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16 Abstract

17 Bone morphogenetic proteins (BMP) are firmly implicated as intra-ovarian regulators of follicle 

18 function and steroidogenesis but information is lacking regarding the regulation of BMP 

19 signalling by extracellular binding proteins co-expressed in the ovary. In this study we compared 

20 the abilities of four BMP binding proteins (gremlin, noggin, chordin, follistatin) to antagonize the 

21 action of four different BMPs (BMP2 BMP4, BMP6, BMP7) on LH-induced androstenedione 

22 secretion by bovine theca cells in primary culture. Expression of the four BMP binding proteins 

23 and BMPs investigated here has previously been documented in bovine follicles. All four BMPs 

24 suppressed androstenedione secretion by >85%. Co-treatment with gremlin antagonized BMP2- 

25 and, less potently, BMP4-induced suppression of androgen secretion but did not affect responses 

26 to BMP6 and BMP7. Noggin antagonized the effects of three BMPs (rank order: BMP4 > BMP2 

27 > BMP7) but did not affect the response to BMP6. Follistatin partially reversed the suppressive 

28 effects of BMP6 on androgen secretion but did not affect BMP2, BMP4 and BMP7 action. 

29 Chordin had no effect on the response to any of the four BMPs. BMP6 treatment upregulated 

30 thecal expression of GREM1, NOG, CHRD and SMAD6 mRNA whilst inhibiting expression of 

31 the four BMPs. Taken together with previous work documenting the intra-ovarian expression of 

32 different BMPs, BMP binding proteins and signalling receptors, these observations reinforce the 

33 conclusion that extracellular binding proteins selectively modulate BMP-dependent alterations in 

34 thecal steroidogenesis. As such they likely constitute an important regulatory component of this, 

35 and other intra-ovarian actions of BMPs.

36

37 Introduction
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38 Various ligands belonging to the TGFβ superfamily, including members of the bone 

39 morphogenetic protein (BMP) subfamily, are firmly implicated as intra-ovarian regulators of 

40 follicle development, steroidogenesis, cell proliferation/survival, ovulation and luteal function 

41 (Knight and Glister 2006; Regan, et al. 2018; Shimasaki, et al. 2004). Different ovarian cell-types 

42 (theca cells, granulosa cells, oocyte) exhibit selective expression of individual TGFβ superfamily 

43 ligands, signalling receptors, pseudo-receptors and secreted binding proteins consistent with 

44 operational autocrine/paracrine signalling pathways within and between different intrafollicular 

45 compartments. For example, activin, BMP2, BMP4, BMP6 and BMP7 have been shown to exert 

46 an anti-luteinization effect on granulosa cells (GC) by enhancing basal, FSH-induced and/or IGF-

47 induced estradiol secretion whilst suppressing progesterone secretion (Glister, et al. 2004; 

48 Juengel, et al. 2006; Lee, et al. 2004; Otsuka, et al. 2001b; Souza, et al. 2002). The same TGFβ 

49 superfamily ligands have been shown to attenuate basal and LH-induced androgen secretion by 

50 cultured theca cells (TC) suggesting a role in preventing a premature increase in androgen 

51 production by developing antral follicles  (Campbell, et al. 2006; Glister, et al. 2005; Hillier 

52 1991; Wrathall and Knight 1995). As well as providing substrate for GC estrogen synthesis, TC-

53 derived androgens enhance GC FSH receptor expression and FSH-dependent follicle 

54 development (Rice, et al. 2007; Sen, et al. 2014).

55 BMPs and activins exert their effects on target cells in the ovary and elsewhere by forming 

56 hetero-oligomeric complexes with two types of signalling receptor (type 1, type 2) on the cell 

57 surface. Type 1 receptors include BMPR1A (ALK3), ACVR1B (ALK4) and BMPR1B (ALK6); 

58 type 2 receptors include BMPR2, ACVR2A and ACVR2B) (Chen, et al. 2004). At the 

59 extracellular level, access of activins/BMPs to signalling receptors on the cell surface can be 

60 modulated by a range of secreted binding proteins including gremlin, noggin, chordin and 
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61 follistatin (Gazzerro and Canalis 2006; Mulloy and Rider 2015; Walsh, et al. 2010) or by secreted 

62 antagonists such as inhibin (Wiater and Vale 2003). At the intracellular level, additional 

63 regulatory mechanisms serve to enhance or attenuate BMP-activated signal transduction (Canalis, 

64 et al. 2003; Itoh and ten Dijke 2007; Miyazono 2000).

65 Despite their well-established role in the establishment of morphogen signalling gradients during 

66 embryonic and foetal development (Canalis et al. 2003; Chen et al. 2004; Mulloy and Rider 

67 2015; Walsh et al. 2010), within the context of intra-follicular BMP signalling, there have been 

68 relatively few studies to examine the functional significance of extracellular binding proteins 

69 other than follistatin (Glister et al. 2004; Glister, et al. 2015; Nakamura, et al. 1992; Pierre, et al. 

