
Predictability of South China Sea summer 
monsoon onset 
Article 

Accepted Version 

Martin, G. M., Chevuturi, A. ORCID: https://orcid.org/0000-
0003-2815-7221, Comer, R. E., Dunstone, N. J., Scaife, A. A. 
and Zhang, D. (2019) Predictability of South China Sea 
summer monsoon onset. Advances in Atmospheric Sciences, 
36 (3). pp. 253-260. ISSN 0256-1530 doi: 10.1007/s00376-
018-8100-z Available at https://centaur.reading.ac.uk/80526/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .

To link to this article DOI: http://dx.doi.org/10.1007/s00376-018-8100-z 

Publisher: Springer 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

CentAUR 

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


Central Archive at the University of Reading 
Reading’s research outputs online



1 

 

Predictability of South China Sea Summer Monsoon onset 1 

Gill M. MARTIN1*, Amulya CHEVUTURI2, Ruth E. COMER1, Nick J. DUNSTONE1, 2 

Adam A. SCAIFE1,3, and Daquan ZHANG4 3 

1Met Office Hadley Centre, Met Office, FitzRoy Road, Exeter, EX1 3PB, UK 4 

2NCAS-Climate and Dept. of Meteorology, University of Reading, Reading, RG6 6BB, 5 

UK 6 

3College of Engineering, Mathematics and Physical Sciences, Exeter University, Exeter, 7 

EX4 4QJ, UK 8 

4Laboratory for Climate Studies, National Climate Center, China Meteorological 9 

Administration, Beijing 100081, China 10 

ABSTRACT 11 

Predicting monsoon onset is crucial for agriculture and socioeconomic planning in 12 

countries where millions rely on the timely arrival of monsoon rains for their livelihoods. 13 

In this study we demonstrate useful skill in predicting year to year variations in South China 14 

Sea summer monsoon onset at up to 3 months lead time using the GloSea5 seasonal 15 

forecasting system. The main source of predictability comes from skilful prediction of 16 

Pacific sea surface temperatures associated with El Niño and La Niña. The South China 17 

Sea summer monsoon onset is a known indicator of the broadscale seasonal transition that 18 

represents the first stage of the onset of the Asian summer monsoon as a whole. Subsequent 19 

development of rainfall across East Asia is influenced by sub-seasonal variability and 20 

synoptic events that reduce predictability, but interannual variability in the broadscale 21 
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monsoon onset for East Asian summer monsoon still provides potentially useful 22 

information for users about possible delays or early occurrence of the onset of rainfall over 23 

East Asia. 24 

Key words: SCSSM, South China Sea Summer Monsoon, EASM, East Asian Summer 25 

Monsoon 26 

 27 

1. Introduction 28 

The broadscale East Asian Summer Monsoon (EASM) onset occurs in two stages 29 

(Wang et al, 2004; 2009): The first stage is a seasonal transition that occurs over the South 30 

China Sea (SCS) and is characterised by an abrupt but sustained reversal of the lower 31 

tropospheric zonal winds from easterlies to westerlies. Several studies have considered the 32 

SCS Summer Monsoon (SCSSM) onset as the precursor for the EASM development (Tao 33 

and Chen, 1987; Lau and Yang, 1997), with the formation and progression of the mei-yu 34 

rainband forming the second salient phase (Wang et al., 2004). Predicting monsoon onset 35 

is crucial for agriculture and socioeconomic planning in countries where millions rely on 36 

the timely arrival of monsoon rains for their livelihoods.    37 

Interannual variability in the seasonal transition that constitutes the broadscale 38 

monsoon onset has been shown to be related to thermal conditions over the Tibetan Plateau 39 

(Wu et al., 2012), El Niño-Southern Oscillation (ENSO) effects (Zhou and Chan, 2006; Hu 40 

et al., 2014; Xie et al., 2015; Zhu and Li, 2017), regional air-sea interactions (He and Wu, 41 

2013) and intraseasonal oscillations (ISO; Li et al., 2013; Wu 2010; Zhu and He, 2013; 42 

