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Abstract: We explore the effects of cross-linking on some thermal and mechanical properties of 

polymer nanofibers of poly-vinyl cinnamate which were electro-spun from 1, 2 dichloroethane.  

Scanning electron microscopy performed on the fibres revealed smooth fibres which were devoid 

of beading or ribbon-type features.  When cross-linked, the Young’s moduli and glass transition 

temperatures of the fibres increase, owing to the formation of new covalent bonds which leads to 

higher overall binding energies. The glass transition temperatures increased by 20 K after one 

hour of photo-polymerization while the Young’s modulus increased by 50% for the same 

exposure time.  The glass transition temperatures as well as the heats of enthalpy indicate that a 

significant portion of cross-linking occurs within the first 10 minutes of exposure.  

Introduction     

Electrospinning is a relatively simple technique for generating continuous fibres whose 

diameters, depending on experimental parameters, can approach nanoscale dimensions [1].     

Typically, the technique involves forcing a polymer solution or melt through the tip of a metallic 

nozzle which also acts as an electrode.  The charged jet of solution that emerges from the nozzle 

is attracted by a counter electrode which is suitably located.  During its flight to the counter 

electrode, the diameter of the jet decreases owing to the combined effects of solvent evaporation 

and field-induced stretching.  If the repulsive forces within the jet stream exceed the cohesive 

forces, the single jet divides into smaller jets (splaying). If splaying does not occur, extremely 

thin fibres form, owing to the elongation of the single jet.  However, both splaying and 

elongation seem to occur simultaneously [2].   



Several parameters, including the strength of the applied electric field, dielectric constant 

of the solvent, viscosity of the melt, flow rate, nozzle diameter and type of collector directly 

influence the dimensions and topology of the electrospun fibres [1, 3].  A rotating drum collector 

which winds the fibres around its circumference offers better aligned fibres than a flat-plate 

collector [4].  The pertinent aspects of the principles of electrospinning are captured in some 

recent review papers [4, 5-10].  Owing to their unique properties, such as, very large surface 

areas, enhanced mechanical properties, tunable diameters and flexible surface functionalities, 

electrospun fibers have found applications in many diverse fields.  These include, among others, 

catalysis [11-14], tissue engineering [15-17], filtration [18-22], protective textiles [23-25] and 

sensors [26-28].  

We explore the effects of controlled UV exposure on the thermal and mechanical 

properties of electro-spun polymer fibres of poly-vinyl cinnamate (PVCN) which is a copolymer 

of vinyl cinnamate and vinyl alcohol.  PVCN was chosen since it readily forms smooth fibres, is 

highly sensitive to ultra violet (UV) radiation and undergoes photo-dimerization without a photo-

initiator [29].   PVCN undergoes a random cross-linking photo-addition between a UV excited 

cinnamoyl group of a polymer chain and that of a similar unexcited group on the same or a 

different chain to form a cyclobutane ring [30] as shown in Fig. 1.  Neither the C-H nor the 

carbonyl group is expected to be excited by the same UV light and cross-linking involves only 

the C=C [29-30].  PVCN has a glass transition of ~ 80 ° C and is stable up to 200 ° C [29].  

Above this temperature, thermal degradation as a result of the separation of the cinnamate unit 

from the main chain occurs and thermally-induced cross-linking takes place.   

 

 

 

 

 

 

Fig. 1. Photo-dimerization of PVCN in the presence of UV light to yield the cyclobutane ring. 



When exposed to UV radiation, PVCN and its derivatives have been found to align liquid 

crystals in a direction perpendicular to the electric vector of the polarized light.  Owing to this 

feature PVCN offers potential in display technology and hence the interest in the photo-

chemistry of PVCN and its derivatives [31, 32]. 

Experimental 

PVCN was purchased from Polysciences, Inc. (USA) and used as obtained.   

Electrospinning was performed on a uniform solution of PVCN in dry 1, 2 dichloromethane 

(DCE), 18.8 % by weight.  The technique has been described completely elsewhere [33] and 

hence, only the pertinent details will be outlined here.  The polymer solution was housed in a      

5 ml glass syringe to which was attached a 22 gauge metallic needle of 0.41 mm internal 

diameter.  The needle served as one electrode.   The flow rates were controlled by a calibrated 

pump which delivered an optimum flow rate of 0.13 ml min-1.   The electrospun fibres were 

collected by a rotating and grounded cylindrical collector which has a diameter of 3.2 cm.  A 

fixed tangential velocity of 4.0 ms-1 was used throughout.  The needle-collector separation was 

10 cm and a voltage of 17 kV was maintained between them.  After the initial preparation, the 

fibres were allowed to dry naturally in a dark environment for 48 h.  We used unpolarized ultra-

violet radiation (10 mWcm-2 and wavelength 365 nm) to perform photo-crosslinking. 