70 2005; Xiao, et al. 1990). However, gremlin 1 and 2 have been shown to antagonize BMP4-

71 induced inhibition of FSH-induced progesterone production by rat GC (Sudo, et al. 2004) and to 

72 reverse BMP4-induced activation of primordial follicles in a rat ovary explant model (Nilsson, et 

73 al. 2014). Gremlin 1 was also shown to block BMP4-induced prostaglandin secretion by mouse 

74 GC (Pangas, et al. 2004) and to enhance androgen secretion by cultured bovine TC (Glister et al. 

75 2005). The latter observation suggests neutralization of an endogenous ligand (BMP4?) that 

76 suppresses thecal androgen secretion in an autocrine/paracrine manner. Noggin was shown to 

77 reverse the suppressive effect of BMP2 and BMP4 on progesterone secretion by sheep GC 

78 (Pierre, et al. 2004).

79 Previous reports have documented the spatiotemporal patterns of expression of a range of BMPs 

80 (Erickson and Shimasaki 2003; Fatehi, et al. 2005; Glister, et al. 2010; Juengel et al. 2006), 

81 signalling receptors (Erickson and Shimasaki 2003; Fatehi et al. 2005; Glister et al. 2010; Regan, 

82 et al. 2016) and BMP-binding proteins (Glister, et al. 2011; Pangas et al. 2004) during follicle 

83 development in several species including cattle. In bovine follicles, gremlin (GREM1), noggin 
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84 (NOG), follistatin (FST) and chordin (CHRD) mRNA expression levels were much higher in the 

85 granulosal layer than in the theca interna layer (Glister et al. 2011) indicating they are the 

86 principle intrafollicular source of these binding proteins. Moreover, differential binding protein 

87 expression patterns in each cell type accompanied antral follicle development, suggesting 

88 regulated rather than constitutive expression, and implying functional roles (Glister et al. 2011). 

89 For instance, GREM1 expression was maximal in GC of small antral follicles (1-2mm) declining 

90 to a low level in GC of large (11-18mm) estrogen-active follicles. NOG expression was also 

91 lowest in GC of large estrogen-active follicles while FST and CHRD expression was greatest in 

92 this follicle category (Glister et al. 2011).

93 Information is lacking regarding the potential regulation of BMP signalling by extracellular 

94 binding proteins co-expressed in the ovary, particularly with respect to regulation of follicular 

95 theca cell function. To test the hypothesis that extracellular binding proteins differentially 

96 regulate the actions of BMPs on theca cells, this study compared the relative abilities of four 

97 different extracellular binding proteins (gremlin, noggin, follistatin, chordin) to antagonise to 

98 suppressive action of four BMPs (BMP2, BMP4, BMP6, BMP7) on androgen secretion by 

99 bovine TC in primary culture. To explore additional autoregulatory mechanisms that may serve 

100 to limit BMP action, we also examined the effect of one of these BMPs (BMP6) on thecal 

101 expression of each of the above-mentioned BMPs and BMP-binding proteins, and also on 

102 expression of the inhibitory Smad, SMAD6.

103

104 Materials and Methods

105 Bovine ovaries and theca cell culture 
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106 Bovine theca interna cells (TC) were isolated from the ovaries of randomly cycling cattle 

107 obtained from the slaughterhouse as described in detail elsewhere (Glister et al. 2005). Briefly, 

108 antral follicles (4-6mm diameter) of healthy morphological appearance were hemisected and 

109 granulosa cell layers dislodged using a plastic inoculation loop. After vigorous shaking and 

110 washing (x3) to remove remaining adherent granulosa cells, follicle halves were examined under 

111 the dissecting microscope. Theca interna layers were peeled away from the basement membrane 

112 and pooled theca interna layers from approximately 50 follicles were dissociated into single cells 

113 by incubating (30 min) with collagenase (type IV, 1 mg/ml; Sigma Ltd., Poole, UK) and trypsin 

114 inhibitor (0.1mg/ml; Sigma) in a shaking water bath at 37 C (see (Glister et al. 2005) for further 

115 details). Cells were washed and counted using a hemocytometer and viability (>90%) assessed 

116 using trypan blue. The resultant theca interna cell preparations obtained using this method were 

117 judged to have < 5% contamination with granulosa cells based on a previous RT-qPCR analysis 

118 of relative abundance of thecal (CYP17A1, INSL3) and granulosal (CYP19A1, FSHR) ‘marker’ 

119 transcripts (Glister et al. 2010). Moreover, estradiol levels in TC-conditioned culture media were 

120 undetectable (data not shown).

121 For each experiment cells were seeded into 96-well tissue culture plates (Nunclon, Life 

122 Technologies Ltd, Paisley, UK) at 75,000 viable cells/well and cultured for 6 days (144h) under 

123 defined serum-free conditions. For experiments in which RNA extraction was planned, cells were 

124 seeded into 24-well tissue culture plates at 250,000 viable cells/well. The culture medium was 

125 McCoy’s 5A modified medium supplemented with 1% (v/v) antibiotic-antimycotic solution, 10 

126 ng/ml bovine insulin, 2 mM L-glutamine, 10mM HEPES, 5 µg/ml apo-transferrin, 5 ng/ml 

127 sodium selenite and 0.1% (w/v) BSA (all purchased from Sigma UK Ltd). Cells were cultured 

128 without treatments for the first 48h. Medium was removed after 48h and 96h and replaced with 
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129 fresh medium containing treatments (see below). At the end of culture (144h) conditioned media 

130 were stored at -20C for subsequent steroid immunoassays. Viable cell number at the end of 

131 culture was determined by neutral red dye uptake assay (Glister, et al. 2001) to provide an 

132 assessment of cell proliferation/survival. 