Shao et al., 2014; Wang et al., 2017). He et al. (2017) carried out a comprehensive analysis 43 
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of the SCSSM onset in individual years between 1997 and 2014 and showed that the years 44 

can be divided into “normal”, “intermittent” and “delayed” onset years based on the 45 

development of local circulations, thermodynamic conditions and rainfall patterns 46 

following the seasonal transition. He et al. (2017) found that eight out of the 18 years they 47 

analyzed exhibited intermittent rainfall onset (such that the seasonal dynamical transition 48 

is not closely followed by the establishment of monsoon rains and maximum SCS surface 49 

temperatures, with a delay caused by an active ISO or northern cold air entering the SCS), 50 

and suggested that this reduces the potential predictability of local rainfall onset even if the 51 

seasonal dynamical transition may be predictable. Wang et al. (2017) described the effects 52 

of the tropical ISO on early, normal and late SCSSM onsets observed over 34 years. They 53 

confirmed work from previous studies which showed that, before each onset, the SCS is 54 

controlled by the dry phase of the ISO (Shao et al., 2014), and the SCS is warmed to 55 

precondition the onset, while after each onset, the SCS is cooled by the wet phase of the 56 

ISO (Wu, 2010). However, Wang et al. (2017) showed that the transition process is found 57 

to be related to different ISO evolutions over the Indian Ocean for the three types of onsets.  58 

Even in non-intermittent onset years, the progression of rainfall onset over East Asia 59 

is rarely smooth. After an initial burst of rainfall over the SCS, the rain band rapidly 60 

advances northward before stagnating over the Yangtze and Huai River valleys in the mei-61 

yu front (baiu in Japan). The mei-yu rainband exhibits large intra-seasonal and interannual 62 

variability and has been the subject of extensive literature (see Ding and Chan (2005) for a 63 

review). Its onset is associated with a northward shift of the Northwest Pacific Subtropical 64 

High axis to about 25°N and the migration of the upper level westerly jet over Eurasia to 65 

the north of the Tibetan Plateau (Sampe and Xie, 2010; Luo 2013). Li et al. (2018) showed 66 
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that the anticyclone in the upper troposphere over South Asia in April has a significant 67 

relationship with the mei-yu onset dates, such that a stronger South Asian anticyclone in 68 

April is followed by earlier onset dates of the mei-yu. 69 

Despite the complexity associated with these multiple drivers, interannual variability 70 

in the seasonal transition that constitutes the broadscale monsoon onset for the Asian 71 

summer monsoon as a whole still provides useful information for forecasters about possible 72 

delays or early occurrence of the onset of rainfall over East Asia. One of the most-used 73 

indices for determining SCSSM onset is that proposed by Wang et al. (2004). This index 74 

identifies the first pentad after 25th April in which the zonal wind at 850 hPa over the 75 

southern part of the South China Sea (5°-15°N,110°-120°E) shifts from a mean easterly to 76 

a mean westerly. Wang et al. (2004) demonstrate that this index is highly indicative of the 77 

seasonal transition of the large-scale circulation. They showed that the onset variations 78 

determined using this index matched the broadscale onset determined by the principal 79 

component of the first empirical orthogonal function (EOF) of the low level winds over 80 

East Asia and the Western North Pacific. They argued that this simple index avoids the 81 

additional complications of the intraseasonal variability that is included in EOF analysis.  82 

An alternative definition for SCSSM onset was proposed by Gao et al. (2001), and is 83 

used in operational extended-range forecasting by the Chinese Meteorological 84 

Administration (D. Zhang, personal communication). This includes an additional criterion 85 

of a sustained increase of equivalent potential temperature at 850 hPa above 340K over the 86 

SCS region 10°-20°N, 110°-120°E concurrent with the establishment of westerly winds 87 

over the same region. The increase in equivalent potential temperature is considered to 88 

indicate sea surface warming, monsoonal transport of moisture into the region and the 89 
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potential for increased convective activity (Gao et al., 2001; Luo et al., 2013; Li et al., 90 

2013).  The region specified by Gao et al. (2001) is further north than that for the Wang et 91 

al. (2004) index and includes the northern SCS. 92 

In this paper, we investigate the prediction skill of the SCSSM onset on seasonal 93 

timescales in the operational hindcast set of the GloSea5-GC2 seasonal forecasting system. 94 

