
A method for reducing mean flow in 
oscillating-grid turbulence 
Article 

Published Version 

Creative Commons: Attribution 4.0 (CC-BY) 

Open Access 

McCorquodale, M. W. and Munro, R. J. (2018) A method for 
reducing mean flow in oscillating-grid turbulence. Experiments 
in Fluids, 59. 182. ISSN 1432-1114 doi: 10.1007/s00348-018-
2636-7 Available at https://centaur.reading.ac.uk/80564/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .

To link to this article DOI: http://dx.doi.org/10.1007/s00348-018-2636-7 

Publisher: Springer 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

CentAUR 

Central Archive at the University of Reading 
Reading’s research outputs online

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


Vol.:(0123456789)1 3

Experiments in Fluids          (2018) 59:182  
https://doi.org/10.1007/s00348-018-2636-7

RESEARCH ARTICLE

A method for reducing mean flow in oscillating‑grid turbulence

Mark W. McCorquodale1,2  · R. J. Munro1 

Received: 3 August 2018 / Revised: 19 October 2018 / Accepted: 21 October 2018 
© The Author(s) 2018

Abstract
Oscillating-grid turbulence (OGT) is an experimental tool that has been widely used to study the role of turbulent fluctua-
tions under conditions of small mean flow. We report experiments to investigate the structure of the turbulent flow produced 
by an oscillating grid, using velocity measurements obtained through the application of two-dimensional particle image 
velocimetry in the vertical plane through the centre of the grid. Ensemble averages of the fluid velocity measurements at 
specific stages of the grid’s oscillation indicate that mean flow is induced in OGT by the merging of grid-induced jets close 
to the tank sidewalls. The installation of an open-ended ‘inner box’ (with its top edge positioned just below the bottom of the 
grid’s oscillation) is shown to inhibit the merging of the jets, thereby resulting in a reduction in the magnitude of the mean 
flow within the interior of the inner box region. Measurements of the time-averaged root-mean-square turbulent velocity 
components and the time-averaged turbulent kinetic energy flux indicate that the installation of the inner box results in tur-
bulence that is in good agreement with the well-established models of OGT across the central 50% of the inner box’s width, 
but that distinct anisotropic regions exist adjacent to the vertical sidewalls. We anticipate that this simple amendment to 
reduce the mean flow present in OGT can be readily used in future work that utilises OGT to isolate the effects of turbulent 
fluctuations from those of the mean flow.

Graphical abstract 

1 Introduction

Oscillating-grid turbulence (OGT) has been used exten-
sively over the last 50 years as an experimental tool to 
study the role of turbulent fluctuations. The typical set-up 
consists of a planar grid, with uniform mesh spacing M, 
positioned horizontally inside a water-filled container and 
made to oscillate vertically with frequency f and stroke S. 
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The grid’s oscillatory motion produces stationary turbu-
lence that decays spatially in the grid-normal direction, but 
is approximately homogeneous in planes parallel to the grid, 
with mean-flow velocity components that are small in mag-
nitude compared to the fluctuations. It is this approximate 
‘zero-mean-shear’ property that has resulted in OGT being 
used to investigate a broad range of problems, which include 
the study of turbulent entrainment across a density interface 
(see, for example, Turner 1968; Hopfinger and Toly 1976; 
McGrath et al. 1997), particle coagulation and particle sus-
pension (Brunk et al. 1998; Huppert et al. 1995; Wan Mohtar 
and Munro 2013), the growth and collapse of a turbulent 
front (Honey et al. 2014; De Silva and Fernando 1998), 
rotating turbulent flows (Hopfinger et al. 1982; Kinzel et al. 
2009), and the inhibiting effect of boundaries on turbulence, 
including free surfaces (Brumley and Jirka 1987), density 
interfaces (Hannoun et al. 1988; Kit et al. 1997) and imper-
meable boundaries (Hannoun et al. 1988; McCorquodale and 
Munro 2017, 2018). The classical OGT apparatus has also 
inspired the development of new or related apparatus that 
produce a ‘zero-mean-shear’ turbulent flow through the use 
of, for example, multiple oscillating grids (Shy et al. 1997) 
or arrays of randomly firing jets (Variano et al. 2004).

The widespread use of OGT has resulted in the properties 
of the turbulence produced being studied extensively and a 
standard model to describe OGT has been developed. For 
a grid made of bar elements with square cross-section, the 
turbulence produced can be described by (Hopfinger and 
Toly 1976; Fernando and De Silva 1993) 

 where x3 denotes the grid-normal direction, � is the time-
averaged integral length scale, and (u�2

1
)1∕2 , (u�2

2
)1∕2 and 
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)1∕2 are the time-averaged root-mean-square (rms) 
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reported for the empirical coefficients are C1 = 0.2–0.5, 
C2 = 1.1–1.4 and C3 = 0.1–0.25 (De Silva and Fernando 
1994; Kit et al. 1997). This model was derived (for example, 
see Hopfinger and Toly 1976) from the transport equation 
for turbulent kinetic energy (TKE) under the simplifying 
assumptions of zero mean flow, homogeneity (in planes par-
allel to the grid) and negligible viscous transport. We stress, 
however, that the model is only valid sufficiently far from 
the grid (typically, for x3 ≳ 2.5M ). Close to the grid (i.e., for 
|x3| ≲ 2.5M , henceforth referred to as the ‘near-grid region’ 
NGR), jets form in the wake of the grid elements resulting 
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in a flow field in the NGR characterised by the presence of 
energetic, mesh size coherent vortex structures that interact 
and breakdown as they are advected away from the grid. 
However, beyond the NGR (i.e., for x3 ≳ 2.5M , henceforth 
referred to as the ‘turbulent-diffusive region’ TDR), the jet 
structures have broken down and the flow is characterised 
by fluctuations that are large compared to mean-flow com-
ponents, which decay in the grid-normal direction ( x3 ) in a 
way that is well-approximated by Eq. (1).

However, that is not to say the mean flow is not an impor-
tant factor to consider when using OGT (or when designing 
OGT apparatus). Although the mean velocity components 
are typically assumed to be small compared the rms fluc-
tuations, the mean flow is not completely negligible. As a 
result, several studies have attempted to analyse the mean 
flow (Fernando and De Silva 1993; McKenna and McGil-
lis 2004), resulting in a number of conditions on the oscil-
lating-grid mechanism that should be satisfied to minimise 
the mean flow. The conditions specified include the use of 
a grid oscillation frequency f less than 7 Hz (McDougall 
1979) and a grid solidity less than 40% (Hopfinger and Toly 
1976). Under these conditions Fernando and De Silva (1993) 
reported typical values for the ‘mean flow intensity’ (here 
used to denote the ratio of mean flow velocity component 
to the rms velocity component) of approximately 1.3 when 
using a grid constructed with a square perimeter edge, but 
that this ratio could be reduced to as low as 0.1 by design-
ing the grid with edge conditions such that the tank side 
walls act as a plane of reflective symmetry to the grid. How-
ever, it has also been reported that even in studies that meet 
these criteria, including the reflective-symmetry condition 
of the grid design, that the ratio of mean flow intensity can 
approach unity and that the magnitude of the mean flow can 
vary by as much as 25% between consecutive experiments 
conducted under nominally identical conditions (McKenna 
and McGillis 2004).

