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Abstract 

------------------------------------------------------------------------------------------------

Microfinance research concerns addressed in this thesis relate to: the associations between 

the individual characteristics of borrowers and the probabilities of being in delinquent or 

default; the determinants for the financial awareness of interest repayment; and the 

application and comparison of modern missing data techniques (Multiple Imputation, 

Maximum Likelihood Estimation, and Predictive Mean Matching) with incomplete loan book 

data. The thesis emphasises credit scoring issues that affect repayment performance and re-

volves around three empirical chapters that seek to address the above research concerns.

Survey and loan book data from individuals in 51 MFIs across 27 developing countries. The 

data were compiled by the MFIs and collected by Micro Finanza Rating. Varied micro-econo-

metric techniques (ordinary least squares, Logit regression, Tobit regression, Two-Part 

model, Double-Hurdle model, Box-Cox transformation, and three missing data imputation 

methods: Multiple Imputation, Maximum Likelihood Estimation, and Predictive Mean 

Matching) are used depending on the hypotheses being considered in each chapter.

The main findings are: engaging in agriculture is related to a lower probability of default that 

measured by the amount of arrear in general; besides, the association between agriculture 

and the length of delayed repayment is insignificant; previous access to micro-finance has

positive association with the financial awareness of the clients who lived in urban areas; in 

addition, previous access to saving service has positive effect on the clients with at least 

primary education; when the missing microfinance data is semi-continuous, PMM 

outperforms MI and ML in most simulations; for binary or ordinal categorical data, PMM 

performance surpass MI and ML only when the sample sizes of data are large, the missing 

rates are low, and the missing mechanism is MAR.

The thesis suggests the following recommendation both for management of MFIs and 

government: we need to make financial services for poor farm households and farm-related 

business more attractive to the MFIs; financial awareness can be improved by access to 

microfinance services, hence extra learning programmes may be unnecessary; Two-Part 

Model should be applied to credit scoring; and PMM imputation is the best technique to be 

applied to deal with the missing data issues and improve data quality in microfinance.  
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Chapter 1: 

Introduction

------------------------------------------------------------------------------------------------

1.1 Motivation

Microfinance is an emerging market particularly amongst the urban and peri-urban popula-

tions in developing countries. Private microfinance institutions and local governments are 

the primary support for the growth of this sector. Technically speaking, microfinance is a 

business in which the lenders provide short-term loans to small or micro enterprises or low-

income households, and characterised by the use of collateral substitutes. Microfinance is a

way of supplying small credits to finance small projects to help the poor have an income 

through forming their own small-scale business to earn their daily bread and improve their 

living standards. Microfinance Institutions (MFIs) use social sanctions and credit denial as 

punishments for defaulting borrowers. These punishments serve the role of collateral substi-

tutes. However, a successful social sanction requires navigating a delegation problem. Be-

sides, the credit denial lacks market value. It may lead to adverse selection and a higher

probability of a non-repayment equilibrium. 

A delayed instalment is said to be delinquent, and a repayment that has not been made is 

said to be in default. The possibilities of being delinquent or defaulted in the microfinance 

industry are controversial. The rapid proliferation of MFIs has drawn criticism. Howard et al. 

(2006) indicate that some people fear that it has outpaced the capacity of the developing 

country governments to implement regulatory measures, and it created a wild environment 

in which borrowers with limited financial knowledge may be exploited by incompetent or 

immoral lenders. In order to alleviate poverty, provision of subsidised credit was embraced 

by lots of countries during the period from 1950’ to 1980’. The repayment rates often 

dropped below 50%. These experiences were almost disasters (Morduch, 1999). Loan delin-

quency and default have continued to cause severe challenges to most MFIs. 

It is in this regard that the first objective of this thesis was designed to investigate the deter-

mine factors associated with loan delinquency among the microfinance participants. 

Regarding the current literature, most empirical studies focus on the effects of business 
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characteristics of micro-enterprises and the credit policies of a single Microfinance Institu-

tion. Studies related to individual socio-geographic characteristics with high-quality cross-

MFI data are scarce. On the other hand, the indicator of delinquency or default is usually 

dichotomised to a dummy variable in the prior studies. Information lost is severe. These two 

issues are the motivations for the first empirical study in this thesis - A two-part probit analy-

sis which focuses on the individual characteristics of microfinance borrowers.   

Regarding the determinants of loan delinquency and default, one of the most well-known 

factors is financial literacy. Traditionally, financial literacy refers to the sets of knowledge 

and skills that allow an individual to make effective decisions with his/her financial re-

sources. However, there is no universal definition of it. In the previous literature, most au-

thors established their versions of measurements for financial literacy based on their re-

search objectives that linked to specific financial education programmes provided by MFIs.

One of the most widely used frameworks to measure the financial literacy is suggest by Lu-

sardi and Mitchell (2008). In their framework, there are three basic financial questions 

corresponding to interest rates, inflation, and diversification. It is obvious that such a frame-

work does not include a measurement of financial awareness. In fact, Carpena et al. (2011) 

claim that the financial literacy programmes may affect a client’s financial decision-making 

process through other channels besides developing his/her computational capability and 

common sense. Access to finance can make individuals and households more aware of their 

financial conditions and available products, and reshape their attitudes towards financial be-

haviours. INFE (2011) also defines financial literacy as a combination of awareness, 

knowledge, skill, attitude and behaviour necessary to make financial decisions. 

Considering the characteristics of microfinance, financial awareness might be the most im-

portant factor associated with loan delinquency or default. Different from loans from com-

mercial banks, the loans from MFIs usually have small amounts, high-interest rates, short 

instalment intervals, short repayment cycles, and low levels of collateral. In this case, the ca-

pability of self-control and personal preference outweigh the financial capability and skill. 

The microfinance studies that focus on the financial literacy are rare, don't even bother the 

financial awareness, financial attitude, etc. It motivates me to study the relations between 

the clients’ individual or household level characteristics and their financial awareness of in-

terest repayment in the microfinance industry specifically. In the second empirical study, I

focus on the relations between financial awareness and a client’s previous access to micro-

finance services.  
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During the studying of loan delinquency and financial awareness in the microfinance indus-

try, an unexpected issue arises. I found that almost all variables in the administrative loan 

book data and client survey data have a certain number of missing values, and the missing 

percentages for some variables are even higher than 20%. In fact, the situation of incom-

plete data exists in many areas of empirical research, especially prevalent in social and be-

havioural studies. In many cases, missing values simply happen when respondents are not 

available for the surveys, or there is a human mistake when collecting the data and the infor-

mation is damaged. 

To deal with the missing data, the simple complete case analysis (CCA) techniques such as 

listwise and pairwise deletions are still popular in many papers nowadays. King et al. (2001) 

have reviewed a great number of studies and concluded that data analysis in political sci-

ence research typically loses a third of the cases due to listwise deletion of missing data. The 

increase in MSE is comparable to what we can expect from omitted variable bias. CCA may 

generate significant biases when the percentage of missing values reaches about 20%. For 

instance, when a dataset has ten variables and 3% of data randomly missing in each variable, 

then the total missing percentage for the dataset may vary from 15% to 30% if CCA is ap-

plied. As results, the researchers who process the missing data with CCA have to put up with 

either the severe information loss caused by a high percentage of missing data or dropping a 

great number of incomplete explanatory variables.

With modern missing data techniques (MDT), we can impute the missing values, so the max-

imum amount of information is restored and keep the data less biased at the same time. It 

helps us to perform more robust empirical analysis and obtain more convincing results. Pop-

ular MDT which are potentially suitable for microfinance loan book data and survey data in-

clude Multiple Imputation (MI), Maximum Likelihood (ML) estimation, and Predictive Mean 

Matching (PMM). While the previous literature suggests that these MDT outperform the tra-

ditional CCA in most cases, it is unclear whether they are preferable when the real missing 

mechanism is unknown, and the assumption of a normal distribution is violated, such as the 

semi-continuous variable ‘Arrears’ in our data. It motivates me to implement a systematic 

evaluation of the missing data imputation performances of MI, ML and PMM with semi-con-

tinuous data. 



4

1.2 Objectives

The aim of the first empirical chapter lies in addressing the individual level determinants rel-

evant to the microfinance delinquency. The second empirical chapter sets out to be the first 

rigorous cross-MFI study of the relation between a client's individual/household level char-

acteristics and financial awareness of interest repayment. Finally, the third empirical chapter 

provides a systematic evaluation for the imputation performances of MI, ML and PMM with 

actual administrative loan book data, as there are so few performance comparison studies of 

different missing data techniques available in the current literature.

More specifically, these three chapters in the thesis respectively study the following eleven 

hypotheses and four research questions:

H1. Married individuals have a lower probability of default and lower intensity of delin-

quency.

H2. The youngest and oldest borrowers have a lower probability of default and a smaller in-

tensity of delinquency, while the middle‐age group of consumers have a higher probability 

of default and a larger intensity of delinquency.

H3. Female borrowers have a lower probability of default and a smaller intensity of delin-

quency.

H4. Borrowers with higher educational levels have a lower probability of default and a 

smaller intensity of delinquency.

H5. The credit destined to an agricultural sector has a lower probability of default and a 

smaller intensity of delinquency.

H6. Women have a lower probability of being aware of their interest rate.

H7. Older borrowers have a lower probability of being aware of their interest rate

H8. Less educated borrowers have a lower probability of being aware of their interest rate.

H9. Borrower living in rural areas have a lower probability of being aware of their interest 

rate.

H10. Clients who have saving account before (or previously accessed to moneylenders, pre-

viously accessed to MFIs, previously accessed to formal banks) have a higher probability of 

being aware of their interest rate.
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H11. Borrowers who have no education, but have saving account before (or previously ac-

cessed to the moneylenders, previously accessed to MFIs, or previously accessed to formal 

banks) have a higher probability of being aware of their interest rate.

Q1. Will Predictive Mean Matching consistently outperform Multiple Imputation, Maximum 

Likelihood estimation, and Complete Case Analysis, across different types of data especially 

for semi-continuous variables?

Q2. Will Predictive Mean Matching consistently outperform Multiple Imputation, Maximum 

Likelihood estimation, and Complete Case Analysis, across different missing mechanisms?

Q3. Will Predictive Mean Matching consistently outperform Multiple Imputation, Maximum 

Likelihood estimation, and Complete Case Analysis, across different sample sizes?

Q4. Will Predictive Mean Matching consistently outperform Multiple Imputation, Maximum 

Likelihood estimation, and Complete Case Analysis, across different missing data rates?

All hypotheses and research questions will be discussed in detail and motivated based on ex-

isting literature in the empirical chapter 3 to 5.

1.3 Structure of the Thesis

The thesis is structured around three empirical chapters that seek to address the above re-

search questions. Chapter 2 presents a systematic review of the prior literature related to 

impact assessment of microfinance programmes on the well-being of the poor. It 

investigates the methodologies, empirical results, and potential biases of the previous stud-

ies. The empirical Chapter 3 to 5 present the main body this thesis. Chapter 3 provides a dis-

cussion on the relationships between individual or household level characteristics and loan 

delinquency. Chapter 4 assesses the influences of previous access to credit on the financial 

literacy of a client. In Chapter 5, I evaluate the imputation performances of MI, ML and PMM 

on a real microfinance loan book data under various combinations of sample sizes, missing 

rates, missing mechanisms, and data types. The last chapter of the thesis provides a sum-

mary of the empirical chapter, implication recommendations, and areas for further work.
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Chapter 2: 

Literature Review: Individual and Household Level Impacts of 

Microfinance Programmes on the Well-being of the Poor 

------------------------------------------------------------------------------------------------

2.1 Introduction

Since the Nobel Peace Prize winner, Muhammad Yunus firstly introduced the concept of mi-

crofinance into Grameen Bank 39 years ago, whether microfinance programmes could gen-

erate positive impacts have been studied for a long time. Theoretically, it has the potential 

to enable income-generating investments, smooth consumption and reduce financial vulner-

ability. In 2011, the United Nations Capital Development Fund even tried to explore micro-

finance as a practical social protection tool. Beginning with the traditional financial interven-

tion which only provided credit to the poor, microfinance has evolved over decades and now 

includes many services, such as micro-savings, micro-leasing, micro-insurance and financial 

training programmes. In general, microfinance is apparently successful and promising, at 

least in the early evaluations.

However, according to the recent reviews of literatures related to microfinance impact 

assessments (Gaile and Foster, 1996; Sebstad and Chen, 1996; Goldberg, 2005; Odell, 2010; 

Duvendack et al., 2011; Orso, 2011; Stewart et al., 2012), we have no convincing objective 

evidence of either positive or negative impacts. Rigorous quantitative results are rare and 

inconclusive (Armendariz and Morduch, 2005). Also, whether microfinance programmes that 

focused on women were more effective was unclear (for instance, Pitt and Khandker, 1998 

vs Karlan and Zinman, 2009). Overall, the empirical findings of the effectiveness of micro-

finance programmes are still controversial.

This review set out to discuss and summarise not only the major findings in previous

literature but also their research designs, statistical analysis methods, limitations and poten-

tial biases. These technical challenges could provide a better view of the current research sit-

uation and lay a solid foundation for the further impact assessment studies. The rest of the 

review is structured as follow: Section 2.2 introduces the methodologies that used in the 

previous literature in details. Section 2.3 presents the major empirical impact evaluation 
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findings and controversies. As a base of further research, the bias and limitations are 

discussed in the context of the representative papers in Section 2.4. The conclusion and im-

plications for research are presented at the end.  

2.2. Methodologies of the Impact Assessment Studies

In general, while various methodologies have been implemented to the microfinance impact 

assessments, a few of them are found to be dominating the studies throughout the years. 

Micro-credit was the most widely studied financial intervention, following by micro-saving 

and micro-leasing in sequence. Other interventions have rarely been explored. Income, en-

terprise profits/revenues, housing improvements, education, and women empowerment 

were the dominating dependent variables. In terms of research designs and statistical analy-

sis methods, with/ without (before/after) comparisons and Propensity Score Matching were 

the mainstream techniques. It is also noticeable that a high proportion of reviewed studies

exposed to the risk of selection bias. All these features and more details of the methodolo-

gies are discussed in the subsections below.

2.2.1 Definitional and conceptual Issues

The key econometric characteristics of the literature reviewed and the relationships be-

tween the central concepts are outlined and defined as follows:

Participants of Microfinance Programmes (Treatments and Controls): The papers reviewed 

in this chapter mainly focus on individuals living in 40 low income and 56 lower-middle in-

come countries with very few assets that can be used as collaterals. As defined by the World 

Bank, GNI per capita was the main criterion to classify countries. Participants of micro-

finance programmes have to be identified as poor or vulnerable within their society. Target 

groups might include individuals, households or microenterprises that were exposed to the 

influence of particular microfinance services.

Microfinance Interventions (Independents): Microfinance interventions are complex and di-

verse. For instance, a credit product may involve savings, training and etc. The papers in-

cluded in this review focus on three of the largest financial inclusion services: micro-credit, 

micro-savings and micro-leasing (e.g., Stewart et al., 2012). Micro-credit is the provision of 

small loans to the poor, usually in cash, with considerably varying interest rates between 

20% and 40%. While some MFIs charge a fixed rate on the amount borrowed, a floating rate 
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is more commonly used. Micro-savings is a deposit service which is usually linked to credit as 

a compulsory condition of an individual loan or a pool of shared group savings resources. It 

protects participants from unexpected shocks and encourages them to build an asset base 

(Hulme et al., 2009). Micro-leasing is a contractual arrangement which allows the lessee to 

use an asset owned by the lessor in exchange for specified periodic payments (Gallardo,

1997). It enables the poor to access productive assets and to generate income. All these fi-

nancial services mentioned in previous studies were provided by basic, transformed or com-

mercial MFIs, NGO MFIs, commercial banks, credit cooperatives and other public sector fi-

nancial services providers.        

Economic, Social and Empowerment Outcomes (Dependents): There are hundreds of out-

come variables have been tested in the reviewed papers. Hence, I need to organise them 

into groups for presentation. In terms of category, the outcomes can be classified into eco-

nomic (mainly credit received from microfinance, business inputs, production, sales, profits, 

expenditures, housing, durables and assets), social (mainly health and education expendi-

tures) and empowerment (control power of home expenditure and strength of social inter-

action, exclusively of women). Economic indicators have been dominating microfinance as-

sessments for long. Measuring changes in income is the first choice of many researchers 

though changing income alone is insufficient to draw conclusions about the status of house-

hold members. Social indicators became popular in the 1980s and had been introduced into 

microfinance as an attempt to examine if microfinance could contribute to empowerment 

(Goetz and Sen Gupta, 1996; Schuler and Riley, 1996; Mayoux, 1997). This development has 

led to the new measurements such as individual control over their resources, discursive 

power in the household decision and community participation, and permitted the develop-

mental impacts to be assessed in a much more sophisticated manner.

Lots of studies, such as those will be discussed in subsection 2.3.2, have conducted impact 

assessments on the same data with different sub-samples and methods of estimation. Two 

of the most iconic databases are: 1. the cross-sectional data from a World Bank funded re-

search which conducted a survey in 1991-1992 on three leading microfinance group-lending 

programmes in Bangladesh (Pitt and Khandker, 1998); 2. the three longitudinal studies in the 

late 1990s on Peru, India & Zimbabwe funded by USAID. Regarding the impact assessment 

studies reviewed in this chapter, our statistics show that 75% of them were implemented on 

economic indicators. Only 16% and 9% of them were implemented on social and empower-

ment indicators respectively. Besides, more than 40% of the economic and empowerment 

impact assessments have found significant results, while the percentage for social was just 
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25%. It appears that trying to identify the relationships between the microfinance interven-

tions and the improvements of programme participations’ livelihoods is a challenging task.             

Hierarchy of the Microfinance Outcomes (Theory Map): While a number of outcomes reflect 

the direct influences of access to microfinance, such as increases in borrowing, most of the 

others have few specific implications for the value of microfinance, such as improved dwell-

ing conditions. In order to review the previous studies that spread on the different levels of 

the causal chain of microfinance impacts more systematically, I have developed a rough net-

work which illustrates the hierarchy and the potential relationships between various out-

comes are presented in Figure 2.1. Red and violet represent the beginning and the end of 

the entire impact casual chain respectively. Orange, green and blue indicate the outcomes’ 

closeness to personal/household well-being. The common positive and negative relation-

ships between outcomes are marked by solid and dash lines. Starting at the top is the effect 

of access to microfinance, which leads to increased borrowing. Through this route, access to 

credit will increase the cash balances, improve the financial literacy, and indirectly influences 

sales and revenues. If the enterprise succeeds, it will lead to greater profit, income and con-

sumption. Otherwise, access to credit may lead to a series of negative outcomes shown on 

the right of the figure. Finally, access to microfinance reshapes the expenditure patterns of 

participants and hence improves their livelihoods qualities. Despite the complications shown

here, most of the research included in this review was framed by the most simplistic causal 

models that directly link access to credit to the final-stage indicators of well-being. There-

fore, the subsequent theory can be expanded on those indicators of effect intermediate, 

such as the attitudinal impacts on clients.    
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Figure 2.1 

Hierarchy, Relationships and Outcomes of Microfinance

2.2.2 Research designs and validity

Because of the difficulties of assessing impacts in development, it is not easy to solve the un-
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the previous microfinance impact assessment studies.
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can only be considered as the association between variables but not strong evidence of cau-

sality. On the contrary, experimental studies provide the most robust results with random 

allocation to intervention and comparison groups including with/ without (before/after) 

data. The Randomised Control Trials (RCTs), which constitute the only purely experimental 

method, have been widely debated as an assessment tool of social and development inter-

ventions. While many supports highly appreciate RCTs and use RCTs as the standards to 

judge other research designs, there are still limitations, such as double-blinding, pseudo 

(meaning) effects, experiment effects and the assumption of no spill-over effects (Blundell 

and Costa Dias, 2009). In fact, there are few studies have been done using RCTs as they are 

costly and laborious. Quasi-experimental studies are the compromised form of the pure ex-

periments. They are either unable to randomise the participants of an intervention or unable 

to acquire the ex-ante data. All the research designs described as pipelines, with/without 

(before/after) comparisons, panel, longitudinal or natural experiments are quasi-experi-

ments. The common threats to their validity are: 1. non-random allocation; 2. the risk of 

confounding; and 3. the bias of selections and programme placements. Despite these disad-

vantages, Cook et al. (2008) and Kunz et al. (2007) have shown that quasi-experiments can 

generate similar findings to RCTs by using appropriate statistical methods. 

In summary, none of the research designs is absolutely superior. Roger (2010) reminds us 

that the quality of evidence should be judged by whether the internal and external validity 

has been systematically checked, instead of whether a particular method has been used. 

However, it is found that the with/without (before/after) comparisons and panels have been 

used in over 80% of the reviewed papers, while that percentage for pipelines and RCTs were 

just 13% and 4% respectively.   

2.2.3 Statistical methods of analysis

This subsection discusses the characteristics, limitations, and applications of the most com-

monly used statistical methods used in the microfinance impact assessment studies.   

Propensity Score Matching (PSM): The basic idea of matching on microfinance is to estimate 

the effect of an intervention of a particular programme by accounting for a group of covari-

ates that influence receiving the intervention. Thus, PSM can account for the selection on 

observables and reduce the bias caused by confounding variables during the estimations. 

Noticeably, the selection on unobservable remains unaccounted for. The drawback of PSM is 

that matching estimators are sensitive the choice of data and not robust enough. It means 

that matching is appropriate only when high-quality data are available (Smith and Todd,
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2005). Therefore, a sensitivity analysis which explores the robustness of matching estimators 

is crucial to obtain rigorous results. 

Difference in Differences (DID): In contrast to the with/without and the before/after 

estimate of intervention effect, the DID estimators represent the difference between the dif-

ferences of the treatment and control groups. Hence DID can be used to control the fact that 

microfinance interventions are more likely on some types of people, and create similar ef-

fects of using PSM. Smith and Todd (2005) have found evidence that a DID approach is more 

appropriate as an evaluation strategy by replicating Dehejia and Wahaba’s (2002) study, in 

which the authors claimed that PSM results are good approximations to those estimated by 

experimental approaches. However, there is no conclusive evidence on either side of this de-

bate in terms of the current literature. 

Instrumental Variables (IV): The IV approach has the function to control the selection of ob-

servables and unobservables simultaneously (Basu et al., 2007). The instruments are a set of 

variables which influence people’s decisions to participate in specific a programme but have 

no impacts on the final outcomes. Therefore, exogenous is the key for a valid instrument 

(Caliendo, 2006). Examinations on the qualities of instruments can be done by over-identifi-

cation tests (e.g., Hansen-Sargan test). Nonetheless, Deaton (2010) has queried the reliabil-

ity of these tests as he proved that the invalid instruments were able to pass the tests in 

some cases. In addition, a number of researchers such as Heckman and Vytlacil (2007) ar-

gued that Two-Stage Least Square (2SLS) is not always better than the Ordinary Least Square

(OLS) especially when the instruments are weak.            

2.2.4 Common bias in microfinance assessments

The most common biases that exist in the literature reviewed are introduced in this section. 

According to the common classification scheme of bias from the Cochrane Handbook for 

Systematic Reviews of Interventions (2011), the key components of bias can be defined as:

1. selection bias (systematic differences between baseline characteristics of the treatment 

and control groups); 2. performance bias (systematic differences between groups received 

different amounts of treatment); 3. detection bias (systematic differences between groups 

as some are affected by the experiment itself along with the interventions of interest); 4. at-

trition bias (systematic differences between groups with different numbers of withdrawal 

members); 5. reporting bias (systematic differences between reported and unreported find-

ings due to selective behaviour). 



13

Regarding the five types of bias, selection bias is of particular importance in studies of micro-

finance because who engage in microfinance programmes and are successful in business are 

impossible to have lots of same characteristics as those who do not. This makes micro-

finance impact assessment an extremely difficult task. In context to the previous sections, it 

is presented that 93% of the studies included in this review are quasi-experiments and the 

bias of selection is one of the main threats to their validity. 

2.3 Major Empirical Results and Controversies 

2.3.1 Significant impacts of micro loans

A large number of individual/household level microfinance impact assessment studies have 

found significant positive effects of expanding access to finance to the poor. Most of these 

studies focused on Bangladesh because of the success story of a local microfinance institu-

tion - Grameen Bank - has successfully extended credit to more than 2.6 million people to 

reduce poverty. Pitt and Khandker (1998) conducted a multipurpose quasi-experimental 

household survey on 87 villages in rural Bangladesh and found that credit is an important 

determinant of many outcomes, especially for women. By using the same database, Khand-

ker (2005) examined the effects of microfinance on poverty reduction at both the individual 

level and village level. The results are consistent with the former one and suggest that mi-

crofinance can help the local economy. 

Besides Bangladesh, similar researches have been conducted in other developing countries 

as well, while the number of studies is relatively small. Karlan and Zinman (2010) have con-

ducted another survey on 787 marginal applicants (new, rejected, but potentially creditwor-

thy) in South Africa, linked it with loan repayment data, and estimated the impact of credit 

supply expansion using field experiment. They came to the similar conclusions as Pitt and 

Khandker (1998). In addition, the marginal loans were found to be profitable for the lenders 

as well with some evidence. Lensink and Pham (2012) have examined the impact of micro-

credit on self-employment profits based on a huge sample of 9,189 households in Vietnam. 

Their findings also reveal positive effects of access to credit on self-employed households. As 

a representative of cross-country analysis, McIntosh et al. (2011) conducted a field research 

in Guatemala, India, and Ghana. They estimated the effects of development programmes by 

the “Retrospective Analysis of Fundamental Events Contiguous to Treatment” method and 
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found the strongest relationship between credit and household improvement when using 

the endogenous measure. 

2.3.2 Insignificant impacts of micro loans

Nevertheless, some studies such as Roodman and Morduch (2014) have indicated that Pitt & 

Khandker’s (1998) and Khandker’s (2005) evidence for impacts are weak and fail in expung-

ing endogeneity. By using a field experiment and follow-up survey that measured impacts of 

credit expansion for micro-entrepreneurs in Philippines, Karlan and Zinman (2009) found 

surprising result that creditworthy customer who randomly receive credit shrink their busi-

nesses relative to the control group. Expanding access to credit increases profits for male 

but not for female borrowers. Besides, they found no evidence that increased access to 

credit improves well-being; rather, they find some evidence of a small decline in self-re-

ported well-being. 

Some other studies which go against the findings of Khandker (2005) claim that the micro-

finance programmes, in reality, have little impact on the poorest or the most vulnerable. 

Navajas et al. (2000) have analysed the evidence of the depth of outreach for five MFIs in 

Bolivia with the random sample of 622 active borrowers. They indicated that most of the 

poor households reached by the MFIs were just near the poverty line – the richest of the 

poor. By conducting a survey on the 444 households in Thailand, Coleman (2006) has evalu-

ated the impacts of two microfinance programmes with controls on the endogenous self-

selection and indicated that wealthier people are more likely to participate than the poor. 

On the other aspect, Amin et al. (2003) have assessed the impacts of microcredit pro-

grammes on both the relatively poor and vulnerable by surveying 120 households in Bangla-

desh. They found that microcredit was less successful at reaching the vulnerable comparing 

to reaching the poor. The contradictions among all research introduced in subsections 2.3.1 

and 2.3.2 have produced controversy and confusion for some time.  

Some other studies have discovered that the impacts of microfinance programmes can be 

affected by external factors. For instance, Imai and Azam (2010) have examined whether mi-

crofinance reduces poverty in Bangladesh drawing upon the national representative panel 

data that covers more than 3,000 households with the treatment effects model. It found 

that simple household access to general loans from MFIs could not increase the household 
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income, while household access to general loans for productive purposes from MFIs signifi-

cantly increased household income.     

2.3.3 Impacts of interest rate policy and group lending

Besides directly assessing the impacts of microfinance/microcredit, many studies also tried 

to indirectly assess the impacts in terms of the changing interest rate policy or the group 

lending method. 

By examining in the interest rate on microfinance loans in the slums in Bangladesh with the 

loan book data of 5,147 clients of SafeSave programme, Dehejia et al. (2012) have studied 

the price elasticity of credit demand of the poor. It was found that target clients took smaller 

and more frequent loans and repaid faster as a reaction to the increased interest rate. 

Karlan (2007) exploited a quasi-random group formation process with 2,054 loan book rec-

ords of FINCA-Peru to find evidence to support peer monitoring and joint-liability methods. 

He indicated that individuals with stronger social connections to their fellow group members 

have higher repayment and higher savings, as the social connection would deteriorate after 

default and the method of peer monitoring let the individuals know who should be punished 

after default. In contrast, Coleman (1999) claimed that most of the group lending impact 

studies neglected the issues of self-selection and endogenous programme placement and 

the programme loans have very little impacts according to his findings.   

2.3.4 Impacts of access to finance

Analysing the determinants of access to finance (or creditworthiness) is another interesting 

area that has attracted many researchers in the recent years. Johnston and Morduch (2008) 

used a survey including 1,438 households in Indonesia to analyse the prospects for expand-

ing financial access. They found that about 40% poor households were judged creditworthy 

according to the criteria but fewer than 10% borrowed from a micro-bank or formal lender. 

Some studies also try to identify the relations between gender difference and access to

credit. Agier and Szafarz (2013) have investigated whether men and women benefit from the 

same credit conditions by establishing their original model and testing its predictions on a 

loan book data comprising more than 34,000 applications from an MFI in Brazil. A loan size 

gender gap was detected, and it would increase disproportionately with respect to the scale 

of potential projects. 
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There are many other interesting combinations of topics that worth studying, such as 

Beisland and Mersland’s (2012) recent study that investigated the use of microfinance ser-

vices among economically active disabled people in Uganda. However, these non-main-

stream studies usually have little empirical supports behind them.      

2.3.5 The issues of data quality  

In terms of individual/household level studies of microfinance impact assessment or access 

to microfinance, high-quality data is the determining factor as it is extremely difficult to ac-

quire. Unlike enterprise level microfinance studies that often use similar databases such as 

Mix-Market and Microcredit Summit, the data used at the individual level are always distinc-

tive in each paper. 

First, most of the data are related to specific small areas, provinces, villages and etc., such as 

the local field experiments conducted by Karlan and Zinman (2009; 2010), and Roodman and

Morduch (2014). Bangladesh has attracted the attention of many researchers while the 

studies about other countries are scarce. Cross-MFI analyses are so rare that it is difficult to 

find any relevant papers. 

Second, individual/household surveys are widely used while personal loan book data are 

used in very few studies: Storey (2004), Alesina et al. (2008), Bellucci et al. (2010), Agier and

Szafarz (2013) and etc. All these loan book studies concentrate on the subject of access to 

finance but impact assessment. As the loan books are provided by specific MFIs with details 

of an enormous number of clients (sometimes greater than 50,000), the quality of data used 

in these papers is very high. The largest problem of loan book data may be the difficulty to 

generate a “without programme” control group for impact assessment.

Third, most individual/household surveys only covered a small number of respondents. Ex-

cept for a few studies such as Lensink and Pham (2012) that interviewed over 9,000 house-

holds, the sample sizes of the majority of surveys are less than 500. For instance, Park and

Ren’s (2001) and Coleman’s (2006) survey data only covered about 450 households. Insuffi-

cient participation of microfinance in remote areas heavily limits the sample size. However, 

with the capabilities to specialize in the unique natures of each treated group and to estab-

lish control groups, survey data is more suitable for impact assessment than loan book data. 

Combing the two types of data to support more complete analyses might be a trend for fur-

ther studies.
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2.4 Limitations of the Current Literature

In the following three sections, summary evidence from the studies and papers reviewed are 

organised and discussed by their fundamental research designs as presented in 2.2.2. As the 

amount of related literature is enormous, and many of them provided very similar results, it 

is impossible to talk or even mention about every single paper. To make this review as 

inclusive as possible, the studies presented below are selected by their influence in the area 

of microfinance impact assessment such as the series of Pitt and Khandker and those con-

tributed by USAID. Sections 2.4.1 and 2.4.2 discuss the quasi-experimental and the experi-

mental results respectively. The studies focusing on women empowerment are presented in 

the extra section 2.4.3.

2.4.1 Quasi-experimental studies

The results of the quasi-experimental studies are separated and discussed in two sub-sec-

tions: the with/without studies and the pipeline studies. Broadly speaking, the with/without 

studies have assessed a higher proportion of impacts on the later stage of the causal chain 

that highlighted by blue and purple in Figure 2.1, comparing to the studies using pipelines. 

Most of the economic outcomes of the with/without studies (by the IV methods) are signifi-

cant and more likely to be positive. Nevertheless, there are few significant outcomes on the 

social side and on women’s empowerment. On the other aspect, the vast majority of the 

outcomes assessed in pipeline studies are insignificant.  

2.4.1.1 With/without and before/after studies

This section starts by briefly introducing the two iconic studies of Pitt and Khandker and 

USAID, and then discusses the influential studies developed based on them. 

The Pitt and Khandker series of studies in Bangladesh (1998, 2002, 2003, 2006, and 2011): 

The fundamental cross-sectional data in these studies were collected from a survey con-

ducted in 1991-1992 on three group lending programmes in Bangladesh. The survey in-

cluded 87 villages and 1,789 households in rural areas. Labour supply, enrolment of educa-

tion, expenditure per capita and non-financial assets were the main indicators. In 1998-

1999, for the purpose of investing long-term microfinance impacts, Khandker resurveyed the 

same households and surveyed another 810 households from both the original and new vil-

lages in the original thanas. 
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Based on this data, Pitt and Khandker used a quasi-experiment to sample the targets. Ac-

cording to whether a target is living in the village with microfinance programmes and 

whether a target has a choice to join the programmes, all households were split into four 

sub-samples. By running the IV regressions, Pitt and Khandker found that microcredit has

significant and positive influences on the indicators shown in the last paragraph. They 

stressed that larger positive influences were found when female clients were involved in the 

programmes. As an extension to the findings, Khandker re-examined the results with the 

1998-1999 data and found that the impacts of microcredit on poverty reduction were sus-

tainable in the long-run. Moreover, positive spill-over effects were found at the village level.       

However, many associated studies of Pitt and Khandker’s original data have failed to repli-

cate the same findings, probably because of the complication and poor documentation of 

research design. Instead of the IV approach, Morduch (1998) and Roodman and Morduch 

(2014) have applied PSM in the re-examination. They found a contradictory result that there 

were hardly any impacts and argued that Pitt and Khandker have overestimated the impacts 

because the criteria for eligibility were not strictly implemented. Slightly different to Rood-

man and Morduch’s study, Chemin (2008) has found significant and positive impacts for half 

of the outcomes by using PSM on the same data, though the results were lower than Pitt 

and Khandker’s findings and the impacts on the other half were almost negligible.  

Moreover, a number of studies such as Duvendack (2010) and Duvendack and Palmer-Jones

(2012) indicated that the situation of multiple sources of borrowing had not been consid-

ered in the papers discussed above. By using a strategy named ‘novel treatment’ to obtain 

more homogeneous control groups, Duvendack found mixed results when he compared mi-

crocredit participants with who accessed to other sources of credit. Venkata and Yamini 

(2010) have pointed out that many microcredits were often too small to cover the costs of 

micro-entrepreneurship and multiple sources of borrowing help to smooth the borrowers’

income and consumption. As another explanation, Coleman (1999) and Fernando (1997) in-

dicated that it is common for debtors to use borrowing from one source to repay the loans 

of another. Based on these views, both the Pitt and Khandker studies and the associated 

criticisms are not convincing enough. In addition, using PSM to replicate the Pitt and 

Khander studies is doubtable, in terms of the limits that already discussed in 1.3 (requiring 

high-quality data). Further discussion on the analysis methods is beyond the scope of this 

section.
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The USAID studies in India, Peru and Zimbabwe: The target of the three longitudinal studies 

was to evaluate microfinance impacts on the poor. All panel datasets were collected by 

USAID in the late 1990s. The data at all three different levels (individual, household and firm) 

were included in the studies. Similar to the issues encountered in the Pitt and Khandker 

data, the robustness of USAID’s selection procedure of control groups is questionable. Some 

unobservable characteristics which account for why the eligible individuals/households did 

not participate in microfinance programmes made the sampling of USAID less convincing.   

As the earliest studies using the USAID panel data, Chen and Snodgrass (1999, 2001) found 

evidence that microfinance led to changes at the household level and detected positive im-

pacts on income, income per capita, income diversification, expenditure on food and re-

sistance to shocks. However, the results at the individual and firm levels were insignificant. 

As explained by Chen and Snodgrass, a possible explanation was that most clients of the mi-

crofinance programmes were workers instead of entrepreneurs. By using PSM and DID to 

reduce the selection bias, Augsburg (2006) and Duvendack (2010) re-examined and broadly

confirmed Chen and Snodgrass’ findings.  However, Duvendack also pointed out that the 

matching estimates (of PSM) were very sensitive to the selection on unobservables. Micro-

finance participants might have been superior to non-participants long before joining the 

programmes, in terms of social networks, wealth and skills (Armendariz and Morduch,

2010). In brief, the re-investigation of the USAID studies (and Pitt and Khandker’s studies) 

have greatly weakened reliability of the empirical support for microfinance’s poverty reduc-

tion function.  

2.4.1.2 Pipelines studies

Coleman (1999, 2006 and etc.) was the very first researcher who tempted to apply pipeline 

designs in microfinance impact assessments. Since then his method has been widely used. 