Scanning electron microscopy was used to observe the fibre morphology (SEM 360: 

Cambridge Instruments). Samples of foil coated with the fibres were sectioned from the 

electrospinning collector plate and mounted onto SEM aluminum stubs via sticky conducting 

carbon tabs. Samples were then sputter coated with a thin layer of gold prior to examination in 

the SEM. Image-analysis was conducted with the software, Scandium to determine the diameters 

of the fibre samples. The fibre diameter was taken as the average of 100 measurements that 

were randomly selected from across the SEM image. Differential scanning calorimetry (DSC) 

was used to analyze the thermal properties of the fibres. The DSC used is a TA Instruments 

TA-Q2000 DSC. DSC was performed in an inert nitrogen atmosphere and all runs were over the 

temperature interval 20º C to 120º C. 

We used a Deben microtest 200 N tensile stage to determine the Young’s Modulus of the 

fibres.  This tensiometer uses the built-in software to generate plots of fibre extension versus 

applied force.  It was quite difficult to use single fibres since they are quite fragile.  Hence, in 



conducting the experiment, several fibres were bundled together, inserted into the tensiometer 

and then slowly stretched until the breakage point.   The bundles were in the form of rectangular 

prisms whose dimensions were measured with a digital caliper.  In order to test the 

photochemistry of PVCN, as depicted in Fig. 1, we used a Perkin Elmer Spectrum 100 FTIR 

spectrometer to compare the spectra of the fibres before and after exposure to UV radiation.  

 

Results and Discussion 

Prior to performing any thermal or mechanical measurements on the electrospun fibres, 

we used scanning electron microscopy (Cambridge S360 SEM) to observe the topology of the 

fibres and determined the distribution of their diameters with the help of the commercially 

available software Scandium.  These results are captured in Fig. 2.  The fibres are essentially 

smooth cylinders without any ribbon-like or beaded features.  The average diameter of the fibres 

is 2.36 ±0.70 µm.   In addition to 1, 2 dichloromethane, we were able to generate fibres with a 

20% solution (by weight) of PVCN in dimethylformamide.  However, the fibres were also in the 

micron range but somewhat beaded.  It might be possible to produce PVCN fibres with 

nanoscale diameters if solutions with lower concentrations are used.  Also, we have found that 

doping PVCN with small amounts of a liquid crystalline polymer resulted in a decrease in the 

average diameter [33]. 

  The initial characterization of PVCN also includes differential scanning calorimetry 

(DSC) scans on the fibres and pure PVCN.  The glass transition temperatures (Tg) of both the 

powdered sample and fibres of PVCN are marked by unusually large enthalpies.  Such large 

enthalpies represent non-equilibrium thermodynamic states (Fig. 3).   The enthalpies associated 

with the glass transitions of both the powder and the fibre are quite similar; the enthalpy of the 

fibre is ~5% less than that of the powder.   Hence, electrospinning does not appear to affect the 

thermal history of PVCN.  Despite similar enthalpies, the powdered sample and the fibres show 

markedly different glass transitions.  Tg of the powder is 81.07 ± 0.01 ºC while the fibre is 71.86 

± 0.01 ºC.  This difference is most likely due to the reduction in the crystallinity of the material 

during its conversion from the partially crystalline powder to the mainly amorphous fibre [34].   

Also, there are no discernible peaks in the cooling curves. 



0.4

0.6

0.8

1

1.2

1.4

1.6

20 30 40 50 60 70 80 90 100

Temperature /C

Fibre

powdered polymer

81.07 C

71.86 C

                        

 

Fig. 2.  Topology and distribution of nonirradiated PVCN fibres (Cambridge S360 SEM).  The 

needle-collector separation was 10 cm and a voltage of 17 kV was maintained between them.  

The average fibre diameter is 2.36 ± 0.70 µm and this represents the average of 100 

measurements randomly selected from across the SEM image.    

 

 

 

 

 

 

 

 

Fig. 3.   Enthalpies associated with the glass transitions of the powdered polymer and the fibre 

(before it was irradiated).  The enthalpies are 7.87 J/g (powder) and 7.49 J/g (fibre).   
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After the initial physical characterization, the electrospun fibres were crossed-linked to 

different extents by varying the exposure times to UV radiation.   Cross-linking enhances 

thermal stability and this appears as an increase in Tg with increasing exposure times (Fig. 4.).   