133

134 Treatments

135 Ovine LH (NIADDK oLH-S-16) was obtained from NHPP, Torrance, CA, USA. Recombinant 

136 human BMP2, BMP4, BMP6, BMP7, gremlin, noggin, follistatin-288 and recombinant mouse 

137 chordin were purchased from R&D Systems (Abingdon, Oxon, UK). Treatments were prepared 

138 in Hank’s balanced salt solution containing 0.1% (w/v) BSA and sterile stock solutions prepared 

139 using 0.2µm membrane filters before further dilution in sterile culture medium. The 

140 concentrations of LH (150 pg/ml) and BMP2, BMP4, BMP6 and BMP7 (10 ng/ml) selected for 

141 these experiments were considered optimal based on their modulatory effects on androstenedione 

142 secretion observed in our previous studies on bovine TC (Glister et al. 2005; Glister et al. 2010, 

143 2011). Each BMP binding protein was tested at three different concentrations (50, 250, 1250 

144 ng/ml) for its ability to antagonize BMP-induced suppression of androstenedione secretion by 

145 LH-stimulated cells. Co- treatments were prepared 30-40 min before addition to cells by mixing 

146 appropriate concentrations of BMP and BMP binding protein. A further experiment examined the 

147 effect of 24, 48 and 96h exposure to BMP6 (10 ng/ml) alone on the relative abundance of CHRD, 

148 GREM1, NOG, FST, BMP2, BMP4, BMP6, BMP7 and SMAD6 mRNA.

149

150 Steroid assays
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151 Concentrations of androstenedione in TC-conditioned media were determined by ELISA as 

152 reported previously (Glister, et al. 2013). The detection limit was 0.1ng/ml and average intra- and 

153 inter-assay CVs were 7% and 10% respectively. Progesterone concentrations were determined by 

154 ELISA (Satchell, et al. 2013). The detection limit was 0.1ng/ml and average intra- and inter-assay 

155 CVs were 8% and 11% respectively.

156

157 Real-time PCR analysis

158 Total RNA was isolated using Tri-reagent as described previously (Glister et al. 2010). cDNA 

159 was synthesized from 1μg of RNA using the AB High Capacity cDNA synthesis kit (Thermo 

160 Fisher Scientific; used according to manufacturers protocol) with random hexamers. PCR primers 

161 (see table 1) were designed using the online primer designing tool 'Primer-BLAST' 

162 (http://www.ncbi.nlm.nih.gov/tools/primer-blast) with BLAST specificity checking against all 

163 known bovine (Bos Taurus) transcripts to exclude potential amplification of off-target sequences. 

164 PCR assays were carried out in a volume of 14μl containing 5μl cDNA template, 1μl each 

165 forward and reverse primers (final concentration 0.36μM) and 7μl QuantiTect SYBR Green 

166 QPCR 2x Master Mix (Qiagen, Crawley, W. Sussex, UK). Samples were processed on a StepOne 

167 Plus thermal cycler (Applied Biosystems) with cycling conditions: 15min at 95oC (one cycle 

168 only) followed by 15s at 95oC and 1min at 60oC for 40 cycles. The ΔΔCt method (Livak and 

169 Schmittgen 2001) was used to compare the relative abundance of each mRNA transcript. Ct 

170 values for each transcript in a given sample were first normalized to the corresponding ß-actin 

171 (ACTB) Ct value (i.e. ΔCt value).  ACTB expression level was uniform across experimental 

172 treatments. ΔCt values for each transcript in a given sample were then normalized to the 

173 corresponding ΔCt value for that transcript untreated control (time zero) samples. For graphical 
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174 presentation ΔΔCt values were converted to fold-differences using the formula: fold-difference = 

175 2 (-∆∆Ct).

176

177 Statistical analysis

178 Hormone secretion data were log-transformed prior to statistical analysis to reduce heterogeneity 

179 of variance. Effects of treatments (LH, BMP, BMP binding protein) on hormone secretion (for 

180 final 96-144h period of culture) and viable cell number at the end of culture were evaluated by 

181 one- and two-way analysis of variance (ANOVA). Post hoc pairwise comparisons were made 

182 using Fisher’s PLSD test. Gene expression results were analysed by one-way ANOVA as ΔΔCt 

183 values before conversion to fold-differences. Results are presented as arithmetic means ± SEM 

184 based on 3-4 independent culture experiments using different batches of theca cells. 

185

186

187 Results

188

189 Treatment of cells with LH alone elicited a ~ 4-fold increase in androstenedione secretion 

190 (p<0.001) but did not affect progesterone secretion, or viable cell number at the end of culture 

191 (144h) (Fig. 1a). Treatment of cells with BMP2, BMP4, BMP6 and BMP7 promoted a marked 

192 suppression of LH-stimulated androstenedione secretion (>85%; p<0.001) whilst promoting a ~2-

193 fold increase in progesterone secretion (p<0.001). Viable cell number at the end of culture was 

194 not affected by BMP treatment (Fig. 1b).
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195 Fig. 2 shows the effects of the four BMPs alone and in combination with gremlin. Treatment of 

196 cells with BMP2, BMP4, BMP6 or BMP7 promoted a marked (>6-fold) suppression of 

197 androstenedione secretion (P<0.0001) accompanied by a modest increase in progesterone 

198 secretion (P<0.001). Treatment with gremlin alone raised mean androstenedione secretion ~2-

199 fold but the effect was not significant. Two-way ANOVA showed a highly significant effect of 

200 BMP type and gremlin dose-level on androstenedione secretion, as well as a BMP x gremlin 

201 dose-level interaction. Co-treatment with 250 ng/ml gremlin reversed the suppression in 

202 androstenedione secretion induced by BMP2 (P<0.05) while a higher gremlin concentration 

203 (1250 ng/ml) was required to reverse the suppressive effect of BMP4 (P<0.05). At the dose-levels 

204 tested gremlin did not reverse the effects of BMP6 or BMP7. Regarding progesterone secretion, 

205 two-way ANOVA showed a non-significant BMP x gremlin interaction (P=0.09). 