He conducted the surveys on 455 households in North-eastern Thailand during the period 

1995-1996. Self-selection and non-random programme placement bias were controlled by 

observable village-level fixed effects. The 1995 data were related to the participants and 

non-participants in villages where microfinance already activated, and the 1996 data identi-

fied potential participants and non-participants in villages where microfinance was planned 

to operate. By using DID to estimate the difference in different incomes between partici-

pants and non-participants with village controls, Coleman has found little impact of micro-
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finance. Moreover, he concluded that micro-finance had positive impacts on increased bor-

rowing activities and debts because it was discovered that many participants joined the 

programmes for consumption purposes instead of entrepreneurship or investment.         

The second important series of studies was conducted by Copestake et al. (2001, 2002 and 

2005). The 2001 paper reported microcredit impact in a group liability context in Zambia us-

ing two cross-sectional sample groups and a pipeline group. Only a number of hardly statisti-

cally significant outcomes were found. This finding was vitiated due to the high exit rate of 

the sample group clients between different loan cycles. As an improvement, the 2002 paper 

involved continuing borrowers to eliminate the problem of exits, drop-outs and graduates. 

Some initial levelling up effects on business income was found, but the microfinance impacts 

on the other variables such as business profit and transfers to the household budget were 

polarized. Different from the two previous studies, the 2005 paper estimated impacts in a 

basic DID model and a multivariate model by using panel data from Peru. The results sug-

gested that the programmes have significant effects on individual and household income 

(more for richer than poorer ones), but no effects on business sales and profit. 

Colman’s and Copestake’s studies are remarkable for two reasons, the very large number of 

assessed variables and the relatively slim and straightforward econometric analysis method 

– using DID without lots of control variables or 2SLS. In fact, Steele et al. (2001) have done 

something very similar to Colman’s 1999 paper, but the more sophisticated methods in-

cluded in that study made it harder to replicate. There are few studies that have applied 

other analysis methods besides DID. One noticeable example trying is that Setboonsarng and 

Parpiev (2008) applied PSM to pipeline data in the expectation that it would provide higher 

robustness. They did it, but at the cost of a dramatic loss of an important part of the data: a 

great number of participants (with low propensity scores) for whom there were lots of po-

tential matches had been dropped. This was a preposterous basis to undertake further im-

pact analysis and obtain convincing results. It showed us that excessive pursuit of statistical 

precision has an adverse effect on the pipeline studies of microfinance impact assessment, 

in which there were usually tons of unobservable.       

Regarding the results that found in the other pipeline studies, most of them are very similar

to Colman’s findings: 1. microfinance has significant positive influence on the early stage 

(Figure 2.1) outcomes such as borrowing and business activities; 2. it has no statistically sig-

nificant influence on the variables of well-being. All these studies have provided evidence 

that the earlier impact assessments made by other analysis methods were overoptimistic. In 
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addition, some of them argued that the clients of microfinance services were the riches of 

the poor instead of the very poorest ones. In contrast, there are very few papers that sug-

gested significant positive effects. As a representative, Deininger and Liu (2013) tested a 

large number of variables with unique econometric specifications and detected a significant 

positive influence on the well-being of clients. However, their study is vulnerable to bias as 

the treatment and control groups have different locations. 

The biggest constraint of the pipeline method is by the nature of itself that there is only a 

tiny period of time within which the treatment group and pipeline group can be considered 

to be different. Therefore, the impacts estimated by such method may only be effective in 

the short-term, while the majority of social influences are likely to be observable only in the 

long-term.     

2.4.2 Experimental studies (RCTs) 

While RCTs are recognised as the most robust methods for impact assessments in the devel-

opment industry, the full potentials of RCTs are still waiting to be explored, and very few rig-

orous studies about the impact of access to microfinance relative to no access are found and 

included here. This section begins with the introduction of some details and threats to the

validity of the essential papers and then discusses their findings.  

As claimed by the authors, Banerjee et al. (2015) have conducted the first randomized ex-

periment of the impact of introducing microfinance to a new market. The panel data used in 

this study was a subset of 104 slums (approximately 65 households in each of them) at the 

southern Indian state Hyderabad, where Spandana (an MFI that focuses on self-formed fe-

male borrowing groups) considered to select some areas for opening branches randomly. 

The baseline survey and end-line survey were conducted before and subsequent to the ran-

domisation respectively. It is not clear that whether the selection of the baseline survey par-

ticipants has been randomised (Type 1 bias, see 1.4). The second threat to validity was the 

possibility that potential participants in the control slums postponed business expansions 

because they expected for low-cost loans from Spandana in the near future (Type 3 bias) ra-

ther than pure commercial consideration. On the other hand, the risk of attrition bias was 

low, and the spill-over effect has been accounted by acknowledging the entrance of other 

MFIs in the sample slums.  
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Another fascinating series of RCT studies are conducted by Karlan and Zinman (2009 and 

2010). Only the 2009 paper is presented in this review as both studies have taken a very sim-

ilar approach. The authors used a field experiment and follow-up survey to measure impacts 

of credit expansion (by the First Macro Bank in Manila) for micro-entrepreneurs with mid-

creditworthy (A credit scoring software was used by the MFI to render disposition based on 

applicants’ household and business information. 31 and 59 were the automatic rejected and 

approved thresholds. Decisions for who scored 31-59, the mid-creditworthy applicants, de-

pended on the MFI’s loan officers’ judgement). These applicants were randomly assigned to 

the approved (intent-to-treatment) groups with 60%, and 85% approval rates and the rest 

were assigned to the rejected (intent-to-control) groups for further assessments. The term 

‘intent’ means that loan officers did not always make the offers as instructed by the soft-

ware though it was highly possible. Randomisation might not be well achieved because of 

the loan officers’ selections on unobservable information (Type 1 bias). Moreover, loan offic-

ers may dissimilarly treat the clients and paid extra attention to the mid-creditworthy clients 

who received loans compared to the high-end clients. This is also a potential threat to valid-

ity (Type 2 bias). Besides, a less creditworthy client who accepted the offer might attribute 

his/her success to the reason of being surveyed and altered behaviours accordingly (Type 3 

bias). The issues of attrition bias and spill-over/in effect are unclear in this study as there is 

no evidence about how characteristics affected the attrition rate (30%) and whether the 

other MFIs have influences on the participants.     

Putting aside the highlighted research designs used by these studies, very little significant 

impacts of microfinance were founded on the well-being outcomes. By testing a large num-

ber of variables, Banerjee et al. (2015) founded no discernible effect on education, health 

and women empowerment within the 15-18 month time period while the effect on house-

hold expenditure and expanding business was significant. It can be regarded as strong evi-

dence that microfinance has no short-term impacts on well-being, which is a popular inter-

pretation in the Economist. The findings of Karlan and Zinman (2009) were a bit more 

complex. They found some evidence that the borrowing amount and profit of clients did in-

crease after participating in the microfinance programmes. However, they appeared to 

shrink their businesses by shedding unproductive employees. The effects of treatment were 

stronger for male and higher-income entrepreneurs. Besides the fact that borrowing house-

holds substituted away from labour into education, no evidence of significant increases in 

well-being was identified. In summary, the contribution of the previous RCTs studies was 

very limited, probably because of the intention-to-treat basis used in estimations and the 
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ignorance of spill-over/in effect. A potential solution would be to replace the mainstream 

well-being indicators by those in the earlier stages of Figure 2.1. Nonetheless, the unproved 

casual relationships between well-being and the early indicators may create another thorny

problem. 

2.4.3 Women Empowerment Studies

The issue of women’s empowerment, which is one of the primary missions to introduce mi-

crofinance, has been addressed in many studies that mentioned previously. In terms of the 

with/without (before/after) research, the Pitt and Khandker serial studies (see 3.1.1), the pa-

pers developed based on their data and methods, and the serial studies contributed by 

USAID have tried to investigate this issue. All this literature used an indicator named ‘house-

hold-decision-marking’ as the major proxy for empowerment. The underlying data for such 

variable were simply collected by asking the participants if they considered themselves able 

to control or affect the household expenditure. While mixed results have been found in 

these quantitative studies, their validity is doubtful because of lack of precise empowerment 

measurements.

On the other hand, a great number of qualitative studies have found evidence that the per-

ception of the female microfinance participants did change in their communities, and they 

were more involved in household and community decision-making. All this evidence, how-

ever, should be regarded as ‘stories’ because most of them were based on sample surveys or 

case studies, such as the studies of Goetz and Sen Gupta (1996) and Hashemi et al. (1996). 

Besides decision-making, the qualitative studies also used a wide range of variables, such as 

mobility, economic security, the freedom from family’s domination, and participation in so-

cial and political life, to proxy the empowerment and investigate the microfinance impact in 

Bangladesh. These indicators, again, might lack credibility, because the relationships be-

tween women empowerment and them have yet to be proven.

In terms of the studies based on other research designs (pipeline or RCTs), Deininger and Liu 

(2013) are the only authors who found positive impacts on empowerment by examining a 

self-help group microfinance project in India using pipeline design. This study is, however,

vulnerable to selection bias and the evidence are untrustworthy. As one of the few RCT stud-

ies, Banerjee et al. (2015) could not find any noticeable microfinance impacts on empower-

ment within 15-18 month time period of study. The authors themselves also pointed out 

that such a short period may be insufficient for the long-run influences to reach observable 
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levels. In addition, the statistical power of this study was limited by potential selection and 

detection bias (see 3.2).                

2.5 Conclusions and Implications

This review has investigated the studies included by comparing their methodologies, results 

and potential biases in detail. Most of the assessed microfinance impacts are found to occur 

in the early stages in the casual chain (Figure 2.1). The studies that focused on the later 

stages were insufficient. Moreover, the majority of findings were statistically insignificant. It 

is also remarkable that a number of studies have detected significant negative influences.

These results are consistent with some studies on the qualitative side.

By comparing and analysing different methodologies used in the previous literature, four im-

plications for further research can be concluded as follows:

1. The indicators and measurements of microfinance impacts need to be more precise,

and greater standardisation of them is necessary. Besides, researchers have to care-

fully consider if there are any potential long-term effects which may not reveal 

themselves in short experiment periods when using the social indicators.

2. Because the current evidence base for the impacts casual relationships is small, 

studies that are focusing deep on specific stages (Figure 2.1) are more necessary 

than those simply link microfinance to the final-stage indicators of well-being.

3. More studies should be implemented on different research designs, especially on 

the well-designed RCTs which use validated impact indicators, in order to reduce the 

systematic risks of bias and provide more convincing evidence.   

4. At last, further comparisons between individual lending and group lending and be-

tween female and male clients are also needed in the new studies, instead of simply 

focusing on the female group lending as the current literature.    
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Chapter 3: 

Delinquency of Microfinance:  

A Two-part Probit Analysis of Cross-MFI Data

------------------------------------------------------------------------------------------------

3.1 Introduction 

Microfinance Institution (MFIs) can be defined as any financial institutions which offer not 

only loans to Micro, Small and Medium-sized enterprises (SMEs), groups and individuals, but 

also other financial services like savings, insurance, and investment advice including training 

programmes to their clients. There are more and more international organisations coming to 

the realisation that Microfinance Institutions ( MFIs ) are veritable and effective channels to 

improve the effectiveness of poverty alleviation programmes in developing countries (Oku-

madewa, 1998). According to Chossudovsky (1998), the World Bank Sustainable Banking 

with the Poor project (SBP) in 1996 has estimated that there were more than 1,000 MFIs in

over 100 countries, and each MFI has a minimum of 1,000 members and with 3 years of ex-

perience. 

The issue of loan delinquency among MFIs has been discussed in many previous studies and 

considered as the primary reason why commercial banks have not shown much interest in 

financing SMEs. According to Balogun and Alimi (1988), loan delinquency can be defined as 

the inability of a borrower to fulfil his/her loan obligation when instalments are due. Be-

cause of the unintended negative impacts on financing, the high frequencies of loan delin-

quency in SMEs lending should be of major concern to policymakers in developing countries. 

In fact, MFIs in developed countries are faced with the same challenge of loan repayment. 

The chance that a lender does not receive its money (plus interest) back from borrowers is 

the most common and often the most serious vulnerability in the MFIs (Warue, 2012). Since 

most loans are unsecured, delinquency can rapidly spread from a few loans to a significant 

portion of the entire portfolio. This contagious effect will be strengthened by the fact that 

microfinance portfolios often have a high concentration in a small number of business sec-

tors such as agriculture and food retail. As a result, borrowers may be exposed to the same 



26

external threats such as lack of demand, livestock disease outbreak, bad weather and etc. 

These factors create volatility in loan portfolio quality and heighten the importance of credit 

risk control. In this regard, MFIs need a monitoring system that highlights repayment prob-

lems clearly and quickly, so that loan officers can focus on the delinquency of clients before 

it gets out of hand.

The sustainability of MFIs highly depends on their ability to collect their scattered loans as 

efficiently and effectively as possible. In other words, to be financially viable, MFIs must en-

sure high portfolio quality with a repayment rate closed to 100%, or at worst low default and

cost recovery. In recent years, there have been more complaints by MFIs regarding the high 

default rates of their clients. Loan delinquency and hence default has started spilling over

deeply into the operations of MFIs in developing countries.

A feature of many loan delinquency models which have been frequently used in prior empir-

ical studies, such as straightforward binary or censored data models, is that the process 

which results in non-delinquency is strongly assumed to be the same as the process which 

determines the intensity of delinquency. For instance, if a borrower characteristic has a sig-

nificant and positive effect on the intensity of delinquency, then a high value of this charac-

teristic will inevitably lead to the prediction of being-delinquent for this client. Such an as-

sumption might fail when there is a proportion of the population of borrowers who will 

never default under any conditions. There is no reason for us to expect this assumption a 

priori. In addition, the information loss is severe as we dichotomize the delinquency data 

into binary format. These considerations lead us to a class of model in which the probability 

and intensity of events can be estimated separately. This type of model is known as the

‘Double-Hurdle’ model which is proposed by Cragg (1971). The model assumes that a bor-

rower must cross two hurdles in order to be delinquent. Borrowers who fall at the first hur-

dle are referred as ‘never-delinquents’ in this study.    

On the other hand, in terms of the current literature, most of the empirical studies only fo-

cus on the effects of business characteristics of micro-enterprises and the credit policies of a 

single Microfinance Institution. Empirical studies related to individual-level socio-geographic 

characteristics with high-quality cross-MFI data is scarce. Moreover, the indicator of delin-

quency or default is usually dichotomized to a dummy variable in the prior studies, and it 

leads to severe information lost. With a unique cross-MFI loan book data which have never 

been used in other studies before, we try to analyse the determinants associated to loan de-
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linquency among the borrowers based on the Double-Hurdle models in this chapter. Our re-

sults show that the Two-Part Model can be applied to heavily skewed loan book data, and

implemented in establishing new credit scoring systems. We also found that engaging in ag-

riculture is generally related to lower probability and intensity of being delinquency in terms 

of arrears. It indicates that governments and MFIs should provide greater supports for poor 

farm households and farm-related business. 

The rest of this paper proceeds as follows: Section 3.2 reviews the literature related to loan 

delinquency and loan default. Section 3.3 describes the summary statistics of data. Section 

3.4 presents the theories, models, and transformation techniques for estimation. Section 3.5

reports the empirical results. Conclusions and discussion are presented in the final section.  

3.2 Literature Review

3.2.1 The concepts of loan delinquency and loan default

A loan is delinquent when an instalment payment is late. Delinquency is measured because 

it indicates an increased risk of loss, warnings of operational problems, and may help to pre-

dict how much of the portfolio will eventually be lost because it never gets repaid. There are 

three broad types of delinquency indicators: 1. collection rates which measure amounts ac-

tually paid against amounts that have fallen due; 2. arrears rates which measure overdue 

amounts against total loan amount; and 3. Portfolio at Risk in a certain period of time, which 

measure the outstanding balance of loans that are not being paid on time against the out-

standing balance.

Loan delinquency becomes loan default as the chance of recovery becomes minimal. By defi-

nition, loan default occurs when the borrower does not make required payments or in some 

other way violate a loan covenant (conditions) of the debt contract (Ameyaw-Amankwah, 

2011; Murray, 2011). The potential reasons for loan default can be either objective (unable 

to repay), or subjective (unwilling to repay), or more realistically a combination of both of 

them. In this study, ‘delinquent’ and ‘default’ have the same meaning and will be used inter-

changeably.  

Moreover, Pearson and Greeff (2006) refine the standard of loan default as a risk threshold 

that describes the point in the borrower’s repayment history where he or she missed at least 

three instalments within a 24-month period. This represents a point in time and indicator of 
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behaviour; wherein there is a demonstrable increase in the risk that the borrower eventually 

will truly default, by ceasing all repayments. This definition is consistent with international 

standards. It is necessary because consistent analysis required a common definition. Such

definition does not mean that the borrowers had entirely stopped paying the loans and 

therefore been referred to collection or legal processes, or from an accounting perspective 

that the loan had been classified as bad or doubtful, or actually written-off.

3.2.2 Determinants of loan delinquency or default in microfinance

A study conducted by Okorie (1986) in the Ondo State of Nigeria indicated that the repay-

ment ability and consequently high default rates are associated with nature, time of dis-

bursement, supervision and profitability of enterprises. Other critical factors contributed to 

loan delinquencies include: interest rate, type of loan, term of loan, borrowers’ income, poor 

credit history, and transaction cost of the loans. According to another study conducted by 

Ahmad (1997), causes of loan default also include: lack of willingness to pay loans that cou-

pled with the diversion of funds by borrowers, intended negligence and unsuitable appraisal 

by credit officers. Similarly, Kohansal and Mansoori (2009) considered that most defaults 

arose from an unwillingness to repay loans, loan diversion, and poor management proce-

dures. According to their study, the most important factors that led to loan delinquencies 

include: interest rate ceilings imposed by the government, monopoly power in credit mar-

kets exercised by informal lenders, large transaction costs incurred in loan applications, 

moral hazard, and many more.  

3.2.2.1 Main findings related to individual socio-geographic characteristics  

Marital status is a very common variable in the default - repayment relevant literature. It is 

often considered a sign of responsibility, reliability or maturity on the part of borrowers. The 

relationship between the borrowers’ marital status and loan repayment performance re‐

mains controversial. We can expect that the probability of default payment is higher for sin-

gles than married individuals. More often than not, single borrowers tend to be less respon-

sible (Dunn and Kim, 1999; Vogelgesang, 2003). By analyzing U.S. consumer loans, Avery et 

al. (2004) suggest that married individuals are less likely to default compared to those who 

have never been married, because they may have a second income to rely on in case of un-

employment or illness. Similarly, Kocenda and Vojtek (2009) indicate that married borrowers 

have a lower default rate in Czech retail banking. We should be aware that the assumption 

of a reliable secondary income of the spouse may not be plausible in developing countries. 

But Vigano (1993) and Vogelgesang (2003) do find that being married is a sign of financial 
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stability in developing countries. As another explanation, Sharma and Zeller (1997) indicate 

that borrowers with children do not wish to risk the privileges combined with the repayment 

of loans.

On the other hand, Dinh and Kleimeier (2007) claim that the probability of default is higher 

for married than single borrowers as the former are generally related to a greater number of 

dependents (such as children), which in turn reflects a financial pressure on a borrower’s 

ability to repay a loan. Bandyopadhyay and Saha (2011) indicate that the risk of default will 

increase as the number of family members of the borrower increases, while a secondary in-

come does lead to a lower default probability. According to the study of Ugbomeh et al. 

(2008), we can see that household size affects the loan repayment in a negative way, and a 

greater family size might induce the borrower to use the loan for unintended consumption.

But in this study, we still expect the positive effect to outweigh the negative one and there-

fore married clients to have a low probability of default.

H1. Married individuals have a lower probability of default and lower intensity of delin-

quency.

Concerning the associations between age and the repayment of a micro loan, the evidence is

ambiguous. In the context of Vietnamese retail banking, Dinh and Kleimeier (2007) found 

that default rates increase steadily with age. Regarding the Indian housing loans, Bandyo-

padhyay and Saha (2011) have come to similar results. They found that younger borrowers 

are less likely to default on their loans than older ones. For these findings, there are three 

major explanations: 1. it can be assumed that younger borrowers are more independent, 

free from financial burden such as education expenditure of children, and will, therefore, be 

less likely to default; 2. older borrowers may already have one or more loans and over-

stretch their financial capabilities; and 3. borrowers in a high age bracket have fewer service 

years left and a limited ability to reduce financial constraints.   

On the contrary, a number of studies indicate that probability of loan default is negatively 

related to age (Arminger et al., 1997; Dunn and Kim, 1999). Vogelgesang (2003) and Van 

Gool et al. (2012) found that age has a risk-reducing effect. Besides, Vigano (1993) also as-

sumes that a higher age is a symptom of stability of finance, and it leads to a reduction of 

default rate in developing countries. In reality, it is often assumed that older borrowers are 

usually wiser, more risk averse, more knowledgeable, and more responsible than younger 

borrowers and therefore, will be less likely to default. As another possible explanation, 
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Reinke (1998) argues that older borrowers are less likely to look for better employment op-

portunities than younger people. Older clients rely heavily on their loan-supported busi-

nesses and are therefore less likely to fail on the repayment of a loan.

While the previous studies do not suggest a clear trend, we argue that age might have a 

non-monotonic effect on repayment rates. We can expect that the youngest and oldest 

groups of borrowers to have the highest repayment rates, while the middle-aged consumer 

group would have the lower repayment rates.

H2. The youngest and oldest borrowers have a lower probability of default and a smaller in-

tensity of delinquency, while the middle‐age group of consumers have a higher probability 

of default and a larger intensity of delinquency.

Based on the literature, it has been claimed that women demonstrate much better repay-

ment behaviour in terms of microfinance is one of the most discussed facts (Dinh and Klei-

meier, 2007; Roslan and Mohd Zaini, 2009; Salazar, 2008; Schreiner, 2004; Viganò, 1993). 

They default less frequently on loans probably because they generally enjoy the hard‐work 

ethic and the culture of financial discipline (Bhatt and Tang, 2002; Pitt and Khandker, 1998). 

As another explanation, repayment rates may be expected to be higher for women simply 

because they are more likely to choose relatively less risky projects (Sharma and Zeller, 

1997). Croson and Gneezy (2009) also suggest that women are more risk-averse compared

to men.

The Food and Agriculture Organisation of the United Nations (2005) has conducted an in-

depth analysis of female farmers in Nicaragua. According to this investigation, a great pro-

portion of women in the northern regions of Nicaragua live in the role of being a housewife 

and mother. The local culture does not consider women to be professional farmers. Hence, 

women are often excluded from training, networking, and consultancy. In order to acquire 

income and feed their families with fewer opportunities and resources, the local women 

were more dedicated to the agricultural projects available for them. 

H3. Female borrowers have a lower probability of default and a smaller intensity of delin-

quency.

In classical banking, a higher level education indicates a lower probability of default (Ko-

cenda & Vojtek, 2009). Better educated individuals would have a higher ability to under-

stand and analyze complex information, and have higher entrepreneurial social competence 

enabling him/her to make the right business decisions (Bhatt and Tang, 2002). On the other 
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side, whether such relation is consistent in the microfinance industry is doubtful. The first 

reason is that most of the clients who use micro loans participate in business activities that 

require very little knowledge but working experience and skills. For instance, it is sensible to 

assume a weak relationship between agricultural production and middle school education. 

The second reason is that better-educated borrowers have less difficulty to access to other 

sources of credit. Therefore, Borrowers with very limited education may highly depend on 

the micro loans and thus more stable. Nevertheless, as the mainstream empirical results 

about the associations related to education are positive, in this paper, we just keep our hy-

pothesis like the ones in the prior studies for better comparison.  

H4. Borrowers with higher educational levels have a lower probability of default and a 

smaller intensity of delinquency.

3.2.2.2 Main findings related to business characteristics  

By surveying different formal banks in India, Berger and De Young (1995) identified the main 

causes of loan delinquencies from the industrial sector. These include an improper selection 

of entrepreneurs, deficient project viability analysis, inadequate collaterals against loans, in-

appropriate schedule of loan repayment, lack of follow up measures, and default due to nat-

ural disasters. Similarly, Sheila (2011) also stressed that inadequate financial analysis is a cru-

cial cause of loan default. It happens when the officers in the loans department do not take 

a careful study of the applicants to ensure that they have sound financial bases such that the 

risk of loan default can be mitigated. Besides, he pointed out that in Uganda, the issue of in-

adequate loan support is another cause of loan default, and it is very important that the loan 

officers collectively ascertain the positions in which the borrowers find themselves. How-

ever, that was not the case, and the given support was irrelevant to which leaves the busi-

ness crumbling and leads to loan default.    

On the other hand, Sheila’s (2011) study also pointed out that illiteracy and inadequate skills 

are another causes of loan default. A large proportion of borrowers are engaged in tradi-

tional and low paying businesses which are rarely diversified. It implies that they did not 

have enough alternative marketable skills that can benefit them as their current businesses 

do not function properly. In addition, most of them have no idea how to read, write, and 

make simple calculations. As a result, it was very difficult for the borrowers to account for 

their businesses when the lenders made mistakes, and they were held liable for the loan.  
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Poor business practice is yet another cause. According to Gorter and Bloem (2002), non-per-

forming loans were usually caused by an inevitable number of wrong business decisions by 

borrowers and plain bad luck (unexpected price changes for materials, bad weather, etc.). 

Under such circumstances, the holders of loans can make allowances for a share of non-per-

formance in the form of bad loan provisions. Alternatively, they may spread the risk by tak-

ing out insurance. Similarly, Kasozi (1998) indicated that there are considerable weaknesses 

of the borrowers over which the lenders have very little control. Business management is an 

essential part that needs to be emphasized. He found that many borrowers lack the tech-

nical skills such as keeping records and checking on business performance. Most borrowers 

never plough back the profits into business, and it leads to loan default in the long run.   

The literature on SME loans in developing countries appears sparsely populated. The study 

conducted by Munene and Guya (2013) in Kenya shown that one of the causes of loan de-

fault is the characteristics of the business. Their study shows that probability loan default is 

extremely high (67.9%) in the manufacturing sector. This is followed by that of the service 

sector (64.0%), and then by the agriculture sector (58.3%). In comparison, the retail sector 

records the lowest loan default rate (34.9%). This could be attributed to the observation that 

the retail sector deals with fast moving products on high demand, which could transmit into 

good business performance and increase revenue that accounts for lower default rate. Using 

the dataset of a commercial MFI in Tanzania, Weber and Musshoff (2012) found that agricul-

tural firms are less often delinquent when paying back their loans than non-agricultural 

firms. A possible explanation of these results is that agricultural firms face higher obstacles 

to access to credit. According to Baesens et al. (2011) and Viganò (1993), agriculture is as-

sumed to be the safest sector due to the higher social control and typical lower volatility. 

Services and small trades are assumed to be positively related to the categories with high 

default risk owing to their inherent volatility and their dependence to a certain degree of 

technology.

However, Fidrmuc et al. (2010) have studied the loan default rates of 700 SMEs in Slovakia 

for the period from 2000 to 2005. They found that the default rates clearly differ between 

business sectors, and the service and agriculture sectors have higher probabilities of default 

than manufacturing, retail, and construction sectors. In another study with the dataset of an 

MFI in Madagascar, Weber and Musshoff (2013) indicate that bad weather conditions, such 

as an excessive amount of rain in the harvest period, will increase the default probabilities of 

loans granted to small-scale farmers. It seems that there are no consistent results on agricul-

ture yet. 
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H5. Credit destined to the agricultural sector has a lower probability of default and a smaller 

intensity of delinquency.

3.3 Data

The raw data for four MFIs from different countries located at South America and Sub-Sa-

haran Africa have been extracted from administrative loan books gathered by Micro Finanza 

Rating, which is a private and independent international rating agency specialized in micro-

finance. It contains two MFI types, with three NGOs (CACIL Honduras, INSOTEC Ecuador, and 

FINCA Peru) and one cooperative (MICROCRED Madagascar). All loan books were compiled 

by the MFIs and submitted to Micro Finanza Rating between 2010 and 2011. As the percent-

ages of missing values are very low, the impact brought by missing values is marginal. Hence, 

a simple listwise deletion approach is applied here. On the other hand, the occurrence of 

outliers in the data used for this papers is limited. With no signs of correlated outliers, sim-

ple winsorizing and trimming (Wainer, 1976) are adopted. All the observations of loan 

amount under (or above) a 5% (95%) percentile are replaced by the limits. The data of age, 

time to maturity, arrearage, and the length of delayed repayment are trimmed in the same 

way with different percentiles (see footnotes of Table 3.1). In order to represent the actual 

population proportions of different countries (UN World Population Prospects, 2010), the 

raw data is also processed by weighted random selection. In the end, our sample consists of 

32,673 clients. Ecuador, Honduras, Madagascar, and Peru, take up 21%, 11%, 28.4% and 

39.6% in the sample respectively. 

It should be mentioned that the analysis in this study is based on clients with approved loans 

only. The standard loan approval processes applied by the MFIs are unknown, and no gener-

alisations can be made for a random sample of all microfinance applications. The issue of ob-

taining the default risk profile of rejected applicants is called reject inference. In general, ab-

solute reliable reject inference cannot be achieved (Hand and Henley, 1993). Besides, the ef-

fect of sample election problem in credit portfolios depends on the rejection rate and be-

comes influential only when the rejection rate is extremely high (Crook and Banasik, 2004). 

Therefore, the models developed in this study are applied to the borrowers who have been 

approved by the four MFIs in our sample, and the problem of rejection inference has been 

assumed to be negligible.
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There is no universally accepted approach to choose the explanatory variables for credit 

scoring (Dinh & Kleimeier, 2007). The explanatory variable choice in the case study pre-

sented in this paper is based on prior studies and expert advice from the microlender staff. 

All explanatory variables used in this study can be classified into two categories: 1. socio-de-

mographic characteristics (marital status, gender, age, and education level); and 2. loan pur-

pose (consumption, buy a fixed asset, agriculture, commerce, manufacture, service, and fi-

nancing). The control variables include two categories as well: 1. loan status (loan amount 

and time to maturity); and 2. MFIs.

This is an unusually short list; most scorecards for microfinance institutions would also use 

the income, occupation, and the number of dependents; ownership of a phone, house, or 

car; and measures of the size and financial strength of the business. Therefore, the research 

in this paper is conservative and mainly focusing on the variables stated in the hypotheses. If 

a scorecard with these characteristics works, then a scorecard with a full complement of 

characteristics on the borrowers would work even better.

For the dependent variable of loan default or delinquency, authors often need to create 

their own proxies when the rating agency requires a specific variable or the required data is 

not directly available. For example, Schreiner (2004) defines a bad customer to be 15 days 

late on the repayment, Vogelgesang (2003) characterizes default loans by an average of 10 

days overdue per payment, while some other authors like Van Gool et al. (2012) focus on 

late repayment that indicated by an average two days late on the installments. As results, 

the findings in these studies become incomparable, and their practical implementations are 

limited. 

In order to standardize the measurement of loan default, there are three variables used in 

this paper: 1. the current amount of arrears; 2. the number of days of delayed repayment; 3

Portfolio at Risk (PaR), which is calculated by dividing the outstanding loan amount with ar-

rears over a particular period (e.g., PaR30 denotes Portfolio at Risk over a 30-day period), 

plus all restructured loans, by the outstanding gross portfolio as of a certain date.  

However, occasional late payment of a few days does not constitute a problem to MFIs, and 

our rigorous definition may lead to overestimation of default risk. To solve the issue, a sepa-

rate regression analysis is necessary to capture the intensity of loan default. Therefore, the 

Two-Part Model and the Double-Hurdle Model (which will be discussed in the next section) 

should be applied in this case.
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Table 3.1 summaries the mean, standard deviation, minimum, maximum, and quartiles, for 

all variables in our sample. We see that the average outstanding loan amount is $970 and 

the average time to maturity is 317 days. Meanwhile, these two numbers rise to $1360 and 

457 days respectively in the subsample of clients with non-zero arrears. It indicates strong 

associations between the outstanding loan amount, time to maturity, and the probability of 

default. Comparing the medians and means, we also see that the outstanding loan amount is 

heavily skewed to the right. 25% of our clients borrowed less than $232 and 50% of them 

borrowed less than $580. These statistics well describe the primary mission of microfinance 

– providing small loans and saving facilities to those who are excluded from commercial fi-

nancial services.  

As far as the repayment variables are concerned, the dummy of late payment equals 0.07 on 

average, which means that 7% of clients are delinquent or have defaulted. For these clients 

specifically, the arrearage is $238, and the length of delayed repayment is 230 days on aver-

age. By measuring the delinquency loans based on the standardized schedule RC-N, the de-

linquency rate of the subsample1 including CACIL and FINCA is 2.65% in 2010. 

For socio-demographic variables, we see that 52% clients are married and 14% of them are 

cohabiting with their partners. The rest of them are either single, divorced, or widowed. The 

statistics show that the probability of loan default might associate with marriage and single 

status to some extent. The proportion of married clients for the defaulted group is 7% lower 

than that for the normal group, and the proportion of single clients for the defaulted group 

are 12% higher than that for the normal group. On average, 65% of clients in MFIs are

women. The 75th percentile in the distribution of female clients is 1.0. What is more, the cli-

ents in our sample are 39 years old on average. 12% of clients are completely illiterate, and 

56% of them have completed secondary or tertiary education. 

For loan purposes variable, 56% of outstanding loans are invested in commercial activities. 

The second and the third biggest sectors are agriculture and service, which take up 16% and 

13% of loans respectively. The proportion of investment in commerce for the defaulted 

group is 10% lower than that for the normal group. Hence, there might be a potential associ-

ation between loan purpose and the probability of default as well.

Table 3.2 shows the correlation matrix of ten different loan default indicators and all explan-

atory variables. As can be seen from the table, the selection of loan default indicator has a

                                                          
1 Unable to calculate the default rate for the hold sample as INSOTEC and MICROCRED have not rec-
orded the length of delayed repayment in their administrative loan books. 
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substantial influence on the correlation coefficients of all variables. For example, the relation 

between age and the probability of default is found to be significant and negative in columns 

(1) to (5) and (7), but it becomes insignificant in the other columns. We can see that the co-

efficients of some variables have opposite signs in different panels (PaR30 vs Delayed Repay-

ment), such as cohabitation. These statistics bear out the former supposition that even a 

slight modification of the measurement of loan default may lead to completely different 

conclusions. The loopholes in definition make the MFIs extremely difficult to establish a reli-

able credit scoring model, in which the significances of explanatory variables are irrelevant 

to the risk preferences of microlenders.    

As the measurement of loan default is standardized in this study, we focus on the results 

presented in column (1) and (6) only. As can be seen from column (1), there is a negative 

correlation between marriage and PaR30 (-0.07), indicating that married borrowers have 

better repayment rates (H1). The correlation between both age and education and the 

PaR30 are also negative (H2, H4). Loan purposes variables indicate that lending to clients en-

gaged in agriculture occurs in significant lower PaR30 than lending to clients engaged in con-

sumption, purchasing a fixed asset, and commercial activities (H5). Additionally, no signifi-

cant relationship between gender and PaR30 is found (H3). 

On the contrary, column (6) tells a completely different story. The length of being in delin-

quent is irrelevant to both marriage and age (H1, H2), while it positively associates with co-

habitating and single clients. Unexpected positive relations have been found between edu-

cation levels and the length of being in delinquent (H4). In terms of loan purposes, the corre-

lations between the length of delayed repayment and both agriculture and commerce have 

changed signs (H5), which is unexpected as well. Both abnormal results will be discussed in 

detail in the empirical results section.

3.4 Methodology

3.4.1 Econometrics models for censored data

The objective of this study is to estimate a default intensity equation using individual-level 

data. However, such data are characterized by having a large cluster of zeros denoting “no 

arrears”, or it would denote that a large number of individuals will never default in any situa-

tion. In fact, some clients may deliberately choose to default, but in practice, the infor-

mation is also set to zero. This feature of the data is known in the literature as ‘censoring’. 
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Censored data may appear to present some methodological difficulties. The cluster of zeros

is too large to be ignored econometrically and so the conventional estimator, OLS, seems un-

suitable for the purpose of this study. Hence an alternative estimator has to be considered.

When choosing an econometric estimator, one has to make an assumption of the mecha-

nism explaining the zero. Although in practice the nature of this zero may not be entirely 

known, standard econometric approaches which are conventional in empirical work have at-

tempted to deal with such an issue under different assumptions. The most common econo-

metric approach is the Tobit model, although more flexible estimators have emerged over 

the years such as the Two-Part model and a closely related one, the Double Hurdle model.

For this analysis, the preference lays on the Two-Part model (2PM hereafter) to estimate the 

intensity of loan default in sample countries. The empirical evidence presented previously 

shows that this model provides the best fit given the data available. Although the Tobit esti-

mator has been ruled out for this analysis, a discussion of this model has been included since 

it provides an ideal starting point for introducing the actual model being estimated. The ex-

position provided below is largely based on standard econometric text-books given that 

these estimators are conventional methodologies for the problem at hand. The exposition of 

the Tobit model and Double Hurdle model is mainly based on that provided in Moffatt 

(2005), whilst the discussion of the 2PM is based on the exposition by Cameron & Trivedi 

(2005). Given the differences in notation found in different studies, a common notation has 

been utilized.