Section 2 outlines the data and methods used in our study; section 3 shows the analysis of 95 

predictability of the two onset indicators, including tests of the robustness of the seasonal 96 

forecast skill. Discussion and conclusions on the usefulness of the seasonal forecast skill 97 

of the broadscale monsoon onset using these SCSSM onset indicators are included in 98 

Section 4. 99 

2. Data and methods 100 

Daily and pentad timeseries of 850 hPa zonal winds (U850), air temperature (T850) and 101 

specific humidity (q850) from the 23-year set of hindcasts (1993-2015) made with the 102 

GloSea5-GC2 operational long-range forecast system (MacLachlan et al, 2015; Williams 103 

et al., 2015) are taken from four start dates (17th, 25th March, 1st, 9th April). This represents 104 

a >1-month lead-time for the average SCSSM onset date of mid-May. The standard 105 

operational hindcast set includes 7 members per start date. In order to investigate the 106 

robustness of our results, and the dependence on ensemble size, we make use of an 107 

additional hindcast ensemble, using the same model configuration and also with 7 members 108 

per start date (except for 17th March, for which there are only 3 members). Further, to 109 

investigate changes with lead-time, we repeat the analysis for a 56-member ensemble of 110 

start dates 25th March, 1st, 9th, 17th April, and for 28-member ensembles generated using 111 

the four start dates (1st, 9th, 17th, 25th) of January, February and March respectively.  112 
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Data representative of observations are taken from ERA-Interim reanalyses (Dee et 113 

al., 2011) for the same years. Equivalent potential temperature is calculated from the 114 

temperature and humidity fields at 850 hPa using the formula in Bolton (1980). Sea surface 115 

temperatures for March (used in section 3.3) are taken from the HadISST1.1 dataset 116 

(Rayner et al., 2005). 117 

SCSSM onset is determined using the criteria established by Wang et al. (2004) and 118 

Gao et al. (2001). According to Wang et al. (2004), the onset date is the first pentad after 119 

25th April (i.e. pentad 24 onwards) when the area-averaged U850 over the southern SCS 120 

(5°-15°N, 110°-120°E, denoted USCS) is (a) > 0 m s-1; (b) in the subsequent four pentads 121 

(including the onset pentad) USCS must be positive in at least three pentads, and (c) the 122 

accumulated 4-pentad mean USCS > 1 m s-1. Wang et al (2004), He and Zhu (2015) and Zhu 123 

and Li (2017) have compared the SCSSM onset pentads between different reanalyses 124 

(including the National Centers for Environment Prediction (NCEP) reanalyses versions I 125 

(Kalnay et al., 1996) and II (Kanamitsu et al., 2002) as well as ERA-Interim) and show 126 

reasonable correlations between them (generally >0.8). 127 

Gao et al. (2001) suggested an onset criterion based on the area-averaged 850 hPa 128 

pentad equivalent potential temperature (θe) and U850 over the region 10°-20°N, 110°-129 

120°E, with the onset date being the first pentad when θe > 340K† and the U850 > 0.0 m s-1 130 

stably (persists for at least three pentads followed by a break of no more than 2 pentads, or 131 

for two pentads followed by a break of no more than one pentad). It should be noted that 132 

the region of consideration for this index is slightly further north than that considered by 133 

Wang et al. (2004).  134 

                                                 
† Originally specified as 335K by Gao et al. (2001) but revised to 340K by Ding and He (2006). 
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3. Results 135 

3.1 Prediction skill of SCSSM onset using the Wang et al. (2004) criterion 136 

Figure 1 shows the SCSSM onset pentads identified using the Wang et al. (2004) 137 

criterion for each forecast member with start dates 17th, 25th March, 1st, 9th April in each 138 

year, with the ensemble mean pentad and that identified in the reanalyses. The average 139 

interannual standard deviation of onset dates from individual ensemble members is 2.2 140 

pentads, which compares reasonably well with that of the reanalyses (2.6 pentads), and 141 

there is a statistically significant (at the 0.75%  level, for a one-tailed t-test) correlation of 142 