206 With respect to noggin treatment (Fig. 3), two-way ANOVA indicated a highly significant effect 

207 of BMP type (P<0.0001) and noggin dose-level (P<0.0001) on androstenedione secretion, as well 

208 as a BMP x noggin dose-level interaction (P<0.0001). Closer examination of the results showed 

209 that treatment with noggin alone had no effect on androstenedione secretion but effectively 

210 reversed the suppressive actions of BMP2, BMP4 and BMP7. The lowest concentrations of 

211 noggin required to promote a significant (P<0.05) reversal of BMP-induced suppression of 

212 androstenedione secretion were 50 ng/ml for BMP4, 250 ng/ml for BMP2 and 1250 ng/ml for 

213 BMP7. At the dose-levels tested noggin did not reverse the effects of BMP6. Regarding 

214 progesterone secretion, two-way ANOVA showed a non-significant BMP x noggin interaction 

215 (P=0.02). 

216
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217 Fig. 4 shows the effects of BMPs alone and in combination with follistatin. Again, there was a 

218 highly significant effect of BMP type (P<0.0001) and follistatin dose-level (P<0.0001) on 

219 androstenedione secretion, as well as a BMP x follistatin dose-level interaction (P<0.02). 

220 Treatment with follistatin alone had no effect on basal androstenedione secretion but 

221 androstenedione secretion in the presence of BMP6 was increased (P<0.05) by the addition of 

222 follistatin, indicating a partial reversal of the response to BMP6. Follistatin did not affect 

223 androstenedione secretion in the presence of BMP2, BMP4 or BMP7. With respect to 

224 progesterone secretion, two-way ANOVA showed a non-significant BMP x follistatin interaction 

225 (P=0.3). 

226

227 As shown in fig. 5 chordin had no effect on basal androstenedione secretion and did not reverse 

228 the suppressive effects of BMP2, BMP4, BMP6 or BMP7 on androstenedione secretion. 

229 Likewise chordin did not affect progesterone secretion and two-way ANOVA showed a non-

230 significant BMP x chordin interaction (P=0.72). 

231

232 Fig. 6 shows that treatment of cells with BMP6 for 96h promoted a marked, time-dependent 

233 increase in relative abundance of mRNA for GREM1 (~25-fold; p<0.001), NOG (~25-fold; 

234 p<0.001) and CHRD (~10-fold; p<0.001) but did not affect FST mRNA expression. Only 

235 marginal increases in binding protein expression levels were observed after shorter exposure 

236 periods (24 and 48h). Treatment with BMP6 promoted a time-dependent reduction in BMP2, 

237 BMP4 and BMP6 mRNA transcript abundance (p<0.001). BMP7 transcript abundance was also 
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238 reduced at 24 and 48h but not at 96h. In addition, BMP6 treatment promoted a marked (~45-fold; 

239 p<0.001) and time-dependent increase in SMAD6 transcript abundance.

240

241 Discussion

242

243 The present study sought to clarify the functional significance of potential interactions between 

244 different BMPs and BMP-binding proteins at the intra-follicular level. Since ovarian androgens 

245 play key roles in follicle development and function (Hillier 1987; Rice et al. 2007; Sen et al. 

246 2014) we used a bovine primary TC culture model as a bioassay to evaluate, in a combinatorial 

247 manner, the abilities of four different binding proteins to counteract the inhibitory action of four 

248 different BMPs on androgen secretion. Progesterone secretion was also evaluated but since 

249 BMPs only elicit a modest change in progesterone secretion, this provided a much less robust 

250 end-point for comparing relative bio-potencies of the different binding proteins. Each of the 

251 binding proteins (CHRD, GREM1, NOG, FST) and BMPs (BMP2, BMP4, BMP6, BMP7) 

252 selected for the study has been shown previously to be expressed within bovine antral follicles in 

253 a cell-type and follicle stage-dependent manner (Glister et al. 2010, 2011). As anticipated from 

254 earlier studies (Glister et al. 2005; Glister et al. 2013) all four BMPs elicited a robust suppression 

255 of thecal androgen secretion. Moreover, evidence supporting differential effects of binding 

256 proteins was obtained, consistent with selective modulation of autocrine/paracrine BMP 

257 signalling in the ovarian follicle. Since GC, rather than TC, appear to be the predominant source 

258 of chordin, gremlin, noggin and follistatin in bovine antral follicles (Glister et al. 2011), it is 

259 likely that GC-derived binding proteins have a key role in regulating access of BMPs to their 
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260 signalling receptors on TC, regardless of whether the BMPs are secreted by TC, GC or oocyte. In 

261 this context, bovine GC were found to express high levels of BMP2 mRNA and protein while TC 

262 express higher levels of BMP4, BMP6 and BMP7 mRNA (Glister et al. 2010). BMP6 

263 immunoreactivity was also detected in bovine oocytes and cultured GC while BMP4 and BMP7 

264 immunoreactivity was more prevalent in cultured TC (Glister et al. 2004).