Drayton (1993) proposed that a mean flow is induced in 
OGT when there is a significant difference in the relative 
strength of the jets produced by the oscillating grid in differ-
ent regions of the tank, and suggested the Coanda effect to 
be the dominant mechanism for this. Drayton (1993) argued 
that, with OGT, a jet produced by the outermost grid ele-
ments is drawn onto the tank sidewall by the Coanda effect, 
preventing a symmetric growth of the jet about its axis. As a 
result, the jet’s growth is inhibited in the wall-normal direc-
tion, with a comparatively greater spread of the jet in the 
wall-tangential direction, meaning that edge jets are more 
likely to merge with each other than jets produced closer 
to the centre of the grid. Drayton (1993) also proposed that 
the merged edge jets are more energetic than those produced 
close to the centre of the grid, and so do not necessarily 
breakdown within the NGR, giving rise to a more intense 
mean flow adjacent to the tank sidewalls, which results in 
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large-scale circulations throughout the tank’s interior. In the 
experiments reported by Drayton (1993), the merged edge 
jets were observed to have a wall-normal thickness of about 
two mesh lengths (i.e., 2M).

Previous studies (Hopfinger and Toly 1976; Dickinson 
and Long 1983) have suggested the use of an open-ended 
‘inner box’, positioned symmetrically below the grid, can 
reduce large-scale circulations present in the tank that con-
tribute significantly to the mean flow. Moreover, Drayton 
(1993) proposed (in the absence of supporting data) that the 
installation of an inner box could reduce large-scale circula-
tions induced by the Coanda effect, but in order for the inner 
box to be effective in reducing the mean flow, it should be 
positioned with its top edge below the NGR (i.e., below 
x3 ≈ 2.5M ), otherwise it was argued that the Coanda mecha-
nism would also act within the inner box itself.

However, experimental data analysing how the presence 
of an inner box reduces mean flow, or the extent of any 
reduction, has not previously been reported. Therefore, this 
paper analyses the mean flow produced by OGT and shows 
how the installation of an inner box, positioned symmetri-
cally below the grid, can be used to significantly reduce the 
mean flow present in OGT, such that turbulence produced 
is better described by the standard model (i.e., Eq. 1). In 
Sect. 2 we describe the OGT apparatus used and the appli-
cation of particle image velocimetry (PIV) to acquire data 
sets for both the NGR and TDR. Measurements of the mean 
flow are presented in Sect. 3, in which ensemble averages 
are used to determine the statistical properties of the flow 
in the NGR, at different stages during the grid’s oscillation, 
and time averages are used to determine the flow statistics 
in the TDR. Measurements of turbulent statistics are also 
presented, including the time-averaged rms velocity compo-
nents (u�2

1
)1∕2 and (u�2

3
)1∕2 , degree of isotropy (u�2

3
)1∕2∕(u�2

1
)1∕2 

and turbulent energy flux, which illustrate the effects of both 
tank side walls and mean flow intensity on the turbulence 
statistics. Conclusions are made in Sect. 4.

2  Experiments

2.1  Apparatus & set‑up

A schematic view of the experimental set-up is shown in 
Fig. 1, which is similar to those widely used in previous 
studies (see, for example, Thompson and Turner 1975; 
Hopfinger and Linden 1982). The experiments were con-
ducted in a transparent container with internal dimensions 
35.2 cm × 35.2 cm × 50.0 cm , henceforth referred to as the 
‘outer box’ (see Fig. 1). A rigid lid was suspended horizon-
tally, 2.0 cm below the top of the outer box, which was filled, 
to the height of the lid’s underside, with a salt water solution 
of uniform density � = 1.028 g/cm3 (i.e. the total water depth 

was 48.0 cm). The salt used was NaCl. We note here that the 
salt water solution was required to make the seeding parti-
cles used for the PIV technique neutrally buoyant (the PIV 
technique is discussed in more detail in Sect. 2.2).

A planar grid was attached to the base of a drive shaft (of 
1 cm diameter) and suspended inside the outer box with the 
plane of the grid horizontal (see Fig. 1a). The drive shaft 
passed through a circular hole of 2.6 cm diameter in the 
centre of the lid. With the grid in its neutral position (i.e., 
the position shown in Fig. 1a) its mid-plane was a height 
39.0  cm above the base of the outer tank. The vertical 

(a)

(b)

Fig. 1  Sketches showing the key components of the experimental set-
up. a A side view showing the positioning of the reciprocating drive 
mechanism, the horizontal grid and the inner and outer boxes. b A 
plan view showing the position of the inner box relative to the grid’s 
mesh, and the position of the camera relative to the vertical light 
sheet produced by the laser. Also shown are the coordinate directions 
(x1, x2, x3) . The set-up shown corresponds to the experiments labelled 
‘B’ in Table 1
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oscillatory motion of the shaft and grid was driven using 
a cam and linear bearing to convert the rotary motion of a 
motorised flywheel to reciprocating vertical motion of the 
drive shaft, as shown in Fig. 1a. The grid’s oscillation fre-
quency (f) was controlled using a potentiometer and a sin-
gle fixed stroke of S = 2.5 cm was used throughout (here, 
the stroke is defined as being equal to the amplitude of 
the grid’s motion). The grid was fabricated from stainless 
steel bars (of square cross-section, 1.0 cm × 1.0 cm ) joined 
together to form a 7 × 7 regular array with a uniform mesh 
spacing M = 5.0 cm . The corresponding solidity of the grid 
was 36.4%. Figure 1b shows a plan view of the grid. The 
edge conditions were chosen so that the tank sidewalls were 
planes of symmetry, although a narrow clearance of approxi-
mately 0.3 cm was required between the grid’s perimeter 
and the internal sidewalls of the outer box. It is convenient 
here to define terminology that will be used throughout to 
denote key features of the grid: we use ‘grid intersections’ to 
denote where grid elements cross (as illustrated in Fig. 1b) 
and ‘mid-points’ as being those points on the grid that are 
equidistant between two adjacent grid intersections.

During initial tests to determine the effect the installation 
of an inner box has on the turbulence and mean-flow charac-
teristics, consideration was given to the size and positioning of 
the inner box. It was found that a significant reduction in the 
magnitude of the mean-flow components could be obtained 
using a cuboid, open-ended inner box, fixed to the base of 
the outer box and positioned centrally with the vertical side-
walls of the inner box equidistant between the outermost and 
second-outermost grid intersections (as shown in Fig. 1b), and 
with its top edge 1 cm below the bottom of the grid’s oscilla-
tion (as shown in Fig. 1a). For this case, therefore, the inner 
box had height H = 35.0 cm with a square internal cross-sec-
tion 2L × 2L , with 2L = 24.5 cm (see Fig. 1a). For simplicity 
we henceforth refer to this as the ‘optimal’ case, although we 
stress that no detailed optimisation analysis was performed.

For conciseness, we focus here on reporting results 
obtained for this ‘optimal’ case, which will be compared 
with corresponding results obtained using the standard OGT 
set-up (with no inner box installed). However, we recall that 
Drayton (1993) proposed that the inner box should be posi-
tioned with its top edge a distance at least 2M below the 
bottom of the grid’s oscillation. However, our experiments 
showed that this was not the case, and that using an inner 
box of height H = 26.5 cm (with the same cross-section 
stated above), with its top edge located 2M = 10 cm below 
the bottom of the grid’s oscillation, had little effect in reduc-
ing the magnitude of the mean-flow components; a com-
parison with this case is shown in McCorquodale (2017) 
[available, upon request, from the current authors].