0.5 between the interannual variations of the ensemble mean dates and those from the 143 

reanalyses, indicating significant predictability. The hindcasts also predict the mean onset 144 

pentad to match that of the reanalyses, i.e. pentad 28 (16th - 20th May).  145 

Luo and Lin (2017) suggest that a more objective measure of the SCSSM onset can be 146 

determined using a daily cumulative USCS and specifying the onset as where this time series 147 

changes from decreasing to increasing (indicating that the flow is becoming predominantly 148 

westerly). Wang et al. (2004) also checked their SCSSM onset dates against a cumulative 149 

USCS criterion, DU, which compares the accumulated USCS in the 3 days prior to and after 150 

the onset. They showed that although their onset criteria do not explicitly require an abrupt 151 

change in westerly speed across the onset pentad, the resultant onset pentads were 152 

coincident with such a change. We find that including the additional criterion of DU > 7 m 153 

s-1 makes very little difference to our results (not shown). 154 

We have carried out the same analysis for four start dates (1st, 9th, 17th, 25th) in January, 155 

February and March taken from the standard operational hindcast ensemble of 7 members 156 

per start date, and also for a 56 member combined ensemble using start dates of 25th March, 157 
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1st, 9th and 17th April (see Table 1). The correlation coefficient increases with decreasing 158 

lead-time, becoming statistically significant at the 1.5% level (for a one-tailed t-test) from 159 

February start dates onwards. Thus, there is significant skill in the SCSSM onset prediction 160 

using the Wang et al. (2004) index at nearly 3 months lead-time over this hindcast period. 161 

3.2 Predictability of SCSSM onset using the Gao et al. (2001) criterion 162 

Figure 2 shows the SCSSM dates identified using the Gao et al. (2001) criterion in 163 

each year by each of the 52 ensemble members with start dates 17th, 25th March, 1st, 9th 164 

April, with the ensemble mean pentad and that identified in the reanalyses. In contrast with 165 

the findings using the Wang et al. (2004) USCS index, we find low skill in onset prediction 166 

using the Gao et al. (2001) index at >1 month lead time. Table 1 shows that the correlation 167 

increases slightly if the lead-time is reduced to ~1 month, but remains barely statistically 168 

insignificant at the 6% level (using a one-tailed t-test).  169 

The difference in prediction skill between the two methods of determining SCSSM 170 

onset may be in part related to the region used for the Gao et al. (2001) index; Wang et al. 171 

(2004) commented that “the northern SCS is open to the invasion of a cold front from the 172 

north. The westerly flow occurring before the onset is located north of the subtropical ridge 173 

and is not of tropical origin.” They state, therefore, that the northern part of the SCS should 174 

be excluded when defining the tropical monsoon burst over the SCS. He et al. (2017) also 175 

commented on the influence of northern cold air entering this region of the SCS 176 

contributing to ambiguous or intermittent onset. They highlighted the case of 2009, where 177 

the strong westerly flow established in mid-April was interrupted by easterlies propagating 178 

from the northern SCS for several days in early May. Other examples of years where this 179 

occurred were given in He et al. (2017, their Figures 1, 2) and include 2007, 2009, 2011. 180 
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Additionally, although He et al (2017) did not identify 2004 as an intermittent onset year, 181 

the U850 averaged over the Gao et al. (2001) SCS box fluctuates between easterly and 182 

westerly during May, making the onset ambiguous when the Gao et al. (2001) index is 183 

used. He et al. (2017, their Figure 1) shows that this is related to variability of the winds in 184 

the northern part of the SCS. In contrast, the U850 winds over the southern part of the SCS 185 

(as covered by the Wang et al. (2004) box) do not fluctuate to the same extent. Chan et al. 186 

(2000) showed that, in 1998, incursion of cold air into the northern SCS promoted release 187 

of convectively available potential energy which helped to trigger the onset earlier than 188 

may have been expected given the ENSO conditions. Liu et al. (2002) further linked the 189 

cold air incursion to a Rossby wave train triggered over the Bay of Bengal.  190 

The additional influence of variability from the subtropics in the northern SCS, which, 191 

like the ISO, is unpredictable on seasonal timescales, is likely to be a contributing factor in 192 

the reduced seasonal prediction skill for SCSSM onset using the Gao et al. (2001) criteria. 193 

In recognition of this, forecasters at CMA release their SCSSM onset forecasts using the 194 