3.4.2 The Tobit model

The analysis of series containing a high proportion of zeros has attracted the attention of re-

searchers, not only for analyzing the intensity of loan default but for a wide range of eco-

nomic applications. The reason lies in the observation that zeros may represent two differ-

ent processes. Therefore statistical methods treating these by one distribution, which is in 

the case of OLS, appear to be limited (Pudney, 1994). The first econometric model to suc-

cessfully treat the censoring information with two distributions is due to Tobin (1958). This 

model, commonly known in the literature as “Tobit” for its resemblance to the Probit model, 

would specify the intensity of default in terms of an index equation such as:

𝑄𝑖
∗ = 𝒙′

𝑖𝛽 + 𝜎𝜀𝑖

𝑄𝑖 = 𝑄𝑖
∗     𝑖𝑓 𝑄𝑖

∗ > 0;  𝑄𝑖 = 0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (1)
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where 𝑄𝑖
∗ is the latent dependent variable described before, 𝒙𝑖 is a vector of individuals’ so‐

cioeconomic and demographic characteristics affecting the intensity of loan default, 𝜎 is a 

scale parameter and 𝜀𝑖 is the error term which reflects the unobserved heterogeneity in the 

utility maximisation solution process. The model in (1) is linear in regressors with an additive 

error that is normally distributive and homoscedastic such that:

𝜎𝜀𝑖~𝑁𝐼𝐷(0, 𝜎2)  (2)

The model represented in (1) corresponds to the standard Tobit model (Tobit type I in the 

literature) where the non-negativity constraint is imposed. In order to estimate the parame-

ters in (1), a Maximum Likelihood (ML) routine is usually applied. The log-likelihood function 

of the Tobit model can be written as:

𝑙𝑜𝑔𝐿(𝛽, 𝜎2) = ∑ 𝑙𝑜𝑔𝑃{𝑄𝑖 = 0}𝑖∈𝐼0
+ ∑ 𝑙𝑜𝑔𝑓(𝑄𝑖)𝑖∈𝐼1

 (3)

where the indexes 𝐼1 and 𝐼0 represent the set of zeros and positive values respectively and 𝑓

is a specified function. The likelihood function reveals several features of the model that are 

relevant for choosing an appropriate estimator for modelling the intensity of loan default. 

For example, it is easy to see that the Tobit model decomposes the two processes involved

with two different densities. On one hand, the density that represents the probability 𝑄𝑖 = 0

is given by

𝑃{𝑄𝑖 = 0} = 1 − 𝛷(𝒙′𝛽/𝜎) (4)

where 𝛷 is the univariate standard normal cumulative distribution function (CDF). On the 

other hand, the density representing the distribution of positive, which is just the truncated 

(at zero) normal distribution. The conditional expectation is given by:

𝐸{𝑄𝑖|𝑄𝑖 > 0} = 𝒙′𝛽 + 𝜎
𝜙(𝒙′𝛽/𝜎)

𝛷(𝒙′𝛽/𝜎)
   (5)

where 𝜙 is the standard normal probability distribution function (PDF). Technically then, this

model accommodates the censoring of the information into a formal statistical model.

The Tobit model, however, relies upon several important assumptions that have been found 

unsuitable not only for this study but in many applications. First, it is important to point out 

that with this model the intensity of default is generated by the following process:

𝑄𝑖 = 𝑚𝑎𝑥(𝑄𝑖
∗, 0)   (6)

Therefore, it assumes that the nature of censoring corresponds to a ‘corner solution’. Empir-

ically, it would imply that ‘at current age, gender, marital status and etc., the individual will 
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never default’, and is, therefore, a corner solution to his or her utility maximisation problem. 

As a result, substantial changes in individual characteristics could result in positive repay-

ment. This may not hold true in this case. In the literature, it is more common to assume 

that the zero arises because the individual deliberately chooses to default in microfinance. 

Thus, one of the main limitations of the Tobit model is that it rules out the possibility of a 

“true zero”. In other words, it rules out the possibility that individuals do not repay purely by 

choice and not because of their current financial conditions. Perhaps failing to distinguish 

corner solutions from “true zeros” is one of the main reasons why the Tobit model is usually 

rejected.

Second, even if the assumption of the “corner solution” is accepted, the structure of the To‐

bit model is viewed as too restrictive given that this model encompasses the two distribu-

tional processes into a single equation. Verbeek (2008) also explains that ‘exactly the same

variables affecting the probability of a non-zero observation determine the level of a positive 

observation and, moreover, with the same sign’ (p.227). Empirically, this has been found un-

satisfactory especially within the context of loan repayment. It may be the case that factors 

determining to be in default and factors determining the level of loan default are different.

Thirdly, the assumptions on which the model relies on unbiased and consistent ML esti-

mates are too strong to work empirically. It has been stated that the error term in (1) must 

be homoscedastic and normally distributed. The empirical evidence suggests that these con-

ditions are difficult to meet largely because data, in which this type of regression has been 

considered, is usually by nature highly skewed. By far the biggest concern is the presence of 

non-normally distributed errors which, in such a case, calculated estimates are inconsistent.

For all the reasons mentioned above, the Tobit estimator is usually rejected in favour of its 

alternatives. Fundamentally, alternative estimators are models flexible enough in capturing 

the different determinants involving the process of the probability of encountering positive 

outcomes and the determinants involving the level of loan default. However, when the pro-

cess in which the zeros are generated is unknown, most attention is paid to the convenience 

of alternative estimators simply because they rely on weaker distributional assumptions for

consistent estimates. The 2PM presented below successfully addresses both issues.
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3.4.3 The Two-Part model (2PM)

The underlying assumptions that motivate the use of the Tobit model within the context of

loan repayment appears to be too restrictive. Fundamentally because of the empirical evi-

dence

favours the view that the intensity of default arises from an individual’s subjective choice of 

being in default.

As a result, there is an interest in disentangling the choice of default and the actual intensity 

of default which is in fact observed. Thus, an alternative estimator for the Tobit model is 

usually applied, namely the 2PM. This model provides more flexibility for determining the 

probability of observing default and the observed outcome. As an alternative estimator, the 

intensity of default is modelled by two separate processes: the first process denoted as “par‐

ticipation” which accounts for the censoring mechanism and the second process denoted as 

“intensity”, which accounts for the outcome or level of loan default. In its general form, the 

model can be written as:

𝑓(𝑄|𝑥) = {
𝑃𝑟[𝑑 = 0|𝑥]                                𝑖𝑓 𝑄 = 0

𝑃𝑟[𝑑 = 0|𝑥]𝑓(𝑄|𝑑 = 1, 𝑥)      𝑖𝑓 𝑄 > 0
    (7)

where 𝑓 is a specified density function and is an indicator variable equal to 1 for a non-de-

faulted client, 0 otherwise. This model is also usually referred to the literature as Cragg’s 

model (Cragg, 1971) or simply the Hurdle model. The model is appealing for its simplicity in 

estimation. Usually the participation equation is estimated by means of a Probit model. In 

turn, the intensity equation can be estimated say, by OLS with the sub-sample of positive 

values of Q. The expression in (7) can be represented by:

PARTICIPATION FUNCTION

𝑑𝑖 = 𝒙′
𝑖𝛽 + 𝜀1𝑖      𝜀1𝑖~𝑁[0,1]

𝑑𝑖 = 1     𝑖𝑓 𝑄𝑖 > 0,      0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.    (8)

INTENSITY FUNCTION

𝑄𝑖 = 𝒙′
𝑖𝛽 + 𝜀2𝑖       𝜀2𝑖~𝑁[0, 𝜎2]

𝑄𝑖 = 𝑄𝑖   𝑖𝑓 𝑄𝑖 > 0,      0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.    (9)

One important feature of the 2PM is that it relies on the assumption that 𝜀1𝑖 and 𝜀2𝑖 are un-

correlated. This means that the intensity is identified based on “selection on observables” 
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(Cameron and Trivedi, 2005). There is, however, a discussion of whether correlation be-

tween 𝜀1𝑖 and 𝜀2𝑖 should be allowed which in such a case, a closely related estimator namely 

the ‘heckit’ estimator would become relevant. The heckit estimator is a consistent and alter-

native estimator to the Heckman model (Heckman, 1979) and although it is not an efficient 

estimator it is computationally simpler than the usual Heckman ML estimator. The heckit es-

timator is also a type of 2PM in which the participation equation is based on a Probit model 

just as in (8) but the, intensity equation also includes the Inverse Mills Ratio. It is usually mo-

tivated by the “sample selection” grounds which are a closely related issues to the two 

mechanisms explaining the cluster of zeros: the ‘corner solution’ which has been ruled out, 

and the ‘abstention’ or ‘choice’ which is more in accordance with the existent literature.

Even when sample selection is not a problem of concern, many researchers still see the 

heckit estimator as an ideal alternative to the 2PM. However, depending on the research 

question, caution should be taken when choosing the appropriate econometric model given 

each estimator produces results with different interpretations. An interesting discussion 

concerning which estimator should be used is given by Madden (2008). His analysis pointed 

out several criteria that should be taken into account before choosing between the 2PM and

the heckit estimator. On theoretical grounds, Madden (2008) doubts whether the heckit es-

timator is relevant for analyzing, in particular, the intensity of default given that the predic-

tion is based on “potential outcomes”. This contrasts with the 2PM where prediction is 

based on “actual outcomes”. In loan default studies, the main concerned is on the latter.

Moreover, at a more technical level, the issue of potential versus actual outcomes relates to

the fact that the 2PM is better suited to estimate the “unconditional mean” of 𝑄𝑖 therefore 

inferences about unconditional partial effects can be made (Mullahay, 1998). In contrast, the 

heckit estimator is designed to estimate the “conditional mean” of 𝑄𝑖 and to correct for se-

lectivity bias. Thus, “unconditional partial effects” are more difficult to calculate. Neverthe‐

less, even if this difficulty is overcome, it remains an empirical question whether correlation 

between the two equations is relevant and/or sample selection turns out to be an issue that 

should be addressed given the problem at hand. Otherwise, the 2PM is the better alterna-

tive available to the Tobit model. 

Lastly, in empirical applications, the practicality of the heckit estimator or the Heckman 

model, in general, has been questioned. This has to do with whether the same regressors 

should be used in the participation and intensity equations or if the exclusion of some varia-
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bles should be imposed. This is important because under circumstances of no exclusion, add-

ing Inverse Mills Ratio as an additional regressor may lead to a multicollinearity problem. 

Usually, the same regressors are used in both equations to test whether the factors affecting 

the probability of being defaulted are the same as those factors affecting the level of de-

fault, regarding both the sign and the statistical significance. For the problem at hand, it 

seems reasonable to follow this approach although there is no reason why it should be so 

even when collinearity is not suspected. However, when a collinearity problem is present, 

exclusion restrictions must be imposed. It is commonly imposed in the intensity equation. An 

empirical difficulty arises given that there is no clear guidance to which variables should be 

excluded. Thus, in the absence of clear choices for exclusions, particularly when collinearity 

persists, on practical grounds the heckit estimator is not an ideal estimator to use.

In summary, from the most common models of censored data, this analysis will employ the 

2PM for modelling the intensity of default. This model has been found to be flexible enough 

to recognise the most plausible mechanism explaining the cluster of zeros which according 

to the existing literature is by “choice” or “abstention”. Also, given that there is no reason to 

believe that correlation between the two equations (participation and intensity) and selec-

tion bias would be an issue of concern, the heckit estimator will not be considered. There-

fore, the methodology will be restricted to estimate a Probit model for participation in the 

first stage and the second stage, an alternative procedure to the usual OLS is employed to 

avoid retransformation problem. This is further explained in the last subsection.

3.4.4 Cragg’s Double-Hurdle model (DH) 

In fact, besides the two models introduced above, the 2PM model and heckit model, the 

Double Hurdle family has two other members: Cragg’s (1971) Double Hurdle model (DH), 

and the Full Double-Hurdle (FDH) model. The major differences and are based on two 

aspects: a) the independence between the residuals of participation and intensity function; 

and b) the dominance (or first hurdle dominance) which implies that no individual is 

observed at a standard corner solution and that once the first hurdle has been passed, 

standard Tobit censoring is no longer relevant (Jones, 1989). Therefore, the selection criteria 

of the four models are as follows:

 M1: Independent but NOT Dominance: Cragg's (1971) Double Hurdle model.

 M2: Dominance but NOT Independent: Heckman's selection model, or heckit model.

 M3: Independent AND Dominance: Two-Part model.

 M4: NEITHER Independent NOR Dominance: Full Double Hurdle model.



43

In this paper, we have assumed that the two equations (participation and intensity) are un-

correlated as discussed previously. Hence, M1 and M3 should be our potential choices be-

cause they rely on the assumption of independence. Regarding the second assumption, 

technically speaking, first hurdle domination is not very convincing. Empirically, it would im-

ply that at current income, current loan amount, with certain characteristics (gender, age,

etc.), the client will never repay the loans, and is at a corner solution to his or her utility max-

imisation. This may not hold true given the financial products in question. It is more com-

mon to assume that zero arises because of the client's financial decision: comparison be-

tween investment return and penalty of delay, balancing between livelihood expenditure 

and repayment. By releasing the assumption of first hurdle domination, zero can be 

generated from two unobservable sources. Therefore, it is interesting to include and com-

pare the results of both M1 and M3 in this paper. If the results are significantly different 

from each other, we might infer that the second unobservable source (client’s financial deci-

sion) is the main reason for loan default. If the results are very similar, we might infer that 

the clients expected to repay their loans as soon as possible. The insufficient fund is the 

main reason for loan default.   

The basic form of the hurdle model was introduced by Cragg (1971), and its statistical prop-

erties are well established in the literature (see Pudney (1994) and Smith (2002). A repre-

sentative example is given by García and Labeaga (1996). They define the two hurdles and 

the way in which they interact with the dependent variable as follows:

𝑑𝑖
∗ = 𝒙′

1𝑖𝛽1 + 𝜀1𝑖

𝑦𝑖
∗ = 𝒙′

2𝑖𝛽2 + 𝜀2𝑖     (10)

where 𝑑𝑖
∗ denotes whether individual is a defaulted client or reports non-zero delayed re-

payment of his/her loan (latent participation variable) therefore:

𝑑𝑖 = 1     𝑖𝑓 𝑑𝑖
∗ > 0,      𝑑𝑖 = 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.    (11)

and 𝑦𝑖
∗ is the latent dependent variable such as that:

𝑦𝑖 = 𝑦𝑖
∗     𝑖𝑓 𝑑𝑖

∗ > 0,      𝑦𝑖 = 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.     (12)

where 𝑦𝑖 is the observed intensity of delayed repayment. 𝑥𝑖 is a vector of individuals’ char‐

acteristics (i.e socio-economic and/or demographic), 𝛽𝑖 is a vector of parameters to be esti-

mated and 𝜀𝑖 is the error term. As the model produces two error terms, these are assumed 

to follow a (bivariate) normal distribution with zero mean and constant variance such that:



44

[
𝜀1

𝜀2
] ~𝑁 {[

0
0

] , [
1 𝜌𝜎

𝜌𝜎 𝜎2]}     (13)

3.4.5 The Box-Cox transformation and likelihood functions

Having a large cluster of zeros, however, is not the only methodological difficulty encoun-

tered. An additional characteristic commonly present is that for those individuals reporting 

delayed repayment, the distribution of the data appears (highly) skewed to the right and ex-

hibits non-constant variance (Tauras, 2005). This implies that using data in its original struc-

ture may lead to inefficient or even inconsistent estimates depending on the econometric 

model used. In fact, all of the models outlined in this section rely heavily on the assumption 

of normality in the error terms: without normality, the property of consistency of the Maxi-

mum Likelihood estimation fails to hold. Researchers usually overcome this problem by ap-

plying a suitable variable transformation, and the most common one is a logarithmic trans-

formation. However, the logarithmic transformation is inappropriate due to the presence of

the zero observations in the sample, especially in the present situation in which the zeros

are the focus of the analysis.

Instead, we follow Jones and Yen (2000) by applying the Box-Cox transformation, defined as

𝑦𝑇 =
𝑦𝜆−1

𝜆
, 0 < 𝜆 ≤ 1   (14)

Note that the Box-Cox transformation (14) includes as special cases a straightforward linear 

transformation (𝜆 = 1), and the logarithmic transformation (𝜆 -> 0), but normally we would 

expect the parameter lambda to be somewhere between these limits. The transformation 

(14) can be applied to any of the models outlined in this section, including the Double Hurdle 

model introduced later. When it is applied to the dependent variable in the 2PM model, we 

obtain the Box-Cox 2PM model, defined as follows:

PARTICIPATION FUNCTION

𝑑𝑖
∗ = 𝛾 + 𝛿1𝑺𝑖 + 𝛿2𝑪𝑖 + 𝜀𝑖, 𝜀𝑖~𝑁(0, 1), 𝑑𝑖 = 1 𝑖𝑓 𝑑𝑖

∗ > 0, 𝑑𝑖 = 0 𝑖𝑓 𝑑𝑖
∗ ≤ 0   (14)

INTENSITY FUNCTION

𝑦𝑖
∗∗ = 𝛼 + 𝛽1𝑺𝑖 + 𝛽2𝑪𝑖 + 𝑢𝑖, 𝑢𝑖~𝑁(0, 𝜎2)

𝑦𝑖
∗𝑇 = 𝑚𝑎𝑥 (𝑦𝑖

∗∗𝑇 , −
1

𝜆
)                                        (15)

OBSERVED 𝑦𝑖
𝑇
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𝑦𝑖
𝑇 = 𝑦𝑖

∗𝑇 𝑖𝑓 𝑑𝑖 = 1, 𝑦𝑖
𝑇 = −

1

𝜆
𝑖𝑓 𝑑𝑖 = 0   (16)

Note that the lower limit of the transformed variable is -1/𝜆 rather than zero.

The log-likelihood function for the Box-Cox 2PM model is

𝐿𝑜𝑔 𝐿 = ∑ 𝑙𝑛[1 − 𝛟(𝛿1𝑺𝑖 + 𝛿2𝑪𝑖)] + ∑ 𝑙𝑛 [𝛟(𝛿1𝑺𝑖 + 𝛿2𝑪𝑖)
1

𝜎
]+0    (17)

where 𝑦𝑖
∗ is the latent variable representing propensity to delay; 𝑺𝑖 and 𝑪𝑖 are matrices of 

socio-demographic and credit related explanatory variables; 𝜆 is the Box-Cox Transformation 

parameter; 0 and + indicate summations over the zero observations and positive 

observations; 𝛟 and 𝜙 are the standard normal cdf and pdf. 

When all these functions are applied to the Double Hurdle model, the participation and in-

tensity function and observed 𝑦𝑖
𝑇 are exactly the same as above. The only difference is the 

general log-likelihood function for the Box-Cox Double Hurdle model shown as follows:

𝐿𝑜𝑔 𝐿 = ∑ 𝑙𝑛 [1 − 𝛟(𝛿1𝑺𝑖 + 𝛿2𝑪𝑖)𝛟 (
𝛽1𝑺𝑖+𝛽2𝑪𝑖+

1

𝜆

𝜎
)]0

             + ∑ 𝑙𝑛 [𝛟(𝛿1𝑺𝑖 + 𝛿2𝑪𝑖)𝑦𝑖
𝜆−1 1

𝜎
𝜙 (

𝑦𝑖
𝑇−𝛽1𝑺𝑖−𝛽2𝑪𝑖

𝜎
)]+     (18)

Note that (21) is not very different from the log-likelihood function for the Box-Cox 2PM

model (20). Two important differences are the involution of the second hurdle’s cdf and pdf, 

and the Jacobian term 𝑦𝑖
𝜆−1 that required by the use of 𝑦𝑖

𝑇 in the final term. The estimation 

of the 2PM and Double Hurdle are relatively easy in STATA as in-built commands for the 

Probit model and GLM are available.

3.5 Empirical Results and Discussion

3.5.1 Model comparison and relations between marital status and loan delinquency

The comparison of results from four models are reported in Table 3.3 for both Amount in Ar-

rears (Panel A) and Length of Delayed Repayment (Panel B). The sample sizes used in the es-

timations of the two panels are 17369 and 14170 respectively. Recall from the previous sec-

tion that these samples have been artificially weighted to reflect the true population ratio of 

different countries. These explanatory variables are selected based on previous literature
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and then tried out many different combinations in the Box-Cox 2PM and DH models. The dif-

ferent columns correspond to the different estimation methods (Probit, Tobit, 2PM, and 

DH). 

Statistically, the results of the first hurdles of Box-Cox 2PM and DH model are the same as 

those of the Probit model. Considering the entire models, 2PM and DH appear superior to 

the Tobit model. From the Akaike’s Information Criterion (AIC) at the foot of each panel, we 

can see that 2PM and DH models have much lower AIC (0.85 in Panel A and 0.48 in Panel B) 

compared to the Tobit model (1.07 in Panel A and 0.52 in Panel B). It provides evidence that 

the first hurdle should not be ignored from the estimation process, and the first hurdle dom-

inance effect is relatively strong in our samples, especially when we use the amount of ar-

rears as the proxy for loan default in regression analysis. As introduced in the previous sec-

tion, selection between 2PM and DH models depends on the assumption of first hurdle 

dominance. However, Table 3.3 shows that both models provide very similar results and AIC 

(column (4) and (6)).

Considering the practical applications in real life scenarios, the efficiency of the algorithm 

plays a crucial role in modelling. In this sense, the 2PM is faster than the DH model when 

there are hundreds of iterations, a great number of variables, and many nonlinear terms. 

Meanwhile, the estimation performances between 2PM and DH models are marginal. There-

fore, by implementing the 2PM in credit scoring, the MFIs would obtain extra information 

related to the probability and intensity of default with moderate time investment. The rest 

of the regression analyses in this paper are mainly based on the 2PM method.

In columns (3) in Table 3.3, we see that married borrowers are less likely to be potential de-

faulters, measured by both the amount of arrears (Panel A) and the length of delayed repay-

ment (Panel B). Even focusing on the respondents conditional on default (columns (4)), mar-

ried borrowers still tend to have lower levels of arrears and shorter length of delayed repay-

ment. On the other hand, while the relationship between cohabitation and length of delayed 

repayment is negative and significant in the first hurdle (Panel B), the relationship between 

cohabitation and amount in arrears is positive and significant in the second hurdle only 

(Panel A). Thus, the results for cohabiting borrowers are inconsistent in the two samples 

with different MFIs. One explanation for the different impacts of marriage and cohabitation 

could be the fact that cohabiting couples usually have fewer economic resources than mar-

ried couples (Manning and Lichter, 1996). Besides, the nature of the cohabiting union has 

been described as having lower relationship quality compared with marriages (Brown and 
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Booth, 1996). For instance, couples in long-term cohabiting relationships have a higher prob-

ability of domestic violence than married couples (Kenney and McLanahan, 2001). Cohabi-

tees may not share their income with their partners (Bauman, 1999) since cohabiting cou-

ples do not necessarily pool their resources in the same manner as married couples. After 

all, the significance of cohabitation depends on the different philosophical, political and reli-

gious ideas that dominate in the sample countries. 

Examining the other demographic characteristics, we see that the results of gender, age and 

education background, are also inconsistent as we change the combination of sample MFIs. 

Panel A of Table 3.3 shows that gender and age are insignificant to the probability of being 

in default, while educational background significantly relates to it. Regarding the intensity of 

default, female borrowers tend to have a lower level of arrears. For comparison, from Panel 

B we see that gender, age and educational background are significant at 5%, 10%, and 1% 

respectively. It is also found that age indeed has a U-shaped effect on both the probability 

and intensity of default, with a maximum at 0.03/(2*0.0006)=50.0. This implies that borrow-

ers aged 50 years are the riskiest to be in the ‘always-default’ category. However, whether it 

is the true age effect or just a cohort effect would require additional observations taken in a 

different year, but it is beyond the scope of this chapter. 

Also, it is surprising to find that education positively relates to the probability of potential 

default in Panel B of Table 3.3. According to the comparisons in Table 3.4, we found that the 

positive relationship between education and the probability of loan default only exists in 

FINCA Peru but other MFIs. Hence, it is reasonable to infer that the positive association be-

tween education and the probability of default presented in Table 3 is caused by the strong 

influence of FINCA Peru for which the sample size is much larger.  

As introduced in the literature review section, most loan default empirical studies in the 

classical banking area suggest that a more educated borrower should have a lower probabil-

ity of default and lower intensity of delinquency. However, our results show that it is not the 

case for FINCA Peru. Based on what we discussed previously, there are at least two possible 

explanations for the abnormal results for FINCA Peru: 1. their borrowers participate in 

business activities that require very little education, but experience and skills; and 2. 

borrowers with better education have access to more credit sources than their competitors, 

such as the other MFIs in Peru.
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Regarding the attitudes towards education, the people of Peru are very different from the 

people in the other Latin American countries. In practice, parents paying for private educa-

tion is common in most of the Latin American countries. Regarding the regional economic 

report provided by OECD (2011), disadvantaged families usually make a greater effort (over 

13%) than the affluent families (less than 4%) regarding the percentage of household income 

devoted to education. The schooling gap caused by different education expenditures will 

greatly shrink, and the relationship between education and parental income is weak. How-

ever, it is not the case for Peru. In Peru, the affluent families invest more than 12% of house-

hold income on education, while the investment of the disadvantaged families is just 8%. Ed-

ucation is an indicator of parental income. Better education usually indicates better family 

background and thus higher creditworthiness. This is consistent with the second point pre-

sented in the last paragraph. 

By examining the variables representing loan purposes at the lower section in Panel A of Ta-

ble 3.3, we see that consumption and agriculture are related to a lower probability of de-

fault, and ‘buying fixed asset’ is related to a lower intensity of default. It means that agricul-

ture is the safest sector to invest in compared to commerce, manufacture and service as we 

should expect. However, focusing on the respondents conditional on default specifically, the 

four sectors perform similarly in terms of the capability of reducing loan default intensity. 

What is more, the result of agriculture is inconsistent and becomes insignificant in Panel B. 

Hence, further subsample analysis for the influences of different investments is needed. 

There are no convincing conclusions at this stage. 

3.5.2 Subsample analysis between different microfinance institutions 

Table 3.4 presents split-sample regressions, where the main regressions are repeated for the 

four MFIs with two different measurements of loan default. The results, which substantially 

change across different sub-samples, reconfirm that, in general, married borrowers are 

associated with lower probabilities of being in default, but such a relation disappears in 

CACIL Honduras. A possible explanation to the results differ across countries is that the ben-

efit of second income brought by marriage might be neutralised by the extra financial bur-

den associated with the number of dependents. The summary statistics of our data shows 

that the average household size in CACIL Honduras is 2.84, while the numbers in the other 

MFIs are lower than 2.18. 
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What is more, the influence of marriage is especially pronounced for MICROCRED Madagas-

car, where married borrowers have not only a higher repayment rate but also a smaller in-

tensity of default (Columns 3). These findings are consistent with the propositions of Dunn 

and Kim (1999) and Vogelgesang (2003) stated previously. Hypothesis 1 is accepted, in terms 

of ‘marriage’. The most likely reason why married borrowers have better repayment records 

should be the high-risk tolerance brought by the community property regime. 

However, when we look at the other variables of marital status, ‘cohabitation’ is only signifi-

cant in MICROCRED and FINCA, while ‘divorced’ and ‘widowed’ are only significant in MI‐

CROCRED. Therefore, we may infer that in some countries a sense of responsibility might be 

irrelevant to the probabilities of default and delinquent, as there are no differences between 

single and cohabitation. 

Regarding the other demographic characteristics such as gender, age and education level, 

the results are distinct from one country to another. Gender and age are insignificant in 

most of the subsamples. In FINCA Peru, female borrowers are associated with a lower proba-

bility of default as expected but a higher intensity of default. On the other hand, in CACIL 

Honduras, significant convex relations between age and loan default have been found in 

both hurdles. This finding contradicts Hypothesis 2 that the youngest and oldest groups of 

borrowers have the highest probabilities of repayment. It could be because the oldest bor-

rowers have higher financial commitments to their family and business expenses, while the 

youngest borrowers are less responsible in repaying their loans and lack of experience in 

business and financing.  

In this section, we also found that a higher education level is not always significant and posi-

tively related to better repayment performance across different MFIs. It is detected in the 

subsample of MICROCRED Madagascar only. In terms of CACIL Honduras, the clients who 

completed primary education have shorter periods of delayed repayment at the 1% level. 

However, there is no relationship between education level and the probability of loan de-

fault. These findings imply that, in many countries, financial literacy and financial awareness, 

which highly associate with repayment performance, are generated from other sources in-

stead of formal education at school. 

The results for the variables of loan purposes in Table 3.4 are inconsistent to those in Table 

3.3. We reconfirm that investing in agricultural business is associated with lower probability 

of delinquency in the subsamples of INSOTEC Ecuador and FINCA Peru. However, in CACIL 

Honduras, it is found that engaging in agriculture has a higher intensity of delinquency. In 
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terms of the probability of delinquency, the difference between the agricultural and service 

sectors is insignificant. 

There are two possible explanations for the inconsistent results. First, borrowers involved in 

agricultural businesses usually use credit to purchase seeds, fertiliser, pesticides, livestock, 

machinery, etc. They need at least four months to one year to receive the revenue from har-

vesting. Hence, they cannot pay back the loan with a high repayment frequency, such as the 

weekly repayment plan with two weeks grace period which may sound feasible to the other 

business sectors. In our data, all microfinance institutions in the sample apply an indiscrimi-

native and fixed frequency of repayment (monthly) to all clients. Considering the payback 

periods of different sectors, the institutional management should re-evaluate and modify 

their lending system to ease the burden on specific groups of borrowers. 

Second, while agriculture is claimed to be the safest sector due to high social control and 

low volatility, it is in line with the prevailing weather conditions and indeterminate natural 

disasters. May 28 of 2009, an earthquake with a moment magnitude of 7.3 (very strong) oc-

curred at the Caribbean Sea, 320 kilometres northeast of Tegucigalpa, the capital of Hondu-

ras. It caused an estimated $37 million worth of damage. Mar 25 of 2010, the National Con-

gress of Honduras approved to declare a national emergency caused by a prolonged drought 

and famine. 7,000 families suffered from severe food shortages. Paradoxically, Honduras 

also experienced flooding and excessive rains in other regions within the same period. Ac-

cording to the statistics proved by Knoema, the cereal production had decreased by 9.9%,

and the primary vegetable production had decreased by 7.8% in 2010. With the strong inter-

ventions of natural disasters, the regression results related to agriculture in Honduras may 

be bias and misleading. In fact, Honduras’ vulnerability to natural disaster kept increasing 

dramatically in the recent decades. Its nominal losses were estimated at $4.7 billion, nearly 

half the losses for the entire Central American since 1974 (IADB, 2009). Therefore, the risk of 

investing in agricultural businesses may vary from a country to another.

3.5.3 Interaction terms analysis of marital status 

Regression results concerning the interaction terms are presented in Table 3.5. Panel A anal-

yses the probability of default regarding the amount in arrears, and Panel B measures the 

probability of default in terms of the number of days of delayed repayment. The different 

columns represent the different interaction terms that were added subsequently. In order to

study the isolated impact of each interaction, all interaction variables are taken up simulta-

neously in the last column. The relations between marital status and the probability of 
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default for the different categories are now indicated by the sum of the coefficients for the 

interaction terms and the reference coefficients at the first row of each section. 

As can be seen from column (1) of both Panels A and B of Table 3.5, the interaction term 

(married female clients) returns an insignificant coefficient, which indicates that the relation 

between marital status and the probability of default does not differ with gender. Therefore, 

the impact of marriage on the male clients is as strong as that on the female clients. On the 

other hand, when it comes to age, both Panels A and B of Table 3.5 indicate that clients aged 

between 40 and 49 benefits the most from marriage when it comes to repayment perfor-

mance. In contrast, the relation between marriage and the probability of default is 

weakened for clients aged between 22 and 29. These effects are not only found in the indi-

vidual regressions but also persistent when the other interactions are added, as shown in 

column (8). 

As for education background, columns (5)-(7) of Panel A indicate that the relation between 

marriage and the probability of default is strengthened if a client has completed a secondary 

school diploma or the equivalent. This finding may have two implications as follows: 1. when 

the education level of a client is too low or too high, his/her probability of default is mostly 

determined by education; 2. when the education level of a clients is moderate, his/her 

probability of default is generally determined by marital status. On the other hand, we can 

also see that the sign and significant level are upheld when all interaction variables are in-

cluded (column 8). In addition, the results of the interaction terms with primary school edu-

cation or tertiary school education are insignificant in the individual regressions.

These findings suggest that there are two mechanisms that can actively reinforce the posi-

tive relation between marital status and repayment performance: First, the ages of clients 

are likely to increase the positive impact of marriage and reduce the probability of loan de-

fault. According to the theory of economic resources to marriage (Becker, 1973, 1974) and 

the longitudinal study of well-being in young adults’ marriage (Clarkberg, 1999), there are a 

series of fixed costs associated with marriage. These include the cost of the wedding, the 

purchase of a house, household equipment, and childbearing. Also, married clients are likely 

to have a larger family size and higher expenses compared to single clients. Therefore, single 

clients should have better repayment ability than married clients in young adulthood. Never-

theless, as the children mature and become the new labour force, the financial burden will 

turn into extra income, and lower the probability of loan default.  Our findings illustrate that 



52

the relationship between marriage and repayment performance greatly depends on the ages 

of clients. 

Second, based on the current situation of relatively low levels of education in SMEs, mar-

riage can effectively enhance financial awareness and improve repayment performance of 

business owners. Educational disparities across different firm sizes are striking at the univer-

sity level. For example, there are only 21% of SME owners in Chile have Bachelor’s degrees, 

compared to 55% of medium-firm owners (Alvarez and Crespi, 2003). A possible explanation 

of such a phenomenon is that the poor often create survival-oriented SMEs due to a lack of 

job opportunities.  If an SME owner’s education level is extremely low, he/she might be inca-

pable of sustaining the business. If an SME owner’s education level is higher than the coun-

try-specific threshold of education, he/she might start up the business in a rapidly growing 

sector and earn high revenues. In both cases, the relations between education and the prob-

ability of default do not differ with marital status. However, marital status will be influential 

once it interacts with secondary school attainment in developing countries. While secondary 

school attainment had no discernible impact on SME growth as tertiary education (Kantis et 

al., 2004), it provides basic numeracy skills for a business that not included in primary educa-

tion, and noticeably increases the survivability of SMEs. In Madagascar and Peru (See Appen-

dix. A), for instance, most SMEs owners completed secondary school and concentrate on a 

small group of business activities that grow relatively slowly. Under such circumstances, a 

strong sense of responsibility to the family and their creditworthiness might be the prime 

motivation for the SME owners to repay their loans on schedule. 

3.5.4 Further analysis of the impacts of loan classification standards

A final robustness test has been carried out to analyse the findings more in detail. Specifi-

cally, since there is no universal standard of loan classification across different MFIs, we 

want to examine whether the results hold as we change the thresholds of sub-standard, 

doubtful and bad loans. While different of loan classifications are implemented, the frame-

works and measuring methods of the criterions used by MFIs share similar specifications. 

They usually quantify the actual repayment capacities of borrowers and classify the loans 

into five categories based on risk: 1. standard; 2. special mention; 3. substandard; 4. doubt-

ful; and 5. loss. The latter three credit grades are defined as ‘bad loan’. The length of over-

due repayment and PaR are the key performance indicators to quantify and classify the 

micro loans. 
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Some important issues may arise as we conduct loan classification with PaR in the micro-

finance industry and impair the robustness and the comparability between MFIs. First of all, 

none of the MFIs in our data can separate the restructured loans from their non-restruc-

tured loans. As a result, we have to assume that all loans are non-restructured in this paper. 

It might underestimate portfolio risk seriously, especially when restructured loans appear to 

be material (over 1%) for an MFI. Second, conventional measures of PaR (30, 90) are mean-

ingless for a balloon payment at the end of the loan period, which is the case in agricultural 

lending when repayments are tied to the crop cycle. In our data, all MFIs follow a rigid 

monthly repayment contract model. Thus, the portfolio risks for some borrowers might be 

overestimated. Third, portfolios with different risk profiles may have the same PaR value. 

For instance, while the PaR measure is the same, a loan with a large concentration of seri-

ously delinquent loans (affected by arrears of more than 180 days) will be riskier than a loan 

where arrears remain in the range within 60 days. Hence, PaR is a useful measure, but it 

does not tell the whole story. 

Table 3.6 presents logistic regressions where the main regression is repeated for different 

thresholds of loan default. In this section, we define 30% of PaR30 and 90 days of delayed 

repayment as the thresholds of bad loans. Columns (3) and (8) show that the percentages of 

bad loans are 1.8% and 2% in the two groups of MFIs with different performance indicators 

respectively. For the subsample including CACIL, INSOTEC and MICROCRED, the nonperform-

ing loans to total gross loans (NPL ratio) are just 0.85%. According to statistics from the 

World Bank, the average rate of NPL in the world gradually decreased from 4.01% to 3.89% 

for the period from 2010 to 2011. At the end of 2010, the NPL ratios of Honduras, Ecuador, 

and Peru are 3.7%, 3.4% and 3.0% respectively. By comparison, we found that the micro-

finance sector is less risky than the banking industry on average.  

As can be seen from the results, marital status is associated with the probability of loan de-

fault across different thresholds in both samples. It means that the relation between marital 

status and repayment performance still holds as we change the standard of credit scoring. 

