is not always true for the R ≤ 0.99 bin (for 1048 

which, in total, there are 1597 samples for B, 36818 for mSWNSW (0.3% of the total), 1049 

2351900 (21% of the total) for sin4(GSM/2) and none for VSW). In particular, the peak 1050 

N in part (g) is always for this R ≤ 0.99 bin and varies between 57530 and 68225, 1051 

depending the year.  Note that in many cases these coloured tick marks are 1052 

indistinguishable from the x axis (at N = 0).    The corresponding right hand plots (b), 1053 

(d), (f) and (h) show the variations in the standard deviations of the distributions, R 1054 

for each year (normalized to their overall means for all years, i.e. R/<R>).  The 1055 

horizontal black line in each plot gives the mean value (by definition unity), and the 1056 

surrounding grey areas show plus and minus one standard deviation about this mean.  1057 

    1058 
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 1059 

Figure 3.   Analysis of the FB term in Pα. (a) The annual distributions of 3-hourly values of   1060 

FB/[FB]o  (where [FB]o is the mean of FB for all the data from 1995-2017): the number of samples 1061 

N in bins of  FB/[FB]o that are  0.01 wide is color-contoured as function of year.  The black line 1062 

shows the annual mean values, plotted in the middle of the year.  (b) The normalized distribution 1063 

of FB/[FB]o for all years is shown as a grey histogram of N/Nmax, where Nmax is the peak value of 1064 

N.  (c) The annual probability density of 3-hourly values of FB/<FB>=1yr  (where <FB>=1yr   is the 1065 

annual mean of FB for the year in question), color-contoured as  function of year.  The blackline 1066 

shows the annual mean values which, by definition, are unity.  (d) The normalized distribution of 1067 

FB/<FB>=1yr  for all years is shown by the grey histogram which has been fitted with log-normal 1068 

form with a mean of unity and a variance v = 0.120  (mauve line).  (e) The logarithm of variance, 1069 

v of the distributions.       1070 
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826 Figure 4.   Analysis of the FV term in Pα in the same format as figure 3.  The normalize 

distribution of FV/<FV>=1yr  for   = 3hrs and all years is shown in (d) by the grey histogram 

which has been fitted with log-normal distribution with a mean of unity and a variance v = 

0.127  (mauve line).     



    Confidential manuscript submitted to Space Weather  

41  
  

 829 

 Figure 5.   Analysis of the FN term in Pα in the same format as figure 3.  The normalized 830 

distribution of FN/<FN>=1yr  for   = 3hrs and all years is shown in (d) by the grey histogram 831 

which has been fitted with log-normal distribution with a mean of unity and a variance v = 0.009  832 

(mauve line).       833 
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    834 

 835 

Figure 6.   Analysis of the F term in Pα in the same format as figure 3.  The normalized 836 

distribution of F/<F>=1yr for   = 3hrs and all years is shown in (d) by the grey histogram 837 

which has not been fitted with a distribution as it does not match well any standard form. The 838 

mean of the annual variance values is <v> = 3.542103.   839 

  840 
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  841 

Figure 7.   Analysis of Pα in the same format as figure 3.  The normalized distribution of 842 

Pα/<Pα>=1yr  for  = 3hrs and all years is shown in (d) by the grey histogram which has been 843 

fitted with log-normal distribution with a mean of unity and a variance v = 1.788  ( = 0.5127, 844 

mauve line) and a Weibull distribution with k = 1.0625 and  = 1.0240 (blue line).     845 
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 846 

 847 

Figure 8.   Analysis of the origin of the Weibull distribution of <Pα>/<Pα>=1yr  for   = 3hrs and 848 

all years, as shown in Figure 7d.  In each panel, the PDF for a given   is given as a vertical slice 849 

and   varies along the horizontal axis between 1 min. and 3 hours. The panels are for: (a) 850 

<Pα>/<Pα>=1yr ;  (b) <FB>/<FB>=1yr ;  (c) <F>/<F>=1yr ; (d) <FV>/<FV>=1yr ; and (e) 851 

<FN>/<FN>=1yr .     852 
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 853 

Figure 9.   Analysis of the 10207789 valid 1-minute averages of the sin4(GSM/2) term obtained 854 

in the years 1996-2016 (inclusive).  The distribution of: (a) the IMF BY component in the GSM 855 

frame, [BY]GSM ;  (b) the IMF BZ component in the GSM frame, [BZ]GSM ;  (c) the ratio,  856 

[BY]GSM/[BZ]GSM  ; (d) the IMF clock angle in the GSM frame, GSM = arctan( |[BY]GSM | / [BZ]GSM) 857 

; (e) sin(GSM/2) ; and (f) sin4(GSM/2). In each panel N is the number of samples per bin and Nmax 858 

is the maximum value of N.  In panels (e) and (f) the non-linear scales along the top (in small 859 

font) give the clock angle GSM (in degrees) which corresponds to the lower scale, which is 860 

sin(GSM/2) in (e) and in sin4(GSM/2) in (f).  861 
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  862 

 863 

Figure 10.   (a) Probability distribution function PDF, d, of <Pα>/<Pα>=1yr for   =3hrs. The 864 

black line is the overall distribution for all 21 years (as shown in figure 7d) and the blue lines are 865 

the values for individual years. The orange area is the mean of the annual values, plus and minus 866 

one standard deviation.  Horizontal black lines are shown for the cumulative probability levels of 867 

1%, 5%, 10% and 20%.  (b). The percentage deviations of d from the mean, d = 100(d<d>)<d> 868 

in the same format.  869 
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 870 

 Figure 11.   (a) Cumulative distribution functions CDF, c, of <Pα>/<Pα>=1yr for   =3hrs, 871 

corresponding to the PDFs  in figure 10. The black line is the overall distribution for all 21 years 872 

and the blue lines are the values for individual years. The orange area is the mean of the annual 873 

values, plus and minus one standard deviation.  Horizontal black lines are shown for the 874 

cumulative probability levels of 1%, 5%, 10% and 20%.  (b). The percentage deviations of c 875 

from the mean, c = 100(c<c>)<c> in the same format.  876 