Gao et al. (2001) criteria only on the extended range (11-30 day) timescale (D. Zhang, 195 

personal communication, 30th March 2018), on which models have been show in previous 196 

work to have skill for predicting intraseasonal variability (e.g. Lim et al., 2018; Lee et al. 197 

2015).  198 

3.3 Drivers of SCSSM onset predictability using Wang et al. (2004) index 199 

Several studies have shown that ENSO is one of the main drivers of large-scale 200 

interannual variability in the Asian monsoon region (e.g. Zhou and Chan, 2007; Luo et al., 201 

2016). Westerly (easterly) equatorial wind anomalies associated with El Niño (La Niña) 202 

and a weaker (stronger) Walker circulation are typically associated with negative (positive) 203 
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sea surface temperature (SST) anomalies over the SCS and a delayed (advanced) seasonal 204 

transition (He et al., 2017). This relationship is not symmetrical, however: He et al. (2017) 205 

suggest that both intraseasonal oscillations (ISO) and changes in west–east thermal 206 

contrasts across the Indian Ocean and western Pacific can influence the timing of onset in 207 

La Nina years. Hardiman et al. (2018) found a similar asymmetry in the relationship 208 

between seasonal mean Yangtze River rainfall and ENSO in observations and hindcasts. 209 

We also show on Figure 1 the observed March Niño3.4 sea surface temperature (SST) 210 

anomaly timeseries from HadISST1.1 (yellow line). The correlation coefficient between 211 

the ensemble mean SCSSM onset pentad timeseries derived using the Wang et al. (2004) 212 

index and the Niño3.4 SST timeseries is 0.9, indicating that the predictable component of 213 

the hindcast SCSSM onset is driven mainly by ENSO, which itself is highly predictable on 214 

this timescale in GloSea5 (MacLachlan et al., 2015; Scaife et al., 2014). The correlation 215 

between observed estimates of SCSSM onset and the observed March Niño3.4 SST is 216 

rather lower (0.41), indicating the influence of other drivers of SCSSM onset variability 217 

that may not be predictable, particularly the ISO (e.g. Shao et al., 2014; Wang et al., 2017), 218 

which is itself subject to inter-annual variations relating to large-scale modes such as the 219 

Pacific-Japan teleconnection (Li et al., 2014). The skill of the ensemble (0.5) is therefore 220 

marginally higher than using predicted ENSO conditions alone to predict monsoon onset, 221 

though both are skilful. 222 

Figure 3(a) provides additional insight by showing the correlation between the 223 

ensemble mean SCSSM onset dates for the 23 years from the hindcast and observed global 224 

monthly mean SSTs in March over the same period. This illustrates that the predictable 225 

part of the SCSSM onset from the hindcast is strongly correlated with an ENSO-like pattern 226 
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of Pacific SSTs, consistent with the findings of Zhu and Li (2017). There is also a strong 227 

positive correlation with SSTs in the equatorial Indian Ocean, again indicating that warmer 228 

SSTs are associated with later SCSSM onset dates. For the observed onset dates derived 229 

from ERA-interim (Fig. 3(b)), the correlations with SST are far smaller, due to the presence 230 

of additional factors in the observations that are not predicted by the ensemble mean. The 231 

average correlations between the SSTs and 1000 pseudo-timeseries of SCSSM onset 232 

created by randomly choosing an individual ensemble member hindcast for each year (Fig. 233 

3(c)) are naturally smaller than with the ensemble mean timeseries, but not as low as those 234 

in observations (Fig. 3(b)). This suggests that some of the sub-seasonal variations (e.g. 235 

intraseasonal oscillations) that affect SCSSM onset in reality may not be sufficiently well 236 

represented by the model to capture such influences, even at the relatively high horizontal 237 

resolution used by GloSea5 (N216; about 60 km at 50°N). This is consistent with findings 238 

of Fang et al. (2016), who showed that while several aspects of the boreal summer ISO 239 

were improved in the Met Office Unified Model at this resolution, difficulty remained in 240 

realistic representation of the variance and propagation characteristics. 241 

3.4 Robustness of SCSSM wind onset predictability to ensemble size 242 

To assess the influence of ensemble size on the prediction skill using the Wang et al. 243 