However, the temperature dependence of Tg with exposure time is non-linear with the greatest 

change occurring during the first ten minutes of irradiation similar to what was observed by 

Haramina and Kircheim [29] in their IR spectroscopic studies.  Tg increases by 11.0 K after the 

first 10 minutes of exposure but only changes by ~ 0.6 K for the last ten minutes.  The peaks 

associated with the glass transition became more smeared out as radiation times increased. For 

example, the sample that was irradiated for 1 h showed a flat and very broad peak which 

extended for ~ 20 ºC (enthalpy of ~ 1 J/g).    There were no discernible peaks in the DSC scan 

for an additional ten minutes of radiation.  The decrease in enthalpy as a function of exposure 

time is shown in Fig. 5.   This is consistent in increased cross-linking and reduced crystallinity.   

An empirical relation between the increase in Tg with cross-linking density was 

developed by Nielson [35] and may be written as:  
1

𝑥𝑐𝑙𝑑
= 1 +

1.2𝑇𝑔0

∆𝑇𝑔
      (1) 

where: xcld  is  the cross-linking density (ratio of the number of  cross-links to the number of 

backbone atoms), Tg0 the glass transition for zero cross-linking and ΔTg (Tg - Tg0) the increase in                

Tg  with irradiation.   Equation (1) implies that a linear relation exists between the inverse cross-

lnking density and the inverse change in Tg.  The cross-linking densities are extracted from the 

measured thermal parameters of Eq.1 and the linear relation is shown in Fig. 6.   

 Cross-linking is a diffusion-controlled process which is initiated when an unsaturated 

cross-linker comes within a certain reaction radius of an excited cross-linker.  Once the reaction 

has started, the number of cross-links decays and reaches a steady-state which contains about 

20% of non-cross-linked C=C bonds.   Haramina and Kirchheim [29] observed that if spin-

coated PVCN films are exposed to UV radiation of wavelength 365 nm and intensity                   

10 mW cm-2, the most dramatic changes in the IR spectrum occur in the first 10 min.   Also, the 

intensity of the C=C bond normalized to the C-H bond  from FTIR reaches a steady state after 

about 50 to 60 m.   According to Matsuguchi, Miura and Sakai [36], PVCN will cross-link 100% 

only after 48 h of irradiation.   Such irradiation times were impractical for this study and samples 

were irradiated at most, one hour. 



 

Fig. 4.   The variation of glass transition temperatures of cross-linked fibres with exposure times 

to UV radiation.  The error in Tg ± 0.2 ºC. 

 

 

Fig. 5.  The enthalpy of the glass transitions of cross-linked samples as a function of exposure 

time. 
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Fig. 6.  The variation of the glass transition temperatures with cross-linking density as fitted to 

the above Nielson equation.   

   

 The FTIR spectra of our fibres are shown in Fig. 7.  We monitored, in particular, the 

major peaks that correspond to the C=C and C=O stretching vibrations of PVCN (1637 cm-1 and 

1705 cm-1) and found a substantial increase in transmission (decreased absorption) of both peaks.  

This reduced intensity in the C=C vibrational peak has been previously observed [29-30, 37-38].  

Also, both studies recorded a shift in the C=O from 1712 cm-1 to ~1735 cm-1.   We observed a 

shift of  just a few wavenumbers.    Solubility studies contained in reference 37 and 38 show that 

PVCN fibres irradiated for 1h develop enough insoluble supports that offer protection against 

strong solvents.  In fact, Lyoo et. al.[37]  observed that PVCN is almost insoluble after a mere 10 

min of exposure to UV radiation.  This is consistent with our thermal analysis.  In Fig. 7.  the 

transmission is more than 100% in some areas probably because the sample was on the 

electrospun foil when scanned.  However, we are interested in the change of the dominant peaks 

and such reflections will not affect our conclusions. 
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Fig. 7.  FTIR spectra of  PVCN fibres before and after UV radiation for 1h.     

 

One major focus of this study is to explore quantatively the effect of cross-linking on 

mechanical integrity of the fibres as determined by the variation of the Young’s modulus with 

exposure to UV radiation.  The Deben tensiometer measures the elongation of the fibres’  stress-

strain curve for the uncrossed-fibres as shown in Fig. 7.   The Young’s modulus (Y) is defined by 

the expression: Y=(
𝐹

𝐴
) ÷ (

∆𝐿

𝐿
)  where  F in the stretching force, A the cross-sectional area, ΔL the 

extension and L the natural length of the fibre.  The slope of the initial linear portion of Fig. 7 is 

given by (YA/L) and this yields the Young’s modulus since L and A are measured quantities. 
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Fig. 7.   The stretching force versus extension for uncrossed PVCN fibres was measured with a 

Deben tensiometer which is fitted with a 200 N tensile stage. The dimensions of the bundle were: 

10 mm x 0.4 mm x 0.4 mm and the stretching rate was 0.5 mm min-1.  The Young’s modulus is 

calculated from the slope of the linear region shown.   