265 The present results show that gremlin and noggin were the most effective antagonists of BMP2-

266 induced suppression of thecal androgen secretion, whilst follistatin and chordin had no effect. 

267 Previous studies have shown that gremlin reverses BMP2-induced suppression of progesterone 

268 secretion by rat GC (Sudo et al. 2004) and that noggin, but not follistatin, reverses the BMP2-

269 induced suppression of progesterone secretion by sheep GC (Pierre et al. 2005). Noggin was also 

270 shown to reverse BMP2-induced suppression of FSHR expression and progesterone production 

271 by hen GC (Haugen and Johnson 2010). As mentioned above BMPs had little effect on 

272 progesterone secretion in our bovine TC model and so direct comparison with studies on 

273 granulosa cell progesterone production is difficult. To our knowledge there are no reports from 

274 other groups examining effects of BMP-BMP binding protein interactions on thecal androgen 

275 production in any species. In the bovine ovary BMP2, gremlin and noggin are predominantly of 

276 GC origin and showed their lowest expression levels in large estrogen-active follicles (Glister et 

277 al. 2010, 2011), in contrast to follistatin and chordin which showed maximal expression in this 

278 follicle category (Glister et al. 2011). This leads to speculation that low BMP2 may contribute to 

279 the increased output of thecal androgen required for heightened estrogen synthesis by the 

280 dominant estrogen-active follicle. 

281 Our data showed that noggin was the most potent antagonist of BMP4-induced suppression of 

282 thecal androgen secretion whilst gremlin was only effective at a 25-fold higher concentration and 
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283 follistatin and chordin had no effect. Previously, noggin was found to reverse BMP-4-induced 

284 inhibition of progesterone secretion by sheep GC while follistatin was without effect (Pierre et al. 

285 2005). Noggin has also been shown to be a potent antagonist of BMP4 action on other non-

286 endocrine cell-types (Canalis et al. 2003; Zimmerman, et al. 1996). As mentioned above BMP4 is 

287 predominantly expressed by TC and so the implication for intrafollicular signalling is that GC-

288 derived noggin may diffuse through the basement membrane to modulate the autocrine/paracrine 

289 action of BMP4 on TC and thus contribute to the regulation of androgen output. Given the 

290 previous observation (Glister et al. 2011) that GC NOG expression is minimal in large estrogen-

291 active follicles, this would imply reduced antagonism of thecal BMP4 signalling at this follicle 

292 stage. Interestingly, NOG expression by cultured GC was inhibited by IGF analogue treatment 

293 perhaps accounting for low expression in large estrogen-active follicles (Glister et al. 2005).

294 In contrast to NOG, FST expression is maximal in GC of large estrogen-active bovine follicles 

295 (Glister et al. 2011) and is upregulated by both FSH and IGF1 in cultured GC (Glister et al. 2011; 

296 Glister et al. 2001). As well as binding to activin with high affinity (Nakamura et al. 1992), 

297 follistatin also binds with lower affinity to other TGFβ family members including BMP4, BMP6 

298 and BMP7 (Glister et al. 2004), BMP-15 (Otsuka, et al. 2001a) and myostatin (Amthor, et al. 

299 2004). Moreover, follistatin was shown to reverse BMP4- and BMP6-induced increases in 

300 phospho-Smad1 accumulation in bovine GC, but did not affect the response to BMP7 (Glister et 

301 al. 2004). Despite these previous findings, in this study follistatin only promoted a weak and 

302 partial reversal of BMP6-induced suppression of thecal androgen and did not affect the response 

303 to BMP2, BMP4 or BMP7. Similarly, follistatin did not antagonise the suppressive action of 

304 BMP2 or BMP4 on progesterone secretion by sheep GC but had a slight modulatory effect on the 

305 response to BMP6 (Pierre et al. 2005). As such, it seems questionable whether follistatin, 
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306 primarily of GC origin, exerts a significant modulatory effect on intrafollicular BMP2, BMP4, 

307 BMP6 and BMP7 signalling although further investigation is needed to clarify this issue.

308 As observed for follistatin, GC of large estrogen-active bovine follicles were found to express the 

309 highest level of CHRD mRNA (Glister et al. 2011). However, in contrast to follistatin, expression 

310 of CHRD by cultured GC was not modulated by either FSH or IGF1 (Glister et al. 2011). 

311 Furthermore, in this study we found no modulatory effects of chordin on the TC response to any 

312 of the four BMPs examined. Whilst we are not aware of any other studies involving ovarian cells, 

313 chordin has been shown to bind to and antagonise the effects of several BMPs including BMP2, 

314 BMP4 and BMP7 on various development events including early dorsal patterning in chick and 

315 mouse (Gazzerro and Canalis 2006; Piccolo, et al. 1997). The lack of effect we observed was 

316 therefore unexpected, given the reported biological activity of the recombinant binding protein as 

317 stated by the suppliers. Since cleavage by the metalloproteinase, mammalian (m-) tolloid (aka 

318 BMP1), renders chordin unable to antagonize BMP activity (Ge and Greenspan 2006; Piccolo et 

319 al. 1997), it is tentatively suggested that m-tolloid produced by the cultured TC could account for 

320 the lack of effect of chordin. In this regard, co-expression of BMP1, CHRD and BMP4 mRNA 

321 has been reported in sheep ovarian follicles (Canty-Laird, et al. 2010). Whilst m-tolloid 

322 immunoreactivity was mainly localised in the granulosa layer it was also evident in the theca 

323 layer of sheep antral follicles, lending some support to this possibility.