Table 1 summarises the experimental conditions reported 
in this paper. The range of f used is typical of that used 
in most previous studies (McDougall 1979; Brumley and 

Jirka 1987; Kit et al. 1995, 1997; McCorquodale and Munro 
2017) and is below the maximum recommended frequency 
of 7 Hz (McDougall 1979). In Table 1, the experiments 
labelled ‘A’ correspond to the standard OGT set-up, with 
no inner box installed; those labelled ‘B’ correspond to the 
‘optimal’ case described above (using an inner box of height 
H = 35.0 cm ). Also shown in Table 1 are values of the grid 
Reynolds number, defined here as

where � denotes kinematic viscosity. The three values con-
sidered, i.e., Re = 2020 , 4050 and 6070, are representative 
of those used in many previous studies (Brumley and Jirka 
1987; Kit et al. 1995, 1997; Nokes 1988), which are typi-
cally between 103 and 104.

2.2  Velocity measurements

Measurements of instantaneous fluid velocities were 
obtained using two-dimensional PIV, applied to the verti-
cal plane through the centre of the grid (see Fig. 1b). A 
thin light sheet, produced by a 100 Hz pulsed laser (Dantec 
Dynamics NANO L Power 50–100), was used to illuminate 
small, neutrally buoyant seeding particles suspended within 
the water column, which act as a passive tracer as they are 
advected by the grid-stirred turbulence. The particles used 
were Pliolite with diameter range 75–125 μm , which when 
suspended within the water column had a volume frac-
tion of O(10−4) . The motion of the illuminated particles 
was recorded using a high-speed digital camera positioned 
to point horizontally into the tank’s interior and aligned 
perpendicular to the plane of the vertical light sheet (see 
Fig. 1b). The camera was synchronised with the pulse of the 
laser, so the images were recorded at 100 frames per second 
(at 1280 × 1024 pixel resolution). In all experiments, images 
were recorded for a period of at least 240 s. Measurements 
were made only after the grid had been allowed to oscil-
late (at a fixed frequency and stroke) for at least 15 min to 

(2)Re ≡ MSf∕�,

Table 1  A summary of the experimental conditions reported in this 
paper, where M denotes mesh size, S is the stroke, f the oscillation 
frequency, H the inner box height (‘-’ denotes when no inner box was 
installed) and the grid Reynolds number Re 

† Experiments marked were repeated to acquire PIV measurements in 
different regions of the flow(see Sect. 2.2 for details)

Experiment M (cm) S (cm) f (Hz) H (cm) Re

A1† 5.0 2.5 1.6 – 2020
A2† 5.0 2.5 3.2 – 4050
A3 5.0 2.5 4.9 – 6070
B1† 5.0 2.5 1.6 35.0 2020
B2† 5.0 2.5 3.2 35.0 4050
B3 5.0 2.5 4.9 35.0 6070
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ensure the turbulence within the TDR was well-established 
in a statistically stationary condition. PIV calculations were 
performed in Digiflow (Dalziel 2006), using square interro-
gation windows of 15 × 15 pixels, overlapped to achieve 10 
pixel spacing between velocity vectors, which corresponded 
to a physical spacing between velocity vectors of approxi-
mately 0.21 cm to 0.28 cm.

The velocity data were calculated and analysed relative 
to the right-handed coordinate system (x1, x2, x3) , where x3 
denotes vertical depth below the mid-height of the grid’s 
oscillation and (x1, x2) are the horizontal coordinates rela-
tive to the center of the grid (see Fig. 1). The correspond-
ing velocity components are denoted (u1, u2, u3) ; the two 
components measured using the PIV set-up described 
above are u1(x1, x3, t) and u3(x1, x3, t) , in the central plane 
at x2 = 0 . For each experiment listed in Table 1, measure-
ments were obtained with the camera focussed on the region 
M ≲ x3 ≲ 4.5M (i.e., focussing on the TDR) and in this case 
the instantaneous velocity data were analysed using the 
conventional Reynolds decomposition ui = ui + u�

i
 , where 

u�
i
(�, t) denote the fluctuating components and ui(�) the time-

averaged mean components (the overbar notation is used 
throughout to denote time averaging). Previous PIV studies 
of OGT have typically analysed time-averaged statistical 
quantities using an averaging period of between 100 s and 
120 s (Cheng and Law 2001; Lucas et al. 2016; Wan Mohtar 
and Munro 2013; Al-Homoud and Hondzo 2007). Here, 
however, an averaging period of 240 s was used to ensure 
well-converged mean and rms velocity measurements; rep-
resentative data showing the convergence of time-averaged 
mean velocity measurements, as a function of the averaging 
time used, is shown in Fig. 2a.

We note that within the TDR (i.e., for x3 ≳ 2.5M ) the 
Kolmogorov length scale � was estimated to lie in the range 
0.03 cm ≲ 𝜂 ≲ 0.13 cm, which is finer than the physical spac-
ing between velocity vectors computed by the PIV calcula-
tions (approximately 0.21 cm to 0.28 cm). [The Kolmogorov 
length scale was estimated using the relation � = �3∕4�−1∕4 
under the assumption that, in OGT, � ≈ 0.75(u�2

1
)3∕2∕� for 

x3 ≳ 2.5M (Kit et al. 1997)]. Thus, the resolution used for 
PIV calculations was coarser than the smallest turbulent scales 
within the flow, such that velocity averaging occurred across 
interrogation windows and some turbulent fluctuations were 
unresolved. Consequently, the full energy content of the turbu-
lent flow was not determined by the analysis. However, in the 
context of the size of the integral scales of the turbulent flow 
(which are of the order 2 cm in size, see Sect. 3.4) the range 
in scales of turbulent fluctuations that were under-resolved in 
the current analysis was small and was assumed to have little 
effect on the results presented in Sect. 3 since here we are 
primarily concerned with the large-scale structure of the flow.

A subset of the experiments listed in Table 1 (marked 
† ) were repeated (under nominally identical conditions) 

to obtain PIV measurements focussed on the NGR, which 
were used to analyse the formation of the jets produced by 
the oscillating grid and, in particular, the effect the instal-
lation of the inner box had on the structure of these jets. 
This required analysis of the jet structures at different stages 
during the grid’s oscillation and so time averaging was not 
appropriate, in this case. Instead, the near-grid-region data 
were analysed by ensemble averaging measurements of the 
fluid velocity fields taken at specific stages of the grid’s 

(b)

(a)

Fig. 2  a Convergence of the time-averaged vertical velocity com-
ponent u3∕fS , plotted against the averaging time used Tc . b Conver-
gence of the ensemble-averaged vertical velocity component U3∕fS , 
plotted against the ensemble size used. In each panel data for six rep-
resentative points from experiment A1 are shown [the coordinates 
of the points shown, on the (x1, x3) plane, are given in the legends]; 
we stress that these data are also representative of the other cases 
reported here
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oscillation. The ensemble-averaged mean velocity compo-
nents, henceforth denoted as U1 and U3 , were computed at 
eight stages of the grid’s oscillation, which corresponded to 
when the grid was located at the points x3,k = −S cos(2�Tk) , 
where Tk = (k − 1)∕8 , k = 1, 2, ..., 8 . That is, x3,1 and x3,5 cor-
respond, respectively, to the top and bottom of the grid’s 
oscillation. For Re = 2020 ( f = 1.6Hz ) and Re = 4050 
( f = 3.2Hz ), the available ensemble sizes were, respec-
tively, 390 and 780, and the corresponding ensemble-aver-
aged quantities were found to be well-converged using these 
ensemble sizes; representative data showing the convergence 
of the ensemble-averaged mean velocity measurements, as a 
function of the ensemble size used, is shown in Fig. 2b. We 
also note that for the case when no inner box was installed 
the data below the grid at a given x3,k provides a mirror 
image of that we would observe above the grid for x3,k+4 
(i.e., when the direction of the grid’s motion is reversed). 
That is, here we discuss the flow observed beneath the grid 
and assume the flow above the grid can be inferred using the 
symmetry of the apparatus.