(2004) index, we randomly sample small ensembles of between 1 and 51 members from 244 

the 52 members in our combined ensembles with start dates between 17th March and 9th 245 

April, and re-calculate the correlation between the ensemble-mean timeseries and that from 246 

the observations for different numbers of ensemble members. Figure 4 indicates that, for 247 

this measure of monsoon onset, the prediction skill (black line) rises quickly with ensemble 248 

size, reaching a mean value of 0.5 for a 28-member ensemble (which is the size of the 249 
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standard operational hindcast set), and is robust (correlation coefficients averaged over all 250 

ensemble-mean timeseries are statistically significant at the 1% level for a one-tailed test) 251 

for around 10 ensemble members or more. This is a reflection of the strong and predictable 252 

influence of ENSO on wider tropical rainfall (Kumar et al., 2013; Scaife et al, 2017) and 253 

here on the SCSSM onset dates in the hindcast: in most of the summers following strong 254 

El Niño/La Niña years (e.g. 1998, 1999, 2000, 2001, 2005, 2008, 2010) the spread among 255 

ensemble members is small and several members identify the same onset pentad (see 256 

Figure 1), thereby constraining the values selected by random sampling of the ensemble 257 

for those years. 258 

Several authors (e.g. Scaife et al., 2014; Eade et al., 2014; Dunstone et al., 2016) have 259 

demonstrated that the model’s North Atlantic Oscillation is less predictable than that 260 

observed, so that a large number of ensemble members is required for good prediction skill. 261 

This was confirmed by repeatedly randomly selecting a single member to be the truth and 262 

using the ensemble mean of the remaining members to predict that member. In contrast, 263 

the dashed line on Figure 4 indicates that the model’s SCSSM onset dates are more 264 

predictable than those from reanalyses, i.e. that the model is over-confident in its 265 

predictions, as is often found for tropical rainfall (Weisheimer and Palmer, 2014). This 266 

again illustrates the dominant role of ENSO in providing the predictability in the model, 267 

while the observed onset dates are also influenced by intraseasonal variations that are 268 

unpredictable on the seasonal timescale. 269 

4. Conclusions 270 

SCSSM onset, as determined by the Wang et al. (2004) U850 wind index, is skilfully 271 

predicted in GloSea5 at up to 3 months lead time, particularly during active ENSO years. 272 
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Since the SCSSM onset signifies the start of the broadscale EASM, its skilful prediction is 273 

important for forecasters as an indicator of the possible characteristics of the season to 274 

come. This complements the skill previously demonstrated for predicting seasonal mean 275 

precipitation in the Yangtze River region (Li et al., 2016). The prediction skill for SCSSM 276 

onset using this index is robust even with only around 10 ensemble members, consistent 277 

with skill in prediction of rainfall in the deep tropics (e.g. Scaife et al., 2017). The skill is 278 

largely related to ENSO SSTs which have been shown to be highly predictable in the 279 

GloSea5 seasonal forecasting system.  280 

In contrast, the Gao et al. (2001) SCSSM onset index, which includes an increase of 281 

θe in the SCS region as a measure of thermodynamic onset alongside the change to westerly 282 

winds, shows little predictability on seasonal timescales. We speculate that this is partly 283 

due to the region used by Gao et al. (2001), as this includes the northern SCS which can be 284 

influenced by incursions of cold air from the north. This additional influence is, like the 285 

ISO, inherently unpredictable on the seasonal timescale, and thus its inclusion through the 286 

northward extension of the box used for the Gao et al. (2001) index compared with that of 287 

Wang et al. (2004) is, in our view, a contributing factor in the reduced seasonal prediction 288 

skill. However, we propose that a seasonal forecast of the broadscale transition using the 289 

Wang et al. (2004) index would provide some useful early information for forecasters, and 290 

their guidance could later be refined, using other measures such as the Gao et al. (2001) 291 

index, with medium-range forecasts that may capture the influence of intraseasonal 292 

variations at shorter lead-times. 293 

He and Zhu (2015) investigated the correlations between the SCSSM onset (as 294 

determined by the Wang et al. (2004) criteria) and the subsequent EASM rainfall from May 295 
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to September in observations/reanalyses. They suggested that, in contrast with the 296 

traditional view that a later onset date would be associated with a lower than normal total 297 

seasonal rainfall amount, the region from the lower Yangtze River to Korea and southern 298 