324 In a further experiment to explore other potential regulatory mechanisms governing intrafollicular 

325 BMP signalling, we examined the ability of one of the BMPs (BMP6) to modulate thecal 

326 expression of each of the four BMP-binding proteins and BMPs, as well as expression of the 

327 inhibitory Smad, SMAD6. Despite the failure of gremlin, noggin and chordin to antagonise the 

328 suppressive effect of BMP6 on thecal androgen secretion, BMP6 treatment was found to 
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329 upregulate thecal expression of these three binding proteins in a time-dependent manner. This is 

330 consistent with previous findings (Glister et al. 2011) and suggests an additional autoregulatory 

331 feedback loop at the target cell level to restrict or attenuate signalling by other intra-follicular 

332 BMPs, to which the cells are exposed.  BMP-induced upregulation of BMP binding protein 

333 expression has been observed in other model systems. For example, GREM1 expression by 

334 mouse GC (Pangas et al. 2004) and rat osteoblasts (Pereira, et al. 2000a) was upregulated by 

335 BMP2 and BMP4. Likewise, NOG expression by osteoblasts was upregulated by BMP2, BMP4 

336 and BMP6 (Gazzerro, et al. 1998). 

337 The finding that BMP6 down regulated its own mRNA expression, as well as expression of 

338 BMP2, BMP4 and BMP7, suggests a direct ligand-dependent autoregulatory negative feedback 

339 effect operating in ovarian theca cells. Similar effects have been reported for BMP4 and BMP2 

340 which were both found to downregulate their own expression by cultured osteoblasts (Pereira, et 

341 al. 2000b). 

342 Inhibitory Smads (SMAD6, SMAD7) attenuate TGFβ family signaling by blocking interaction of 

343 type 1 receptors with receptor-regulated (R) Smads and by preventing the association of R-Smads 

344 with co-Smad (SMAD4) (Itoh and ten Dijke 2007; Miyazono 2000). Since SMAD6 preferentially 

345 inhibits Smad signaling initiated by BMPs (Miyazono 2000), our finding of a marked, BMP6-

346 induced upregulation of SMAD6 expression provides evidence for a further intracellular negative 

347 feedback loop operating at the theca cell level to limit the duration and/or intensity of BMP 

348 signaling, akin to that observed in other cell types including lung cancer cell lines and 

349 chondrocytes (Afrakhte, et al. 1998; Li, et al. 2003).

350 In conclusion, these findings underscore the complexity of the intra-ovarian BMP system 

351 comprising multiple ligands, extracellular binding proteins and signalling receptors. Thecal 
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352 androgen production is negatively regulated by locally-produced BMPs, the actions of which are 

353 modulated by various negative feedback loops. It remains a daunting challenge to evaluate the 

354 functional significance of individual BMPs, against a backdrop of multiple interacting autocrine 

355 and/or paracrine pathways some of which may be redundant whilst others may play essential 

356 physiological roles to regulate different aspects of follicle function. Although suitable assays for 

357 BMPs and BMP-binding proteins (other than follistatin) are currently lacking, future studies to 

358 determine their respective intrafollicular concentrations would be a useful step towards defining 

359 their relative physiological significance.

360

361 Acknowledgements

362 We thank D Butlin and AD Simmonds for technical assistance. This work was supported by the 

363 Biotechnology and Biological Sciences Research Council (award BB/M001369/1 and 

364 BB/GO17174/1 to PGK). The authors declare that there is no conflict of interest that could be 

365 perceived as prejudicing the impartiality of this scientific work.

366

367 Table 1  Primers used for real-time PCR

368

369 Figures

370 Fig. 1 Effects of (a) LH and (b) BMP2, BMP4, BMP6 and BMP7 on secretion of 

371 androstenedione and progesterone by bovine theca interna cells and on viable cell number at the 

372 end of culture. In (b) cells were cultured in the presence of LH. Values are means and bars 

373 indicate SEM (n = 3 independent cultures). ***p<0.001 versus control.
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374

375 Fig. 2 Effects of gremlin on secretion of (a) androstenedione and (b) progesterone by bovine 

376 theca interna cells treated with BMP2, BMP4, BMP6 or BMP7 under LH-stimulated conditions. 

377 Values are means and bars indicate SEM  (n = 3 independent experiments). Results of 2-way 

378 ANOVA are indicated. Within each BMP treatment group, means without a common letter are 

379 significantly (p<0.05) different.

380

381 Fig. 3 Effects of noggin on secretion of (a) androstenedione and (b) progesterone by bovine theca 

382 interna cells treated with BMP2, BMP4, BMP6 or BMP7 under LH-stimulated conditions. 

383 Values are means and bars indicate SEM  (n = 3 independent experiments). Results of 2-way 

384 ANOVA are indicated. Within each BMP treatment group, means without a common letter are 

385 significantly (p<0.05) different.

386

387 Fig. 4 Effects of follistatin on secretion of (a) androstenedione and (b) progesterone by bovine 

388 theca interna cells treated with BMP2, BMP4, BMP6 or BMP7 under LH-stimulated conditions. 