3  Results

3.1  The mean‑flow structure in the near‑grid region 
with no inner box installed

We start by describing the structure of the mean flow for 
the case when no inner box was installed, and by first focus-
sing attention on the formation of jets in the NGR (which, 
recall, is the region |x3| ≲ 2.5M ). For this we use measure-
ments of the ensemble-averaged mean velocity components 
(U1,U3) , calculated at the eight grid locations x3,k . Figure 3 
shows vector plots of U1∕fS and U3∕fS from Experiment A1 
( Re = 2020 ), at each x3,k , together with corresponding meas-
urements of the ensemble-averaged mean vorticity compo-
nent �2∕f  (i.e., �2 was calculated by ensemble averaging 
measurements of �2 = �u1∕�x3 − �u3∕�x1 at each x3,k ) (see 
caption for details). We note that there are regions immedi-
ately below the grid where data have not been included; very 
close to the grid, where the magnitude of the fluid veloc-
ity was greatest, the PIV analysis mostly returned spurious 
velocity vectors, as a result of poor local correlation between 
interrogation windows in successive images, and so these 
data have not been included.

Ignoring for now the data adjacent to the tank side-
walls and, instead, focussing attention on the central 
region |x1∕L| ≲ 0.6 , we see that the structure of the flow 
is largely consistent with previous descriptions of OGT 
(see, for example, Thompson and Turner 1975). That is, 
below the lowest point of the grid’s oscillation (i.e. ,below 
x3∕M = S∕M = 0.5 ) the mean-flow structure consists of 
a regular array of ‘jets’ produced by the elements of the 

oscillating grid, with each jet having comparable strength 
and consisting of a downward-directed outflow directly 
below grid intersections, with a corresponding upward-
directed return flow induced in the regions below the mesh 
voids. The jets spread, merge and (spatially) decay in the 
direction normal to and away from the grid, being all but 
fully decayed by the edge of the NGR. We stress here that 
the flow structure described above (and below) is of course 
not two-dimensional, but three-dimensional; that is, due to 
the symmetry of the grid (and container) we expect there 
to be a similar structure to the flow in the perpendicular x2 
direction.

The ensemble-averaged fields also show the presence of 
a regular array of counter-rotating vortex pairs that form 
periodically in the immediate wake of the grid, i.e., in the 
region |x3∕M| ≲ S∕M = 0.5 . That is, as the grid oscillates up 
and down, intense vortices are shed periodically from grid 
elements which then form in the immediate wake (above or 
below) the grid. The sense of circulation within the wake 
vortices depends upon the grid’s direction of the motion—
the vorticity within the wake vortices changes sign when the 
grid’s direction changes. In contrast, the sense of circulation 
within the jet vortices remains constant with time, irrespec-
tive of the grid’s direction of the motion. The vortices pro-
duced in the wake of the grid are subsequently ejected away 
from the grid within the vertical jets below the wake region.

We now consider the structure of the ensemble-averaged 
mean flow in the regions adjacent to the tank sidewalls, for 
|x1∕L| ≳ 0.6 . The data in Fig. 3 show that beyond the imme-
diate wake of the grid, for |x3∕M| > S∕M = 0.5 , a single jet 
has formed below the two outermost grid intersections, on 
each side of the grid. These ‘outer jets’ exhibit significantly 
larger velocities and are approximately twice the size of the 
jet structures that form below the centre of the grid; that is, 
the outer and central jets have characteristic widths of order 
2M and M, respectively. As a result, the stronger outer jets 
penetrate to a greater depth below the grid before decaying. 
We also observe that the axis of the outer jets, identified by 
the strong vertical downward flow, is not coincident with 
a grid intersection, as is the case for the central jets, but 
instead is coincident with the midpoint between the two out-
ermost intersections (for example, see Fig. 3e).

The outer jets form as a result of the no-slip and no-
penetration conditions at the vertical sidewalls, together 
with the edge conditions of the grid, combining to give 
rise to a complicated three-dimensional flow structure in 
the wake (above or below) the perimeter region of the grid. 
At this point, we stress the inherent limitations in the two-
dimensional vertical-plane velocity data reported here; the 
data does not, of course, fully resolve the features of the 
three-dimensional flow produced around the perimeter 
of the grid. However, the two-dimensional velocity data 
does enable us to show the key structures that result, due 
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to this three-dimensional flow, within the NGR. That is, 
the data do show that as the grid ascends (Fig. 3e–h), we 
observe an asymmetry in the counter-rotating vortex pair 
that forms in the wake below the outermost grid intersec-
tion (see Fig. 3a–e). The result is that instead of observing 
a strong vertical flow in the wake vortices towards the 
grid intersection, as is the case in the central region (see 

Fig. 3a), below the outermost intersection we observed a 
strong flow that is inclined towards the inside of the inter-
section, which can be seen in Fig. 3a in the wake region at 
x1∕L ≈ ±1.17 . We believe that this edge effect, combined 
with other three-dimensional edge effects and the viscous 
and no-penetration conditions at the sidewalls results 
in the merging of the jets below the two outermost grid 

Fig. 3  Experiment A1 ( Re = 2020 , f = 1.6Hz ). Vector plots show-
ing the ensemble-averaged mean velocity components U1∕fS and 
U3∕fS , together with the corresponding ensemble-averaged mean 
vorticity �2∕f  , at each of the eight grid locations x3,k : a x3,1 = −S , 
b x3,2 = −0.71S , c x3,3 = 0 , d x3,4 = 0.71S , e x3,5 = S , f x3,6 = 0.71S , 
g x3,7 = 0 , h x3,8 = −0.71S . The same colour scale for vorticity has 
been used in each plot, which is shown in e, together with a reference 

velocity scale. To prevent an oversaturation of data, only every third 
velocity vector has been included. The instantaneous position of the 
grid is also shown in each plot (thick black line) and the direction of 
the grid’s motion is shown by the arrow at the side of each plot (b–d, 
f–h). Note that the grid mesh spacing M is shown on the x1 axis by 
the spacing between neighbouring grid intersections (grey squares)
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elements (in the sidewall-normal direction), and ultimately 
in the formation of the single outer jet in this region.

The formation of the stronger outer jets has significant 
effects on the structure of the flow. In comparison to the cen-
tral jets, the outer jets penetrate to a greater depth below the 
grid before decaying. This greater penetration of outer jets 
has previously been proposed to induce large-scale circula-
tions that affect the entire domain (Drayton 1993). The data 
reported here are consistent with this proposal, as illustrated 
in Fig. 4 which shows a vector plot of the time-averaged 
mean velocity components u1∕fS and u3∕fS for Experiment 
A1 ( Re = 2020 ), together with corresponding measurements 
of the time-averaged mean vorticity component �2 (note 
the different velocity vector scale used in Fig. 4 relative to 
Fig. 3). These data show that, in the absence of an inner box 
there is a significant (on this plane predominantly upward) 
time-averaged mean flow induced in both the near-grid 
and turbulent-diffusive regions. For reference we note that 
the average values of mean-flow intensity in the turbulent-
diffusive region, computed as a spatial average across the 
region given by 2.5 ≤ x3∕M ≤ 4.5 and |x1∕L| ≤ 0.7 , are 
|u1|∕(u�21 )

1∕2
≈ 0.2 and |u3|∕(u�23 )

1∕2
≈ 3.5 for Experiment 

A1; these values are also representative for the correspond-
ing data obtained in Experiments A2 and A3. Time-aver-
aged mean flow fields indicating the presence of large-scale 
circulations, similar to the data shown in Fig. 4, have also 
been reported in a range of previous OGT studies (see, for 
example, Bennett et al. 2014; McKenna and McGillis 2004; 
Dohan and Sutherland 2002).