Similarly, we can see that the results of cohabitation, age, and education are consistent as 

well.  For the subsample measured by PaR30, we found that gender, loan amount, and time 

to maturity seem to be more significant as we shift the risk tolerance to higher levels, while 

the tendency of loan purposes is just the opposite. For the subsample measured by the

length of overdue repayment, gender, time to maturity, and loan purposes have inconsistent 

results, but no certain patterns are found as we alter the threshold of risk. In summary, the 

significances of gender, loan amount, time to maturity, and loan purposes highly depend on 
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the level of risk tolerance. Therefore, the results for these four independent variables can be 

manipulated and biased based on the current credit scoring standards.

3.6 Conclusions and Discussion  

Microfinance loans are a major tool for developing countries to fight poverty. However, the 

balance between outreach to the poor and financial sustainability is hard to achieve. There-

fore, a better understanding of the risk determinants of loan delinquency and default is of 

great importance in the area of microfinance. In a cohesive empirical study, we identify the 

individual socio-demographic and business characteristics that are associated with micro 

loans based on a high-quality administrative loan book data that stems from four MFIs from 

developing countries. 

In this research, we replace the omnifarious binary default indicators used in previous stud-

ies with three semi-continuous default indicators: the amount of arrears, the number of 

days being in delinquent, and PaR30. There are many advantages of using these variables as 

default indicators: 1. no discretisation and no information lost; 2. easy to acquire and com-

pare; and more importantly 3. who will never default can be separated from who has a low 

probability of default. In terms of the explanatory variables, most of them are already known

from classical banking and prior literature of microfinance. According to the clustered struc-

ture and skewness of the data, a Two-Part model with the Box-Cox transformation is applied

here. 

First of all, our results show that the estimation performances between the Two-Part model 

and the Double Hurdle model are similar, while the algorithm of the Two-Part model is more 

efficient. By implementing the Two-Part model in credit scoring, MFIs would obtain more re-

sults for the probability and intensity of default with moderate time investment.

In general, married borrowers have a lower probability of default and a lower intensity of 

delinquency, measured by both the amount of arrears and the length of delayed repayment. 

In the subsample analyses, married borrowers have a lower probability of default in general. 

This relationship is especially pronounced in MICROCRED Madagascar but is insignificant in 

CACIL Honduras. What is more, we found that the relation between marital status and the 

probability of default does not differ by gender. In addition, the relation between marriage 

and the probability of default will be strengthened if a client has completed secondary 

school.
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The results of gender and age are inconsistent across different MFIs, and they are insignifi-

cant in most of the subsamples. An interesting finding related to age is that the clients aged 

between 40 and 49 benefit the most from marriage when it comes to repayment perfor-

mance. 

It is surprising to find that education positively relates to the probability of default in FINCAR 

Peru, while the association is negative in MICROCRED Madagascar. For CACIL Honduras and 

INSOTEC Ecuador, no significant relations between education and loan default are detected. 

Possible explanations of the abnormal results for FINCA Peru include: 1. borrowers 

participate in business activities that require little education, but lots of experience and 

skills; 2. borrowers with better education are more likely to be over-indebted as they access 

to credit much easier, because education is highly related to parental income and 

creditworthiness in Peru.

Agriculture is related to a lower probability of default as measured by the amount of arrears. 

However, it becomes insignificant when we use the length of delayed repayment as a proxy 

for the probability of default. In the subsample analyses, we reconfirm that investing in agri-

cultural business associated with lower probability of default in INSOTEC Ecuador and FINCA 

Peru. However, in CACIL Honduras, it is found that agriculture positively relates to both the 

probability and intensity of loan default. Possible explanations to the inconsistent results

include: 1. borrowers involved in agricultural businesses cannot pay back the loan with a 

high repayment frequency; and 2. while agriculture is claimed to be the safest sector due to 

high social control and low volatility, it is in line with the prevailing weather conditions and 

indeterminate natural disasters that happen during the period of interest.

Overall, we have provided new insight into important characteristics and risk determinants 

of micro loans in developing countries. These can be applied to develop the current credit 

scoring systems implemented by MFIs and can contribute to achieving the ultimate objec-

tives: improving the outreach of microfinance to people in need and reducing poverty. 
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Table 3.1
Summary Statistics. 
‘Married’ is a dummy that is 1 if the client is married, and 0 otherwise; ‘Cohabitation’ is a dummy that is 1 if the 
client is living with his/her partner, and 0 otherwise; ‘Divorced’ is 1 if the client is divorced, and 0 otherwise; ‘Sin-
gle’ is 1 if the client is single, and 0 otherwise; ‘Widowed’ is 1 if the client is a widow, and 0 otherwise; ‘Gender’ is 
1 if the client is female, and 0 otherwise; ‘Illiterate’ is 1 if the client has never received any formal education, and 
0 otherwise; ‘Primary Completed’ is 1 if the client has completed primary school, and 0 otherwise; ‘Secondary 
Completed’ is 1 if the client has completed secondary school, and 0 otherwise; ‘Tertiary Completed’ is 1 if the cli-
ent has completed university, college or trade school education, and 0 otherwise; ‘Loan Amount’ is the loan out-
standing per client measured in dollars; ‘Maturity’ is the number of days before maturity; ‘Consumption’ is 1 if the 
client uses the loan on consumption, and 0 otherwise; ‘Buy Fixed Asset’ is 1 if the client uses the loan to purchase 
fixed asset, and 0 otherwise; ‘Agriculture’ is 1 if the client uses the loan on agricultural production, and 0 other-
wise; ‘Commerce’ is 1 if the client uses the loan on commercial activity, and 0 otherwise; ‘Manufacture’ is 1 if the 
client uses the loan on manufacturing, and 0 otherwise; ‘Service’ is 1 if the client uses the loan to provide services; 
‘Financing’ is 1 if the client uses the loan to finance his/her business. 

Notes: Obvious special cases have been omitted from the analyses. In addition, the influence of outliers has been 
checked by re-running. The 5th and 95th percentiles of Loan Amount have been trimmed. The 3rd and 98th per-
centiles of Age have been trimmed. The 1st and 95th percentiles of Maturity have been trimmed. The 99th per-
centiles of non-zero Arrearage have been trimmed. The 95th percentiles of non-zero Delay have been trimmed. 
Q1, Q2 and Q3 are the first, second, and third quartiles, respectively. 

Mean

n All Normal Abnormal Q1 Q2 Q3 St. dev. Min. Max.

Sociodemographic

  Marital Status

    Married 32673 0.52 0.53 0.46 0 1 1 0.50 0 1

    Cohabitation 32673 0.14 0.14 0.09 0 0 0 0.34 0 1

    Divorced 32673 0.04 0.04 0.05 0 0 0 0.19 0 1

    Single 32673 0.27 0.26 0.38 0 0 1 0.44 0 1

    Widowed 32673 0.03 0.03 0.03 0 0 0 0.16 0 1

  Gender (Female -> 1) 32673 0.68 0.67 0.56 0 1 1 0.47 0 1

  Age 32673 39.35 39.38 38.97 31 38 47 10.46 22 65

  Education Levels

    Illiterate 32673 0.12 0.11 0.13 0 0 0 0.32 0 1

    Primary Completed 32673 0.32 0.32 0.32 0 0 1 0.47 0 1

    Secondary Completed 32673 0.43 0.43 0.43 0 0 1 0.50 0 1

    Tertiary Completed 32673 0.13 0.13 0.11 0 0 0 0.34 0 1

Loan Status

  Loan Amount (in USD) 32673 970.31 942.00 1362.20 232.00 580.00 1300.00 1053.31 107.00 6420.00

  Maturity (in Days) 32673 316.80 306.69 456.71 180 300 360 202.87 90 1080

Loan Purposes

  Consumption 32673 0.04 0.04 0.11 0 0 0 0.21 0 1

  Buy Fixed Asset 32673 0.01 0.01 0.03 0 0 0 0.11 0 1

  Agriculture 32673 0.16 0.16 0.16 0 0 0 0.37 0 1

  Commerce 32673 0.56 0.57 0.47 0 1 1 0.50 0 1

  Manufacture 32673 0.08 0.08 0.07 0 0 0 0.27 0 1

  Service 32673 0.13 0.13 0.13 0 0 0 0.34 0 1

  Financing 32673 0.01 0.00 0.04 0 0 0 0.07 0 1

Default Indicators

  Delay or Not 32637 0.07 0 1 0 0 0 0.25 0 1

  Arrearage (in USD) 17369 18.50 0.00 237.96 0 0 0 111.20 0 1803.05

  Delay (in Days) 14170 8.06 0 229.86 0 0 0 65.77 0 1358
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Table 3.2
Correlations Analysis
‘Married’ is a dummy that is 1 if the client is married, and 0 otherwise; ‘Cohabitation’ is a dummy that is 1 if the 
client is living with his/her partner, and 0 otherwise; ‘Divorced’ is 1 if the client is divorced, and 0 otherwise; ‘Sin-
gle’ is 1 if the client is single, and 0 otherwise; ‘Widowed’ is 1 if the client is a widow, and 0 otherwise; ‘Gender’ is 
1 if the client is female, and 0 otherwise; ‘Illiterate’ is 1 if the client has never received any formal education, and 
0 otherwise; ‘Primary Completed’ is 1 if the client has completed primary school, and 0 otherwise; ‘Secondary 
Completed’ is 1 if the client has completed secondary school, and 0 otherwise; ‘Tertiary Completed’ is 1 if the cli-
ent has completed university, college or trade school education, and 0 otherwise; ‘Loan Amount’ is the loan out-
standing per client measured in dollars; ‘Maturity’ is the number of days before maturity; ‘Consumption’ is 1 if the 
client uses the loan on consumption, and 0 otherwise; ‘Buy Fixed Asset’ is 1 if the client uses the loan to purchase 
fixed asset, and 0 otherwise; ‘Agriculture’ is 1 if the client uses the loan on agricultural production, and 0 other-
wise; ‘Commerce’ is 1 if the client uses the loan on commercial activity, and 0 otherwise; ‘Manufacture’ is 1 if the 
client uses the loan on manufacturing, and 0 otherwise; ‘Service’ is 1 if the client uses the loan to provide services; 
‘Financing’ is 1 if the client uses the loan to finance his/her business. 

> 0% ≥ 5% ≥ 30% ≥ 50% ≥ 75% > 0 ≥ 30 ≥ 90 ≥ 180 ≥ 360

Sociodemographic

  Marital Status

    Married -0.07*** -0.06*** -0.07*** -0.07*** -0.05*** -0.003 -0.02** -0.02** -0.02*** -0.003

    Cohabitation 0.04*** 0.02** 0.03*** 0.04*** 0.04*** 0.02* -0.01 -0.006 -0.01 -0.005

    Divorced 0.01 0.02*** 0.02** 0.008 -0.009 0.007 0.0007 0.006 0.008 0.008

    Single 0.05*** 0.04*** 0.06*** 0.05*** 0.04*** 0.02** 0.03*** 0.03*** 0.03*** 0.01

    Widowed 0.009 0.01* 0.002 -0.004 -0.009 -0.008 -0.003 -0.002 0.001 -0.01*

  Gender (Female -> 1) 0.003 0.007 -0.004 -0.007 -0.005 -0.10*** -0.09*** -0.06*** -0.05*** -0.04***

  Age -0.03*** -0.03*** -0.04*** -0.03*** -0.01* -0.006 -0.02** -0.01 -0.009 0.004

  Education Levels

    Illiterate 0.16*** 0.12*** 0.10*** 0.08*** 0.02*** -0.02*** -0.03*** -0.02*** -0.02*** -0.01

    Primary Completed -0.02*** -0.02** -0.006 -0.02** -0.02*** -0.004 -0.009 -0.007 -0.02** -0.02*

    Secondary Completed -0.03*** -0.03*** -0.02*** -0.006 0.02** 0.03*** 0.04*** 0.04*** 0.04*** 0.02**

    Tertiary Completed -0.01 -0.01 -0.02** -0.02** -0.009 -0.008 -0.009 -0.01 -0.007 0.002

Loan Status

  Loan Amount (in USD) -0.008 -0.02** -0.02*** -0.02** 0.009 0.15*** 0.11*** 0.05*** 0.03*** 0.03***

  Maturity (in Days) 0.006 -0.04*** -0.05*** -0.04*** -0.01* 0.18*** 0.12*** 0.05*** 0.02*** 0.02**

Loan Purposes

  Consumption 0.01* -0.03*** -0.02** -0.01 -0.007 0.06*** 0.04*** 0.003 -0.01 0.001

  Buy Fixed Asset 0.02*** -0.02*** -0.01* -0.01 -0.006 0.07*** 0.02** -0.003 -0.006 -0.002

  Agriculture -0.03*** -0.02*** -0.005 -0.009 -0.02** 0.08*** 0.09*** 0.08*** 0.06*** 0.03***

  Commerce 0.03*** 0.04*** 0.03*** 0.03*** 0.03*** -0.08*** -0.07*** -0.05*** -0.03*** -0.01

  Manufacture -0.01* -0.003 -0.01 -0.02** -0.02** -0.01 -0.01 -0.01 -0.01* -0.01*

  Service -0.007 -0.004 -0.01* -0.009 0.008 0.01 0.02* 0.01 0.009 0.004

  Financing 0.006 -0.005 -0.003 -0.002 -0.001 0.01* 0.02** 0.02** -0.003 -0.002

Default Indicators

  Arrearage (in USD) 0.57*** 0.63*** 0.74*** 0.68*** 0.57*** 0.37*** 0.45*** 0.56*** 0.60*** 0.51***

  Delay (in Days) 0.59*** 0.66*** - - - 0.64*** 0.73*** 0.81*** 0.83*** 0.80***

( Sample: CACIL, INSOTEC & MICROCRED ) ( Sample: CACIL & FINCA )

Individual PaR30 Delayed Repayment (in Days) 
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Table 3.3 Panel A
MLEs for Four Models (Dependent Variable: Amount in Arrears (in USD)). 
‘Probit’ indicates that Probit regression was used as the estimation method; ‘Tobit’ indicates that Tobit regression 
was used as the estimation method; ‘2PM’ indicates that Two-Part model was used as the estimation method; 
and ‘DH’ indicates that Double Hurdle model was used as the estimation method.

Notes: Panel A includes CACIL, INSOTEC and MICROCRED only. For comparison, the statistics in the last six rows of 
columns 4 and 6 are calculated for the entire models instead of the 2nd hurdles alone. * Denote statistical signifi-
cance at the 10% level; ** Denote statistical significance at the 5% level; and *** Denote statistical significance at 
the 1% level.  

Probit Tobit 2PM 2PM DH DH

Hurdle 1 Hurdle 2 Hurdle 1 Hurdle 2

  Marital Status

    Married -0.29*** -7.19*** -0.29*** -0.54*** -0.29*** -1.24***

(0.03) (0.85) (0.03) (0.13) (0.03) (0.16)

    Cohabitation -0.08 -2.03 -0.08 0.50** -0.08 0.27

(0.06) (1.46) (0.06) (0.21) (0.06) (0.26)

  Gender (Female -> 1) -0.04 -0.94 -0.04 -0.40*** -0.04 -0.49***

(0.03) (0.74) (0.03) (0.12) (0.03) (0.14)

  Age 0.006 0.09 0.006 0.02 0.006 0.04

(0.01) (0.28) (0.01) (0.04) (0.01) (0.05)

  Age-squared -0.0002 -0.004 -0.0002 -0.0005 -0.0002 -0.0009

(0.0001) (0.003) (0.0001) (0.0005) (0.0001) (0.0006)

  Education Levels

    Primary Completed -0.82*** -19.46*** -0.82*** -0.27 -0.82*** -2.37***

(0.06) (1.50) (0.06) (0.19) (0.06) (0.30)

    Secondary Completed -0.95*** -22.67*** -0.95*** -0.36** -0.95*** -2.82***

(0.06) (1.51) (0.06) (0.17) (0.06) (0.30)

    Tertiary Completed -0.93*** -22.00*** -0.93*** -0.50** -0.93*** -2.87***

(0.07) (1.79) (0.07) (0.23) (0.07) (0.35)

  Loan Amount (in USD) 0.00001 0.0004 0.00001 0.001*** 0.00001 0.001***

(0.00002) (0.0004) (0.00002) (0.0001) (0.00002) (0.00007)

  Maturity (in Days) -0.00006 -0.003 -0.00006 -0.004*** -0.00006 -0.004***

(0.0001) (0.003) (0.0001) (0.0005) (0.0001) (0.0006)

  Loan Purposes

    Consumption -0.23* -5.37* -0.23* -0.75 -0.23* -1.33**

(0.12) (3.16) (0.12) (0.46) (0.12) (0.56)

    Buy Fixed Asset -0.13 -3.83 -0.13 -1.77*** -0.13 -2.37***

(0.14) (3.46) (0.14) (0.49) (0.14) (0.61)

    Agriculture -0.18*** -4.69*** -0.18*** 0.24 -0.18*** -0.32

(0.06) (1.44) (0.06) (0.23) (0.06) (0.27)

    Commerce 0.07 1.42 0.07 -0.003 0.07 0.12

(0.04) (1.08) (0.04) (0.17) (0.04) (0.20)

    Manufacture -0.04 -1.00 -0.04 -0.12 -0.04 -0.21

(0.06) (1.45) (0.06) (0.23) (0.06) (0.27)

    Financing 0.12 3.27 0.12 -0.11 0.12 0.51

(0.60) (15.09) (0.60) (2.06) (0.60) (2.56)

    Service (Benchmark) - - - - - -

  Constant -0.25 -6.57 -0.25 14.90*** -0.25 11.84***

(0.23) (5.77) (0.23) (0.88) (0.23) (1.09)

  MFI Controls Yes Yes Yes Yes Yes Yes

  n 17369 17369 17369 17369 17369 17369

  σ - 25.553 - - - 3.568

  λ 0.141 0.141 0.141 0.141 0.141 0.141

  Log-L (last) -4502.7 -9278.3 -4502.7 -7371.7 -4502.7 -7359.7

  K 20 21 20 39 20 40

  AIC = 2*(-LogL+K)/n 0.521 1.071 0.521 0.853 0.521 0.852
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Table 3.3 Panel B
MLEs for Four Models (Dependent Variable: Delayed Repayment (in Days))
‘Probit’ indicates that Probit regression was used as the estimation method; ‘Tobit’ indicates that Tobit regression 
was used as the estimation method; ‘2PM’ indicates that Two-Part model was used as the estimation method; 
and ‘DH’ indicates that Double Hurdle model was used as the estimation method. 

Notes: Panel B includes CACIL and FINCA only. For comparison, the statistics in the last six rows of columns 4 and 
6 are calculated for the entire models instead of the 2nd hurdles alone. * Denote statistical significance at the 
10% level; ** Denote statistical significance at the 5% level; *** Denote statistical significance at the 1% level.  

Probit Tobit 2PM 2PM DH DH

Hurdle 1 Hurdle 2 Hurdle 1 Hurdle 2

  Marital Status

    Married -0.17*** -4.99*** -0.17*** -0.94* -0.17*** -1.001

(0.05) (1.44) (0.05) (0.50) (0.05) (0.68)

    Cohabitation -0.14** -4.16*** -0.14** 0.15 -0.14** 0.14

(0.06) (1.61) (0.06) (0.57) (0.06) (0.69)

  Gender (Female -> 1) -0.15** -4.12** -0.15** 0.12 -0.15** 0.06

(0.06) (1.74) (0.06) (0.55) (0.06) (0.68)

  Age 0.03* 0.86** 0.03* 0.51*** 0.03* 0.55***

(0.02) (0.42) (0.01) (0.15) (0.02) (0.17)

  Age-squared -0.0003* -0.01** -0.0003* -0.006*** -0.0003* -0.01***

(0.0002) (0.005) (0.0002) (0.002) (0.0002) (0.002)

  Education Levels

    Primary Completed 0.03 0.89 0.03 0.29 0.03 0.27

(0.07) (1.86) (0.07) (0.64) (0.07) (0.66)

    Secondary Completed 0.19*** 6.06*** 0.20*** 2.55*** 0.19*** 2.74***

(0.06) (1.78) (0.06) (0.63) (0.06) (0.66)

    Tertiary Completed 0.10 3.12 0.10 1.10 0.10 1.13

(0.08) (2.16) (0.08) (0.77) (0.08) (0.83)

  Loan Amount (in USD) 0.001** 0.002** 0.001** -0.0004* 0.001** -0.0005

(0.00002) (0.0008) (0.00002) (0.001) (0.00002) (0.002)

  Maturity (in Days) 0.001*** 0.02*** 0.001*** -0.004*** 0.001*** -0.003

(0.0002) (0.004) (0.0002) (0.001) (0.0002) (0.002)

  Loan Purposes

    Consumption -0.25* -7.92** -0.26* -3.23*** -0.25* -3.48***

(0.14) (3.83) (0.14) (1.13) (0.14) (1.36)

    Buy Fixed Asset -0.38** -12.02*** -0.40*** -2.87** -0.38** -3.13*

(0.15) (4.15) (0.15) (1.21) (0.15) (1.62)

    Agriculture 0.02 1.05 0.03 1.42 0.02 1.64

(0.11) (3.12) (0.11) (1.001) (0.11) (1.04)

    Commerce 0.04 0.61 0.03 -0.70 0.04 -0.66

(0.07) (2.04) (0.07) (0.68) (0.07) (0.71)

    Manufacture 0.006 -0.44 0.003 -2.43* 0.006 -2.46*

(0.13) (3.56) (0.13) (1.27) (0.13) (1.32)

    Financing -0.22 -6.38 -0.21 0.55 -0.22 0.82

(0.64) (17.52) (0.63) (4.69) (0.64) (4.70)

    Service (Benchmark) - - - - - -

  Constant -2.57*** -74.64*** -2.59*** 5.11* -2.57*** 2.45

(0.32) (9.34) (0.32) (3.07) (0.32) (9.28)

  MFI Controls Yes Yes Yes Yes Yes Yes

  n 14170 14170 14170 14170 14170 14170

  σ - 28.529 - - - 4.577

  λ 0.253 0.253 0.253 0.253 0.253 0.253

  Log-L (last) -1923.4 -3692.4 -1923.4 -3367.8 -1923.4 -3362.4

  K 19 20 19 37 19 38

  AIC = 2*(-LogL+K)/n 0.274 0.524 0.274 0.481 0.274 0.480
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Table 3.4
Subsample Analysis between MFIs
The Two-Part model was used as the estimation method in this table. 

Notes: The first hurdle is probit regression and the second hurdle is GLM. * Denote statistical significance at the 
10% level; ** Denote statistical significance at the 5% level; *** Denote statistical significance at the 1% level.  

Hurdle 1 Hurdle 2 Hurdle 1 Hurdle 2 Hurdle 1 Hurdle 2 Hurdle 1 Hurdle 2 Hurdle 1 Hurdle 2

    Married -0.16 -0.02 -0.20*** -0.22 -0.43*** -1.06*** -0.15 -1.13 -0.21*** -0.30

(0.11) (0.45) (0.06) (0.18) (0.07) (0.22) (0.11) (0.78) (0.06) (0.68)

    Cohabitation -0.03 0.22 -0.23 -0.23 -0.18* 0.15 -0.02 -0.68 -0.19*** 0.47

(0.13) (0.51) (0.15) (0.48) (0.09) (0.30) (0.13) (0.89) (0.07) (0.73)

    Divorced 0.08 -1.70 0.08 0.08 -0.23* -0.86** 0.07 -6.16 0.13 1.61

(0.67) (2.53) (0.08) (0.25) (0.12) (0.42) (0.67) (4.46) (0.20) (1.93)

    Widowed -0.04 -1.14 0.22 -0.58 -0.23* -0.80* -0.05 -0.92 -0.09 0.35

(0.44) (1.75) (0.15) (0.42) (0.12) (0.45) (0.45) (3.08) (0.16) (1.66)

    Single (Benchmark) - - - - - - - - -

  Gender (Female -> 1) -0.08 0.07 -0.07 -0.23 0.04 -0.33** -0.11 -0.69 -0.18** 2.17**

(0.10) (0.40) (0.05) (0.15) (0.04) (0.16) (0.10) (0.70) (0.09) (0.85)

  Age 0.06* 0.26* 0.006 0.02 -0.02 -0.10 0.07** 0.64*** 0.003 0.50***

(0.03) (0.13) (0.02) (0.05) (0.02) (0.07) (0.03) (0.23) (0.02) (0.18)

  Age-squared -0.0009** -0.003** -0.00008 -0.0005 0.00009 0.001 -0.001** -0.008*** 0.00001 -0.006***

(0.0004) (0.002) (0.0002) (0.0006) (0.0002) (0.0009) (0.0004) (0.003) (0.0002) (0.002)

    Primary Completed -0.04 -0.62 -0.04 0.50 -2.42*** -0.67** -0.05 -2.57*** 0.03 2.88***

(0.12) (0.48) (0.12) (0.37) (0.13) (0.30) (0.12) (0.82) (0.09) (0.93)

    Secondary Completed -0.05 -0.42 -0.08 0.38 -2.48*** -0.57*** -0.08 -1.70* 0.30*** 5.07***

(0.14) (0.55) (0.13) (0.40) (0.12) (0.20) (0.14) (0.94) (0.08) (0.85)

    Tertiary Completed -0.25 -0.70 -0.12 -0.13 -2.45*** -0.78*** -0.31 -2.24* 0.20** 3.06***

(0.19) (0.78) (0.17) (0.54) (0.13) (0.27) (0.19) (1.36) (0.09) (0.97)

  Loan Amount (in USD) 0.00003 0.002*** 0.0001 0.003*** 0.001*** 0.003*** 0.00005 0.002* 0.001*** -0.003***

(0.0001) (0.0005) (0.0001) (0.0004) (0.00006) (0.0002) (0.0001) (0.0009) (0.0001) (0.0009)

  Loan Amount-squared -0.00001 -0.001*** -0.00001 -0.001*** -0.001*** -0.001*** -0.00001 -0.00001* -0.001*** -0.001***

(0.00001) (0.00001) (0.00001) (0.00001) (0.00001) (0.00001) (0.00001) (0.00001) (0.00001) (0.00001)

  Maturity (in Days) 0.0003 -0.003*** -0.003*** -0.007*** 0.00007 -0.003*** 0.0003 -0.003* 0.002*** -0.005*

(0.0002) (0.001) (0.0005) (0.002) (0.0002) (0.0008) (0.0002) (0.002) (0.0003) (0.003)

    Consumption -0.12 0.51 -0.04 0.32

(0.20) (0.81) (0.19) (1.39)

    Buy Fixed Asset -0.05 -0.34 -0.02 -1.73

(0.19) (0.81) (0.19) (1.41)

    Agriculture 0.19 2.95*** -0.20** -0.42 0.18 3.38*** -1.19*** 0.06

(0.19) (0.75) (0.09) (0.29) (0.19) (1.31) (0.40) (4.61)

    Commerce 0.27 1.30* 0.03 -0.40 0.10* -0.04 0.30* 2.19* -0.06 -1.79**

(0.18) (0.72) (0.10) (0.31) (0.06) (0.21) (0.18) (1.25) (0.08) (0.82)

    Manufacture 0.02 2.22 -0.06 -0.74** -0.0007 -0.09 0.04 4.36 -0.14 -3.26**

(0.46) (1.82) (0.12) (0.35) (0.08) (0.29) (0.46) (3.21) (0.14) (1.39)

    Financing 0.11 0.88 0.12 1.67

(0.65) (2.44) (0.65) (4.31)

    Service (Benchmark) - - - - - - - - - -

  Constant -2.02** 1.29 -0.59 14.48*** 1.43*** 15.75*** -2.14*** 0.10 -2.59*** 3.32

(0.69) (2.74) (0.37) (1.15) (0.40) (1.42) (0.69) (4.79) (0.37) (3.86)

  n 1246 191 6854 442 9269 717 1246 198 12924 299

  λ 0.145 0.145 0.145 0.145 0.145 0.145 0.255 0.255 0.255 0.255

  Log-L (last) -515 -422 -1584 -817 -2166 -1517 -526 -550 -1304 -859

  Pseudo R-squared 0.035 0.033 0.142 0.035 0.083

  Delayed Repayment (in Days)   Arrearage (in USD) 

CACIL INSOTEC MICROCRED CACIL FINCA
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Table 3.5 Panel A
Interactions Analysis (Dependent Variable: Amount of Arrears (in USD))
The Two-Part model was used as the estimation method in this table.  

Notes: Panel A includes CACIL, INSOTEC and MICROCRED only. *, ** and *** Denote statistical significance at the 
10% level, the 5% level, and the 1% level respectively.

Gender 22-29 30-39 40-49 Primary Secondary Tertiary All

    Hurdle 1:

    Married -0.26*** -0.32*** -0.23*** -0.24*** -0.28*** -0.19*** -0.27*** -0.01

(0.04) (0.03) (0.04) (0.04) (0.04) (0.04) (0.03) (0.13)

    (Married * Gender) -0.0005 0.03

(0.06) (0.06)

    (Married * Age22-29) 0.23*** 0.26**

(0.07) (0.10)

    (Married * Age30-39) -0.09 0.02

(0.06) (0.10)

    (Married * Age40-49) -0.12* -0.02

(0.07) (0.10)

    (Married * Edu Lv.1) 0.05 -0.30***

(0.06) (0.12)

    (Married * Edu Lv.2) -0.17*** -0.43***

(0.06) (0.11)

    (Married * Edu Lv.3) 0.07 -0.27*

(0.10) (0.14)

    Other controls Added Added Added Added Added Added Added Added

  n 17369 17369 17369 17369 17369 17369 17369 17369

  λ 0.144 0.144 0.144 0.144 0.144 0.144 0.144 0.144

  Log-L (last) -4489 -4483 -4488 -4488 -4489 -4485 -4489 -4475

  Pseudo R-squared 0.054 0.055 0.054 0.054 0.054 0.055 0.054 0.057

    Hurdle 2:

    Married -0.47*** -0.51*** -0.53*** -0.61*** -0.67*** -0.33** -0.57*** -0.42

(0.16) (0.13) (0.14) (0.13) (0.14) (0.15) (0.12) (0.43)

    (Married * Gender) -0.14 -0.09

(0.22) (0.22)

    (Married * Age22-29) -0.16 0.05

(0.25) (0.39)

    (Married * Age30-39) -0.04 0.12

(0.22) (0.37)

    (Married * Age40-49) 0.24 0.32

(0.25) (0.39)

    (Married * Edu Lv.1) 0.37 0.04

(0.23) (0.34)

    (Married * Edu Lv.2) -0.52** -0.51

(0.22) (0.33)

    (Married * Edu Lv.3) 0.17 -0.08

(0.36) (0.45)

    Other controls Added Added Added Added Added Added Added Added

  n 1350 1350 1350 1350 1350 1350 1350 1350

  λ 0.144 0.144 0.144 0.144 0.144 0.144 0.144 0.144

  Log-L (last) -2819 -2819 -2820 -2819 -2818 -2817 -2819 -2816

EducationAge
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Table 3.5 Panel B
Interactions Analysis (Dependent Variable: Delayed Repayment (in Days))
The Two-Part model was used as the estimation method in this table.  

Notes: Panel B includes CACIL and FINCA only. *, ** and *** Denote statistical significance at the 10% level, the 
5% level, and the 1% level respectively.

Gender 22-29 30-39 40-49 Primary Secondary Tertiary All

    Hurdle 1:

    Married -0.02 -0.12** -0.15*** -0.06 -0.13** -0.10* -0.12** 0.16

(0.10) (0.05) (0.06) (0.06) (0.05) (0.06) (0.05) (0.15)

    (Married * Gender) -0.14 -0.14

(0.11) (0.11)

    (Married * Age22-29) -0.02 -0.11

(0.17) (0.19)

    (Married * Age30-39) 0.08 -0.05

(0.10) (0.13)

    (Married * Age40-49) -0.21** -0.24*

(0.10) (0.13)

    (Married * Edu Lv.1) 0.007 -0.08

(0.10) (0.13)

    (Married * Edu Lv.2) -0.05 -0.11

(0.09) (0.13)

    (Married * Edu Lv.3) -0.03 -0.10

(0.13) (0.16)

    Other controls Added Added Added Added Added Added Added Added

  n 14170 14170 14170 14170 14170 14170 14170 14170

  λ 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257

  Log-L (last) -1903 -1904 -1904 -1902 -1904 -1904 -1904 -1900

  Pseudo R-squared 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120

    Hurdle 2:

    Married -0.98 -1.14** -1.44** -0.99* -1.43*** -0.93 -1.29*** 0.16

(0.78) (0.49) (0.59) (0.55) (0.54) (0.57) (0.49) (0.15)

    (Married * Gender) -0.25 -0.14

(0.94) (0.11)

    (Married * Age22-29) -0.09 -0.11

(1.58) (0.19)

    (Married * Age30-39) 0.77 -0.05

(0.93) (0.13)

    (Married * Age40-49) -0.51 -0.24*

(0.99) (0.13)

    (Married * Edu Lv.1) 0.99 -0.08

(0.96) (0.13)

    (Married * Edu Lv.2) -0.56 -0.11

(0.89) (0.13)

    (Married * Edu Lv.3) 1.19 -0.10

(1.26) (0.16)

    Other controls Added Added Added Added Added Added Added Added

  n 497 497 497 497 497 497 497 497

  λ 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257

  Log-L (last) -1454 -1454 -1454 -1454 -1453 -1454 -1453 -1452

EducationAge
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Table 3.6
Logistic Regression Analysis Based on Credit Collection Process

Notes: *, ** and *** Denote statistical significance at the 10% level, the 5% level, and the 1% level respectively.

    Screening > 0% ≥ 5% ≥ 30% ≥ 50% ≥ 75% > 0 ≥ 30 ≥ 90 ≥ 180 ≥ 360

    Censored Clients 1350 1101 313 171 48 497 376 284 248 99

    Censored Rate 7.77% 6.34% 1.80% 0.98% 0.28% 3.51% 2.65% 2.00% 1.75% 0.70%

  Marital Status

    Married 0.56*** 0.57*** 0.33*** 0.23*** 0.09*** 0.69*** 0.56*** 0.53*** 0.50*** 0.68

(0.04) (0.04) (0.04) (0.04) (0.03) (0.08) (0.07) (0.08) (0.08) (0.16)

    Cohabitation 0.85 0.89 1.03 1.05 1.23 0.74** 0.67*** 0.67** 0.58*** 0.79

(0.10) (0.12) (0.21) (0.26) (0.45) (0.10) (0.10) (0.11) (0.10) (0.21)

  Gender (Female -> 1) 0.92 0.92 0.75** 0.64*** 0.52** 0.74** 0.81 0.84 0.72* 0.71

(0.06) (0.06) (0.09) (0.10) (0.16) (0.10) (0.12) (0.15) (0.14) (0.21)

  Age 1.02 1.002 0.96 0.93 0.96 1.07** 1.12*** 1.13*** 1.10** 1.28***

(0.02) (0.03) (0.04) (0.06) (0.12) (0.04) (0.04) (0.05) (0.05) (0.11)

  Age-squared 0.9995 0.9998 1.0002 1.0005 1.0002 0.999** 0.999*** 0.997*** 0.999** 0.997***

(0.0003) (0.0003) (0.0006) (0.0008) (0.002) (0.0004) (0.0005) (0.0005) (0.0006) (0.001)

  Education Levels

    Primary Completed 0.22*** 0.16*** 0.14*** 0.13*** 0.17*** 1.05 1.15 1.22 1.04 0.84

(0.02) (0.02) (0.03) (0.03) (0.10) (0.16) (0.20) (0.24) (0.23) (0.28)

    Secondary Completed 0.16*** 0.12*** 0.09*** 0.10*** 0.23*** 1.48*** 1.95*** 2.14*** 2.28*** 2.01**

(0.02) (0.014) (0.02) (0.02) (0.11) (0.21) (0.33) (0.41) (0.46) (0.60)

    Tertiary Completed 0.17*** 0.12*** 0.08*** 0.06*** 0.06*** 1.18 1.35 1.30 1.40 1.62

(0.02) (0.02) (0.02) (0.02) (0.05) (0.21) (0.29) (0.31) (0.35) (0.59)

  Loan Amount (in USD) 1.0002 1.0001 1.0001* 1.0002** 1.001*** 1.0001 1.0001 1.0001 1.0001 1.0001

(0.00003) (0.00004) (0.00007) (0.00009) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

  Maturity (in Days) 0.9999 0.998*** 0.994*** 0.993*** 0.99*** 1.001*** 1.0006 1.0001 0.9997 0.9991

(0.0002) (0.0004) (0.0009) (0.001) (0.002) (0.0003) (0.0003) (0.0005) (0.0006) (0.0008)

  Loan Purposes

    Consumption 0.65* 0.20 0.66 0.47** 0.25*** 0.12*** 0.20**

(0.16) (0.21) (0.17) (0.15) (0.12) (0.09) (0.16)

    Buy Fixed Asset 0.74 0.35 0.56** 0.29*** 0.18*** 0.19** 0.17

(0.19) (0.37) (0.15) (0.11) (0.11) (0.15) (0.19)

    Agriculture 0.69*** 0.63*** 0.60** 0.77 1.53 1.15 1.35 1.70* 1.77* 0.84

(0.08) (0.08) (0.14) (0.26) (1.70) (0.26) (0.33) (0.48) (0.56) (0.42)

    Commerce 1.14 1.04 1.09 1.09 0.73 1.13 0.97 0.90 1.05 1.22

(0.10) (0.10) (0.20) (0.27) (0.27) (0.19) (0.17) (0.18) (0.23) (0.42)

    Manufacture 0.95 0.87 0.74 0.57 1.07 0.87 0.68 0.62 0.30

(0.11) (0.11) (0.19) (0.22) (0.31) (0.29) (0.27) (0.28) (0.32)

    Financing 1.27 0.78 0.91 1.71

(1.41) (0.88) (1.03) (1.95)

    Service (Benchmark) - - - - - - - - - -

  Constant 0.71 2.02 11.15** 25.09** 7.01 0.006*** 0.002*** 0.002*** 0.003*** 0.001***

(0.34) (1.07) (10.7) (32.08) (-17.4) (0.004) (0.002) (0.002) (0.003) (0.0001)

  MFI Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

  n 17369 17363 16123 16123 14194 14170 14170 14170 14164 14164

  Log-L (last) -4499 -3863 -1386 -825 -260 -1933 -1574 -1303 -1181 -554

  Pseudo R-squared 0.052 0.058 0.102 0.130 0.192 0.102 0.093 0.064 0.055 0.060

Individual PaR30 Delayed Repayment (in Days) 

( Sample: CACIL, INSOTEC & MICROCRED ) ( Sample: CACIL & FINCA )
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Chapter 4: 

What Drives Financial Awareness in Microfinance? 