389 Values are means and bars indicate SEM  (n = 3 independent experiments). Results of 2-way 

390 ANOVA are indicated. Within each BMP treatment group, means without a common letter are 

391 significantly (p<0.05) different.

392

393 Fig. 5 Effects of chordin on secretion of (a) androstenedione and (b) progesterone by bovine 

394 theca interna cells treated with BMP2, BMP4, BMP6 or BMP7 under LH-stimulated conditions. 
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395 Values are means and bars indicate SEM  (n = 3 independent experiments). Results of 2-way 

396 ANOVA are indicated. Within each BMP treatment group, means without a common letter are 

397 significantly (p<0.05) different.

398

399 Fig. 6 Time-dependent effect of BMP6 treatment on relative abundance of transcripts for (a) 

400 GREM1, (b) CHRD, (c) NOG, (d) FST, (e) BMP2, (f) BMP4, (g) BMP6, (h) BMP7 and (i) 

401 SMAD6 in cultured bovine theca interna cells. Values are means and bars indicate SEM  (n = 4 

402 independent experiments). * p<0.05, ** p<0.01, *** p<0.001 versus control.

403
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Target 

 

Accession 

number 

 

Forward primer 

5' to 3' 

 

Reverse primer 

5' to 3' 

 

Amplicon 

size (bp) 

 

BMP2 XM_866011.1 CCAAGAGGCATGTGCGGATTAGCA TCCTTTCCCATCGTGGCCAAAAGT 101 

BMP4 NM_001045877.1 TTTATGAGGTTATGAAGCCCCCGGC AGTTTCCCACCGCGTCACATTGTG 104 

BMP6 XM_600972.2 GGCCCCGTTAACTCGACTGTGACAAA TTGAGGACGCCGAACAAAACAGGA 108 

BMP7 XM_612246.2 TGCAAGATAGCCACTTCCTCACCGA GGGATCTTGGAGAGATCAAACCGGA 130 

Chordin XM_001788437.1 CCTACCCGAATCCGCTTCTCTGACTCC GACAACCGAGGCACTGCCCGC 113 

Gremlin NM_001082450.1 GAAGCGAGACTGGTGCAAAACCCA TATGCAACGGCACTGCTTGACACG 271 

Noggin XM_582573.4 CAAGAAGCAGCGCCTGAGCAAGA GAAACAGCTGCCCACCTTCACGTAG 142 

Follistatin NM_175801.2 B TGAGCAAGGAGGAGTGTTGCAGCA CATCTGGCCTTGAGGAGTGCACATTC 301 

Smad6 NM_001206145.1 CGCCACCGCCCTACTCTCGG GCTGTGATGAGGGAGTTGGCGGC 112 

ACTB NM_173979.3 ATCACCATCGGCAATGAGCGGTTC CGGATGTCGACGTCACACTTCATGA 128 
 

Table 1: List of primers used for quantitative RT-PCR  
 

Page 23 of 29 Accepted Manuscript published as JME-18-0198.R1. Accepted for publication: 25-Oct-2018

Copyright © 2018 Society for Endocrinology

D
ow

nloaded from
 Bioscientifica.com

 at 11/02/2018 01:27:58PM
via free access



A
nd

ro
st

en
ed

io
ne

 (n
g/

m
l) 

0 20	  
40	  
60	  
80	  
100	  
120	  
140	  
160	  
180	  
200	  

Vehicle	   BMP2	   BMP4	   BMP6	   BMP7	  
Treatment	  

Vi
ab

le
 c

el
l n

um
be

r (
x1

0-
3 )

 

0	  
10	  
20	  
30	  
40	  
50	  
60	  

***	   ***	   ***	   ***	  

0	  
25	  
50	  
75	  
100	  
125	  
150	  
175	  
200	  
225	  
250	  

P
ro

ge
st

er
on

e 
(n

g/
m

l) 

***	  
***	  

***	  
***	  

0 
10 
20 
30 
40 
50 
60 

0 10 20 30 40 50 60 70 80 90 

0 20 40 60 80 100 120 140 160 180 

Basal             + LH 

A
nd

ro
st

en
ed

io
ne

 
(n

g/
m

l) 
P

ro
ge

st
er

on
e 

 (n
g/

m
l) 

Vi
ab

le
 c

el
l n

um
be

r 
(x

10
-3

) 
***	  

(a)	   (b)	  

Fig	  1	  
Page 24 of 29Accepted Manuscript published as JME-18-0198.R1. Accepted for publication: 25-Oct-2018

Copyright © 2018 Society for Endocrinology Downloaded from Bioscientifica.com at 11/02/2018 01:27:58PM
via free access



Fig	  2	  
A

nd
ro

st
en

ed
io

ne
 (n

g/
m

l) 

0 20 40 60 80 100 120 140 

Vehicle BMP2 BMP4 BMP6 BMP7 

(a)  BMP 	   	  P	  <0.0001	  
Gremlin 	   	  P	  <0.0001	  
BMP	  x	  Gremlin 	  P	  <0.01 	   	  	  

1250 
250 
50 
0 Gremlin 

(ng/ml) 

a 

b 
a 

a 

a b b 

a a a a a a a a a a a a a 

(b) 

Vehicle BMP2 BMP4 BMP6 BMP7 
0 

50 
100 
150 
200 
250 
300 
350 BMP 	   	  P	  <0.0001	  

Gremlin 	   	  P	  <0.01	  
BMP	  x	  Gremlin 	  P	  =0.09 	   	  	  

P
ro

ge
st

er
on

e 
(n

g/
m

l) 