3.2  The mean‑flow structure in the near‑grid region 
with inner box installed

For comparison, Fig. 5 shows the ensemble-averaged data 
from Experiment B1 ( Re = 2020 ), with the inner box 

installed in the ‘optimal’ position; for reference, the position 
of the inner box sidewalls are shown by the vertical black 
lines. The same scales for velocity and vorticity have been 
used in Figs. 3 and 5 to facilitate a direct comparison. Note 
that the data for regions immediately below the grid, where 
the PIV algorithm produced spurious velocity vectors, has 
not been included. In addition, data immediately outside the 
inner box sidewalls has not been included in Fig. 5 as a result 
of substantially reduced image quality in these regions, due 
to the reflection and refraction of light from the inner box 
sidewalls, over which the PIV analysis also failed.

The data in Fig. 5 shows that the presence of the inner box 
has little, if any, affect on the vortices that form in the imme-
diate wake of the grid, where we again observe a regular 
array of vortex pairs forming periodically below (or above) 
each intersection, with the same edge effects described 
above again evident below (or above) the two outermost 
grid intersections. That is, the mechanisms responsible for 
the formation of the merged outer jets are still present. How-
ever, Fig. 5 shows that below the grid’s immediate wake, the 
presence of the inner box sidewalls at |x1∕L| = 1 blocks the 
formation of the merged outer jets, instead resulting in large-
scale recirculations forming in the compartment between 
the inner and outer boxes, which extend up to and beyond 
x3 ≈ 2M . (We no further consider the compartment region 
between the inner and outer containers and henceforth focus 
attention on the flow conditions within the interior of the 
inner box.) Notably, similar large-scale recirculations are 
not induced inside the inner box. Instead, the array of jet 
structures that form across the interior of the inner box are 
of a more uniform strength and structure. The regular struc-
ture of these jets is attributed to how the merged outer jets 
are blocked by the inner box sidewalls, which gives rise to 
flow separation at the top rim of the inner box, resulting in 
the formation of the jets inclined towards the centre of the 

Fig. 4  Experiment A1 
( Re = 2020, f = 1.6Hz ). Vector 
plots showing the time-averaged 
mean velocity components 
u1∕fS and u3∕fS , together with 
the corresponding time-aver-
aged mean vorticity component 
�2∕f  . A reference velocity scale 
and vorticity scale is shown. 
To prevent oversaturation, only 
every third velocity vector has 
been included. For reference the 
grid is shown at the lowest point 
within its oscillation
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grid. Both the inclined and central jets spread, merge and 
(spatially) decay in the direction normal to and away from 
the grid, being all but fully decayed by the edge of the NGR.

The results of the time-averaged mean flow, shown in 
Fig. 6, indicate that within the inner box a (non-uniform) 
mean flow is evident within the TDR, but is much weaker 
in comparison to the mean flow observed when no inner 
box is installed (see Fig.  4). Note that, so that direct 

comparison can be made, the scales for velocity and vorti-
city in Fig. 6 are the same as in Fig. 4. For reference we note 
that the average values of mean-flow intensity in the TDR, 
computed as a spatial average across the region given by 
2.5 ≤ x3∕M ≤ 4.5 and |x1∕L| ≲ 0.5 , are |u1|∕(u�21 )

1∕2
≈ 0.3 

and |u3|∕(u�23 )
1∕2

≈ 0.6 for Experiment B1 (which are also 
representative of Experiments B2–B3); comparing with 
the corresponding values obtained for Experiment A1 

Fig. 5  Experiment B1 ( Re = 2020 , f = 1.6Hz ). Vector plots show-
ing the ensemble-averaged mean velocity components U1∕fS and 
U3∕fS , together with the corresponding ensemble-averaged mean 
vorticity �2∕f  , at each of the eight grid locations x3,k : a x3,1 = −S , 
b x3,2 = −0.71S , c x3,3 = 0 , d x3,4 = 0.71S , e x3,5 = S , f x3,6 = 0.71S , 
g x3,7 = 0 , h x3,8 = −0.71S . The same colour scale for vorticity has 

been used in each plot, which is shown in (e), together with a refer-
ence velocity scale. To prevent an oversaturation of data, only every 
third velocity vector has been included. In (b–d) and (f–h) the direc-
tion of the grid’s motion is shown by the arrow at the side of each 
plot
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( |u1|∕(u�21 )
1∕2

≈ 0.2 and |u3|∕(u�23 )
1∕2

≈ 3.5 ) shows that the 
installation of the inner box results in a significant reduc-
tion in the magnitude of the (predominantly vertical) mean 
flow. In addition, we stress that the structure of the mean 
flow described above (i.e., as observed in the central vertical 
plane x2 = 0 ) is consistent with observations made during 
preliminary experiments in which the light sheet was used to 
illuminate seeding particles within the flow in a number of 
additional vertical planes across the width of the tank (i.e., 
for x2 ≠ 0 ). That is, these preliminary experiments indicated 
that, within the inner box, the TDR was free from large-scale 
circulations. These results are consistent with the proposal of 
Drayton (1993) that mean flow arises when there is a signifi-
cant difference in the relative strength of the jets produced 
by the oscillating grid in different regions of the tank; with 
the inner box installed, the jets are of approximately equal 
strength and penetrate to approximately equal depth before 
breaking down.

3.3  Effect of mean flow on turbulent structure

We now describe how the installation of the inner box affects 
the spatial structure of the turbulence, in both the NGR and 
TDR. We note that in previous studies the qualitative char-
acteristics of the turbulence produced by an oscillating grid 
were not found to exhibit Reynolds number effects across 
the fairly limited Reynolds number ranges used (typically 
between 103 and 104 ) (see, for example, Hopfinger and 
Toly 1976; Wan Mohtar and Munro 2013). Likewise, the 
qualitative characteristics of the experimental data reported 
here were also found to be little different over the range of 
Reynolds numbers considered ( ReG = 2020 to 6070), and 
so we present here results for the case ReG = 4050 , which 
are representative.

First, we consider field measurements of the time-
averaged degree of isotropy. The idealised model for OGT 
assumes the turbulence produced is homogeneous and iso-
tropic in planes parallel to the grid, with (u�2

3
)1∕2∕(u�2

1
)1∕2 ≈ 1 

within the TDR. In line with this assumption, previous 
experimental studies have reported the degree of isotropy 
to be approximately constant with (u�2

3
)1∕2∕(u�2

1
)1∕2 ≈ 1.1 to 

1.4 in the TDR (Hopfinger and Toly 1976; Hopfinger and 
Linden 1982; Kit et al. 1997). However, to our knowledge, 
field measurements of the (spatially non-uniform) degree of 
isotropy have not previously been reported in studies of OGT 
and the structure of the turbulence in the NGR is largely 
unknown. We stress that an understanding of the degree of 
isotropy of the turbulence is necessary to ensure the validity 
of subsequent statistical analysis. That is, in previous OGT 
studies it is common for statistical quantities to be spatially 
averaged (see for example Orlins and Gulliver 2003; Wan 
Mohtar and Munro 2013; Bennett et al. 2014) over regions 
thought to be approximately homogeneous and isotropic and 
which are not affected by the presence of the tank side walls. 
However, few studies have reported measurements that can 
justify the spatial averages used. At best, previous work has 
shown spatial distributions of turbulent velocity components 
over limited regions of the tank (Lucas et al. 2016; McDou-
gall 1979; Cheng and Law 2001), which do not show key 
features of the flow that we identify here.