Japan shows a positive correlation between the SCSSM onset date and the seasonal mean 299 

rainfall, i.e. early SCSSM onset tends to be followed by lower than normal seasonal mean 300 

rainfall further north. He and Zhu (2015) associate this relationship with a persistent 301 

Western North Pacific anticyclonic/cyclonic anomaly accompanied by decaying El 302 

Niño/La Niña conditions in boreal spring to summer (Wu et al., 2010; Stuecker et al., 2013; 303 

Hardiman et al, 2017). This suggests that skilful predictions of SCSSM onset could provide 304 

an indication of the seasonal mean rainfall in parts of the EASM region. 305 

To our knowledge, this is the first time that skill in predicting the broadscale transition 306 

associated with the SCSSM onset on seasonal timescales in an operational dynamical 307 

forecasting system has been demonstrated. We encourage other centres to investigate this 308 

in their operational forecasting systems. While it is recognised that the onset and 309 

progression of the SCSSM and EASM systems is complex and may be influenced by other 310 

factors such as synoptic events, intraseasonal variability and regional air-sea interactions 311 

with little or no predictability on the seasonal timescale, the ability to provide skilful 312 

predictions of whether the broadscale seasonal transition is likely to be early, late or normal 313 

provides useful, early information for local forecasters, particularly when combined with 314 

other predictions, such as the Yangtze River basin rainfall, which have also been shown to 315 

be skilful (Li et al., 2016) and are now provided in real time to CMA (Bett et al., 2018). 316 

 317 
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 483 

FIGURE CAPTIONS 484 

Figure 1: Predictability of the SCSSM wind onset: onset pentads derived using the method 485 

proposed by Wang et al. (2004) from the GloSea5 ensemble predictions initialized on 486 

17th, 25th March, 1st, 9th April (green dots represent individual members of the 52-487 

member ensemble, with the size of the dot scaled by the number of members predicting 488 

the same onset pentad) and their ensemble mean (green line) compared with the 489 

equivalent onset pentads derived from ERA-Interim (black line). The yellow line 490 

shows the Niño3.4 SST anomaly in March for each year taken from the HadISST1.1 491 

dataset. Pearson correlation coefficients are given in the legend: r(ens,obs) represents 492 

the correlation between the GloSea5 ensemble mean and ERA-Interim; r(ens,sst) 493 

represents the correlation between the GloSea5 ensemble mean SCS onset pentads and 494 

the observed March Niño3.4 SST anomaly; r(obs,sst) represents the correlation 495 

between the ERA-Interim SCS onset pentads and the observed March Niño3.4 SST 496 

anomaly.  497 

Figure 2: As Fig. 1 but for SCSSM thermodynamic onset as determined by a sustained 498 

increased of θe,SCS above 340K accompanied by the establishment of westerly winds 499 
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over the region 10-20N 110-120E, as proposed by Gao et al. (2001) (with the threshold 500 

modified by Ding and He, 2006). 501 

Figure 3: Correlation coefficients between SCSSM onset pentad derived using the Wang 502 

et al. (2004) index and observed March average sea surface temperatures from 503 

HadISST1.1 for the period 1993-2015, using: (a) ensemble mean onset dates from the 504 

hindcast; (b) onset dates from ERA-Interim, (c) 10,000 pseudo-timeseries of onset 505 

dates created by randomly selecting an individual ensemble member from each year; 506 

panel shows average over all correlations. Contours and darker shades indicate 507 

correlations significant at the 1% (r=0.48) and 3% (r=0.40) levels respectively, for a 508 

one-tailed t-test. 509 

Figure 4: Effect of ensemble size on the skill of SCSSM onset predictions using the Wang 510 

et al. (2004) index (solid line), denoted r(ens,obs), and the signal to noise ratio 511 