Treatment 

Page 25 of 29 Accepted Manuscript published as JME-18-0198.R1. Accepted for publication: 25-Oct-2018

Copyright © 2018 Society for EndocrinologyDownloaded from Bioscientifica.com at 11/02/2018 01:27:58PM
via free access



Fig	  3	  

A
nd

ro
st

en
ed

io
ne

 (n
g/

m
l) 

(a)  

(b) 

P
ro

ge
st

er
on

e 
(n

g/
m

l) 

0 
20 
40 
60 
80 

100 
120 
140 

Vehicle BMP2 BMP4 BMP6 BMP7 

BMP 	   	  P	  <0.0001	  
Noggin 	   	  P	  <0.0001	  
BMP	  x	  Noggin 	  P	  <0.0001 	  

	  	   1250 
250 
50 
0 

Noggin 
(ng/ml) 

a a a a 

b 

a a a 

b 
b 

b 

a 

a 

a a a 

b 
b 

a a 

Treatment 
Vehicle BMP2 BMP4 BMP6 BMP7 

0 
50 

100 
150 
200 
250 
300 
350 

BMP 	   	  P	  <0.0001	  
Noggin 	   	  P	  <0.05	  
BMP	  x	  Noggin 	  P	  =0.2 	   	  	  

Page 26 of 29Accepted Manuscript published as JME-18-0198.R1. Accepted for publication: 25-Oct-2018

Copyright © 2018 Society for EndocrinologyDownloaded from Bioscientifica.com at 11/02/2018 01:27:58PM
via free access



Fig	  4	  

A
nd

ro
st

en
ed

io
ne

 (n
g/

m
l) (a)  

20 40 60 80 100 120 140 

Vehicle BMP2 BMP4 BMP6 BMP7 

BMP 	   	  P	  <0.0001	  
Follista0n	   	  P	  <0.0001	  
BMP	  x	  Follista0n 	  P	  <0.02 	   	  	  

0 

1250 250 50 0 Follistatin 
(ng/ml) 

a a a a a 
a a a a a a a 

b 
b a a 

a 

a 

a 

a 

(b)  

Vehicle BMP2 BMP4 BMP6 BMP7 
0 

50 
100 
150 
200 
250 
300 
350 

BMP 	   	  P	  <0.0001	  
Follista0n	   	  P	  <0.05	  
BMP	  x	  Follista0n 	  P	  =0.3 	   	  	  

P
ro

ge
st

er
on

e 
(n

g/
m

l) 

Treatment 

Page 27 of 29 Accepted Manuscript published as JME-18-0198.R1. Accepted for publication: 25-Oct-2018

Copyright © 2018 Society for EndocrinologyDownloaded from Bioscientifica.com at 11/02/2018 01:27:58PM
via free access



0 20 40 60 80 100 120 140 

Vehicle BMP2 BMP4 BMP6 BMP7 

BMP 	   	  P	  <0.0001	  
Chordin 	   	  P	  =0.73	  
BMP	  x	  Chordin 	  P	  	  =	  0.72 	   	  	  

1250 250 50 0 Chordin 
(ng/ml) 

a a a a a a a a a a a a a a a a 

a 
a a a 

A
nd

ro
st

en
ed

io
ne

 (n
g/

m
l) 

(a)  

Vehicle BMP2 BMP4 BMP6 BMP7 
0 

50 
100 
150 
200 
250 
300 
350 

BMP 	   	  P	  <0.0001	  
Chordin 	   	  P	  =0.73	  
BMP	  x	  Chordin 	  P	  	  =	  0.72 	   	  	  

(b) 

P
ro

ge
st

er
on

e 
(n

g/
m

l) 

Treatment 

Fig	  5	  

Page 28 of 29Accepted Manuscript published as JME-18-0198.R1. Accepted for publication: 25-Oct-2018

Copyright © 2018 Society for EndocrinologyDownloaded from Bioscientifica.com at 11/02/2018 01:27:58PM
via free access



R
e
la

ti
v
e
 t
ra

n
s
c
ri
p
t 
a
b
u
n
d
a
n
c
e
 

!"#$%$

0 
4 
8 

12 
16 (c) CHRD 

&&&$

(g) BMP6 

0 

1.0 

1.5 

0.5 
** 

** 

*** 

0 
10 
20 
30 
40 
50 
60 (a) GREM1 

&&$

0   24  48  96 
0 

10 
20 
30 
40 
50 
60 (i) SMAD6 

** 
** 

*** 

0 

0.5 

1.0 

1.5 (e) BMP2 

** 

** 

*** 

BMP6 treatment duration (h) 

0 
1 
2 
3 
4 (d) FST 

0 
5 

10 
15 
20 
25 
30 
35 (b) NOG 

&&&$

0 

0.5 

1.0 

1.5 (f) BMP4 

0   24  48  96 

** 
** 

0 

0.5 

1.0 

1.5 (h) BMP7 

0   24  48  96 

** ** 

0   24  48  96 0   24  48  96 

Page 29 of 29 Accepted Manuscript published as JME-18-0198.R1. Accepted for publication: 25-Oct-2018

Copyright © 2018 Society for Endocrinology

D
ow

nloaded from
 Bioscientifica.com

 at 11/02/2018 01:27:58PM
via free access