The colour maps in Fig. 7 show measurements of the 
time-averaged degree of isotropy, (u�2

3
)1∕2∕(u�2

1
)1∕2 , from 

Experiments A2 and B2 (see caption for details). To illus-
trate the effects of turbulent production due to the mean flow, 
in each plot the time-averaged mean velocity components 
( u1∕fS, u3∕fS ) have been superimposed on top of the isot-
ropy field. Clearly, the data shown in Fig. 7 resolves only 
the central vertical plane inside the container; however, due 
to the symmetry of the grid and container we anticipate a 

Fig. 6  Experiment B1 
( Re = 2020, f = 1.6 Hz). Vector 
plots showing the time-averaged 
mean velocity components 
u1∕fS and u3∕fS , together with 
the corresponding time-aver-
aged mean vorticity component 
�2∕f  . A reference velocity scale 
and vorticity scale is shown. 
To prevent oversaturation only 
every third velocity vector has 
been included. For reference the 
grid is shown at the lowest point 
within its oscillation
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similar structure (qualitatively) in (u�2
3
)1∕2∕(u�2

1
)1∕2 in the per-

pendicular x2-direction.
The data in Fig. 7a shows that in the NGR, with no inner 

box installed, the turbulence is clearly anisotropic; that 
is, the degree-of-isotropy field is not uniform, but instead 
exhibits peak values (typically, (u�2

3
)1∕2∕(u�2

1
)1∕2 ≈ 2 ) where 

the spatial gradients in the (time-averaged) mean velocity 
components are greatest. Inspection of Fig. 7a shows that, in 
the NGR, the peak values of (u�2

3
)1∕2∕(u�2

1
)1∕2 occur roughly 

below each grid intersection where the individual jets pro-
duced by the grid break down. This is attributed to localised 
anisotropic turbulent production; in these regions the spatial 
gradients of u3 exceed the spatial gradients of u1 such that 
the production of (u�2

3
)1∕2 is greater than the production of 

(u�2
1
)1∕2.

Within the TDR (i.e.,x3 ≳ 2.5M ), where the jet struc-
tures have broken down, the turbulence is approximately 
isotropic, but only over the central region |x1∕L| ≲ 0.5 ; in 
this region the degree of isotropy is approximately uniform 
with (u�2

3
)1∕2∕(u�2

1
)1∕2 ≈ 0.8 . However, as the sidewalls are 

approached the turbulence becomes increasingly anisotropic, 
with (u�2

3
)1∕2∕(u�2

1
)1∕2 ≳ 2 in close proximity to the wall. The 

increase of (u�2
3
)1∕2∕(u�2

1
)1∕2 in the sidewall region can be 

understood in light of previous work studying the interac-
tion of zero-mean-shear turbulence with boundaries (Hunt 
and Graham 1978; Hannoun et al. 1988; McCorquodale 
and Munro 2017). That is, in zero-mean-shear turbulence 
the no-penetration boundary condition acts to inhibit only 
the boundary-normal turbulent fluctuations (i.e., (u�2

1
)1∕2 at 

the sidewalls) over a layer approximately equal in thick-
ness to the integral length scale of the turbulence. It is only 
within the thin viscous sublayer, immediately adjacent to 
the boundary, that the no-slip condition also acts to inhibit 
the boundary-tangential turbulent fluctuations (driven by 

the dissipation of TKE), thus giving rise to the increase in 
anisotropy observed here.

For comparison, Fig.  7b shows corresponding data 
obtained with the inner box installed in the ‘optimal’ posi-
tion. Again, the turbulence is anisotropic in the NGR, 
although the degree of anisotropy is significantly reduced, 
with peak values of (u�2

3
)1∕2∕(u�2

1
)1∕2 ≈ 1.3 . The reduction 

in anisotropy is attributed to a reduction in the production 
of (u�2

3
)1∕2 in regions in which the jets break down; the weak 

time-averaged mean flow in the turbulent-diffusive region 
gives rise to smaller spatial gradients in the mean flow (i.e., 
a reduction in the magnitude of �u3∕�xi ) over these regions 
relative to when no inner box is installed. Within the TDR, 
the turbulence over the central region, |x1∕L| ≲ 0.5 , is effec-
tively isotropic, with (u�2

3
)1∕2∕(u�2

1
)1∕2 ≈ 1 . As the sidewalls 

are approached, and for the same reasons given above, the 
turbulence again becomes increasingly anisotropic with peak 
values of (u�2

3
)1∕2∕(u�2

1
)1∕2 ≳ 2 observed close to the wall.

The effect the tank sidewalls have on the degree of 
isotropy can be seen more clearly in Fig. 8, which shows 
spatially averaged measurements of (u�2

3
)1∕2∕(u�2

1
)1∕2 from 

Experiments A1–A3 and Experiments B1–B3 (see caption 
for details). In Fig. 8 (u�2

3
)1∕2∕(u�2

1
)1∕2 has been spatially aver-

aged in the x3 direction (denoted ⟨⋅⟩3 ) over the TDR given 
by 2.5 ≤ x3∕M ≤ 4.5 ; in this way, the data have been spa-
tially averaged only over those regions in which the field 
(u�2

3
)1∕2∕(u�2

1
)1∕2 is approximately homogeneous. These data 

confirm that the turbulence produced by the oscillating grid 
is approximately isotropic only over the central region, 
|x1∕𝜁 | ≲ 0.5 ; outside of this region the anisotropy of the 
turbulence increases as the sidewalls are approached. We 
stress this is a key limitation of OGT that, to our knowledge, 
has not previously been reported; we first identified and 
reported this effect in a recent, related study (McCorquodale 
and Munro 2017) using two grid types (the 7 × 7 grid used 

Fig. 7  Colour maps showing the degree-of-isotropy field 
(u�2

3
)1∕2∕(u�2

1
)1∕2 together with vector plots showing the time-averaged 

components of mean velocity ui∕fS . The data shown are a Experi-
ment A2 and b Experiment B2. In each case, Re = 4050 , f = 3.6Hz . 
The same colour scale for isotropy has been used in each plot, which 

is shown in b together with a reference velocity scale. To prevent 
an oversaturation of data, only every third velocity vector has been 
included. For reference the grid is shown at the lowest point within 
its oscillation
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here, with mesh spacing M = 5 cm , and a 9 × 9 grid with 
mesh spacing M = 3.8 cm ). However, note that with no 
inner box installed the turbulence is weakly anisotropic (i.e., 
(u�2

3
)1∕2∕(u�2

1
)1∕2 ≈ 0.8 ) over the central region. The cause of 

the loss of isotropy, relative to experiments with the inner 

box installed, is currently unclear. Note also that here the 
magnitude of this data are slightly lower than in previous 
studies of OGT (for example, (u�2

3
)1∕2∕(u�2

1
)1∕2 ≈ 1.1 − −1.4 

in Kit et al. 1997; Hopfinger and Toly 1976; De Silva and 
Fernando 1994); we attribute this effect, at least in part, to 
the fact that here we have excluded the anisotropic sidewall 
regions where the ratio of (u�2