A Cross-Section Analysis

------------------------------------------------------------------------------------------------

4.1 Introduction

As new products and services become more widespread, financial markets around the world 

have become increasingly accessible to smaller investors. People with credit cards, subprime 

mortgages and etc. were in the historically new position of being able to decide how much 

they wanted to borrow. The customers of financial services have much greater power and 

responsibility for decision making than before. On the other hand, financially complex prod-

ucts have proven to be difficult for financially unsophisticated investors to master. They im-

pose a heavy burden on the individuals and households to achieve a higher level of financial 

literacy, which is the prerequisite of sound financial decisions. 

The importance of financial literacy has been mentioned in many studies. For example, 

Utkus & Young (2010) and Mottola (2013) indicate that the least financial savvy incurs higher 

transaction costs, high fees and using high-cost of borrowings. Numerical ability, which is 

part of financial literacy, shows strong predictive power for mortgage defaults even after 

controlling for cognitive ability and general knowledge (Gerardi et al., 2013). Both self-as-

sessed and actual financial literacy are found to affect the clients' credit card behaviour, 

such as the probability of defaults, over the life cycle (Allgood & Walstad, 2013). Last but not 

the least, financial literacy also impacts the on retirement, and it is associated with greater 

retirement planning and retirement wealth accumulation (Ameriks et al., 2003; Van Rooij et 

al., 2012).

The price of being financial illiterate can be very high. For instance, investors are estimated 

to have foregone substantial equity returns due to the ignorance of fees, expenses, and ac-

tive investment trading costs, in an attempt to beat the market (Cocco et al., 2005; Calvet et 

al., 2007). Costs of financial ignorance arise not only in the saving and investment areas, but 

also influence how consumers manage their liabilities (Campbell, 2006; Meier et al., 2013).
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In fact, nearly all respondents in the U.S. consider that well understanding finance is very im-

portant (Markow, 2005). However, the current average level of financial literacy is very low

in general. Many investors (including college employees, local construction works, local tour-

ists, and parents of students) lack basic financial literacy, such as knowing the differences 

between stocks and bonds and the fundamentals of mutual funds (Hancock, 2002). This low 

level of financial literacy is prevalent everywhere. In Germany, Australia and France, those 

who could answer all basic financial questions in the quasi-experiments are just 53%, 43% 

and 31% of respondents respectively (Bucher-Korenen & Lusardi, 2011; Agnew et al., 2012; 

and Arrondel et al., 2013). In the recent OECD survey of adult financial literacy 

competencies, Atkinson et al. (2016) show that only 56% of adults across the 29 

participating countries and economies achieved their minimum target score, only 42% of 

adults are aware of the benefits of interest compounding on savings, and only 58% could 

calculate the simple interest on savings (See Appendix. B). Similar statistics can be found in 

the S&P Global FinLit Survey as well. In this survey, Klapper et al. (2015) indicate that only 

33% of adults in 140 countries across the world are financially literate, which means around 

3.5 billion adults, most of them in developing countries, lack an understanding of basic finan-

cial concepts. In addition, a great number of mortgage defaults during the financial crisis has 

suggested that debt management is another fertile area for mistakes. Many borrowers do

not even know what interest rates are charged on their borrowings (Moore, 2003). It is not 

an issue of financial knowledge but an issue of financial awareness. 

This paper sets out to be the first rigorous global study of the relation between a client's in-

dividual/household level characteristics and financial awareness of interest repayment, us-

ing a data set including 9,053 clients of 51 microfinance institutions (MFIs) from 27 underde-

veloped or developing countries. Financial awareness is the most important component of 

financial literacy, in which there can be all kinds of issues that are necessary to make a

rational financial decision, such as financial knowledge and skills. The reason why we prefer 

financial awareness above other issues will be discussed in the next section. The main contri-

bution of this paper is providing a potential method to estimate the financial awareness of 

borrowers, and bridging the gap in the current measurement framework of financial literacy. 

The rest of the paper proceeds as follows: Section 2 reviews the literature on financial liter-

acy and presents the hypotheses to be tested. Section 3 describes the data, the imputation

methods, and the statistical methods employed. Section 4 reports empirical findings and dis-

cussion. Section 5 presents the study's conclusions and limitations.   
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4.2 Literature Review

4.2.1 Financial awareness and the framework of financial literacy 

According to the current literature, there are no universally accepted definitions of financial 

literacy and financial awareness. Researchers of the prior studies have to establish their 

framework (and questionnaires) for financial literacy or awareness measurement. In recent 

years, some simple but very effective frameworks have arisen. A large number of empirical 

studies have measured financial literacy based on a framework with three basic financial 

questions designed by Lusardi and Mitchell (2008). They are as follows:

 Interest Rate Question - Suppose you had $100 in a savings account and the interest 

rate was 2 percent per year, after 5 years, how much you would have if you left the 

money to grow? 

 Inflation Question - Imagine that the interest rate on your savings account was 1 

percent per year and inflation was 2 percent per year. Would you be able to buy the

same as today's money in this account after 1 year? 

 Diversification Question - Do you think that the statement ''Buying a single company 

stock usually provides a safer return than a stock mutual fund'' is true or false? 

However, as defined by INFE (2011), financial literacy is:

'A combination of awareness, knowledge, skill, attitude and behaviour necessary to make 

sound financial decisions and ultimately achieve individual financial well-being.'

It considers financial awareness as an essential component of financial literacy. Based on this 

definition, it is clear that financial awareness is missing from the framework presented 

above. In line with INFE’s (2011) definition, Carpena et al. (2011) claim that financial literacy 

programmes can affect financial decision-making through other channels, by making 

individuals or households more aware of their financial conditions and available product 

choices, and thus reshaping their attitudes (e.g., confidence in ability and risk preference) 

towards financial activities.

Regarding the prior literature, most empirical studies are experimental and based on Lusardi 

and Mitchell's (2008) framework or similar research designs to measure financial literacy. 

The influences of financial awareness are excluded from those studies, in which they focused 

on assessing the potential effects of certain financial education programmes provided by 

various institutions. Therefore, it is acceptable to ignore financial awareness in their studies. 
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However, if we want to answer the question whether financial literacy can ultimately im-

prove individuals or households financial decisions, or reduce loan defaults, then financial 

awareness is as essential as financial knowledge. 

At last, it is important to clarify that the boundary between awareness and knowledge some-

times is vague in practice, especially when the learning cost of a knowledge point is close to 

nothing. By looking at the descriptive statistics (Table 4.1), we found that over 60% of clients 

cannot remember the interest rates or the interest amounts of their micro loans. This find-

ing motivated us to use these variables as indicators of financial literacy. However, whether 

‘accurately-remember-interest’ is a type of awareness or knowledge is controversial. There‐

fore, in the literature review and the rest of the paper, we consider financial literacy, finan-

cial knowledge, and financial awareness as the same thing.  

4.2.2 Main findings in the previous studies

The majority of previous financial literacy studies focus on one or some of the independent 

variables such as gender, age, education background, and living location, while other factors 

(race and ethnicity, nationality, religion, family background, employment status, etc.) were 

seldom mentioned. 

In terms of the findings related to age, lots of evidence shows that young respondents are 

generally more financially knowledgeable than older respondents. However, instead of a low 

level of financial literacy, some studies indicate that overestimation of financial literacy 

might be the real cause of poor performance and defaults. Older people usually score poorly 

on basic financial literacy questions in surveys. Nevertheless, older people also give them-

selves very high scores on financial literacy self-assessments (Lusardi & Tufano, 2009a; Lu-

sardi & Mitchell, 2011a, 2011b). Similarly, Finke et al. (2011) indicate that people's confi-

dence in their financial decision-making abilities increases with age while financial literacy 

falls with age. Such a mismatch between the actual and perceived financial knowledge might 

potentially explain why financial frauds are often perpetrated against the elderly (Deevy et 

al., 2012).

There are also a great number of experimental studies arguing that for both the elderly and 

young people, men are generally more financially knowledgeable than women (Hung et al., 

2009; Lusardi et al., 2009; Lusardi & Mitchell, 2009; Lusardi & Tufano, 2009a, 2009b). Some 

studies have examined this result in samples with highly educated respondents exclusively. 
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Regarding high schools and colleges specifically, men are still more financially knowledgea-

ble than women (Chen & Volpe, 2002; Mandell, 2008). Even for well-educated women, fi-

nancial literacy was found to be very low (Mahdavi & Horton, 2014). 

A number of studies have tried to explain the reasons for such a phenomenon. Brown and 

Graf (2013) claim that the differential interest in finance and financial matters between 

women and men is not one of the reasons. In fact, some sex differences may be rational due 

to specialisation of labour within households. Married women usually only build up financial 

knowledge late in their lives for unavoidable reasons, such as when their husbands pass 

away (Hsu, 2016). 

However, why single women also have lower financial literacy than men has not been 

answered yet. Fonseca et al. (2012) suggest that women may acquire financial literacy differ-

ently from men while they have the approximately equal educational achievement. In 

addition, the different self-confidence of financial literacy might be a potential explanation 

of the weaker literacy score of female respondents in the research (Bucher-Koenen et al., 

2012).

Besides the major findings illustrated above, there are also some interesting findings on edu-

cation background and living location. Both of them have been proven to be related to finan-

cial literacy in most studies. Those without a college education are much less likely to be 

knowledgeable about basic financial literacy compared to college graduates (Lusardi & 

Mitchell, 2007, 2011b). Such a positive correlation between educational background and fi-

nancial literacy might be driven by cognitive ability (McArdle et al., 2009). Numeracy is espe-

cially poor for those with low educational attainment. But we should notice that the cogni-

tive factor does not fully account for the variance in financial literacy, though it always has a 

significant and much higher coefficient than most variables (Lusardi et al., 2009). On the 

other hand, regarding the factor of living location, it is found that those living in rural areas 

generally score worse in financial literacy than their city counterparts. A possible reason is 

that financial literacy is more easily acquired via interaction with others in the same areas 

(Klapper et al., 2011). Formal financial education is probably not the primary route for cli-

ents to absorb relevant knowledge and necessary information.  

In terms of the associations between access to credit and financial literacy, most empirical 

studies use financial literacy as a potential determinant of access to credit, instead of as a 

dependent variable. Regarding the influence of access to credit on financial literacy, the only 
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relevant paper is conducted by Guiso and Jappelli (2005). They analyze the ‘attention to in‐

formation barriers’ for limited financial market participation and found that financial aware-

ness to household characteristics is positively associated with socioeconomic variables (edu-

cation, wealth, income, and age), the intensity of social interaction, and most importantly, 

long-term bank relations. They also indicate that the most plausible interpretation of the sig-

nificant relation between long-term bank relations and awareness is that: the banks have a 

greater incentive to inform that clients that they have superior information. It inspires us to 

examine whether previous access to microfinance services is associated with financial 

awareness as well. 

4.2.3 Limitations of the previous studies

There is no lack of financial literacy studies that use experimental methods in the current lit-

erature. However, there are obvious limitations of the experimental studies. Very few of 

them have undertaken a rigorous evaluation of the impact of financial education based on a 

suitable theoretical model which shows how financial literacy is accumulated, or a carefully-

designed empirical quasi-experiment approach. Consequently, the impact of education pro-

grammes has been greatly underestimated. Fernandes et al. (2014) point out that financial 

education explained only 0.44% of the variance in financial knowledge, and such effect is 

much weaker than the other domains of education. In addition, while we have strong evi-

dence that financial literacy is generally low, some evidence that financial illiteracy has a 

negative influence in the prior literature, there is no evidence that financial literacy can be 

increased by education interventions in a cost-effective way until now (Karlan et al., 2014).

While the experimental and quasi-experimental methods are more popular in the financial 

literacy studies, we consider that the non-experimental method might be more appropriate 

in our study. The major criticism of non-experimental methods is that there are no answers 

given regarding why particular groups have lower levels of financial literacy in the studies. In 

other words, the high correlation between an indicator and financial literacy does not neces-

sarily reflect a causal relationship between them. On the other hand, exclusive of selection 

bias is the main advantage of non-experimental studies comparing to experimental ones. In 

terms of experimental methods, there are a couple of disadvantages. Firstly of all, it is ex-

tremely difficult to conduct an experimental or quasi-experimental study in a large number 

of countries and generate cross-sectional data. It is difficult to control all potential unobserv-

able influencers in our case. Secondly, any test of the effect of experimental education pro-

grammes on subsequent economic behaviours is designed for particular courses. Without 
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further testing in different circumstances, the applicability of the findings to more general 

occasions is unclear. The third issue of experimental study is the difficulty created by poten-

tial selection bias. Changes in observed economic behaviours may just reflect the motivation 

or aptitude of participants rather than a programme's effectiveness. Finally, impacts of the 

experimental programmes may need a long time to take effect. It is tough to measure the 

long-term outcomes and behavioural changes. In contrast, significant associations are much 

easier to be detected in the non-experimental studies.

4.2.4 Motivations and research questions

Considering to the characteristics of microfinance (comparably higher interest rate, shorter 

repayment cycle, and lower level of collaterals), financial awareness might be even more 

crucial than financial knowledge to a borrower’s probability of default. On the other hand, a 

generally low level of financial literacy, and very strong associations between socio-demo-

graphic characteristics and financial literacy have been found in a number of empirical stud-

ies. Therefore, it would be interesting to know if these findings still hold for financial aware-

ness solely, and what features of the clients may relate to higher financial awareness. The 

hypotheses tested in this paper can be described as follows:

H1.1 Women have a lower probability of being aware of their interest rate 

H1.2 Older borrowers have a lower probability of being aware of their interest rate

H1.3 Less educated borrowers have a lower probability of being aware of their interest rate 

H1.4 Borrowers living in rural areas have a lower probability of being aware of their interest 

rate

In addition, as most of the prior financial literacy studies focus on U.S. citizens, there is insuf-

ficient evidence in the context of underdeveloped or developing countries, and no cross-

country analyses available now. Therefore, we set out to fill this gap by using a cross-country 

survey data covering 27 countries and conduct split-sample examinations for different re-

gions and religions as well to see if H1.1 to H1.4 are persistent.

We also propose the following main hypotheses as we expect that experience of financial 

services may help to improve the financial awareness of the microfinance participants:

H2. Clients who have held savings accounts before (or previously accessed to moneylenders, 

previously accessed to MFIs, previously accessed to formal banks) have a higher probability 

of being aware of their interest rate
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H3. Borrowers who have no education, but have held savings accounts before (or previously 

accessed to the moneylenders, or previously accessed to MFIs, or previously accessed to for-

mal banks) have a higher probability of being aware of their interest rate.

4.3 Data and Methodologies 

4.3.1 Descriptive statistics

The individual level survey data is provided by Micro Finanza Rating, which is a leading pri-

vate and independent international rating agency specialized in microfinance. It consists of 

9,053 clients of 51 MFIs from 27 underdeveloped or developing countries (See Appendix. C). 

180 clients were randomly selected in each MFI. All surveys included in this paper were con-

ducted in the period from 2007 to 2012. A major advantage of using this survey data set is 

that it covers a wide range of unique client characteristics that have been ignored in the for-

mer microfinance literature. For example, the data contains information on the clients' fi-

nancial awareness of interest repayment, and their previous access to different sources of 

credit, such as moneylenders, MFIs, formal banks and etc. Besides, the survey data also in-

cluded those essential variables have been widely studied before, such as age, gender, and 

education background.   

Previous studies have designed various qualitative questionnaires to measure the clients' 

awareness of the interest repayment. For instance, the INFE (2011) has developed the OECD 

financial literacy questionnaire. It considered awareness as an indispensable component of 

financial literacy. However, the designed questions are subjective as shown below (scale of 1 

to 5, completely agree 1, completely disagree 5):

 Before I buy something, I carefully consider whether I can afford it.

 I tend to live for today and let tomorrow take care of itself.

 I find it more satisfying to spend money than to save it for the long term.

 I pay my bills on time.

 I am prepared to risk some of my own money when saving or making.

 I keep a close personal watch on my financial affairs.

 I set long-term financial goals and strive to achieve them.

 Money is there to be spent.
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In order to quantify financial awareness and cope with the disadvantages brought by the un-

standardized measurements as presented above, the two proxies for literacy used in this pa-

per are completely irrelevant to the clients' honesty, numeracy, and accessibility of product 

information, but only memory and awareness of interest repayment. Hence, they are unbi-

ased and more reliable compared to the other measurement frameworks that have been 

widely used. Micro Finanza Rating has constructed two indicators as follows:

𝐾𝑅𝑖 = {
1,    𝑓𝑜𝑟 

|𝑅𝑖−𝑅�̃�|

𝑅𝑖
≤ 0.25

0,    𝑓𝑜𝑟 
|𝑅𝑖−𝑅�̃�|

𝑅𝑖
> 0.25

    (19)

𝐾𝐴𝑖 = {
1,    𝑓𝑜𝑟 

|𝐴𝑖−𝐴�̃�|

𝐴𝑖
≤ 0.25

0,    𝑓𝑜𝑟 
|𝐴𝑖−𝐴�̃�|

𝐴𝑖
> 0.25

   (20)

where 𝐾𝑅𝑖 and 𝐾𝐴𝑖 are a pair of binary variables that indicate whether client 𝑖 can accu-

rately remember his/her interest rate and total interest payment; 𝑅𝑖 and 𝐴𝑖 are the interest 

rate and total interest payment of client 𝑖 actually recorded on the MFIs' administrative loan 

book; 𝑅�̃� and 𝐴�̃� are the interest rate and total interest payment reported by client 𝑖 during 

the surveys; 𝐾𝑅𝑖 and 𝐾𝐴𝑖 equal to 1 when the absolute difference between the actual and 

reported values is no greater than one-fourth of the actual value.

At first glance, there is no fundamental difference between 𝐾𝑅𝑖 and 𝐾𝐴𝑖. Because the cli-

ents can easily calculate one another with the knowledge of total loan amounts. Neverthe-

less, regarding to the most financially knowledgeable respondents, only 36% of them can ac-

curately report both numbers. It means that a large proportion of the rest (64%) only pay at-

tention to either interest rate or total interest payment for unidentified reasons. Therefore, 

𝐾𝑅𝑖 and 𝐾𝐴𝑖 are not interchangeable, and they need to be treated individually. In this pa-

per, we have used 𝐾𝑅𝑖 as the major proxy for financial awareness to conduct regression 

analyses, and used 𝐾𝐴𝑖 in robustness tests only. It is because the size of the 𝐾𝐴𝑖 sample is 

three times smaller than that of the 𝐾𝑅𝑖 sample. Considering the issues of error and missing 

data, the results based on the 𝐾𝐴𝑖 sample might be less convincing.

Table 4.1 reports the sample size, percentage of missing data, minimum, maximum, stand-

ard deviation, skewness and kurtosis for all variables in our sample. We see that there are 

38% of respondents can remember the interest rates, and 34% of them can remember the 

total interest payment. In terms of who can remember either interest rates or total interest 

payments, there are still only 48% of the entire sample. In general, more than one-half of 
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the microfinance participants in our sample were not knowledgeable of their interest repay-

ments. The widespread financial unawareness may be more intimidating than financial inca-

pability in the microfinance sector and lead to lower repayment rate. 

As far as the access to credit variables are concerned, the means of previous access to differ-

ent sources of credit are not very high. Only 17% of participants in our sample have experi-

ence of borrowing from MFIs. 21% of them have accessed formal banking before, while 10% 

of them have tried to borrow from relatives, friends or moneylenders. Moreover, we can see 

that a noticeable number of clients have accessed more than one credit source at the same 

time. 8% of clients have borrowed from two different MFIs. Besides, 3.6% of them even have 

debts with moneylenders. These clients were probably using new loans from the MFIs to pay 

off old debts, and suffering from over-indebtedness. 

For the gender variables, we see that, on average, MFIs have 59% female clients. In terms of

the ordinal variable of women's control of loans, 1 means partial control and 2 means com-

pleted control. As the mean of women's control of loans is slightly less than 1 and the mean 

of gender is closed to 0.6, it indicates that more than 17% of the loans, where borrowers

were female, were actually controlled by their husbands. Regarding the educational back-

ground, 1.55 means the majority of clients were graduates from primary and secondary 

schools. About 27% of the client have studied at tertiary schools, while 16% of them have 

never engaged in any formal education. In brief, the average level of education is relatively 

low, especially for the users of financial services.

4.3.2 Missing data imputation methods

Until recently, listwise deletion is still the most popular way of dealing with missing data. It 

simply eliminates any cases with missing data or errors on one or more of the variables. In 

reality, the percentage of cases missing have to be carefully examined if listwise deletion is 

implemented. As a rule of thumb, datasets in which more than roughly 20% are excluded by 

deletion might lead to substantial bias in estimations. As shown in Table 4.1, there are four 

variables (𝐾𝐴𝑖, age, employment status, and income per capita) that have over 20% missing 

data. By applying listwise deletion to all variables in our data set, the sample size will de-

crease by more than 60%. Besides, as the four variables stated above have been claimed to 

be related to financial literacy in the previous studies, we cannot simply drop them out ei-

ther. Therefore, listwise deletion is infeasible in this situation, and a missing data imputation 

method is needed.     
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Based on the characteristics of missing values and our research objectives, the Multiple Im-

putation (MI) method is the optimal solution in this case due to three reasons: 1. the num-

bers of missing data on some variables are substantial; 2. the correlations between the vari-

ables with missing data and the other variables can be well estimated; 3. the real relation-

ships between variables are much easier to be detected as the MI method will strengthen

the correlations and preserves the distributions. An in-depth explanation and discussion of 

how to choose the best approach to handle missing data can be referred to chapter 5.    

In this paper, we follow Little and Rubin’s (1987) framework for missing data, which was 

specified by Schafer and Graham (2002), assume the incomplete data of variables are miss-

ing at random (MAR), and then apply the MI method to all variables with missing data, ex-

cept for the dependents 𝐾𝑅𝑖 and 𝐾𝐴𝑖. In terms to the iterations of imputation, based on the 

recommendations from Graham et al. (2007), Bodner (2008) and White et al. (2011), we 

consider that 50 times will be sufficient to yield more than 95% of efficiency of missing data 

estimation.

However, the MI method is far from perfect. The major downside of it is reducing generalisa-

tion of the sample and over-stating the actual correlations. Because the method predicts the 

incomplete variables by stochastic regression with estimations of the means and the covari-

ances which may not persist in the actual missing data. Hence, we also estimate the missing 

data conservatively by the traditional mean imputation method, rerun the regressions, and 

finally compared the results to see if there are potential false significant relationships. The 

mean imputation will significantly attenuate the overall correlations estimated (Baraldi and 

Enders 2010). On the other hand, it might damage the distributions of the incomplete varia-

bles and over-estimate the correlations for those complete variables. As results, we should 

conclude that the estimated correlations are unbiased (neither over-fitted nor under-fitted) 

only when they are consistent in both data sets with different imputation methods. By com-

paring the descriptive statistics of the raw data (Table 4.1) and the pooled data of 50 multi-

ple imputations (Table 4.2), we can see no substantial differences on the means and distri-

butions of these two data sets. The imputation is statistically reliable and valid. 

4.3.3 Estimation methods

The research design of this study involves logit regression analyses with cross-sectional data. 

Logit regression is used because the dependent variable 𝐾𝑅𝑖 is dichotomous. Our estimation 

is based on a choice-based sample in which 38% of the clients have financial awareness of 
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interest rates and 62% of them have no financial awareness. These percentages are deter-

mined by the indicator's evaluation standard (less than 25% difference from the true value) 

that designed by Micro Finanza Rating. If we raise the barrier from to 25% to 5%, there will 

be almost no respondents can be classified as financially knowledgeable. Therefore, the pro-

cess used here slightly differs from a pure random sampling approach.

The unequal sampling for the two groups will finally lead to the bias in the constant term, 

which is a compulsory component to build a predictive model. Fortunately, model develop-

ment is not the purpose of this study. Maddala (1991) claims that the unequal sampling 

rates do not affect the coefficients of the explanatory variables but the constant term. The 

weighting procedure is unnecessary if we just perform a logit analysis. Inspired by the empir-

ical designs in Guiso and Jappelli (2005) and Lusardi & Tufano, (2009a), we test the hypothe-

ses between the clients' previous access to credits and financial awareness of interest rate 

described in H1 and H2, and regress 𝐾𝑅𝑖 with controls as follows:

𝐾𝑅𝑖 = 𝛼 + 𝛽1𝑃𝑆𝐴𝑉𝐸𝑖 + 𝛽2𝑃𝑀𝑂𝑁𝐸𝑌𝑖 + 𝛽3𝑃𝑀𝐹𝐼𝑖 + 𝛽4𝑃𝐵𝐴𝑁𝐾𝑖 + 𝛽5𝑳𝑖 + 𝛽6𝑭𝑖 + 𝛽7𝑺𝑖 +

𝛽8𝐶𝑂𝑈𝑁𝑇𝑅𝑌𝑖 + 𝜀𝑖    (21)

where 𝑃𝑆𝐴𝑉𝐸𝑖, 𝑃𝑀𝑂𝑁𝐸𝑌𝑖, 𝑃𝑀𝐹𝐼𝑖, and 𝑃𝐵𝐴𝑁𝐾𝑖 are dummy variables that indicate whether 

client 𝑖 has opened saving account, borrowed from moneylenders, MFIs and formal banks 

before he/she accessed to the current MFI respectively; 𝑳𝑖 is matrix of loan-specific controls, 

such as annual interest rate, loan size, and extra loans from other moneylenders or institu-

tions; 𝑭𝑖 is a matrix of individual level financial-specific variables that capture employment 

status, number of fixed income sources, income per capita, and ownership of properties; 

matrix 𝑺𝑖 consists of a set of socio-demographic characteristics, such as gender, age, educa-

tion background, and living location, because empirical studies have shown that the level of 

financial literacy is related to these individual or household features; vector 𝐶𝑂𝑈𝑁𝑇𝑅𝑌𝑖 con-

trols the country in which an MFI is active.

The effects of previous access to credits exerted on the financial awareness of clients can be 

more prevalent under certain conditions or apply more for certain categories of socio-demo-

graphic characteristics.  In order to examine the heterogeneous effects, interaction terms in 

the regression equations are therefore included as follows:

𝐾𝑅𝑖 = 𝛼 + 𝛽1𝑃𝑆𝐴𝑉𝐸𝑖 + 𝛽2𝑃𝑀𝑂𝑁𝐸𝑌𝑖 + 𝛽3𝑃𝑀𝐹𝐼𝑖 + 𝛽4𝑃𝐵𝐴𝑁𝐾𝑖 + 𝛽1
′𝑃𝑆𝐴𝑉𝐸𝑖 ∗ 𝐼𝑁𝑇𝑖 +

𝛽2
′ 𝑃𝑀𝑂𝑁𝐸𝑌𝑖 ∗ 𝐼𝑁𝑇𝑖 + 𝛽3

′ 𝑃𝑀𝐹𝐼𝑖 ∗ 𝐼𝑁𝑇𝑖 + 𝛽4
′𝑃𝐵𝐴𝑁𝐾𝑖 ∗ 𝐼𝑁𝑇𝑖 + 𝛽5𝑳𝑖 + 𝛽6𝑭𝑖 + 𝛽7𝑺𝑖 +

𝛽8𝐶𝑂𝑈𝑁𝑇𝑅𝑌𝑖 + 𝜀𝑖    (22)
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where 𝑃𝑆𝐴𝑉𝐸𝑖 ∗ 𝐼𝑁𝑇𝑖, 𝑃𝑀𝑂𝑁𝐸𝑌𝑖 ∗ 𝐼𝑁𝑇𝑖, 𝑃𝑀𝐹𝐼𝑖 ∗ 𝐼𝑁𝑇𝑖 and 𝑃𝐵𝐴𝑁𝐾𝑖 ∗ 𝐼𝑁𝑇𝑖 are the interac-

tion terms that measure whether the effects of previous access to saving service, money-

lenders, MFIs and formal banks differ with the interaction variables 𝐼𝑁𝑇𝑖 respectively. The 

major interaction variables we include in this analysis are education background, living loca-

tion, and whether a client is the head of household. Since prior empirical studies have found 

evidence that people who live in rural areas and with lower education levels are much less 

likely to be knowledgeable about basic financial literacy, as discussed in the literature review 

section, it is interesting to see if providing financial services will have stronger influence on 

these particular clients. In addition, as the heads of households usually take more control 

over financial issues and decisions than their counterparts, it is reasonable to suppose that 

the influence on them will also be more noticeable.   

4.4 Results and Discussion

4.4.1 Relation between access to credits and financial awareness

Table 4.3 reports the impacts of the clients' previous access to credit on their financial 

awareness of their interest rate. The different columns correspond to the different missing 

data imputation methods (multiple imputation vs mean imputation) and different control 

variables. Columns (1)-(4) present the results of regressions that only include the socio-de-

mographic factors which have been widely studied before. We see that women have a

higher awareness of their interest rate. But this relationship becomes insignificant when we 

control for the countries. Alternatively, when we replace gender with the women's actual 

control power on loans in columns (9)-(12), and there are no significant results either. On 

the hand, the clients living in the rural area are more cautious of the interest rate at the 1% 

level. 

These two findings are different from most of the present literacy studies, such as Chen et 

al. (2002), Hung et al. (2009), and Lusardi et al. (2009), who demonstrate that men are gen-

erally more financially knowledgeable than women, and people living in rural areas generally 

score worse in financial literacy. The different results can be simply caused by sample differ-

ence, as these surveys are conducted in the U.S. Otherwise, it is probably because the for-

mer literature has excluded the awareness of interest from the measurement of financial lit-

eracy. Alternatively, it could suggest that the difference between genders is absorbed by the 

control variables of the countries. In most cases, there is only one MFI in a country, and 
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some MFIs provide services to female clients exclusively. Regarding the impact of gender, 

regression results without country controls might be more reliable in this case. We will fur-

ther examine it in the later subsection of split-sample analysis. 

In terms of the other two variables, age and education background, the results are con-

sistent with prior results in the financial literacy studies. Significant results are found for 

these two variables. A possible interpretation of the results is that the respondents who are 

older and less educated are more likely to forget their interest rate of repayment.  

In columns (5)-(8) of Table 4.3, we examine the impacts of previous access to financial ser-

vices with variables of loan status, financial status, and the socio-demographic variables in-

troduced above. As can be seen, previously borrowing from moneylenders, friends, relatives 

and family members is highly significant at the 1% level. Coefficients are at least 0.36, re-

gardless of the estimation model. In other words, the clients' odds to remember the interest 

rate is 43% higher than who never accessed to money lenders and etc. In contrast, the coef-

ficients of previous access to saving service are negative at the 1% level. It means that the 

clients who have had saving accounts before are less likely to know the interest rate. In addi-

tion, regarding previous access to MFIs, and formal banks, there are no significant results. 

According to our data, the average interest rate of MFIs is 27%, which is much higher than 

the general deposit rate (2%) and borrowing rate (5%) of formal banks, but much lower than 

the general interest rate of moneylenders (from 90% to 180%). In brief, it seems that the ex-

tremely high borrowing rate, and maybe unpleasant experience, will strongly improve the 

clients' financial awareness, while the extremely low saving rate and satisfactory banking 

service could weaken their attention to interest rates.

Further examining the other variables of household characteristics, loan status and financial 

situation, we see that mainly annual interest rate, loan size, income per capita, extra loans 

from other MFIs, and whether client is a household head are related to 𝐾𝑅𝑖. In particular, a 

higher 𝐾𝑅𝑖 is associated with a lower interest rate, a larger size of loan, a higher income, as 

well as borrowing from more than one MFIs. Finding that the interest rate is negatively re-

lated to financial awareness is surprising, since greater financial burden should force the 

debtors pay more attention on their loans. The marginal effect of a 1% increase in interest 

rate is a 90% decrease in the odds of 𝐾𝑅𝑖. Considering the coefficients between 𝐾𝑅𝑖 and 

previous access to moneylenders (0.36), previous access to MFIs (0.04), and previous access 

to formal banks (-0.05), it is reasonable to infer that there might be a nonlinear (convex) re-

lationship between interest rate and 𝐾𝑅𝑖. Further examination is needed but this is beyond 
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the purpose of our study. Moreover, it is interesting to find that the clients who borrowed 

from multiple MFIs actually have lower odds to remember the interest rates. Such finding 

could indicate that the ignorance or underestimation of interest repayment might be one of 

the reasons to excess borrowing and even over-indebtedness.  

4.4.2 Split-sample Analysis

Table 4.4 presents the results of the split-sample analysis, where the main regression is re-

peated for different regions in which the MFIs are active and different religions of the re-

spondents. We analysis the microfinance borrowers classified into four groups (Africa, Cath-

olic Europe, Latin America, and the Middle East) based on two dimensions of cross-cultural

variation in the world2: 1. from Traditional to Secular-Rational; and 2. from Survival to Self-

Expression. For instance, the clients in the Middle East usually emphasize the importance of 

traditional value, economic and physical security, while the clients in Europe are more secu-

lar-rational and have stronger motivations to pursue self-expression. We also classify the cli-

ents into three categories regarding the dominant religion of where they belong to. If the 

dominant religion takes up less than 40% of the population, the related areas will be identi-

fied as a mixture (a great diversity of beliefs). Columns (1)-(2) and (11)-(12) present the re-

gressions with variables of regions or religions. It is shown that they are all significant at the 

1% level. Respondents who are Islamist or live in the Middle East have much highest odds to 

correctly remember the interest rates. In comparison, the odds for those from Africa or the 

countries with multiple religions are lowest.  

Columns (3)-(10) and (13)-(18) of Table 4.4, reconfirm that, in Latin America, Middle East, 

and Christian countries, 𝐾𝑅𝑖 is positively associated to previous access to moneylenders, and 

negatively associated to previous access to saving service. However, we have found incon-

sistent results in other areas. Previous access to moneylenders has no significant influence 

on 𝐾𝑅𝑖 in the countries with multiple religions. In Africa, previous access to saving service is 

insignificant. In Europe, previous access to all sources of credit (moneylenders, MFIs and 

banks) has negative impacts on 𝐾𝑅𝑖 and the impact of previous access to saving service has 

become positive. One potential explanation for this result is that Europe is a more regulated 

                                                          
2 This is a relative scoring method instead of a qualitative description for cultural values. For example, 
the people in Catholic Europe is more secular than those in Middle East, meanwhile, 72% of respond-
ents in the Eurobarometer Survey (2012) described themselves as Christianity. Further details of the 
definitions and scoring method can be referred to the World Values Survey 
(http://www.worldvaluessurvey.org/WVSContents.jsp).  
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financial market than the other regions. Considering the potential convex relationship be-

tween interest rate and 𝐾𝑅𝑖 discussed above, if the upper limits of interest rate of all mon-

eylenders, MFIs and banks are restricted to very low levels (at the left-hand side of the ver-

tex), then the coefficients of previous access to credits will become negative. 

Examining the socio-demographic variables once again, we found different results compared

to those introduced in subsection 4.4.1. From columns (3)-(10) of Table 4.4, we see that gen-

der becomes insignificant in Europe, Middle East, and the countries which are Islamic or 

have mixed religious. On the other hand, we found significant positive relations between 

women and the awareness of interest rate in Latin America and Christian countries. In these 

areas, while men are generally more financially knowledgeable than women, women are 

more financially cautious than men. In fact, the majority of Christians concentrate in Latin 

America nowadays. Location and religion are highly correlated. Both Christianity and Islam 

well recognise marriage and consider a woman’s primary responsibility is to fulfil her role as 

a wife. But Islam also stresses that a woman’s responsibilities to nurture, educate, and pro-

tect her children have taken priority over working and financially support, where women still 

have the right and are free to work. It may be the reason why women in Christian countries 

have higher financial awareness than men.    