 

In Fig. 7, there are two linear regions with positive slopes.  The first linear region as 

shown in Fig.7 was used to determine the Young’s modulus. The second region (extensions from 

~ 4.5 to 10 mm) corresponds to the stretching of the fibres that did not initially snap.  Little 

useful information can be deduced from the latter portion since it is virtually impossible to 

determine the cross-sectional area of the remaining fibres since the experiment would have to be 

stopped and the surviving fibres would have to be re-bundled.  The initial horizontal portion of 

the curve is ignored in determining the Young’s modulus.  This flat portion appears in several 

plots and generates a systematic error which will not affect the calculation of the modulus.  Also, 

there is a well-defined maximum in the curve which is a measure of the yield point. The Young’s 

moduli are plotted in Fig. 8 as a function of exposure times and in Fig. 9 as a function of cross-

linking density as calculated (from Eq. 1.) 
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Fig.  8.  The variation of Young’s modulus with exposure to UV light of intensity 10 mWcm-2 

and wavelength 365 nm. 

 

In general, the fibre diameter and the degree of cross-linking strongly influence the 

Young’s moduli of electrospun fibres.   For a given material, fibres with the smallest diameters 

will yield the largest values of Young’s moduli (tensile moduli) [39-41].  This has been 

attributed to better molecular orientation and crystallinity among smaller diameter fibres as seen 

by WAXD data [40].  Cross-linking, on the other hand, increases the moduli of electrospun 

fibres owing to the formation of new covalent bonds which leads to a higher overall energy of 

bonding [42-44]. Also, different forms of the same material, for example, non-woven mats, cast 

films, micron-scale or nanoscale fibres all yield different values for the Young’s modulus.  The 

largest observed values are for single nanofibers.  Wong, Baji and Leng [40], have determined by 

direct stress-strain measurements that electrospun fibres of poly (ɛ-caprolactone) with small 

diameters have higher modulus and strength with the effect becoming more pronounced for 

fibres with diameters less than ~700 nm. This inverse effect has also been observed in silica 

glass fibres whose moduli lie in the GPa range [46]. 



 

Fig. 9.  The variation of Young’s moduli with cross-linking density.  

It is obvious from our data that there is an increase in the Young’s moduli of the fibres 

with increasing exposure to UV radiation.  However, the effect is nonlinear and is consistent 

with the observed glass transition temperatures which suggest that the majority of cross-linking 

occurs within the first 10 minutes of exposure to UV radiation.  The maximum value of the 

Young’s moduli (360 MPa) obtained from our data is ~1.5 times that for the non-radiated fibre.   

Our values for the Young’s moduli are consistent with previously published values for 

electrospun fibres [41-42, 45-47].  For example, incremental stress-strain analysis of single 

electrospun fibres of poly (ɛ-caprolactone) yields a value of ~ 300 MPa [40].  However, a major 

source of error in this study lies in the fact that it is virtually impossible to prepare samples with 

the same volume ratio and this can lead to an uncertainty of ±10% in the values of the Young’s 

moduli.   

Conclusion  

An 18.8 % by weight solution of PVCN in dry 1, 2 dichloroethane generated smooth 

electrospun fibres with an average diameter of 2.36 ± 0.70 µm.   Owing to the formation of new 
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covalent bonds, exposure to unpolarized ultra-violet radiation (10 mW cm-2; 365 nm) resulted in 

increased glass transition temperatures and larger values of the Young’s moduli.  However, the 

majority of cross-linking occurs within the first 10 min of exposure to UV radiation.  Also, the 

enthalpies accompanying the glass transition becomes more smeared out as the exposure times 

increased.   

We measured the extension of fibre bundles in response to a known applied force and 

then determined the Young’s modulus of the material.  We repeated this experiment for fibres 

that were cross-linking to different extents and quantatively deduced how the Young’s modulus 

of PVCN fibres varies with UV exposure.   The applications of fibres can be greatly enhanced by 

improving their mechanical integrity which in the case of PVCN can be achieved by cross 

linking.  Hence, it is possible to tailor the mechanical and thermal properties of photo-polymers 

like PVCN and its derivatives by controlled exposure to ultra-violet radiation. 

Conflict of Interest: On behalf of all authors, the corresponding author states there is no conflict 

of interest. 
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