3
)1∕2∕(u�2

1
)1∕2 is significantly 

higher.
Further insight into the effect the installation of the inner 

box has on the turbulence can be obtained by considering 
measurements of the rms turbulent velocity components 
(u�2

1
)1∕2 and (u�2

3
)1∕2 . The spatial distribution of each com-

ponent exhibits the same key qualitative characteristics, so 
for brevity we consider here only the vertical velocity com-
ponent. The colour maps in Fig. 9 show measurements of 
(u�2

3
)1∕2∕fS from experiment A2 (Fig. 9a) and experiment B2 

(Fig. 9b), plotted against x1∕L and x3∕M . To illustrate the 
effects of turbulent transport due to turbulent fluctuations, 
in each plot the time-averaged turbulent-flux components 
u�
1
u�
3
u�
3
∕(fS)3 and u�

3
u�
3
u�
3
∕(fS)3 have been superimposed on 

top of colour maps. We note that the data from each experi-
ment has been divided to show separately the behaviour in 
the NGR (Fig. 9a,i and b,i) and TDR (Fig. 9a,ii and b,ii). 
To better resolve the structure of the flow different colour 
scales and vector scales have been used in these regions (see 
caption for details).

Figure 9a shows that close to the grid (and in the absence 
of an inner box) peak values of (u�2

3
)1∕2 are observed along 

the axes of the jets that form in this region, with maximum 
values attained at x1∕L ≈ ±1 , coincident with the axis of 
the merged outer jets. These effects can be attributed to 
turbulent production as the mean kinetic energy of the jets 

Fig. 8  Plot showing spatially averaged (in the x3-direction) measure-
ments of the degree of isotropy ⟨(u�2

3
)1∕2∕(u�2

1
)1∕2⟩3 plotted against the 

horizontal x1 coordinate which has been scaled by � , where � is equal 
to the half-width of the outer box for Experiments A1–A3 and � = L 
for Experiments B1–B3. To prevent oversaturation, only every third 
data point has been plotted for each experiment. The data for all con-
ditions are shown separately [see legend]

Fig. 9  Vector plots showing the time-averaged components of tur-
bulent energy flux u�

i
u�
3
u�
3
∕(fS)3 (where i = 1, 3 denote the horizontal 

and vertical flux, respectively), which have been superimposed on 
top of colour maps showing the vertical rms velocity field (u�2

3
)1∕2∕fS . 

The data are from a Experiment A2 and b Experiment B2 (with 
Re = 4050 and f = 3.6Hz in both cases). To provide a meaningful 

scale throughout the flow the data for each experiment has been plot-
ted over two sub-figures. Colour scales and reference energy flux vec-
tors are provided in each sub-figure; note the different scales used. 
To prevent an oversaturation of data, only every third velocity vector 
has been included. For reference the grid is shown at the lowest point 
within its oscillation
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is converted to TKE. Note, however, that since the merged 
outer jets are more energetic than the jets over the central 
region ( |x1∕L| ≲ 0.6 ) there is greater production of TKE near 
the edge of the grid than near the centre of the grid. As a 
result, the turbulence produced within the NGR is strongly 
inhomogeneous on horizontal planes.

Further below the grid, as the jet structures spread and 
break down in the grid-normal direction, (u�2

3
)1∕2 exhibits a 

more uniform structure over the central region of the tank 
( |x1∕L| ≲ 0.65 ), as the bottom of the NGR is approached. 
However, over this region a rapid reduction in the magnitude 
of (u�2

3
)1∕2 occurs. This is attributed to the effects of transport 

of turbulent energy due to the mean flow; the approximately 
uniform upwards-directed mean flow in the turbulence dif-
fusive region (identified previously in Fig. 4) advects tur-
bulence of low TKE up towards the NGR where it inter-
acts with the (more energetic) turbulence produced by grid. 
Conversely, the merged outer jets do not fully breakdown 
within the NGR, but instead propagate (albeit diminished in 
strength) to x3∕M ≈ 4 , as shown in Fig. 9a,ii. Figure 9a,ii 
indicates that these outer jets are, at least in part, maintained 
by the transport of turbulent energy by the turbulent fluctua-
tions. That is, the larger flux of turbulent energy close to the 
tank side walls than in the centre of the tank contributes to 
the inhomogeneity across the horizontal plane that exists in 
the turbulent-diffusive region. In turn, the horizontal inho-
mogeneity results in concentrated transport of energy close 
to the tank walls, preserving the structure of the outer jets.

For comparison, Fig.  9b shows corresponding data 
obtained with the inner box installed. In accordance with the 
results in Fig. 9a (Experiment A2), peak values of (u�2

3
)1∕2 

are observed along the axes of the jets that form in the NGR. 
However, when the individual jets of approximately uni-
form strength break down, the turbulent production has a 
more regular structure across the entire width of the inner 
box. As a result, Fig. 9b indicates the turbulence produced 
within the NGR is more homogeneous than when the inner 
box was absent. In addition, the weak mean flow within the 
TDR gives rise to smaller production terms than for experi-
ment A2 and, in comparison, a slight reduction in the mag-
nitude of (u�2

3
)1∕2 throughout the NGR. Note, however, that 

the reduction in mean-flow intensity also inhibits the trans-
port effects due to the mean flow that were identified for 
Experiment A2 at the edge of the NGR. As a result of the 
more homogeneous turbulence produced in the NGR, the 
coherent jet structures remain mostly confined to the NGR. 
That is, the turbulent energy flux is significantly reduced in 
magnitude close to the tank side walls, relative to experi-
ments with no inner box installed (recall that different vector 
scales for energy flux are used in Figs. 9a,ii and b,ii), such 
that the turbulent transport is more uniform across horizontal 
planes. Note, however, that Fig. 9b does indicate that there 
remains a weak preferential transport of turbulent energy 

close to the tank walls (relative to the center of the tank). 
This indicates that some intermittent jet structures may still 
exist close to the side walls when the inner box is installed, 
albeit in a much less energetic form than when no inner box 
is installed. Inspection of the instantaneous velocity fields 
confirms the presence of intermittent energetic structures 
in the TDR that originate from coherent jets in the NGR, 
although these intermittent structures are not confined to 
regions close to the inner box sidewalls and are also present 
within the central region of the tank.

3.4  Comparison of turbulent structure 
with standard model of OGT

Finally, we compare measurements of the key turbulence 
statistics ( (u�2

1
)1∕2 , (u�2

3
)1∕2 and � ) with the standard model 

given in Eq. (1). For the purposes of these comparison, 
attention is restricted to the TDR (i.e., 2.5M ⩽ x3 ⩽ 4.5M ), 
with the anisotropic near-sidewall regions excluded.

Figure 10a, b show spatially averaged measurements of 
⟨(u�2

1
)1∕2⟩1 and ⟨(u�2

3
)1∕2⟩1 , from experiments A and B, plotted 

against depth x3 (see caption for details); ⟨⋅⟩1 is used to 
denote a spatial average in the x1-direction across the central 
region of the container, away from the anisotropic sidewall 
regions (i.e., |x1∕𝜁 | ≲ 0.5 , where � = 17.6 cm for experi-
ments A and � = L for experiments B). Also shown are error 
bars indicating uncertainty within the experimental measure-
ments. That is, a notable source of uncertainty in OGT arises 
from the flow variability that occurs across experiments 
repeated under nominally identical conditions. In particular, 
McKenna and McGillis (2004) showed that the measured 
magnitude of mean-flow components and turbulent fluctua-
tions vary by as much as 25% and 15%, respectively, across 
separate experiments performed under the same conditions. 
Estimates of uncertainty associated with this variability, 
when using the current apparatus, have been determined 
using data previously reported by the current authors 
(McCorquodale and Munro 2018). That is, McCorquodale 
and Munro (2018) reported measurements of five ensembles 
of experiments repeated under nominally identical condi-
tions. The standard deviations of the corresponding meas-
urements of ⟨(u�2

1
)1∕2⟩1 and ⟨(u�2

3
)1∕2⟩1 , denoted �u′

1
 and �u′

3
 , 

computed across each ensemble were given by 
�u�

1
≈ 0.06⟨(u�2

1
)1∕2⟩1 and �u�

3
≈ 0.06⟨(u�2

3
)1∕2⟩1 . These esti-

mates of uncertainty are shown as the error bars in Fig. 10a, 
b.