Moreover, age becomes insignificant across all split-samples with multiple imputations after 

releasing the control of countries. This result is inconsistent with the prior results presented 

in Table 4.3 as well. With mean imputations, significant results for age are found in columns 

(4), (8) and (16). Considering the extremely high percentage of missing values in age (40%, 

see Table 4.1), it is reasonable to guess that the results with multiple imputations are more 

accurate than those with mean imputation. However, we leave the association between age 

and financial literacy as unknown in the paper for robustness. Because the accuracy of multi-

ple imputations for a discrete and censored variable with very high missing rate is still un-

clear. In fact, this issue motivates us to evaluate the imputation performances of different 

missing data techniques. It will be discussed in details in the next chapter.  

What is more, in terms of educational background and living location, the results are also 

consistent with those shown in Table 3, except for those estimated with the split-sample of 

Europe, in which both variables have no significant relationship with 𝐾𝑅𝑖. The results with 

multiple and mean imputations are the same. Therefore, we can conclude that hypotheses 

1.3 and 1.4 are accepted. 
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4.4.3 Interaction effects

Regression outputs with respect to the interaction terms are shown in Table 4.5. The differ-

ent columns represent the different interaction terms (education background, living loca-

tion, and whether a client is household head) that are added subsequently. In order to cap-

ture interaction effects of specific levels of education, we transform the ordinal variable of 

education to three dichotomous variables before analysis. Note that the coefficient for cli-

ents with previous access to different types of credit, now represents the relation between 

previous access to credits and financial awareness of interest rate in the reference category 

(Part 3 and Part 4 of Table 4.5), whereas the sum of the reference coefficient and the coeffi-

cient for the interaction term is the one actually indicate the true relation to the dependent 

variable. 

Based on the prior finding that previous access to MFIs and formal banks has no relation to 

𝐾𝑅𝑖, we are curious as to whether it has an influence on the particular clients with compara-

bly lower levels of education. As can be seen from columns (1)-(6) at Part 3 of Table 4.5, al-

most all interaction terms between education and previous access to credits return insignifi-

cant coefficients, which indicates that the relation between previous access to credit and 

𝐾𝑅𝑖 does not differ with education background. The only exception is the interaction term 

between the uneducated clients and previous access to saving service. It is significant at the 

1% level and the coefficient is negative 0.48. Along with the reference coefficient of previous 

access to savings (-0.07), we may conclude that providing an access to saving service to the 

clients with at least primary education may potentially strengthen their financial awareness 

of interest repayment. However, access to saving service is not good for uneducated clients. 

On the other hand, it is surprising that previous access to MFIs and formal banks are both 

significant and positive for the clients living in an urban area. Meanwhile, previous access to 

saving service significant and positive for the clients living in rural area. These two findings 

are in line with Klapper et al. (2011), who claim that financial literacy is usually acquired via 

interaction with others instead of education. As the main objective of microfinance is to re-

duce poverty by providing small loans and savings facilities to the rural poor who are ex-

cluded from commercial financial services, in terms of enhancing the clients' consciousness 

of finance, microcredit is more effective in the urban area, while microsaving is more effec-

tive in the rural area. Finally, we also found that access to formal banks might have a signifi-

cant influence on the financial awareness of interest rate for the clients who are not the 

household heads. All other interaction terms in this group are insignificant, including the one 
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with MFIs. In summary, these findings suggest that it is tough to develop greater financial 

awareness of the microfinance participants by simply providing credit and saving services. 

Hence, education of basic financial regulations and proper supervision are indispensable.     

4.4.4 Further Analysis

An extra test has been carried out to test the robustness of the results and analyse the find-

ings more in detail. Specifically, since sometimes clients only remember the total amount of 

their interest repayment but not the interest rates, we want to see whether the results with 

𝐾𝑅𝑖 hold for 𝐾𝐴𝑖 as well. Table 4.6 presents the regressions on both dependents with a new 

sample which is generated by simple listwise deletion based on the missing data of 𝐾𝐴𝑖. 

Note that it is normal that we have slightly different results in columns (5)-(8) of Table 4.6

compared to the results in Table 4.3 because different samples have been applied. Further 

discussion about the potential bias caused by sample selection is beyond the purpose of this 

test. The main objective in this section is to examine whether 𝐾𝑅𝑖 and 𝐾𝐴𝑖 can be replaced 

by each other and generate similar results. In fact, the correlation between the two financial 

awareness proxies is just 0.27, which is much lower than expected. The reason why the cli-

ents prefer one proxy over another is unclear. 

As illustrated in the table, we see that the results from columns (1)-(4) are inconsistent with

the results from columns (5)-(8), especially for our key variables of previous access to various 

sources of credit. Previous access to moneylenders and MFIs are significant at the 5% level 

and the 1% respectively by applying 𝐾𝐴𝑖, while previous access to credit are all insignificant 

by applying and 𝐾𝑅𝑖. One possible explanation for the inconsistency is that when the bor-

rowing amount is small, a client is likely to prefer the amount of interest over the interest 

rate. As presented in Table 4.1, the average loan size of microfinance is just 1,518 USD, and 

it is heavily skewed to the right (11.66). It may be easier to remember the loan amount ap-

proximately in this case. By looking at the results of 𝐾𝐴𝑖 along, it seems that the improve-

ment in financial awareness led by previous access to MFIs is noticeable. Hence, someone 

may argue that both of 𝐾𝑅𝑖 and 𝐾𝐴𝑖 are biased indicators for financial awareness, and fur-

ther analysis with a new proxy (which indicates that one of 𝐾𝑅𝑖 and 𝐾𝐴𝑖 is non-zero) could 

be conducted. Unfortunately, this is infeasible in practice. 25% difference from the interest 

rate (𝐾𝑅𝑖's definition) and 25% difference from the loan size (𝐾𝐴𝑖 's definition) are clearly 

not comparable, as the interest rate ranges from 13.0% to 48.5% while the loan size range 

from 11 USD to 136,224 USD according to our data (Table 4.1). Therefore, how to merge the 
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information of 𝐾𝑅𝑖 and 𝐾𝐴𝑖 and generate a more reliable proxy of financial awareness still 

waits to be solved.  

4.5 Conclusions and limitations 

This paper uses a large global data set covering 51 MFIs in 27 countries to test for individ-

ual/household effects on the clients' financial awareness of interest rate. This is important, 

given the documented popular belief that the financial awareness is very low in general, and 

strengthening the financial awareness through education programmes and supervision 

would greatly increase the operating cost of MFIs. Hence, a cost-effective screening method 

for financial awareness is necessary. As far as we know, no rigorous worldwide empirical 

study has been devoted to this issue. Financial awareness is studied through the proxies de-

signed by Micro Finanza Rating. They are a pair of dummies which indicate whether a client 

can accurately (less than 25% different from the actual values) remember his/her interest 

rate and total interest payment. To test our hypotheses, we have applied multiple 

imputations and mean imputation methods on missing data, and logistic regression on the 

cross-sectional data. In addition, a test has been carried out to test the robustness of the re-

sults.

The descriptive statistics do confirm that the financial literacy of interest rate and total inter-

est payment is very low for microfinance participants in general. Our findings indicate that 

previous access to moneylenders improved the awareness of interest. Clients who have had 

saving accounts before were less knowledgeable about the interests. But previous access to 

saving service has a positive effect on the clients with at least primary education. Previous 

access to microfinance has positive relation to the financial awareness of the clients who 

lived in urban areas. 

The overall findings regarding the socio-demographic variables suggest that in our sample 

the association between gender and financial literacy of interest rate only exists in Latin 

America and Christian countries. Women may be more financially cautious than men in 

these areas. The results for education background and living location are all significant. They 

show that a more educated client who lives in the rural area has a much higher probability 

to be financially cautious. In addition, there are no results for age. Because the missing rate 

is too high, and the results with multiple imputations and the result with mean imputation 

are inconsistent. 
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In terms of the limitations of this study, there is only one single indicator used as the proxy 

for financial literacy. We only capture the respondents’ awareness of their current financial 

conditions but their financial knowledge, skills, attitudes and etc. Hence, this study does not 

tell if a respondent was financially literate in every aspect as defined by INFE (2011). Re-

searchers should be careful when trying to use these findings. On the other hand, as a gen-

eral issue of non-experimental study, any high correlations between indicators and financial 

literacy may not reflect causal relationships. Hence, we can only confirm there are certain 

associations between clients’ characteristics and their financial awareness. Finally, the big‐

gest limitation of this study is that the two different indicators of financial awareness (𝐾𝑅𝑖

and 𝐾𝐴𝑖) cannot be simply combined at this stage, and the regressions with different de-

pendent variables have generated inconsistent results. How to weight and merge the infor-

mation of 𝐾𝑅𝑖 and 𝐾𝐴𝑖 into a single reliable indicator of financial awareness is needed in 

further studies.
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Table 4.1
Descriptive Statistics of the Data before Appling Multiple-Imputation
‘Know Interest Rate’ is a dummy that is 1 if the client knows his/her interest rate, and 0 otherwise; ‘Know Interest 
Amount’ is a dummy that is 1 if the client knows his/her interest amount, and 0 otherwise; ‘Gender’ is 1 if the cli-
ent is female, and 0 otherwise; ‘Women’s Control on Loan’ is an ordinal variable that is 2 if the household finance 
is fully controlled by women, 1 if the household finance is partially controlled by women, and 0 otherwise; ‘Educa-
tion Below Primary School’ is 0 if the client has completed primary school, and 1 otherwise; ‘Education Below Sec-
ondary School’ is 0 if the client has completed secondary school, and 1 otherwise; ‘Education Below Tertiary 
School’ is 0 if the client has completed university, college or trade school education, and 1 otherwise; ‘Living at 
Rural Area’ is 1 if the client is living outside towns and cities, and 0 otherwise; ‘Household Size’ is the number of 
family members living in the client’s household; ‘Client is a House Head’ is 1 if the client pay more than half the 
cost of supporting and housing a qualifying person, and 0 otherwise; ‘Employment Status’ is 1 if the client is now 
employed, and 0 otherwise; ‘Number of Fixed Income Sources’ is the number of payments of a fixed amount on a 
fixed schedule that received by the client; ‘Income per capita’ is the average income per person in the household; 
‘Have Dwellings’ is 1 if the client owns a house, flat, or other place of residence, and 0 otherwise; ‘Have Land’ is 1 
if the client owns a piece of land, and 0 otherwise; ‘Annual Interest Rate’ is the annual rate charged for borrowing 
from the MFIs; ‘Loan Size’ is the loan outstanding per client measured in dollars; ‘Other Loans from Moneylenders’ 
is 1 if the client is borrowing from moneylenders at the same time, and 0 otherwise; ‘Other Loans from MFIs and 
etc.’ is 1 if the client is borrowing from other MFIs at the same time, and 0 otherwise; ‘Other Loans from Banks 
and etc.’ is 1 if the client is borrowing from formal banks at the same time, and 0 otherwise; ‘Have Saving Account 
Before’ is 1 if the client has opened saving account before, and 0 otherwise; ‘Accessed to Moneylenders’ is 1 if the 
client has borrowed from moneylenders before, and 0 otherwise; ‘Accessed to MFIs and etc.’ is 1 if the client has 
used any services provided by MFIs before, and 0 otherwise; ‘Accessed to Banks and etc.’ is 1 if the client has used 
any services provided by formal banks before, and 0 otherwise; 

N Missing Min Max Mean Std. Dev

Stat Stat Stat Stat Stat Stat Stat Std. Err Stat Std. Err

Know Interest Rate 9053 4% 0 1 0.380 0.485 0.496 0.026 -1.754 0.051

Know Interest Amount 5845 38% 0 1 0.336 0.472 0.696 0.032 -1.516 0.064

Gender 9465 0% 0 1 0.594 0.491 -0.383 0.025 -1.854 0.050

Women's Control on Loan 9043 5% 0 2 0.908 0.869 0.179 0.026 -1.652 0.052

Age 3801 60% 17 90 39.681 11.258 0.408 0.040 -0.281 0.079

Education Level 9267 2% 0 3 1.545 0.955 -0.117 0.025 -0.921 0.051

Education: Below Primary School 9267 2% 0 1 0.164 0.371 1.812 0.025 1.283 0.051

Education: Below Secondary School 9267 2% 0 1 0.458 0.498 0.167 0.025 -1.973 0.051

Education: Below Tertiary School 9267 2% 0 1 0.832 0.374 -1.777 0.025 1.159 0.051

Living at Rural Area 9272 2% 0 1 0.430 0.495 0.283 0.025 -1.920 0.051

Living at Urban Area 9272 2% 0 1 0.570 0.495 -0.238 0.025 -1.920 0.051

Household Size 9468 0% 1 128 5.604 4.558 7.136 0.025 101.309 0.050

Client is a Household Head 9432 0% 0 1 0.575 0.494 -0.302 0.025 -1.909 0.050

Client is not a Household Head 9432 0% 0 1 0.425 0.494 0.302 0.025 -1.909 0.050

Employment Status 4889 48% 0 1 0.932 0.252 -3.423 0.035 9.722 0.070

Number of Fixed Income Sources 9244 2% 0 23 2.082 1.504 2.785 0.025 21.756 0.051

Income per captita 4409 53% 0 27134 614.457 1280.037 6.841 0.037 81.803 0.074

Have Dwellings 9275 2% 0 1 0.737 0.440 -1.079 0.025 -0.836 0.051

Have Land 8904 6% 0 1 0.534 0.499 -0.138 0.026 -1.981 0.052

Annual Interest Rate 8190 14% 0.13 0.485 0.270 0.115 1.445 0.027 5.130 0.054

Loan Size 9259 2% 11 136224 1517.793 3611.080 11.655 0.025 280.763 0.051

Other Loans from Moneylenders 8195 13% 0 1 0.036 0.185 5.011 0.027 23.117 0.054

Other Loans from MFIs and etc. 8195 13% 0 1 0.081 0.272 3.080 0.027 7.491 0.054

Other Loans from Banks and etc. 8195 13% 0 1 0.117 0.321 2.391 0.027 3.716 0.054

Have Saving Account Before 8033 15% 0 1 0.442 0.497 0.232 0.027 -1.947 0.055

Accessed to Moneylenders 9425 0% 0 1 0.096 0.295 2.743 0.025 5.524 0.050

Accessed to MFIs and etc. 9425 0% 0 1 0.172 0.377 1.742 0.025 1.034 0.050

Accessed to Banks and etc. 9425 0% 0 1 0.211 0.408 1.417 0.025 0.007 0.050

Pooled data 

of multiple 

imputation 

(50 iterations)

Data and Variables

Skewness Kurtosis
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Table 4.2
Descriptive Statistics of the Data after Appling Multiple-Imputation
‘Know Interest Rate’ is a dummy that is 1 if the client knows his/her interest rate, and 0 otherwise; ‘Know Interest 
Amount’ is a dummy that is 1 if the client knows his/her interest amount, and 0 otherwise; ‘Gender’ is 1 if the cli-
ent is female, and 0 otherwise; ‘Women’s Control on Loan’ is an ordinal variable that is 2 if the household finance 
is fully controlled by women, 1 if the household finance is partially controlled by women, and 0 otherwise; ‘Educa-
tion Below Primary School’ is 0 if the client has completed primary school, and 1 otherwise; ‘Education Below Sec-
ondary School’ is 0 if the client has completed secondary school, and 1 otherwise; ‘Education Below Tertiary 
School’ is 0 if the client has completed university, college or trade school education, and 1 otherwise; ‘Living at 
Rural Area’ is 1 if the client is living outside towns and cities, and 0 otherwise; ‘Household Size’ is the number of 
family members living in the client’s household; ‘Client is a House Head’ is 1 if the client pay more than half the 
cost of supporting and housing a qualifying person, and 0 otherwise; ‘Employment Status’ is 1 if the client is now 
employed, and 0 otherwise; ‘Number of Fixed Income Sources’ is the number of payments of a fixed amount on a 
fixed schedule that received by the client; ‘Income per capita’ is the average income per person in the household; 
‘Have Dwellings’ is 1 if the client owns a house, flat, or other place of residence, and 0 otherwise; ‘Have Land’ is 1 
if the client owns a piece of land, and 0 otherwise; ‘Annual Interest Rate’ is the annual rate charged for borrowing 
from the MFIs; ‘Loan Size’ is the loan outstanding per client measured in dollars; ‘Other Loans from Moneylenders’ 
is 1 if the client is borrowing from moneylenders at the same time, and 0 otherwise; ‘Other Loans from MFIs and 
etc.’ is 1 if the client is borrowing from other MFIs at the same time, and 0 otherwise; ‘Other Loans from Banks 
and etc.’ is 1 if the client is borrowing from formal banks at the same time, and 0 otherwise; ‘Have Saving Account 
Before’ is 1 if the client has opened saving account before, and 0 otherwise; ‘Accessed to Moneylenders’ is 1 if the 
client has borrowed from moneylenders before, and 0 otherwise; ‘Accessed to MFIs and etc.’ is 1 if the client has 
used any services provided by MFIs before, and 0 otherwise; ‘Accessed to Banks and etc.’ is 1 if the client has used 
any services provided by formal banks before, and 0 otherwise; 

N Missing Min Max Mean Std. Dev

Stat Stat Stat Stat Stat Stat Stat Std. Err Stat 0.050

Know Interest Rate 9053 4% 0 1 0.380 0.485 0.496 0.026 -1.754 0.051

Know Interest Amount 5845 38% 0 1 0.336 0.472 0.696 0.032 -1.516 0.064

Gender 9471 0% 0 1 0.594 0.491 -0.382 0.025 -1.854 0.050

Women's Control on Loan 9471 0% 0 2 0.899 0.869 0.196 0.025 -1.649 0.050

Age 9471 0% 17 90 40.004 10.910 0.293 0.025 -0.248 0.050

Education Level 9471 0% 0 3 1.542 0.955 -0.117 0.025 -0.919 0.050

Education: Below Primary School 9471 0% 0 1 0.165 0.371 1.804 0.025 1.254 0.050

Education: Below Secondary School 9471 0% 0 1 0.459 0.498 0.165 0.025 -1.973 0.050

Education: Below Tertiary School 9471 0% 0 1 0.834 0.372 -1.792 0.025 1.213 0.050

Living at Rural Area 9471 0% 0 1 0.436 0.496 0.259 0.025 -1.933 0.050

Living at Urban Area 9471 0% 0 1 0.564 0.496 -0.259 0.025 -1.933 0.050

Household Size 9471 0% 1 128 5.604 4.558 7.135 0.025 101.306 0.050

Client is a Household Head 9471 0% 0 1 0.575 0.494 -0.302 0.025 -1.909 0.050

Client is not a Household Head 9471 0% 0 1 0.425 0.494 0.302 0.025 -1.909 0.050

Employment Status 9471 0% 0 1 0.935 0.247 -3.522 0.025 10.414 0.050

Number of Fixed Income Sources 9471 0% 0 23 2.090 1.503 2.727 0.025 21.218 0.050

Income per captita 9471 0% 0 27134 683.441 1159.159 4.386 0.025 53.140 0.050

Have Dwellings 9471 0% 0 1 0.740 0.439 -1.096 0.025 -0.799 0.050

Have Land 9471 0% 0 1 0.530 0.499 -0.122 0.025 -1.986 0.050

Annual Interest Rate 9471 0% 0.13 0.485 0.270 0.114 1.284 0.025 4.502 0.050

Loan Size 9471 0% 11 136224 1559.451 3598.837 11.500 0.025 277.713 0.050

Other Loans from Moneylenders 9471 0% 0 1 0.036 0.187 4.965 0.025 22.663 0.050

Other Loans from MFIs and etc. 9471 0% 0 1 0.080 0.272 3.089 0.025 7.545 0.050

Other Loans from Banks and etc. 9471 0% 0 1 0.118 0.322 2.375 0.025 3.640 0.050

Have Saving Account Before 9471 0% 0 1 0.435 0.496 0.262 0.025 -1.932 0.055

Accessed to Moneylenders 9471 0% 0 1 0.096 0.295 2.740 0.025 5.511 0.050

Accessed to MFIs and etc. 9471 0% 0 1 0.172 0.377 1.741 0.025 1.031 0.050

Accessed to Banks and etc. 9471 0% 0 1 0.211 0.408 1.417 0.025 0.007 0.050

Pooled data 

of multiple 

imputation 

(50 iterations)

Data and Variables

Skewness Kurtosis
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Table 4.3
Previous Access to Credits and Financial Awareness of Interest Rate (Part 1)
The logistic model was used as the estimation method in this table.  

Notes: Odds ratios are shown in the brackets; * denote statistical significance at the 10% level; ** denote statistical significance at the 5% level; *** denote statistical significance at the 1% level.
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Table 4.3
Previous Access to Credits and Financial Awareness of Interest Rate (Part 2)
The logistic model was used as the estimation method in this table.  

Notes: Odds ratios are shown in the brackets; * denote statistical significance at the 10% level; ** denote statistical significance at the 5% level; *** denote statistical significance at the 1% level.
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Table 4.4
Previous Access to Credits Regional and Religious Split-Sample Analysis (Part 1)
The logistic model was used as the estimation method in this table.  

Notes: Odds ratios are shown in the brackets; * denote statistical significance at the 10% level; ** denote statistical significance at the 5% level; *** denote statistical significance at the 1% level.
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Table 4.4
Previous Access to Credits Regional and Religious Split-Sample Analysis (Part 2)
The logistic model was used as the estimation method in this table.  

Notes: Odds ratios are shown in the brackets; * denote statistical significance at the 10% level; ** denote statistical significance at the 5% level; *** denote statistical significance at the 1% level; B.M. 

is the benchmark.
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Table 4.5
Interactions on the Relation between Previous Access to Credits and Socio-demographic Characteristics (Part 1)
The logistic model was used as the estimation method in this table.  

Notes: Odds ratios are shown in the brackets; * denote statistical significance at the 10% level; ** denote statistical significance at the 5% level; *** denote statistical significance at the 1% level.
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Table 4.5
Interactions on the Relation between Previous Access to Credits and Socio-demographic Characteristics (Part 2)
The logistic model was used as the estimation method in this table.  

Notes: Odds ratios are shown in the brackets; * denote statistical significance at the 10% level; ** denote statistical significance at the 5% level; *** denote statistical significance at the 1% level.
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Table 4.5
Interactions on the Relation between Previous Access to Credits and Socio-demographic Characteristics (Part 3)
The logistic model was used as the estimation method in this table.  

Notes: Odds ratios are shown in the brackets; * denote statistical significance at the 10% level; ** denote statistical significance at the 5% level; *** denote statistical significance at the 1% level.
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Table 4.5
Interactions on the Relation between Previous Access to Credits and Socio-demographic Characteristics (Part 4)
The logistic model was used as the estimation method in this table.  

Notes: Odds ratios are shown in the brackets; * denote statistical significance at the 10% level; ** denote statistical significance at the 5% level; *** denote statistical significance at the 1% level.
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Table 4.6
Robustness Check with Alternative Proxy of Interest Repayment Awareness
The logistic model was used as the estimation method in this table.  

Notes: Odds ratios are shown in the brackets; * denote statistical significance at the 10% level; ** denote statistical significance at 

the 5% level; *** denote statistical significance at the 1% level.
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Chapter 5:

Multiple Imputation, Maximum Likelihood and Predictive Mean 

Matching for Semi-continuous Missing Data:

A Study of A Microfinance Administrative Loan Book

------------------------------------------------------------------------------------------------

5.1 Introduction

Incomplete or missing data exist in almost all areas of empirical research. They are especially 

common in social and behavioral studies. Many statistical procedures have been developed for 

analyzing missing data. Two notable ones are and Multiple Imputation (MI), Maximum Likeli-

hood (ML) estimation. Under the assumption of a correctly specified parametric model and that 

data are Missing at Random, both MI and ML generate consistent parameter estimates and con-

sistent standard errors (e.g., Little and Rubin, 2014; Schafer, 1997). 

All these missing data techniques are established based on the assumption that the actual data 

without missing values are normally distributed. However, such assumption is impractical in 

most cases. Regarding the administrative loan books of banks, the data of their clients’ arrears 

or the delinquency amounts are usually semi-continuous. Semi-continuous variables consist of a 

usually fairly large proportion of responses with point masses that are fixed at some value and a 

continuous distribution among the remaining responses. Variables of this type are often col-

lected in economic applications but can also be found in medical applications. Examples of semi-

continuous variables with point masses at zero are income from employment, number of em-

ployees, or bacterial counts. Semi-continuous variables differ from censored and truncated vari-

ables in that the data represented by the zeros are real and valid, as opposed to the data being 

proxies for negative values or missing responses (Schafer and Olsen, 1999).
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Recent developments indicate that the normal-distribution-based ML can still generate con-

sistent parameter estimates and consistent standard errors even when the population distribu-

tion is unknown (Yuan, 2009). Although no analytical results exist for MI to generate consistent 

parameter estimates when the parametric model is misspecified, it has been stated in the litera-

ture that the normal-distribution-based MI generates reasonable parameter estimates and 

standard errors with distribution violations (e.g., Schafer, 1997:136; Schafer and Graham, 2002; 

Schafer and Olsen, 1998). 

On the other hand, some studies indicated that Predictive Mean Matching (PMM) is better than 

procedures that assumed normal distributions such as MI and ML in terms of semi-continuous 

data (e.g., Yu et al., 2007). In fact, PMM has been proposed for a long time (Rubin 1986, Little 

1988). However, it becomes available and practical to use only recently. Previously, it could only 

be utilised in circumstances where a single variable had missing data or when the missing data 

pattern was monotonic. However, the PMM method is now embedded in many software pack-

ages that implement an approach to multiple imputations variously known as Multiple Imputa-

tion by Chained Equations (MICE), Sequential Generalized Regression, or the Fully Conditional 

Specification. It is available in many statistical packages, including SAS, STATA, and R, all of which 

allow us to use PMM for virtually any missing data pattern. PMM is an attractive method to con-

duct multiple imputations for missing data, especially for the quantitative variables that are not 

normally distributed. But it is also easy to do it the wrong way.

5.2 Goals of this research 

As data sets in social sciences are seldom normally distributed (Micceri, 1989), it is important to 

know how MI and ML behave relative to each other under the condition of distribution viola-

tions as well. Since both MI and ML are available in various statistical programmes, with typical 

samples in social sciences coming from populations whose distributions are unknown, further 

empirical studies with real data will give the needed information for applied researchers to 

choose a more appropriate MDT.

On the other hand, only a handful of studies have evaluated the performance of PMM, so it is 

not clear how well it compares with alternative methods such as MI and ML. Little is known 
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about the practical applicability of PMM on different types of data and how the method com-

pares to other techniques that might be suitable to handle these types of data. Certain charac-

teristics, such as sample size, missing rate, missing mechanism, as well as the types of data, may 

play a vital role in the performance of PMM.  

We will investigate how PMM compares to MI and ML for imputing semi-continuous data, bi-

nary data, and ordinal data. We will also investigate how performance is affected by sample size 

and missing rate in the data, and look into the effects of the missing data mechanism on imputa-

tion methods for imputing different types of data. In addition, we will investigate the aforemen-

tioned methods in the presence of univariate and multivariate missingness. Finally, we wonder: 

which is the appropriate method when imputing actual semi-continuous loan book data?

The main contribution of this paper is to provide a systematic evaluation for the imputation per-

formances of MI, ML and PMM methods with actual administrative loan book data, as there are 

so few performance comparison studies of different missing data techniques (MDT) available in 

the current literature. The rest of the paper proceeds as follows: Section 3 reviews the literature 

of missing data mechanisms and the MDT evaluated in this paper. Section 4 describes the data, 

and how to simulate different types of missingness. Section 5 presents the details of different 

imputation methods and the criterion for performance evaluation. Section 6 reports the empiri-

cal results of all MDT. Section 7 presents the study's conclusions and limitations.   

5.3 Literature Review 

5.3.1 The Distribution of Missing Data

Missingness is considered to be a probabilistic phenomenon in modern missing-data procedures 

(Rubin, 1976). For any data sets, we usually define a matrix R of indicators to identify whether a 

variable is known or missing and refer to R as Missingness. R is a set of random variables having 

a joint probability distribution which may not be specified by us. It describes the patterns of 

missing values and to capture roughly possible associations between the missingness and the 

values of the missing items. As a result, the distribution of R is classified according to the nature 

of its relationship to the data. 
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Rubin (1976) developed a widely cited typology for these distributions. A Missing Completely at 

Random (MCAR) mechanism is present if the missing values of datasets are a random sub-sam-

ple of the complete data set. The distribution of R is independent of other variables in the da-

taset including the target variable. An example of MCAR may be a client who is on vacation dur-

ing the household survey conducted by a microlender. 

Assuming a Missing at Random (MAR) mechanism, the distribution of R depends on the varia-

bles of the dataset, but not on the values of the target variable. 

In case of Missing Not at Random (MNAR), the distribution of R depends on both observed and 

unobserved variables. For instance, an MNAR is present if a borrower will not report about his 

over-indebtedness since he fears the consequences of doing so. 

It is usually hard to distinguish between MCAR, MAR and MNAR. Sound knowledge of substan-

tial coherences in the dataset is necessary. The mechanisms offer a mathematical approach to 

model the distribution of R in association with other variables in the dataset. Nevertheless, it 

should be pointed out that Rubin’s (1976) definitions do not describe a causal relationship be‐

tween the data and missingness. 

By adopting the generic notations, we denote the complete data as 𝑌𝑐𝑜𝑚 and partition it as 

𝑌𝑐𝑜𝑚 = (𝑌𝑜𝑏𝑠, 𝑌𝑚𝑖𝑠), where 𝑌𝑜𝑏𝑠 and 𝑌𝑚𝑖𝑠 indicate the observed and missing variables respec-

tively. Rubin (1976) defined missing to be MAR if the distribution of R does not depend on 𝑌𝑚𝑖𝑠,

𝑃(𝑅|𝑌𝑐𝑜𝑚) = 𝑃(𝑅|𝑌𝑜𝑏𝑠).    (23)

In other words, MAR allows the probabilities of missingness to depend on observed data but not 

on missing data. In fact, MCAR is just a special case of MAR, and it occurs when the distribution 

does not depend on 𝑌𝑜𝑏𝑠 either, 

𝑃(𝑅|𝑌𝑐𝑜𝑚) = 𝑃(𝑅).    (24)

When Equation 23 is violated, and the distribution depends on 𝑌𝑚𝑖𝑠, the missing data are said to 

be MNAR. MCAR and MAR are also called ignorable nonresponse, while MNAR is called non-ig-

norable nonresponse (Allison, 2002). Applying a complete case analysis (CCA) with a potential 

MNAR dataset might lead to biased or invalid results (Little & Rubin, 2002).
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Most misunderstandings of MCAR, MAR, and MNAR arise from common notions about the 

meaning of random. To a statistician, random suggests a process that is probabilistic rather than 

deterministic. In that sense, the three mechanisms are all random, because they all posit proba-

bility distributions for missingness. However, random may also suggest a process that is unpre-

dictable and extraneous to variables, a notion that agrees more closely with MCAR than with 

MAR. In this sense, MAR has nothing to do with random at all. 

In some research, MAR is known to hold. These include planned missingness in which the miss-

ing data were never intended to be collected. Planned missingness values are usually MCAR, but

MAR situations sometimes arise. For instance, microfinance participants are included in a fol-

low-up measure only if their applications are approved. The latent variables are missing with 

probability one and therefore also known to be MAR.  

However, in most cases, missingness is beyond the control of researchers. The distribution of R 

is unknown, and MAR is just an assumption. In general, there is no way to examine whether 

MAR holds in a dataset. The potential impacts of the departures from MAR-based methods are

controversial (Graham et al., 1997). Collins Schafer and Kam (2001) demonstrated that an erro-

neous assumption of MAR might often have only a minor impact on estimates and standard er-

rors. In contrast, Baraldi and Enders (2010) claimed that the MCAR and MAR based MDT per-

forms poorly with MNAR data. Therefore, the first goal of this paper is to measure the accuracy 

of different missing data imputation methods under MCAR, MAR and MNAR.

5.3.2 Multiple Imputation and Maximum Likelihood Estimation

Most developments for MI and ML with the different missing mechanisms are based on cor-

rectly specified distributions. With complete data, we can use existing procedures to check the 

distributional properties of the sample before choosing a parametric model (e.g., D’Agostino et 

al., 1990). With missing data, especially when missing values are MAR, the observed data can be 

skewed and possess excess kurtosis even when the underlying population is normally distrib-

uted. Then most procedures for testing univariate or multivariate normality are not applicable 

(see e.g., Yuan et al., 2004). Thus, we have to rely on the robust properties of MI or ML in data 

analysis with missing values. 

For the robustness of MI, Graham and Schafer (1999) performed a simulation study by treating a 

real data set as the population. They found that the absolute values of the biases are small while 
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most of their population values of the regression parameters are also small. Actually, several bi-

ases of their estimates are greater than the population values of the regression parameters. It is 

not clear whether the small biases are due to the small values of the population parameters. 

The simulation reported in section 6.4 of Schafer (1997) is also based on a real dataset. But the 

study does not include an evaluation of the impacts of population skewness and kurtosis on pa-

rameter estimates by MI.

Demirtas et al. (2008) conducted a more comprehensive simulation study on MI with two varia-

bles, one is complete, and one contains missing values. They found that estimates of variance 

parameters by MI can suffer from serious bias when the proportion of missing data is large, and

the sample size is small, especially when the population is non-normally distributed. 

Enders (2001) evaluated biases in ML estimations in the context of distribution violation when 

missing values are MAR. It is not clear why the bias decrease as the proportion of missing values 

increases for a population with heavy tails.

None of the above literature compared MI against ML, and none systematically evaluated the 

influences of different combinations of sample size, missing rate, missing mechanism, data type, 

and the number of missing variables. 

5.3.3 Predictive mean matching

The method PMM is a partially parametric approach, and it predicts the values for the missing 

data based on a linear prediction model. Firstly, for each missing value, a number of observed 

values (k) that are closest to the predicted means of the missing values are selected. Secondly, if 

k=1, the missing observation will be replaced by this observed value; if k>1, an observed value 

will be randomly selected from the k nearest candidates (Little, 1988). The main attraction of 

this approach is that the distribution and range of the data are well preserved, and plausible im-

puted values are guaranteed because only observed values are used here.  

Comparing to other standard methods based on linear regression and the normal distribution, 

the values imputed by PMM are much more realistic. For instance, if the original values of a vari-

able are skewed, the imputed values will be skewed as well; if the original values of a variable 

are bounded by 1 and 10, the imputed values will be bounded by 1 and 10; and if the real values 

are discrete (such as the ages of clients), the imputed values will be discrete. This is because all 

imputed values real values that are “copied” from individuals with real data.      
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An issue that usually arises when imputing missing values is how to impute variables with non-

normal distribution. One common option used in practice to deal with such variables to make 

the normality assumption more plausible is to conduct a transformation (such as the log or zero-

skewness log transformation) to de-skew the data prior to imputation (Lee et al., 2010). A no-

ticeable issue that arises with using de-skewing transformation such as the log transformation 

for skewed data is that the imputed data may have very large outlying values when the imputed 

data are transformed back to the original scale. On the other hand, Von Hippel (2013) have com-

pared the methods of rounding, truncating, and transformation when imputing non-normal vari-

ables with a lower bound. He suggested that missing data imputations should be conducted on 

the raw scale with no transformation or post-imputation rounding, even when the data are not 

normally distributed. However, his focus was restrictive as his study only considered data from 

an exponential distribution with the lower range restricted. 

On the other hand, Yu et al. (2007) investigated general purpose imputation software packages 

for multiple imputing semi-continuous data. Among the software investigated were routines 

and packages for SAS [PROC MI, PROC MIANALYZE, and IVEware (Raghunathan, Solenberger and 

Van Hoewyk, 2002)], R [MICE (Van Buuren and Groothuis-Oudshoorn, 2011)], and STATA [ICE 

(Royston, 2005)]. They concluded that procedures involving PMM performed very similar to 

each other and better than the procedures that assumed normal distributions. PMM not only 

yielded acceptable estimates but also managed to maintain the underlying distributions of the 

data (Yu et al., 2007).

Although the research by Yu et al. (2007) is useful, it yields only limited insight regarding the rea-

sons why PMM works for semi-continuous data. Yu et al. (2007) focused on readily available 

software implementations, setting aside methods specifically designed for semi-continuously 

distributed data (Schafer and Olsen, 1999; Olsen and Schafer, 2001; Javaras and Van Dyk, 2003). 

Even the procedures implementing PMM had different performances, indicating that a distinc-

tion must be made between methods and software implementations.
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5.4 Data and Missingness Simulation

In order to compare the performance of the imputations and demonstrate their validity on a 

real microfinance dataset, we use the 2010 administrative loan book data of Cooperativa de 

Ahorro y Credito Ceibeña Ltda. (COAC Ceibeña). It is a subset of the dataset which was used in 

chapter 3 previously. COAC Ceibeña was founded in 1974 on the initiative of Father Donaldo 

McMillan, and a group of women gathered to the local Catholic Church at La Ceiba Honduras. It 

is a credit union offering safe and transparent microfinance financial products and services to 

the local community. The raw data of 2010 COAC Ceibeña has 24 variables and 8,063 cases. The 

11 explanation variables (Table 5.1) selected in this paper is based on previous studies and ex-

pert advice from the microlender staffs, as there is no universally accepted approach to select 

the explanatory variables for credit scoring (Dinh & Kleimeier, 2007). 