(correlation of ensemble mean timeseries with a pseudo-timeseries created by 512 

randomly selecting a single model ensemble member for each year, dashed line), 513 

denoted r(ens,mod). In both cases, for each choice of ensemble size, up to 10,000 514 

ensemble-mean timeseries are generated by randomly selecting the chosen number of 515 

ensemble member onset dates (independently and without replacement) from the 52 516 

onset dates diagnosed in each year in the combined ensemble and averaging over the 517 

chosen number of ensemble members. Dot-dashed lines indicate the values of r that 518 

are significant at the 1% and 0.1% levels for a one-tailed t-test. 519 

 520 
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Table 1. Pearson correlation coefficients between ensemble mean SCSSM onset dates 521 

from GloSea5 and those from ERA-Interim, using the definitions of Wang et al. (2004) 522 

and Gao et al. (2001), for different hindcast start dates. Note that the earliest observed 523 

SCSSM onset date is pentad 25 (1st -5th May) and the mean onset date is pentad 28 (16th-524 

20th May). Where just the month is shown, start dates are 1st, 9th, 17th, and 25th of the month. 525 

Correlation coefficients statistically significant (for a 23 year hindcast period) at <1.5% 526 

level for a 1-tailed test are in italics and those significant at <1% level for a 1-tailed test 527 

are in bold. 528 

 Ensemble start dates 

 January February March 17th, 25th 

March, 1st, 9th 

April 

25th March,     

1st, 9th, 17th 

April 

Wang et al. 

(2004) 

0.28 0.46 0.45 0.50 0.53 

Gao et al. (2001) - - - 0.27 0.30 

 529 
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 530 

Fig. 1: Predictability of the SCSSM wind onset: onset pentads derived using the method 531 

proposed by Wang et al. (2004) from the GloSea5 ensemble predictions initialized on 17th, 532 

25th March, 1st, 9th April (green dots represent individual members of the 52-member 533 

ensemble, with the size of the dot scaled by the number of members predicting the same 534 

onset pentad) and their ensemble mean (green line) compared with the equivalent onset 535 

pentads derived from ERA-Interim (black line). The yellow line shows the Niño3.4 SST 536 

anomaly in March for each year taken from the HadISST1.1 dataset. Pearson correlation 537 

coefficients are given in the legend: r(ens,obs) represents the correlation between the 538 

GloSea5 ensemble mean and ERA-Interim; r(ens,sst) represents the correlation between 539 

the GloSea5 ensemble mean SCS onset pentads and the observed March Niño3.4 SST 540 
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anomaly; r(obs,sst) represents the correlation between the ERA-Interim SCS onset pentads 541 

and the observed March Niño3.4 SST anomaly. 542 

 543 

 544 

 545 

Fig. 2: As Fig. 1 but for SCSSM thermodynamic onset as determined by a sustained 546 

increased of θe,SCS above 340K accompanied by the establishment of westerly winds over 547 

the region 10-20N 110-120E, as proposed by Gao et al. (2001) (with the threshold modified 548 

by Ding and He, 2006). 549 

 550 
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 551 

Fig. 3: Correlation coefficients between SCSSM onset pentad derived using the Wang et 552 

al. (2004) index and observed March average sea surface temperatures from HadISST1.1 553 

for the period 1993-2015, using: (a) ensemble mean onset dates from the hindcast; (b) onset 554 

dates from ERA-Interim, (c) 10,000 pseudo-timeseries of onset dates created by randomly 555 

selecting an individual ensemble member from each year; panel shows average over all 556 

correlations. Contours and darker shades indicate correlations significant at the 1% 557 

(r=0.48) and 3% (r=0.40) levels respectively, for a one-tailed t-test.  558 

559 
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 560 

Fig. 4: Effect of ensemble size on the skill of SCSSM onset predictions using the Wang 561 

et al. (2004) index (solid line), denoted r(ens,obs), and the signal to noise ratio 562 

(correlation of ensemble mean timeseries with a pseudo-timeseries created by randomly 563 

selecting a single model ensemble member for each year, dashed line), denoted 564 

r(ens,mod). In both cases, for each choice of ensemble size, up to 10,000 ensemble-mean 565 

timeseries are generated by randomly selecting the chosen number of ensemble member 566 

onset dates (independently and without replacement) from the 52 onset dates diagnosed 567 

in each year in the combined ensemble and averaging over the chosen number of 568 

ensemble members. Dot-dashed lines indicate the values of r that are significant at the 569 

1% and 0.1% levels for a one-tailed t-test. 570 