The data in Fig. 10a, b show that with no inner box installed 
(Experiments A1–A3), Eq. (1) is a poor fit for the observed 
spatial decay of (u�2

1
)1∕2 and (u�2

3
)1∕2 . Recall, however, that Eq. 

(1a) is derived from the transport equation of TKE under the 
assumptions of zero mean flow, homogeneity (in planes paral-
lel to the grid) and negligible viscous transport; under these 
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conditions the turbulent transport is a dominant term. How-
ever, the data in Fig. 4 show that, with no inner box installed, 
the time-averaged mean flow is not negligible in the TDR, 
which contradicts the underlying assumptions, resulting in a 
poor fit; previous studies have shown that a significant mean 
flow can reduce the exponent of the spatial decay of (u�2

1
)1∕2 

and (u�2
3
)1∕2 from approximately -1 to -0.5 (Hopfinger and Toly 

1976). In contrast, with the inner box installed in the ‘optimal’ 
position (Experiments B1–B3) the reduction in mean-flow 
intensity within the turbulent-diffusive region results in tur-
bulence that is in accordance with the underlying approxima-
tions made, such that the spatial decay of (u�2

1
)1∕2 and (u�2

3
)1∕2 

is well-described by Eq. (1).
The velocity measurements were also used to estimate the 

longitudinal integral length scale. We followed the approach 
used previously (Kit et al. 1997; McCorquodale and Munro 
2017) by defining the integral length scale as the integral of 
the autocorrelation function of u�

1
(x1, x3, t) , over the spatial lag 

up to which the autocorrelation function first crosses zero. The 
autocorrelation function, at spatial lag � , is defined as 

where

 Recall that � is used to denote the half-width of the outer 
box for Experiments A1–A3 or the half-width of the inner 
box for Experiments B1–B3; that is, Eq. (3b) is an integral 

(3a)ru(x3, t;�) =
cu(x3, t;�)

cu(x3, t;� = 0)
,

(3b)cu(x3, t;�) =
1

� ∫
�∕2

−�∕2

u�
1
(x1, x3, t) u

�
1
(x1 + � , x3, t) dx1.

over the central region of the tank. The time-averaged inte-
gral length scale is then given by

where �0 denotes the spatial lag at which the autocorre-
lation function first becomes zero, and T is the sampling 
period (which, recall, here was 240 s). The corresponding 
estimates for � are shown in Fig. 10(c), plotted against the 
vertical coordinate x3 . (For reference we recall that the tur-
bulent-diffusion region is given by x3 ≳ 2.5M = 12.5 cm.) 
Also shown are error bars, indicating the uncertainty within 
measured values of � , computed using the same approach 
used to estimate uncertainty in measurements of ⟨(u�2

1
)1∕2⟩1 

and ⟨(u�2
3
)1∕2⟩1 . These data show that with the inner box 

installed in the ‘optimal’ position (i.e. Experiments B1–B3) 
the growth of the longitudinal integral length scales are well-
described by Eq. (1c) using a value of C2 ≈ 0.13 , which is 
consistent with previously reported values (Thompson and 
Turner 1975; De Silva and Fernando 1994; Kit et al. 1997). 
However, with no inner box installed (i.e. Experiments 
A1–A3) Eq. (1c) is a poor fit for the measured values of the 
longitudinal integral length scale.

4  Conclusions

We have presented experimental data describing a mecha-
nism for the inception of mean flow in OGT, the means by 
which the magnitude of the mean flow can be reduced by 
use of an ‘inner box’ and the corresponding effect this has 

(4)�
(
x3
)
=

1

T ∫
T

0 ∫
�0

0

ru(x3, t;�) d� dt

(a) (b) (c)

Fig. 10  a, b Spatially averaged (in the x1-direction) measurements of 
the rms velocity components ⟨(u�2

1
)1∕2⟩1 and ⟨(u�2

3
)1∕2⟩1 plotted against 

x3 ; the quantities have been scaled in accordance with Eq. (1). The 
slope in each plot shows the spatial decay ∝ x−1

3
 . (c) Computed values 

of the time-averaged integral length scale, � plotted against normal-

ised distance below the grid x3 . The slope shows the Eq. (1c) with 
empirical constant C2 = 0.13 . The data for all conditions are shown 
separately [see legend in (b), which applies to all plots]. In each plot 
two error bars are shown for condition B1 only; these error bars are 
representative of all conditions
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on the structure of the turbulence produced. Visualisation 
of the mean flow close to an oscillating grid, using 2D PIV 
data, indicates that the grid generates a regular structure 
of jets (away from the tank side walls) that break down 
to promote turbulence, confirming the recognised struc-
ture of OGT. However, a combination of grid edge effects 
and sidewall effects (viscous and no penetration) cause 
a deflection, and subsequent merging in the boundary-
normal direction, of the jets produced below the perim-
eter region of the grid. These merged outer jets are more 
intense than those produced at the centre of the grid and 
give rise to large-scale circulations within the container.

Installation of an open-ended inner box, positioned 
symmetrically below the grid with its sidewalls equidis-
tant between the two outermost grid intersections and with 
its top edge 1 cm below the bottom of the grid’s oscilla-
tion, was shown to inhibit the formation of the merged 
outer jets and reduce mean flow velocities within the inner 
box. Remaining sources of mean flow within the inner 
box are sufficiently weak that turbulent fluctuations are the 
dominant component of the flow; measurements indicated 
that the ‘mean flow intensity’ (the ratio of the mean flow 
velocity component to the rms velocity component) was 
reduced from approximately 3.5 for experiments with no 
inner box installed to approximately 0.6 when the inner 
box was installed.

Analysis of the spatial distribution of turbulent energy 
and turbulent energy flux indicates that close to the side-
walls of the container OGT is strongly anisotropic and 
inhomogeneous. However, the correct installation of the 
inner box results in turbulence that is a good approxi-
mation to homogeneous and isotropic conditions (i.e., 
u�2
1

1∕2

≈ u�2
3

1∕2

≈ constant), on horizontal planes parallel 
to the grid, over the central 50% of the inner box’s width. 
Data are also presented to evaluate whether the installa-
tion of an inner box results in turbulence, within the TDR, 
that is in good accordance with the widely used idealised 
model. Results indicate that the degree of isotropy, the 
spatial decay of the rms turbulent velocity components and 
integral length scale are well-described by the standard 
model (Eq. 1) when the inner box is installed, but that the 
intense mean flow in experiments conducted with no inner 
box installed can result in turbulence for which Eq. (1) is 
a poor description.

We anticipate that this simple amendment to reduce the 
mean flow present in OGT can be readily used in future 
work that utilises OGT to isolate the effects of turbulent 
fluctuations from those of the mean flow.
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