5.4.1 Modifying the population   

As the size of 8,063 is relatively large for most microfinance institutions in developing countries, 

we would like to scale down the population to generalize the administrative loan book data. We 

begin with handling outliers. The occurrence of outliers in our data is very limited, and there are 

no signs of correlated outliers. Therefore, the simple winsorizing and trimming of Wainer (1976) 

are adopted here. All observations of Outstanding Balance under $50 or over $10,000 are re-

placed by the limits. Arrears is trimmed at $2,000. Age is restricted to the range from 20 to 80. 

Next, we separate the raw data on the level of the point mass and generate two populations. 

Both populations have size N=3,200, but the populations differ in the size of the point mass: 

83.50% and 85.34% point masses at zero for the data with Arrears and the data with Credit Risk 

respectively. These two populations will be used as the benchmark datasets. It should be no-

ticed that the estimates such as the mean, median, and variances will also change as the size of 

the point mass changes. The summary statistics of the 11 selected variables with modified popu-

lation are presented in Table 5.1. 

5.4.2 Sampling benchmark datasets and skewness preservation  

To investigate the performance of MDT under different sample sizes (𝑁), we sample 1,000, 

1,700, 2,200, 2,700, and 3,200 cases from the populations. As shown in Table 5.1, the variables 

of interest (𝑦), Arrears, dichotomized Arrears, and Credit Risk, are heavily skewed in practice. In 
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theory, it may severely impair a method’s imputation performance. In order to evaluate the im-

putation methods at the same distributions across different simulations, we have generated 30 

benchmark datasets in this stage (5 sample sizes * 3 variables of interest * 2 models with differ-

ent number of missing variables). Each table of empirical results in this chapter has 5 sections 

and each section corresponds to a specific benchmark. 

The samples of univariate missing data imputation in this paper are generated following the pro-

cess as below: 

1. We start by separating the data into two sections 𝑆0 and 𝑆+ based on the zeros and 

non-zeros of 𝑦. 𝑆𝑦 represents a section in which 𝑦 ∈ [0, +]

2. Subsample 𝑆𝑢𝑏0 is generated by random sampling a certain percentage (𝑃𝑐𝑡) in 𝑆0. 

3. In terms of generation of 𝑆𝑢𝑏+, it depends on the data types of 𝑦: 

a. If 𝑦 is binary, then 𝑆𝑢𝑏+ is generated by random sampling 𝑃𝑐𝑡 in 𝑆+. 

b. If the 𝑦 is ordinal categorical (3 levels), we divide 𝑆+ into 𝑆+1 and 𝑆+2 based on 

the values of 𝑦, then randomly sample 𝑃𝑐𝑡 in 𝑆+1 and 𝑆+2, and finally merge 

𝑆+1 and 𝑆+2 to generate 𝑆𝑢𝑏+. 

c. If 𝑦 is semi-continuous, we sort all non-zero cases based on the values of 𝑦, 

next, divide 𝑆+ into 𝑁 sections 𝑆+1, 𝑆+2,…, 𝑆+𝑛 with equal number of cases, 

then random sample 𝑃𝑐𝑡 in each 𝑆+𝑘, and finally merge 𝑆+𝑘to generate 𝑆𝑢𝑏+. 

4. At last, combing 𝑆𝑢𝑏0 and 𝑆𝑢𝑏+ into a sample ready for missingness simulation. 

On the other hand, sample generation for multivariate missing data is similar to that for univari-

ate missing data. The only difference is that the samples should be divided into more subsam-

ples as we need to preserve the skewness of a new continuous variable (𝑦∗), such as Loan Ma-

turity, with missing data as well. The details of the generation process is as follows: 

1. We start by separating the data into two groups of sections 𝑆0,1, 𝑆0,2,…, 𝑆0,𝑚 and 𝑆+,1, 

𝑆+,2,…, 𝑆+,𝑚 based on the zeros and non-zeros of 𝑦 and 𝑦∗. 𝑆𝑦,𝑦∗represents a section in 

which 𝑦 ∈ [0, +], and 𝑦∗ ∈ [1, 2, … , 𝑚].

2. Randomly sampling 𝑃𝑐𝑡 in each 𝑆0,𝑦∗, and then merge all 𝑆0,𝑦∗ to generate 𝑆𝑢𝑏0.

3. In terms of generation of 𝑆𝑢𝑏+, it depends on the data types of 𝑦: 

a. If 𝑦 is binary, we divide 𝑆+ into 𝑆+,1, 𝑆+,2,…, 𝑆+,𝑚 based on the values of 𝑦∗, then 

randomly sample 𝑃𝑐𝑡 in each 𝑆+,𝑦∗, finally merge all 𝑆+,𝑦∗ to generate 𝑆𝑢𝑏+.
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b. If the 𝑦 is ordinal categorical (3 levels), we divide 𝑆+ into 𝑆+1,1, 𝑆+1,2,…, 𝑆+1,𝑚,

𝑆+2,1, 𝑆+2,2,…, 𝑆+2,𝑚 based on the values of 𝑦 and 𝑦∗, then random sample 𝑃𝑐𝑡

in each 𝑆+𝑘,𝑦∗ , and finally merge all 𝑆+𝑘,𝑦∗ to generate 𝑆𝑢𝑏+. 

c. If 𝑦 is semi-continuous, we divide 𝑆+ into 𝑆+,1, 𝑆+,2,…, 𝑆+,𝑚 based on the values 

of 𝑦∗, then we sort all non-zero cases based on the values of 𝑦 in each 𝑆+,𝑗, 

next, we divide each 𝑆+,𝑦∗ into 𝑁 sections 𝑆+1,𝑦∗ , 𝑆+2,𝑦∗,…, 𝑆+𝑛,𝑦∗ with equal 

number of cases, then we random sample 𝑃𝑐𝑡 in each  𝑆+𝑘,𝑦∗ , and finally merge 

𝑆+𝑘,𝑦∗ to generate 𝑆𝑢𝑏+. 

4. At last, combing 𝑆𝑢𝑏0 and 𝑆𝑢𝑏+ into a sample ready for missingness simulation. 

5.4.3 Generating missingness

In terms of the missing data mechanisms, MCAR, MAR, and MNAR are used in our simulations. 

To investigate the performance of the methods under different missing rates (𝑅), the details of 

the three mechanisms are adjusted to yield an overall rate of missingness at five different levels 

(10%, 20%, 30%, 40%, and 50%) in this paper. Regarding to the functions in missing data imputa-

tion, all variables can be classified into three types: 𝑋, which always observed; 𝑌, which is partly 

observed; and 𝑍, which may be observed and is a potential cause of missingness for 𝑌. 𝑋 and 𝑌

represent variables that will automatically appear in an imputation because they are of research 

interest. 𝑍 represents variables that is not of direct interest but might be included in the model 

if the researchers consider it is beneficial. 

To model MCAR, missing values are randomly imposed on 𝑌 independently of 𝑋, 𝑌, and 𝑍 at dif-

ferent missing rates stated above. It is straightforward. 

To model MAR, the only requirement is that the missingness of 𝑌 associates with 𝑍. The poten-

tial relations between 𝑌 and 𝑍 are countless, and it is impossible to model all of them. Common 

conditions for MAR in the previous literature include: Linear, in which the missingness of 𝑌 is lin-

early related to 𝑍; Quadratic, in which the missingness of 𝑌 at the extremes of 𝑍 is different 

from that in the middle; and Sinister, in which the missingness of 𝑌 is a function of the correla-

tion between 𝑋 and 𝑍. The study of Collins et al. (2001) shows that the selection of MAR condi-

tions has little effect on the biases of correlation estimation between 𝑋 and  𝑌. Therefore, we 

only focus on linear MAR in this paper for simplicity. In terms of administrative loan books and 

surveys of MFIs, a typical scenario of MAR would be that males (𝑍) have higher probability of 
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nonresponse on the question of Arrears (𝑌) than females. To simulate such a scenario, we im-

pose a linear MAR missing mechanism on 𝐺𝑒𝑛𝑑𝑒𝑟 (𝑍) following a semi-random sampling pro-

cess designed as follows:

1. We start by separating the initial sample (𝑆𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒) into four sections 𝐶+,𝑓, 𝐶+,𝑚, 𝐶0,𝑓, 

and 𝐶0,𝑚 based on the values of 𝑦 and 𝑧. 𝐶𝑦,𝑧 represents the sample size of a section in 

which 𝑦 ∈ [0, +],  𝑧 ∈ [𝑓𝑒𝑚𝑎𝑙𝑒, 𝑚𝑎𝑙𝑒].

To simulate MAR missingness, we impose different weights (𝑊𝑧 ∈ [0,1], 𝑧 ∈ [𝑓𝑒𝑚𝑎𝑙𝑒, 𝑚𝑎𝑙𝑒] ) 

on the missing rates based on 𝐺𝑒𝑛𝑑𝑒𝑟. The gap between 𝑊𝑓 and 𝑊𝑚 indicates the strength of 

association between 𝐺𝑒𝑛𝑑𝑒𝑟 and missingness of 𝐴𝑟𝑟𝑒𝑎𝑟𝑠. When 𝑊𝑓 = 𝑊𝑚, the missing data is 

MCAR. 𝑊𝑓 ≤ 𝑊𝑚 simulates the scenario that women have lower probability of being missing

from the datasets. For simplicity, we setup 𝑊𝑓 = 1 and 𝑊𝑚 = 0.9 in this study. In next stages, 

we impose different missing rates on the four sections as follows: 

2. Randomly drop 𝑅+,𝑓 percent of cases in the section with 𝐶+,𝑓:                                     

𝑅+,𝑓 = 𝑅 ∗ 𝐶 / (4 ∗ 𝐶+,𝑓) ∗ 𝑊𝑓 ∗ 100   

3. Randomly drop 𝑅+,𝑚 percent of cases in the section with 𝐶+,𝑚:                                  

𝑅+,𝑚 = 𝑅 ∗ 𝐶 / (4 ∗ 𝐶+,𝑚) ∗ 𝑊𝑚 ∗ 100   

4. For the section with 𝐶0,𝑓, we sort the data based on the values of 𝑦 and 𝑧 in ascending 

order, divide the section into 20 subsections with equal amount of data, randomly drop 

𝑅0,𝑓 percent of cases in each subsection, and then merge all subsection back to 𝐶0,𝑓:                        

𝑅0,𝑓 = 𝑅 ∗ 𝐶 / (4 ∗ 𝐶0,𝑓) ∗ 𝑊𝑓 ∗ 100   

5. For the section with 𝐶0,𝑚, we sort the data based on the values of 𝑦 and 𝑧 in ascending 

order, divide the section into 20 subsections with equal amount of data, randomly drop 

𝑅0,𝑚 percent of cases in each subsection, and then merge all subsection back to 𝐶0,𝑚:                        

𝑅0,𝑚 = 𝑅 ∗ 𝐶 / (4 ∗ 𝐶0,𝑚) ∗ 𝑊𝑚 ∗ 100   

After merging the processed 𝐶+,𝑓, 𝐶+,𝑚, 𝐶0,𝑓, and 𝐶0,𝑚 back to a single sample (𝑆𝑖𝑛𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒), we 

use 𝐶∗ to denote the sample size of 𝑆𝑖𝑛𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒, and calculate 𝐶∗ as:

𝐶∗ = 𝐶+,𝑓 ∗ (1 − 𝑅+,𝑓) + 𝐶+,𝑚 ∗ (1 − 𝑅+,𝑚) + 𝐶0,𝑓 ∗ (1 − 𝑅0,𝑓) + 𝐶0,𝑚 ∗ (1 − 𝑅0,𝑚).

When 𝑊𝑓 = 1 and 𝑊𝑚 = 0.9, we can infer that 𝐶∗ < C ∗ (1 − 𝑅). In order to preserve the joint 

distributions embedded in 𝑆𝑖𝑛𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 and increase its sample size to C ∗ (1 − 𝑅), we refill the 
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incomplete sample and generate the final sample with MAR missingness for further imputation 

evaluations as follows:

6. Randomly select 𝑁+,𝑓 cases from the abandoned data generated in step 2 and merge 

them back to 𝑆𝑖𝑛𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒. 𝑁+,𝑓 is calculated as:                                                               

𝑁+,𝑓 = (𝐶 − 𝐶∗) ∗ 𝐶+,𝑓 ∗ (1 − 𝑅+,𝑓) / 𝐶∗

7. Randomly select 𝑁+,𝑚 cases from the abandoned data generated in step 3 and merge 

them back to 𝑆𝑖𝑛𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒. 𝑁+,𝑚 is calculated as:                                                               

𝑁+,𝑚 = (𝐶 − 𝐶∗) ∗ 𝐶+,𝑚 ∗ (1 − 𝑅+,𝑚) / 𝐶∗

8. Randomly select 𝑁0,𝑓 cases from the abandoned data generated in step 4 and merge 

them back to 𝑆𝑖𝑛𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒. 𝑁0,𝑓 is calculated as:                                                               

𝑁0,𝑓 = (𝐶 − 𝐶∗) ∗ 𝐶0,𝑓 ∗ (1 − 𝑅0,𝑓) / 𝐶∗

9. Randomly select 𝑁0,𝑚 cases from the abandoned data generated in step 5 and merge 

them back to 𝑆𝑖𝑛𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒. 𝑁0,𝑚 is calculated as:                                                               

𝑁0,𝑚 = (𝐶 − 𝐶∗) ∗ 𝐶0,𝑚 ∗ (1 − 𝑅0,𝑚) / 𝐶∗

Note that in actuality, the mechanism shown above will be MAR only if 𝑍 (e.g., 𝐺𝑒𝑛𝑑𝑒𝑟) appears 

in the procedure . If 𝑍 is omitted, then the mechanism is actually MNAR and procedures based 

on an assumption of ignorability may be biased. Again, the potential unobservable variables as-

sociated to 𝑌 are countless and we cannot model all of them. Therefore, we only consider the 

most common form of MNAR in this paper. For the microfinance loan books, one example of 

MNAR would be that clients with non-zero Arrears (𝑌) have higher probability of nonresponse to 

a question of Arrears (𝑌) than clients with zero Arrears. To simulate such scenario, we can 

simply allow 𝑌 (e.g., Arrears in this case) to take the place of 𝑍 (e.g., 𝐺𝑒𝑛𝑑𝑒𝑟) in mechanism 

MAR above, forcing it to be MNAR. In addition, the generation process of MNAR can refer to the 

process of MAR.
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5.5 Missing Data Imputation Methods

5.5.1 Multiple Imputation

𝑌 = (𝑌𝑜𝑏𝑠, 𝑌𝑚𝑖𝑠) is an incomplete variable with 𝑛 sample units, where 𝑌𝑜𝑏𝑠 and 𝑌𝑚𝑖𝑠 denote the 

observed values and the missing values in 𝑌 respectively. Besides, let 𝑋 = (𝑋1, … , 𝑋𝑗) be a set of 

𝑗 fully observed covariates, where 𝑋𝑜𝑏𝑠 and 𝑋𝑚𝑖𝑠 correspond to the observed missing parts in 

in 𝑌. The number of sample units with observed values of 𝑌 and the number of sample units 

with missing values are denoted by 𝑛𝑜𝑏𝑠 and 𝑛𝑚𝑖𝑠 respectively. Finally, let 𝑅 be a response indi-

cator. It equals to 1 when 𝑌 is observed and 0 when 𝑌 is missing. In this study, we consider both 

univariate and multivariate cases to maintain generality.  

The Multiple Imputation (MI) method can be described by a Bayesian approach. In terms of a 

parametric model for the variable to be imputed, the parameters of the model can be viewed as 

random variables to which a prior distribution is assigned. In this context, an uninformative prior 

is used commonly. The information on the parameters is then updated by taking the observed 

data into account. It leads to the posterior predictive distribution for the parameter vector. To 

obtain the imputations for the missing values, we can draw a value from the posterior distribu-

tion of the parameter vector, and then draw a value from the distribution of the missing data 

given the drawn value of the parameter vector and the observed data. When this procedure is 

repeated for 𝑚 times, 𝑚 imputations will be obtained for each missing value that are draws 

from the posterior distribution of missing data.  

According to Gelman (2007), MI creates several imputed values for each missing value from sim-

ilar but different methods, and each method spits out a complete dataset. Using these datasets, 

we can draw a combined inference across all datasets. Gelman also gives us an example of de-

tails in his book. If we use regression and we want to make inference about the coefficient �̂�, we 

can simply take the average across all datasets �̂�𝑚. The mean and variance can be expressed as:

�̂� =
1

𝑚
∑ �̂�𝑚

𝑀
𝑚=1     

𝑉𝛽 =
1

𝑚
∑ 𝑠2

𝑚
𝑀
𝑚=1 + (1 +

1

𝑚
)

1

𝑚−1
(�̂�𝑚 − �̂�)

2
    (25)

where 𝑚 is number of methods we are using and 𝛽𝑚 and 𝑠𝑚 as the estimates from every indi-

vidual method.
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The missing data imputation methods introduced in the remainder of this subsection make use 

of two parametric models: the linear regression model and the logistic regression model. The 

linear regression model for a target variable 𝑌 can be expressed as:

𝑌𝑖 = 𝑋𝑖
𝑇𝛽 + 𝜖𝑖    (26)

where 𝑋𝑖 is the vector of values from the j covariates for unit i, 𝛽 is the corresponding regression 

coefficient vector, and 𝜀𝑖 is a normally distributed random error term with expectation zero and 

variance 𝜎2. The parameter estimates �̂�, 𝜖̂, and �̂�2 in this model can be obtained by OLS using 

the units for which both Y and X are observed. Using uninformative priors for 𝛽 and 𝜎2, the pos-

terior distribution for 𝛽 will be 𝑁 (�̂�, 𝑉(�̂�)). It is normal with mean �̂� and covariance matrix 

V(�̂�) = 𝜎2(𝑋𝑜𝑏𝑠
𝑇 𝑋𝑜𝑏𝑠)

−1
. On the other hand, the posterior distribution for σ2 is given by 

𝜖̂𝑇 𝜖̂ 𝐴⁄ , where is A is a chi-square variate with (𝑛𝑜𝑏𝑠 − 𝑟) degrees of freedom. A draw from the 

posterior predictive distribution for a missing value for unit i can be obtained by drawing values 

σ2∗ and β∗ from their posterior distributions, and then drawing a value for 𝑌𝑚𝑖𝑠,𝑖 from the distri-

bution 𝑁(𝑋𝑖
𝑇𝛽∗, 𝜎2∗).

The logistic regression model for a binary (0,1) target variable W can be written as 

𝑙𝑜𝑔
𝜋𝑖

1−𝜋𝑖
= 𝑋𝑖

𝑇𝛾    (27)

where γ is the corresponding regression coefficient vector, and 𝜋𝑖 is the probability of observing 

𝑊𝑖 = 1, or equivalently, 𝜋𝑖 = 𝐸[𝑊𝑖]. An expression for 𝜋𝑖 in terms of the linear predictor 𝑋𝑖
𝑇𝛾 is

obtained from the inverse log transformation: 𝜋𝑖 = 𝑒𝑥𝑝𝑖𝑡(𝑋𝑖
𝑇𝛾) = exp(𝑋𝑖

𝑇𝛾)/[1 + 𝑒𝑥𝑝(𝑋𝑖
𝑇𝛾)]. 

Using an uninformative prior for γ, the corresponding posterior distribution is approximately 

N (𝛾, �̂�(𝛾)) with 𝛾 the maximum likelihood estimator for γ and �̂�(�̂�) the associated covariance 

matrix. A draw from the posterior predictive distribution of a missing value 𝑊𝑚𝑖𝑠,𝑖 can be ob-

tained by drawing a value γ* from the posterior distribution for γ and then drawing a value 𝑊𝑖
∗

from a Bernoulli distribution with parameter 𝜋∗ = 𝑒𝑥𝑝𝑖𝑡(𝑋𝑖
𝑇𝛾∗).
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5.5.2 Predictive Mean Matching

The algorithm of multiple imputing 𝑌𝑚𝑖𝑠 by means with Predictive Mean Matching (PMM) ap-

proach can be expressed as follows: 

1. Use linear regression of 𝑌𝑜𝑏𝑠 given 𝑋𝑜𝑏𝑠 to estimate �̂�, �̂�, and 𝜀̂ by means with OLS.

2. Draw 𝜎2∗ = 𝜀̂𝑇𝜀̂ 𝐴⁄ , where A is a 𝑋2 variate matrix with (𝑛𝑜𝑏𝑠 − 𝑟) degrees of freedom.

3. Draw 𝛽∗ from a multivariate normal distribution centered at estimate �̂� with covariance 

matrix 𝜎2∗(𝑋𝑜𝑏𝑠
𝑇 𝑋𝑜𝑏𝑠)

−1
.

4. Generate �̂�𝑜𝑏𝑠 = 𝑋𝑜𝑏𝑠�̂� and �̂�𝑚𝑖𝑠 = 𝑋𝑚𝑖𝑠𝛽∗.

5. Find ∆= |�̂�𝑜𝑏𝑠 − �̂�𝑚𝑖𝑠,𝑖| for each �̂�𝑚𝑖𝑠,𝑖.

6. Sample values from (∆(1), ∆(2), ∆(3)) randomly and take the corresponding Y𝑜𝑏𝑠,𝑖 as the 

imputation, where ∆(1), ∆(2) and ∆(3) denote the three smallest ∆ respectively.

7. Repeat steps 1 to 6 m times, and save the completed dataset in each repetition.

The default setup of the function ‘mi impute pmm’ in STATA conducts multiple imputations (m = 

20 times) according to the description of the algorithm presented above. The function ‘mi.pmm’ 

in R also performs PMM imputation. But it calculates ∆= min|�̂�𝑜𝑏𝑠 − �̂�𝑚𝑖𝑠,𝑖| and selects the cor-

responding Y𝑜𝑏𝑠,𝑖 as the imputation.

5.5.3 Maximum Likelihood Estimation

The principle of drawing inferences from a likelihood function has been widely accepted. By as-

suming that the data is MAR and the model for the complete data is realistic, the marginal distri-

bution of the observed data can provide the correct likelihood for the unknown parameters. 

Hence, Little and Rubin (1987) referred to this function as the likelihood ignoring the missing-

data mechanism. The logarithm of this function is presented as follows:

𝑙(𝜃; 𝑌𝑜𝑏𝑠) = log 𝐿(𝜃; 𝑌𝑜𝑏𝑠)    (28)

where 𝜃 and 𝑌𝑜𝑏𝑠 indicate the unknown parameters and the observed data respectively. The 

Maximum Likelihood (ML) estimate of 𝜃 tends to be approximately unbiased when the sample

size is large enough. The efficiency of imputation is also positively associated to the sample size, 
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and its variance approaches the theoretical lower boundary of what is achievable by all unbi-

ased estimators.    

Confidence intervals and regions are usually calculated by appealing to the fact that, in regular 

circumstances with large samples, the ML estimate of 𝜃 is approximately normally distributed 

about the true parameter 𝜃 with the approximate covariance matrix: 

𝑉(𝜃) ≈ [−𝑙′′(�̂�)]
−1

    (29)

where 𝑙′′(�̂�) is the matrix of second partial derivatives of Equation 28 with respect to the ele-

ments of 𝜃. The matrix [−𝑙′′(𝜃)] is often called observed information. It describes how fast the 

log-likelihood function drops as we move away from the ML estimate. A steep decline indicates 

that the ML estimate is apparently precise, and a gradual decline implies there is considerable 

uncertainty about the actual location of the true parameter. Sometimes, this matrix is replaced 

by its expected value, which is call expected information, because the expected value is easier to 

compute in some cases. In complete-data problems, the approximation in Equation 29 is valid if 

we replace the observed information with the expected information. Nevertheless, Kenward 

and Molenberghs (1998) have pointed out that it is not necessarily true with missing data. Ex-

pected information implicitly uses Equation 28 as a sampling distribution for 𝑌𝑜𝑏𝑠, which is valid 

only when the data is MCAR. Therefore, for the missing-data problems in this chapter, we obtain 

standard errors and confidence intervals from the observed data under the MAR condition, and 

we obtain standard errors and confidence intervals from the expected information matrix under 

the MCAR condition.

Except for some rare cases, expressions for ML estimates should not be written down in closed 

form in general. Computing ML estimates require iteration. In an influential article on the Expec-

tation Maximisation (EM) algorithm, Dempster et al. (1977) have described a general method to 

compute ML in missing-data problems. The EM algorithm is commonly used in data clustering 

and machine learning. The key idea of this algorithm is to solve a difficult incomplete-data esti-

mation by iteratively solving an easier complete-data estimation. The EM algorithm consists of 

two steps: Expectation (E-step) and Maximisation (M-step). The E-step calculates the conditional 

expectation of the parameter on missing data, which are the objective values we are trying to 
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impute given every iteration on the corresponding parameters. The M-step estimates the pa-

rameters by maximizing the likelihood on complete data. Hence, the estimated mean of the EM 

algorithm can be expressed as:

𝑄(𝜃|𝜃(𝑡)) = ∫ 𝑙(𝜃|𝑦) 𝑓(𝑌𝑚𝑖𝑠|𝑌𝑜𝑏𝑠, 𝜃 = 𝜃(𝑡))𝑑𝑌𝑚𝑖𝑠    (30)

where 𝑙(𝜃|𝑦) indicates the complete-data log-likelihood. The goal of the M-step is:

𝑄(𝜃(𝑡+1)|𝜃(𝑡)) ≥  𝑄(𝜃|𝜃(𝑡))    (31)

until this chain reaches a point where the estimate of 𝜃 converges.

In most cases, the data is generally assumed to be normally distributed as it is the most common 

distribution in nature. With this assumption, the EM algorithm can be formulated into a more 

concrete form. The two parameters that determine the difference between normal distributions 

are the mean 𝜇 and the variance 𝜎2. We assume the data is sorted. Observations 1 through 𝑟

are observed, and observations 𝑟 through 𝑛 are missing for notation and explanation. The E-step 

estimates the values of the parameters as follows:

𝐸(𝑦𝑖|𝜃(𝑡), 𝑌𝑜𝑏𝑠) = ∑ 𝑦𝑖
𝑟
𝑖=1 + (𝑛 − 𝑟)𝜇(𝑡)

𝐸(𝑦𝑖
2|𝜃(𝑡), 𝑌𝑜𝑏𝑠) = 𝐸(𝑦𝑜𝑏𝑠

2 + 𝑦𝑚𝑖𝑠
2) = ∑ 𝑌𝑖

2𝑟
𝑖=1 + 𝐸(𝑛 − 𝑟)(𝜇𝑡)2    (32)

The estimates described above are called sufficient statistics. We could use these two values to 

sample the distribution. In this case, the first equation gives us the estimate of (𝑡 + 1) th step 

estimate 𝜇, and the second equation gives us the expected square sum of all observations. 

The M-step uses the same sufficient statistics using the estimated parameters from the E-step. 

The t-th step estimates of the mean 𝜇 and the variance 𝜎2 can be presented as follows: 

𝜇(𝑡+1) =
𝐸(∑ 𝑌𝑖|𝜃(𝑡), 𝑌𝑜𝑏𝑠

𝑛
𝑖=1 )

𝑛
=

𝐸(∑ 𝑌𝑖 +𝑟
𝑖=1 ∑ 𝑌𝑜𝑏𝑠

𝑛
𝑜𝑏𝑠=1 )

𝑛

(𝜎(𝑡+1))
2

=
𝐸(∑ 𝑌𝑖

2|𝜃(𝑡), 𝑌𝑜𝑏𝑠
𝑛
𝑖=1 )

𝑛
− (𝜇(𝑡+1))

2
    (33)

The interpretation of 𝜇(𝑡+1) uses the observed values and estimated parameters from the E-

step to calculate the expected values regarding the data as there are no missing values in it. As
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we know 𝜎2 = 𝐸(𝑋2) − (𝐸(𝑋))
2

, with the t-th step estimates, the expectation 𝐸(𝑋2) is known 

so that the variance 𝜎2 can be computed. 

5.5.4 Completed Case Analysis 

Finally, we consider the Completed Case Analysis (CCA) method and compare it to the other im-

putation methods for its accuracy in returning the parameters of linear regressions after missing 

values have been removed. CCA is the oldest and most popular solution to deal with missing 

data. It simply discards units whose information is incomplete instead of imputing the missing 

values. One of the most widely known approaches based on CCA is the Listwise Deletion (LD). It

is used by default in many statistical programmes. But details of its implementation may vary. 

CCA confines attention to units that have observed values for all variables under consideration. 

For instance, suppose we compute a sample covariance matrix for items 𝑋1, … , 𝑋𝑚, CCA will 

omits from consideration any case that has a missing value on any of the variables 𝑋1, … , 𝑋𝑚.

CCA can be motivated as a sampling distribution for observables and is generally valid only un-

der MCAR condition. In a few circumstances, it produces inferences that are optimal when the 

data are MAR. For instance, under a univariate missingness pattern3, the parameters of the re-

gression on any subset of 𝑋1, … , 𝑋𝑚 can be estimated from the complete cases and the esti-

mates are both valid and efficient under MAR condition (e.g., Graham & Donaldson, 1993). Nev-

ertheless, this result is not applicable to other measures of association between a dependent 

and independents, such as correlation coefficients, and it is not applicable to parameters of the 

marginal distribution of the independent either. The results from CCA might be biased when the 

missing mechanism is not MCAR. Because the complete cases can be unrepresentative of the 

full population. The impact of this bias might be ignorable if the departure from MCAR is not se-

rious. However, it is hard to judge how large the bias might be in practice.  

In fact, CCA can still be inefficient even when the assumption of MCAR holds. Suppose that a de-

pendent variable is highly related to a dependent variable and the correlation coefficient is close 

to 1, the missing values of the dependent should be predicted with near certainty. CCA bases es-

                                                          
3 The form of the missingness depends on the complexity of the nonresponse patterns. The missingness 
can be: (a) univariate pattern; (b) monotone pattern, or (c) arbitrary pattern. In this paper, we focus on 
the univariate pattern only to simplify our estimations.
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timates on the reduced sample of the dependent variable and ignores useful predictive infor-

mation contained in the independents. However, simplicity is still the main advantage of CCA. If 

a missing data issue can be resolved by dropping only a tiny proportion of data, then CCA can be 

quite effective and worth to be considered. Therefore, CCA is mentioned as a benchmark for the 

performance evaluations of missing data imputations in this chapter. 

5.5.5 Evaluation of Imputation Performance

We directly compare imputed values to the true values of the missing data points, and we run a 

linear model on the final imputed data that we compare to the same model run on the true 

data. Note that the parameters of the linear model are distinct and separately estimated from 

the parameters of the PMM, MI, and ML models. We use several measures to assess the accu-

racy of the PMM, MI and ML algorithms. In terms of MSE and BIAS, lower values indicate higher 

quality. Before imputations, we run a linear OLS regression on the benchmark datasets. Each im-

putation algorithm outputs 25 imputed datasets, and we combine estimates from the same 

model fit to each of these imputed datasets using Rubin’s rules (Rubin, 1987). In this paper, we 

consider the following measures of model accuracy:

1. A useful measure of overall accuracy is the mean-square error (MSE), the average 

squared difference between the estimate and its target. This measure of accuracy com-

bines the concepts of bias and efficiency because it can be shown that the MSE of an es-

timate is equal to its squared bias plus its variance. For easier interpretation, we report 

the square root of the MSE, to put it on the same scale as the parameter. 

2. In our simulations, we also report the actual coverage of nominal 95% intervals. The ac-

tual coverage translates directly to an actual Type I error rate. If the coverage of a nomi-

nal 95% interval is actually 90%, then the actual Type I error rate for a testing procedure 

with a 0.05 level criterion is twice as high as it ought to be. We regard the performance 

of the interval procedure to be troublesome if its coverage drops below 90%. The 95% 

confidence interval coverage probability (CP) is calculated as:                                                                                             

CP =
1

𝑅
∑ 𝐶𝐼95(𝜃𝑝𝑟)𝑅

𝑟=1 .    (34)                                                                                                                   

If the parameter p falls in the 95% confidence interval at the r times of iteration, then

𝐶𝐼95(𝜃𝑝𝑟) = 1; otherwise, 𝐶𝐼95(�̂�𝑝𝑟) = 0    (35)
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3. Allowing for comparability with previous research, bias was expressed as a percentage 

of sample bias relative to the true parameter value. This is calculated as:                 

%BIAS = [(𝜃𝑖𝑗 − 𝜃𝑖) / 𝜃𝑖] ∗ 100,    (36)                                                                                        

where 𝜃𝑖 is the true population parameter for the i th element of θ in each benchmark 

dataset, and 𝜃𝑖𝑗 is the corresponding parameter estimate taken from the j th iteration. 

The mean percentage bias was subsequently calculated across the 1,000 replications 

within each cell. 

5.6 Empirical Results 

5.6.1 Semi-continuous variable in univariate missing data  

The purpose of the first study is to investigate the effects on results of omitting a semi-continu-

ous variable on the standardized bias, RMSE, and coverage rate. Previous studies claim that 

PMM preserves data distribution and imputes only non-negative values when the data consist of 

non-negative values. In contrast, the log-transformation procedure of MI-LOGIT may lead to im-

puting non-negative values that are far outside the range of observed values and change the dis-

tribution. Therefore, it is expected that PMM tends to outperform MI-LOGIT and other methods 

in the condition of using semi-continuous data.

The evaluations for the estimated coefficients of the variable with missing data can be found in 

Table 5.2. In general, most of the biases are high and exceed the significant criterion of 40 

(shaded areas). All MDT perform the worst under the assumption of MAR instead of MNAR. We 

also found that the biases of all techniques seem to positively associate with the missing rate, 

while the relations between them are not strictly linear. Another interesting finding is that the 

sensitivity of biases to the missing rate is affected by sample size. It seems that the biases are 

less sensitive to changing missing rates when the sample size is smaller. 

When the model complexity is low, the sample size is very small, and collecting a bit more data 

may dramatically reduce the generalization error (GE) in the perspective of machine learning

(which is indicated by BIAS in this chapter), we are likely to overfit the data. GE is the sum of 

MSE and variance, which associate with sample size and missing rate respectively. The relation-
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ship between variance and GE is convex, and the sensitivity between them reaches the maxi-

mum level at the lowest point of the GE curve. The finding of the sensitivity between biases and 

changing missing rates stated above can be explained by the tradeoff between MSE and vari-

ance.    

For most of the conditions with a significant bias, there is a correspondingly greater disruption in 

coverage. Hence, the coverage probability is also higher in the conditions where the sample size 

is large, and the missing rate is low. In most of the imputations, the coverage rates are very low 

and under 90% (Table 5.2).  

All these results indicate that data quantity is in great demand in a univariate imputation of 

semi-continuous data with a high portion of zeros. When conducting imputation for semi-con-

tinuous data with less than 3,200 cases, it is recommended that the percentage of missing val-

ues should be no greater than 10%. The demand for data quantity for imputation would be 

slightly lower under the assumption of MCAR.

In Table 5.2, we can see that PMM has lower biases and higher coverage rates than MI-LOGIT 

and ML when the sample size is large enough. Besides, the RMSEs of PMM are lower than those 

of MI-LOGIT and ML when the missing rates are lower than a certain percentage. 

We also see that MI-LOGIT has lower biases and RMSEs than ML, while their coverage rates are 

approximately the same. In fact, Collins et al. (2001) have indicated that a likelihood-based anal-

ysis (ML) and a Bayesian analysis (MI) produce very similar results when the sample size is large 

enough. With 16 variables in our regression function, the estimation of an unstructured 16 *16 

covariance matrix should be relatively stable with more than 1,200 cases. This is why the perfor-

mance differences between MI-LOGIT and ML showed here are so small. 

On the other hand, we also notice that CCA outperforms all other MDT in many cases, especially 

when the missing rates are high (≥40%). These findings remind us that modern missing data im‐

putation techniques are not always the best. Sometimes simpler is better. 

As illustrated above, the advantage of PMM is to preserve the distributional shapes of the varia-

bles even for the most extremely skewed semi-continuous ones. Its main drawback is the infor-

mation lost in the right tail of the distributions due to sampling. In contrast, MI-LOGIT and ML 

will preserve the continuous part of a semi-continuous variable which clearly shows from the 
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plots. Regarding semi-continuous data, point mass is the most influential factor affecting its dis-

tribution. The size of the point mass mentioned in prior studies related to semi-continuous data 

imputation is mostly around 20% to 60% (e.g., Yu et al., 2007). In practice, the point mass of ad-

ministrative loan book data that provided by financial institutions is much higher. In this paper, 

the proportion of zeros in the raw data used in this paper is very high (83.5%). Therefore, the 

information lost in right tail caused by PMM may require a greater quantity of data to compen-

sate. It might be the reason why CCA is better than PMM in most conditions here. 

What is more, it is also found that the break-even points for performances between PMM and 

CCA shift downwards as we change the missing mechanism from MCAR to MAR and MNAR. For 

instance, by comparing the RMSEs of PMM and CCA with 10% missing data, we can see that 

PMM outperforms CCA when the sample size is 3,200 with MCAR pattern (Table 5.2 Panel 1), 

2,700 with MAR pattern (Panel 2), or 1,700 with MNAR pattern (Panel 3).

One possible explanation of these results is that the point masses were slightly reduced to lower 

levels during the simulation of MAR and MNAR mechanisms. For instance, in this paper, MNAR 

on the variable of Arrears is designed to simulate a common situation that clients with delin-

quency have a higher probability of missing from reporting. As a result, more information is pre-

served by PMM, and it leads to better imputations. Nevertheless, we should notice that there 

are some other MAR and MNAR simulation methods which have no impacts on the distribution 

of semi-continuous data. In these cases, the performance of PMM might be consistent across 

different missingness mechanisms. 

5.6.2 Semi-continuous variable in multivariate missing data  

The second part of the first study is to investigate the effects on results of omitting two variables 

simultaneously. Previous simulation studies (e.g., Enders, 2001) show that when there are a lot 

of missing variables, CCA will have inappropriate standard errors and biased parameters. Hence, 

we should expect that the performance of CCA decreases dramatically as the new missing simu-

lation is introduced to another variable (Loan Maturity). The values of Loan Maturity are positive 

and continuous. It is heavily skewed to the right as well. In order to minimize the impacts 

brought by missing mechanisms, the missingness of Loan Maturity is assumed to be MCAR, and 

that of Arrears is assumed to be MNAR. We would like to examine if the findings of PMM and 
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other imputation methods presented previously are consistent with multivariate missing data as 

well.    

Table 5.3 presents evaluations for the estimated coefficients of the same variable as in the pre-

vious subsection. By comparing the three panels in Table 5.3 to those in Table 5.2, we see that 

the biases of multivariate missing imputations are generally greater than the biases of univariate 

missing imputations. Most of the biases have exceeded the significant criterion of 40. However, 

with the MNAR missing mechanism, PMM, MI-LOGIT, and ML perform very well as the missing 

rate is low (≤20%), no matter what size the sample is. 

Besides, the biases of imputation are much more sensitive to the changing missing rate with 

multivariate missing data. It is especially obvious when the missing mechanism is MAR. In Table 

5.3 Panel 2, we also notice that biases dramatically arise as the percentages of missing values 

increased from 20% to 30%. It indicates that there might be a concave relation between missing 

rate and imputation bias.

In terms of RMSEs and biases, we found that PMM performs better than MI-LOGIT and ML when 

the missing mechanism is MAR (Table 5.3 Panel 2). This result is consistent with the findings in

the prior literature (e.g., Vink et al., 2014). If we change the missingness to MCAR (Table 5.3 

Panel 1), PMM is found to be more accurate in most of the simulations, when the sample sizes 

are greater than 1,200, and the missing rates are lower than 30%. If we change the missingness 

to MNAR (Table 5.3 Panel 3), MI-LOGIT and ML are still underperformed PMM as the sample 

sizes are large (≥2,700) and the missing rates are low (≤20%). What is more, we notice that PMM 

has much higher coverage rates across different missing mechanisms in Table 5.3. All these re-

sults indicate that PMM is still preferable under certain conditions when the missing mechanism 

is not MAR.

As we evaluate the performance of all four MDT in the MCAR data (Table 5.3 Panel 1), it is clear 

that the RMSEs and biases of CCA are much higher than those of PMM, MI-LOGIT and ML. The 

coverage rates of CCA are the lowest as well. However, it is surprising that CCA consistently out-

performs other MDT when the missing rate is 10%, and the missing mechanism is MAR or MNAR 

(Table 5.3 Panel 2 and Panel 3). It implies that CCA might still be a preferable method to deal 

with multivariate missing data when the proportion of cases lost to missingness is small.  
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5.6.3 Binary variable in univariate missing data  

The second study aims to investigate the effects on the results of omitting a binary variable on

the standardized bias, RMSE, and the coverage rate. In order to preserve the point mass, the bi-

nary variable for imputation is acquired by dichotomizing the semi-continuous form of the same 

variable used in former subsections. In practice, it is unusual for the formal banks to 

dichotomize their administrative loan book even when the point mass of Arrears is very high 

(≥95%). If the quantity of their data is enormous, then MDT such as PMM is still applicable. How-

ever, the loan books for most of the microfinance institutions contain fewer than 10,000 cases 

(e.g., CACIL HONDURAS, 2010, 4,171 clients; INSOTEC ECUADOR, 2010, 7,993 clients). Consider-

ing the high proportion of zeros in loan books, sometimes it is worth gaining extra precision for 

missing data imputation at the price of information lost caused by dichotomization.

Theoretically, PMM derives a distribution for each variable and then draws imputed categories 

by matching the conditional mean of each missing value to the observed values. Previous stud-

ies indicated that PMM avoids using rounding and probabilities to draw categories from continu-

ous imputation, but it does not avoid treating categorical variables as continuous (Kropko et al., 

2014). This may lead to inaccurate imputed values, and matching may be inaccurate as well. 

Therefore, in this subsection, we would expect that the MI-LOGIT and ML methods may outper-

form PMM in the condition with binary data.  

The evaluations for the estimated coefficients of the binary variable with missing data are pre-

sented in Table 5.4. As can be seen, the coverage rates and biases of all four methods dramati-

cally improved after the semi-continuous missing data is dichotomized to binary format. All bi-

ases are under the significant criterion of 40, and most of the coverage rates are higher than 

90% now. In addition, the imputations with MCAR missing mechanism have the highest cover-

age rates and the lowest biases, followed by those with MAR. All these results indicate that the 

four MDT are robust and yields accurate inference across most simulations in this case.  

In Table 5.4, we can see that MI-LOGIT and ML perform better than PMM in general as ex-

pected, especially with MCAR and MNAR missing mechanisms. PMM has lower imputation bi-

ases than MI-LOGIT and ML under the assumption of MAR only when the missing rates are low 
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(≤20%). By comparing the results presented in Table 5.2 and Table 5.4, it is obvious that trans-

forming a continuous variable into binary format actually impair the performance advantage of 

PMM against MI-LOGIT and ML. 

When the missing mechanism is MCAR or MAR, MI-LOGIT has marginally smaller biases compar-

ing to ML. This is consistent with the results of the previous test with semi-continuous data (Ta-

ble 5.2). Nevertheless, the biases of ML are found to be slightly smaller than those of MI-LOGIT 

with MNAR. In terms of RMSEs and coverage rates, MI-LOGIT still performs better than ML in 

general. What is more, we also found that the gaps between the performances of MI-LOGIT and 

ML are narrower in MCAR. A possible explanation is that the point mass of the MCAR missing 

data (Table 5.4 Panel 1) is higher than those of MAR and MNAR data (Table 5.4 Panel 1 and 

Panel 2). 

At last, the results also show that PMM, MI-LOGIT and ML have lower biases than those of the 

benchmark method CCA when the missing data is MCAR with small sample size (1,200) or when 

the missingness is MAR. In addition, the coverage rates of CCA are lower than those of the other 

MDT across MCAR, MAR and MNAR.  

5.6.4 Binary variable in multivariate missing data 

The second part of the second study aims to investigate the impacts on the results of omitting 

two variables at the same time. Once again, we will simulate missingness on the continuous var-

iable Loan Maturity and the dichotomized form of Arrears. The missing mechanisms of Loan Ma-

turity and Arrears will be MCAR and MNAR respectively. Based on the results of the semi-contin-

uous data in subsection 2, it is reasonable to infer that, in general, PMM, MI-LOGIT and ML will 

outperform CCA in this subsection as well. We would like to examine whether MI-LOGIT and ML 

will be more accurate than PMM after a heavily skewed variable with missing values is intro-

duced into the imputation equation. 

Table 5.5 shows that not all MDT are robust across the simulations with multivariate missing 

data. When the missing mechanism is MAR or MNAR, and the missing rates are high (≥40%), the 

biases of CCA and the coverage rates of all MDT still exceed the significant criterions. By com-

paring the results presented in Table 5.3 and Table 5.5, we can see that the performances of all 

MDT have been improved. Hence, transformations of multiple semi-continuous variables are 

highly recommended when their missing rates are higher than 10%, and the mechanism is MAR.  
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The advantages of MI-LOGIT and ML against PMM have been noticeably weakened as a heavily 

skewed variable with missing data is introduced to the datasets. While MI-LOGIT and ML still 

outperform PMM when the missing mechanism is MCAR, the performance of PMM is consist-

ently better than those of MI-LOGIT and ML in every aspect in the missing data with MAR (Table 

5.5 Panel 2). In addition, PMM has lower biases and coverage rates when the sample size equals 

to 3,200, and the missing rates are smaller than 40%.     

The results between MI-LOGIT and ML are a bit different from those in the previous test with 

univariate missing data (Table 5.4). When the missing mechanism is MCAR, ML performs slightly 

better than MI-LOGIT in terms of coverage rate and bias when the missing rates are very small 

(Table 5.5 Panel 1). On the hand, we also found that MI-LOGIT has smaller biases than ML when 

the sample size is very large, and the missing data is MNAR (Table 5.4 Panel 3) in this case. How-

ever, it is worth stressing that the gaps between the performances of MI-LOGIT and ML are still 

marginal. 

By comparing the performances to the benchmark method, the results show that PMM, MI-

LOGIT and ML perform better than CCA in every aspect when the missing mechanism is MAR or 

MNAR. With MCAR missing data, the biases of the three MDT are greater than those of CCA 

when the missing rates are lower than 40%. Nevertheless, we also notice there is a clear trend 

that CCA starts losing its dominance as the sample size decreases.       

5.6.5 An Ordinal variable in univariate missing data 

The purpose of the last study is to investigate the effects on results of omitting an ordinal cate-

gorical variable on the standardized bias, RMSE and coverage rate. In order to balance the need 

to preserve the continuous nature and the accuracy of estimated coefficients, discretizing the 

variable from semi-continuous to ordinal sounds to be a compromising solution. As there is very 

little economic significance for the direct discretisation of Arrears, we switch the variable for im-

putation to Credit Risk in this case. 

The main limitation for discretisation is computational feasibility. Computation times increase 

dramatically as the number of categorical levels increases to 15 in statistical analysis software 

such as STATA and SAS. For the sake of minimizing computing time, we simply transform Credit 

Risk to an ordinal variable with 4 levels only. In this paper, the indicator Credit Risk is generated 

based on whether a client has Arrears and whether his/her Loan Maturity is longer than three 
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years. Hence, the skewness of Arrears might be mitigated in the distribution of Credit Risk in our 

datasets. 

As White et al. (2011) claimed that MI-OLOGIT and PMM have similar performances when im-

puting continuous variable as ordinal, in this subsection, we will examine whether MI-OLOGIT 

and PMM have similar performances with the data of a discretized semi-continuous variable.

Table 5.6 has presented the evaluations for the estimated coefficients of the ordinal categorical 

variable with missing data. In general, the coverage rates are higher than those in the previous 

tests with semi-continuous or even binary missing data (Table 5.2 and 5.4). On the other hand, 

the biases of all MDT shown here are lower than those in the previous tests and under the sig-

nificant criterion of 40.

To better understand the source of biases, we rerun the tests on the discretized Loan Maturity 

only. We found that the biases of imputations for Loan Maturity are much lower than those for 

Arrears when both variables are dichotomized. This result confirms that the biases presented in 

Table 5.4 are caused by the extremely high mass-point of the dichotomized Arrears. It explains 

the abnormality that MDT seems to perform better with ordinal categorical variables than with 

binary variables in this paper.   

In Table 5.6, we can see that PMM has the lowest biases when the missing rates are very high,

and the missing mechanism is MAR or MNAR. In contrast, MI-OLOGIT and ML have lower biases 

than PMM in the missing data with MCAR. Regarding the coverage rate, PMM performs slightly 

better than MI-OLOGIT and ML when the missing rates are low (≤20%) across all mechanisms. 

But the RMSEs of PMM are higher than those of MI-OLOGIT and ML in general. 

The gaps between the biases of MI-OLOGIT and ML are noticeably larger than those in Table 5.2

and Table 5.4, though their degrees are still ignorable. When the missing mechanism is MAR, 

MI-OLOGIT outperforms ML in terms of coverage rate and bias in most simulations, while the 

RMSEs of MI-OLOGIT is slightly lower than those of ML. In contrast, ML has lower biases than 

MI-OLOGIT when missing rates are higher than 10%, and the missingness is MCAR or MNAR.  

By comparing the performance of the four MDT, we can see that the benchmark method CCA 

have higher coverage rates and lower biases than PMM, MI-OLOGIT and ML across different 

mechanisms in general. The only exception is when the missing rates are very low (10%) in the 

missing data with MCAR or MNAR. 



122

5.6.6 An Ordinal variable in multivariate missing data 

In this subsection, we further examine the effects on results of introducing extra missingness to 

Loan Maturity in the same dataset. The specifications of Loan Maturity are the same as what we 

described in subsections 2 and 4. Again, the performance of CCA is expected to be inferior com-

pared to the other techniques when imputing multivariate missing data. As the skewness is miti-

gated, we are curious if the differences between the performances of different MDT in this sub-

section will be the same as those presented in subsection 4.

In Table 5.7, most of the biases are under the significant criterion of 40, and a noticeable num-

ber of coverage rates reach 90%. By comparing the results shown in Table 5.5 and Table 5.7, we 

can see that both coverage rates and biases are similar. There is no significant influence on the 

performances of MDT by changing the variable of interest from the dichotomized Arrears to the 

ordinal Credit Risk. It may imply that the excessive biases are dominated by the joint distribution 

of different variables with missing data instead of the distributions of each one.  

Regarding the comparison of MDT, the three performance indicators sometimes lead to very dif-

ferent conclusions. In terms of bias, MI-OLOGIT and ML outperform PMM in all simulations ex-

cept for the largest samples (3,200) with MAR missingness. On the other hand, the coverage 

rates of PMM are higher than MI-OLOGIT and ML when the missing mechanism is MCAR or 

MAR. When the sample sizes of the MNAR datasets are very large, PMM’s coverage rates are 

the highest as well. Regarding the RMSE, PMM performs better in all sizes of MCAR datasets, 

the MAR datasets with more than 1,700 cases, and the MNAR datasets with more than 2,700 

cases. 

When the missing mechanism is MAR (or MNAR), the biases of MI-OLOGIT are found to be 

smaller than those of ML in the simulations with sample sizes no smaller than 1,700 (or 3,200 

for MNAR respectively). In the simulations with MCAR, MI-OLOGIT has smaller biases than ML 

only when the missing rates are very low (10%). These results are different from those with the 

condition of univariate missing data presented in Table 5.6. In terms of RMSE and coverage rate, 

ML outperforms MI-OLOGIT across all simulations when the mechanism is MAR or MNAR. On 

the contrary, MI-OLOGIT has better RMSEs and coverage rates than ML in most simulations of 

the MCAR datasets. 
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By comparing the performances to that of the benchmark method, we can see that PMM, MI-

OLOGIT and ML have lower biases, lower RMSEs, and higher coverage rates than CCA in most of 

the simulations when the missing mechanism is MCAR or MNAR. In addition, all three MDT per-

form consistently better than CCA when the missing data is MAR. 

5.7 Conclusions and Discussion

Regarding the previous empirical studies of missing data imputation, readers usually doubt the 

values of MI, ML or even PMM when population distribution is unknown, the sample size is too 

small, and the missing rate is not trivial. Most of the studies are Monte Carlo based, and few of 

them use real data. When researchers design their Monte Carlo studies, they have to subjec-

tively select a small range of sample sizes and missing rates, instead of considering sample size 

and missing rate as the variables of interest. The reason is simple. Multivariate missing data im-

putation is very time-consuming. Runtime grows dramatically when the sample size rises, and

the missing rate is close to 50%. As a result, the sample sizes (and missing rates) used in many 

studies are unrealistically large (and low).   

To make the empirical findings of Monte Carlo studies applicable to real data, we need at least 

two assumptions for sample size (or missing rate): 1. the relation between imputation quality 

and sample size (or missing rate) is strictly linear; 2. the sensitivities between imputation quality 

and sample size (or missing rate) are the same for the MDT in comparison. However, the find-

ings in this paper suggest that these assumptions are too strong for administrative loan book 

data. For instance, we found that PMM usually outperforms MI and ML when the sample sizes 

are large, and the missing rates are lows when the missing mechanism is MAR. Compared to MI 

and ML, PMM is more sensitive to the changing sample sizes and missing rates. It reminds us 

that we should not overestimate the capabilities of MDT and neglect the size effects. 

The missing values in this paper are created by removing the Arrears (𝑌) corresponding to Gen-

der (𝑍). In practice, missing values may occur corresponding to all ranges of values of the ob-

served variables. Therefore, the actual biases associated with estimates of coefficients by MI, 

ML and PMM should be as severe as shown in this paper. These MDT are still the most promis-
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ing methods before we know the underlying population distribution. MDT based on the true un-

derlying population is always preferred. If prior information is available and properly included, 

then MI may outperform ML and PMM in small samples as it allows choosing informative priors.  

However, we know that it is almost impossible to check the underlying population distribution 

behind a sample with missing values. Hence, a desirable missing data method needs to be ro-

bust to distribution violations. Our studies only focus on the non-normal distribution which is 

embedded in the microfinance loan book data. The results should be applicable to the commer-

cial banks, credit unions, and other financial institutions as well.  

Generally speaking, all MDT have comparatively lowest biases and highest coverage rates when 

the missing data is ordinal categorical. Most of their biases and coverage rates have exceeded

the significant criterion when the missing data is semi-continuous. On the other hand, the MDT 

perform better with univariate missing data than with multivariate missing data. For semi-con-

tinuous data, we also found that sample size will affect the relationship between bias and miss-

ing rate. The biases are less sensitive to the changes of missing rates in small samples. 

When the missing data are semi-continuous, PMM outperforms MI and ML in most simulations. 

For binary or ordinal categorical data, MI and ML are generally better than PMM. But we also 

notice that PMM performance surpasses MI and ML when the sample sizes are very large, the 

missing rates are low, and the missing mechanism is MAR.

In terms of the comparison between MI and ML, we found that MI performs better than ML 

when the missing data are semi-continuous, or when the missingness is MAR. Consistent with

the findings in the prior literature, ML outperforms MI in small samples in general. However, it 

should be stressed that the differences between the biases of MI and ML are still marginal.  

At last, we found that the MI, ML and PMM underperform the benchmark CCA in many simula-

tions. In univariate missing data, CCA provides more accurate coefficient estimations in most 

simulations across different data types and missing mechanisms. The only exception is when the 

missing data are binary with MAR missingness. In multivariate missing data, MI, ML and PMM 

perform better than CCA in most simulations when the missing data are MAR or MNAR. But CCA 

is still preferable when the missing data are MCAR, and the missing rates are very low.     



125

Table 5.1
Summary Statistics of 11 Variables (N=3,200)

Variable Type Distribution Description

Outstanding Continuous Mean - 6,375.19, The unpaid, interest-bearing balance of a

Balance (in USD) SD - 12,855.89, loan averaged from the date of loan

Range - [ 50, 10,000 ] approval to the date of loan book update

Arrears Semi- Zeroes:2,672; The part of a debt that is overdue for more 

(raw data) Continuous Mean - 5.24, than 30 days after missing one or more

(in USD) SD - 62.65, required payments

Range - [ 0, 2,000 ]

Arrears Binary Zeroes:2,672; The Arrears dichotomized to 2 levels

(dichotomized) Positives:528

Loan Maturity Continuous Mean - 43.98 The length of the period before the date

(in Months) SD - 53.66 that the full amount on the loan must be 

Range - [ 1, 240 ] paid back to the microfinance lenders

Loan Maturity Binary Under 3 Years:1,836; The Loan Maturity dichotomized to 2 levels

(dichotomized) Over 3 Years :1,364

Credit Risk Ordinal Very High:234; Very High: positive Arrears and over 3 yrs to Maturity  

Categorical High:294; High: positve Arrears and no more than 3 yrs to Maturity

Low:1,130; Low: No Arrears and over 3 yrs to Maturity  

Very Low:1,542 Very Low: No Arrears and no more than 3 yrs to Maturity

Loan Purpose Unorderred Consumption:449; Consumption and buying fixed assets are

Categorical Buying Fixed Assets:997; non-productive activities;

Agriculture:716; Productive fixed assets are included in

Commerce:649; Agriculture, Manufacture, Sevice and etc.

Manufacture: 32;

Service: 339;

Financing:18

Gender Binary Male:1,731; Gender of the microfinance clients

Female:1,469

Age Continuous Mean - 41.68, Age of the microfinance clients

SD - 12.27,

Range - [ 20, 80 ]

Education Ordinal No School:543; Secondary education includes middle

Categorical Primary School:986; schools and high schools;

Seconary School:1,288; Tertiary education includes universities,  

Tertiary School:383 colleges, and technical training institues

Marital Status Unorderred Married: 1,779; Noncouple includes single, divorced,

Categorical Cohabiting:513 separated, and widowed

Noncouple: 908
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Table 5.2 Panel 1
RMSE and Coverage Rate of Estimated Coefficients for Semi-continuous Dependent Vari-
able (Univariate MCAR Missing Data) – Grouping by Sample sizes
The logistic model was used as the estimation method in this table.  

Note 1: MCAR = missing completely at random; MAR = missing at random; MNAR = missing not at random; RMSE = 

root mean square error; CP = coverage rate of the 95% confidence interval of the coefficient estimated with complete 

data to each estimated coefficients; BIAS = standard bias in percentage; size = raw sample size before missingness 

stimulation; mis = stimulated missing data rate; ccp = complete case analysis; pmm = predictive mean matching; mi = 

multiple imputation; ml = maximum likelihood estimation;

Note 2: RED – CCA performs the best; PURPLE – PMM outperforms MI and ML; BLUE – MI outperforms ML; SHADED –

coverage rate under 90%, or standard bias with absolute value < 40.

cca pmm mi ml cca pmm mi ml cca pmm mi ml

3200 10% | 4.50 4.19 4.82 4.81 0.96 0.98 0.94 0.93 4.67 1.92 5.46 5.67

3200 20% | 5.12 4.68 6.37 6.39 0.90 0.96 0.89 0.89 6.75 3.60 7.55 7.96

3200 30% | 10.00 10.94 10.42 10.50 0.82 0.87 0.78 0.77 23.19 13.04 28.21 28.37

3200 40% | 16.10 18.15 16.62 16.70 0.72 0.72 0.66 0.66 33.43 34.52 34.63 35.62

3200 50% | 17.39 23.80 20.24 20.44 0.65 0.61 0.63 0.62 103.26 112.94 124.74 125.68

2700 10% | 5.59 5.69 6.16 6.18 0.94 0.96 0.93 0.93 2.48 0.84 1.91 1.90

2700 20% | 7.65 7.66 7.84 7.94 0.88 0.90 0.87 0.87 11.43 6.78 12.76 13.04

2700 30% | 15.27 16.07 15.82 15.93 0.78 0.80 0.75 0.75 34.03 31.40 36.69 37.51

2700 40% | 20.34 23.65 22.51 22.70 0.69 0.69 0.67 0.67 52.39 60.71 62.42 63.12

2700 50% | 24.27 30.32 29.42 29.71 0.62 0.59 0.61 0.59 85.92 116.14 110.57 112.03

2200 10% | 7.54 8.01 8.03 8.03 0.94 0.95 0.93 0.92 10.39 9.50 11.22 11.44

2200 20% | 11.93 13.26 13.53 13.54 0.87 0.88 0.87 0.87 22.42 23.40 25.42 25.62

2200 30% | 17.65 18.78 17.84 17.87 0.80 0.80 0.78 0.78 43.95 50.66 51.43 51.96

2200 40% | 25.01 27.72 27.70 27.94 0.67 0.67 0.64 0.65 56.67 74.28 71.71 72.75

2200 50% | 27.52 36.76 30.89 31.18 0.56 0.53 0.52 0.52 93.03 120.36 101.65 102.86

1700 10% | 12.00 12.55 12.61 12.65 0.91 0.91 0.90 0.90 20.72 24.59 23.85 24.13

1700 20% | 15.45 19.05 18.12 18.26 0.82 0.81 0.80 0.80 5.57 11.63 9.24 9.41

1700 30% | 22.01 25.71 25.46 25.52 0.76 0.76 0.75 0.75 30.58 41.13 39.83 40.07

1700 40% | 25.79 32.42 29.45 29.69 0.68 0.67 0.67 0.67 60.34 73.28 70.30 71.45

1700 50% | 32.69 41.29 36.92 37.29 0.56 0.55 0.53 0.54 86.16 128.76 118.39 121.05

1200 10% | 15.05 16.48 15.98 16.00 0.90 0.90 0.90 0.90 5.76 7.28 5.80 6.23

1200 20% | 17.22 19.79 19.78 19.82 0.87 0.83 0.84 0.84 20.12 25.85 23.85 24.28

1200 30% | 27.94 32.57 30.99 31.17 0.76 0.73 0.73 0.73 34.88 49.45 38.99 39.90

1200 40% | 35.44 41.34 38.75 39.13 0.63 0.61 0.63 0.63 51.67 71.47 66.64 68.67

1200 50% | 44.44 55.00 51.17 51.94 0.58 0.54 0.56 0.57 52.89 83.42 72.43 74.58

RMSE CP BIAS
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Table 5.2 Panel 2
RMSE and Coverage Rate of Estimated Coefficients for Semi-continuous Dependent Vari-
able (Univariate MAR Missing Data) – Grouping by Sample sizes
The logistic model was used as the estimation method in this table.  

Note 1: MCAR = missing completely at random; MAR = missing at random; MNAR = missing not at random; RMSE = 

root mean square error; CP = coverage rate of the 95% confidence interval of the coefficient estimated with complete 

data to each estimated coefficients; BIAS = standard bias in percentage; size = raw sample size before missingness 

stimulation; mis = stimulated missing data rate; ccp = complete case analysis; pmm = predictive mean matching; mi = 

multiple imputation; ml = maximum likelihood estimation;

Note 2: RED – CCA performs the best; PURPLE – PMM outperforms MI and ML; BLUE – MI outperforms ML; SHADED –

coverage rate under 90%, or standard bias with absolute value < 40.

size mis cca pmm mi ml cca pmm mi ml cca pmm mi ml

3200 10% | 6.77 6.24 7.36 7.37 0.84 0.97 0.86 0.86 25.88 9.41 28.80 29.24

3200 20% | 8.75 8.25 10.00 10.10 0.80 0.92 0.78 0.79 28.61 11.96 34.91 35.00

3200 30% | 14.17 13.73 15.74 15.84 0.78 0.86 0.74 0.73 36.21 21.17 41.15 41.31

3200 40% | 20.36 21.94 23.51 23.58 0.71 0.73 0.65 0.65 60.20 54.57 70.64 70.94

3200 50% | 23.98 27.83 27.26 27.45 0.55 0.53 0.49 0.50 120.07 129.49 141.57 143.64

2700 10% | 8.87 8.48 9.63 9.66 0.89 0.94 0.86 0.86 29.15 19.51 30.85 31.07

2700 20% | 12.66 12.24 13.18 13.26 0.79 0.85 0.78 0.78 37.39 28.97 41.20 41.31

2700 30% | 17.83 18.09 18.17 18.28 0.72 0.75 0.67 0.67 44.86 42.64 52.47 53.06

2700 40% | 23.37 25.44 26.74 26.96 0.63 0.64 0.59 0.59 68.62 75.68 81.87 82.58

2700 50% | 25.82 30.93 30.33 30.48 0.59 0.54 0.54 0.54 91.71 102.40 112.23 112.36

2200 10% | 10.27 9.89 11.06 11.09 0.88 0.91 0.84 0.85 27.63 20.68 32.44 32.77

2200 20% | 16.24 18.20 18.77 18.84 0.81 0.83 0.79 0.79 41.20 38.59 47.66 48.19

2200 30% | 25.16 28.04 29.80 29.91 0.68 0.68 0.64 0.65 62.85 64.36 70.43 71.74

2200 40% | 29.37 31.26 31.47 31.69 0.64 0.61 0.59 0.58 75.71 87.09 90.69 92.07

2200 50% | 32.19 38.61 38.58 38.78 0.58 0.55 0.55 0.55 110.52 145.52 130.32 133.60

1700 10% | 13.25 13.53 16.46 16.47 0.88 0.89 0.84 0.84 31.66 30.24 36.47 36.76

1700 20% | 22.74 25.96 27.75 27.80 0.76 0.77 0.74 0.74 46.82 45.41 54.03 54.74

1700 30% | 25.51 32.19 32.25 32.50 0.73 0.72 0.70 0.69 62.68 65.40 64.77 65.85

1700 40% | 28.73 34.98 34.76 35.13 0.63 0.61 0.60 0.61 108.42 131.85 120.76 123.62

1700 50% | 36.68 41.97 40.55 41.02 0.60 0.55 0.56 0.54 110.63 136.83 131.17 134.85

1200 10% | 17.24 18.38 19.83 19.93 0.86 0.87 0.84 0.84 25.19 23.90 27.09 27.35

1200 20% | 25.21 26.37 27.14 27.29 0.79 0.79 0.78 0.78 38.86 46.25 48.83 49.63

1200 30% | 29.09 35.49 34.78 35.14 0.71 0.69 0.69 0.70 53.52 66.85 63.44 65.17

1200 40% | 39.47 44.92 42.99 43.47 0.62 0.58 0.59 0.59 67.20 85.65 79.67 81.09

1200 50% | 48.01 58.43 56.54 57.50 0.54 0.52 0.52 0.53 72.13 85.91 80.05 84.30

BIASRMSE CP
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Table 5.2 Panel 3
RMSE and Coverage Rate of Estimated Coefficients for Semi-continuous Dependent Vari-
able (Univariate MNAR Missing Data) – Grouping by Sample sizes
The logistic model was used as the estimation method in this table.  

Note 1: MCAR = missing completely at random; MAR = missing at random; MNAR = missing not at random; RMSE = 

root mean square error; CP = coverage rate of the 95% confidence interval of the coefficient estimated with complete 

data to each estimated coefficients; BIAS = standard bias in percentage; size = raw sample size before missingness 

stimulation; mis = stimulated missing data rate; ccp = complete case analysis; pmm = predictive mean matching; mi = 

multiple imputation; ml = maximum likelihood estimation;

Note 2: RED – CCA performs the best; PURPLE – PMM outperforms MI and ML; BLUE – MI outperforms ML; SHADED –

coverage rate under 90%, or standard bias with absolute value < 40.

size mis cca pmm mi ml cca pmm mi ml cca pmm mi ml

3200 10% | 8.14 7.59 8.71 8.73 0.91 0.95 0.90 0.90 15.60 2.54 21.83 21.75

3200 20% | 10.38 10.45 11.37 11.42 0.82 0.88 0.78 0.78 22.99 10.42 32.80 32.96

3200 30% | 12.90 13.85 14.38 14.35 0.77 0.79 0.71 0.72 36.65 28.59 46.04 46.77

3200 40% | 18.88 19.57 19.76 19.89 0.68 0.68 0.65 0.64 47.42 46.43 57.98 58.75

3200 50% | 26.54 29.33 29.48 29.77 0.54 0.53 0.50 0.51 83.27 95.75 101.86 102.85

2700 10% | 8.48 8.33 8.89 8.88 0.87 0.91 0.85 0.86 10.95 4.60 16.55 16.30

2700 20% | 12.55 13.00 13.13 13.21 0.83 0.85 0.81 0.81 36.01 32.40 48.19 48.80

2700 30% | 16.55 17.89 17.98 18.00 0.77 0.79 0.72 0.73 40.18 41.31 48.35 48.51

2700 40% | 20.03 25.66 23.36 23.49 0.68 0.65 0.64 0.63 65.31 70.85 75.88 76.74

2700 50% | 25.58 31.02 30.33 30.41 0.54 0.51 0.50 0.52 87.44 112.71 103.88 105.14

2200 10% | 10.94 10.86 11.94 11.91 0.90 0.91 0.89 0.89 24.83 22.92 27.66 27.71

2200 20% | 19.47 21.03 21.81 21.70 0.77 0.79 0.75 0.76 38.67 36.89 47.92 48.38

2200 30% | 21.83 24.54 24.67 24.90 0.72 0.72 0.69 0.69 58.67 68.00 69.88 70.52

2200 40% | 27.58 32.42 32.18 32.32 0.63 0.61 0.60 0.61 75.13 90.66 90.99 92.16

2200 50% | 30.82 38.30 36.23 36.35 0.53 0.50 0.49 0.50 118.93 157.88 141.83 143.80

1700 10% | 13.87 13.70 15.11 15.12 0.85 0.86 0.83 0.83 20.01 20.28 28.41 28.24

1700 20% | 18.42 21.88 22.19 22.39 0.77 0.78 0.74 0.74 30.56 38.17 38.28 38.72

1700 30% | 28.08 31.99 32.79 32.87 0.66 0.65 0.63 0.63 42.19 60.36 62.15 63.48

1700 40% | 30.55 37.08 35.68 36.12 0.60 0.58 0.57 0.57 50.90 62.15 64.42 64.82

1700 50% | 37.38 49.16 46.18 46.65 0.56 0.51 0.52 0.52 100.84 126.22 122.96 126.24

1200 10% | 20.26 21.36 22.41 22.38 0.83 0.83 0.82 0.82 18.62 22.61 26.77 26.44

1200 20% | 23.76 28.17 28.27 28.45 0.79 0.77 0.75 0.75 19.20 26.92 24.35 24.59

1200 30% | 33.51 37.65 39.53 39.75 0.64 0.62 0.62 0.62 33.21 48.51 44.39 45.93

1200 40% | 36.53 46.39 41.09 41.42 0.60 0.59 0.57 0.58 55.49 85.09 70.37 71.53

1200 50% | 41.43 52.64 52.52 52.91 0.56 0.51 0.53 0.54 57.55 84.34 75.20 77.83

RMSE CP BIAS
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Table 5.3 Panel 1
RMSE and Coverage Rate of Estimated Coefficients for Semi-continuous Dependent Vari-
able (Multivariate MCAR Missing Data) – Grouping by Sample sizes
The logistic model was used as the estimation method in this table.  

Note 1: MCAR = missing completely at random; MAR = missing at random; MNAR = missing not at random; RMSE = 

root mean square error; CP = coverage rate of the 95% confidence interval of the coefficient estimated with complete 

data to each estimated coefficients; BIAS = standard bias in percentage; size = raw sample size before missingness 

stimulation; mis = stimulated missing data rate; ccp = complete case analysis; pmm = predictive mean matching; mi = 

multiple imputation; ml = maximum likelihood estimation;

Note 2: RED – CCA performs the best; PURPLE – PMM outperforms MI and ML; BLUE – MI outperforms ML; SHADED –

coverage rate under 90%, or standard bias with absolute value < 40.

size mis cca pmm mi ml cca pmm mi ml cca pmm mi ml

3200 10% | 8.48 3.43 4.41 4.36 0.82 0.98 0.94 0.92 5.01 2.88 3.05 3.31

3200 20% | 10.21 5.39 6.38 6.31 0.76 0.90 0.82 0.80 40.13 4.59 10.38 10.91

3200 30% | 19.52 12.19 11.71 11.45 0.66 0.84 0.82 0.82 57.96 15.44 15.48 17.52

3200 40% | 31.77 15.09 11.74 11.66 0.56 0.64 0.70 0.62 142.39 72.12 79.90 86.71

3200 50% | 41.75 26.06 19.80 20.50 0.36 0.58 0.60 0.60 212.28 97.85 115.84 119.28

2700 10% | 8.31 3.31 5.15 5.12 0.90 0.96 0.96 0.96 33.57 19.09 23.98 24.48

2700 20% | 19.94 3.98 5.83 6.00 0.74 0.96 0.94 0.94 39.34 19.22 20.52 21.33

2700 30% | 23.90 20.49 18.74 18.87 0.54 0.88 0.82 0.82 43.85 30.11 35.03 35.12

2700 40% | 24.39 16.40 16.16 16.85 0.54 0.80 0.72 0.70 149.91 34.18 44.25 44.20

2700 50% | 47.66 35.24 34.94 35.12 0.32 0.58 0.60 0.54 118.79 51.25 63.70 66.28

2200 10% | 10.44 6.52 7.58 7.52 0.86 0.98 0.92 0.90 5.22 1.40 2.05 2.54

2200 20% | 18.62 15.20 15.59 15.52 0.66 0.86 0.80 0.78 35.41 11.19 13.31 14.90

2200 30% | 23.90 16.02 17.53 17.75 0.64 0.84 0.82 0.80 63.78 16.39 35.34 36.06

2200 40% | 51.60 31.88 27.35 28.04 0.40 0.60 0.50 0.48 121.86 71.85 81.90 82.71

2200 50% | 58.64 27.77 23.46 24.00 0.40 0.62 0.64 0.54 346.82 158.35 149.10 155.11

1700 10% | 21.08 18.48 19.62 19.75 0.80 0.90 0.84 0.82 11.33 5.58 7.75 7.79

1700 20% | 31.44 19.60 23.65 24.21 0.64 0.74 0.74 0.74 43.59 20.35 20.71 22.59

1700 30% | 29.12 21.49 23.48 23.48 0.68 0.74 0.70 0.70 66.56 20.73 24.44 26.74

1700 40% | 43.72 25.24 24.58 26.07 0.38 0.62 0.62 0.58 171.32 130.13 116.87 123.14

1700 50% | 56.10 45.94 38.38 38.61 0.38 0.48 0.42 0.40 130.04 131.74 124.23 126.19

1200 10% | 12.22 10.31 13.51 13.88 0.94 0.94 0.92 0.92 4.84 3.30 4.83 4.76

1200 20% | 36.52 31.28 29.24 29.33 0.82 0.86 0.86 0.84 73.52 43.46 50.20 51.25

1200 30% | 38.56 35.78 30.43 30.71 0.66 0.74 0.72 0.72 48.78 42.40 40.21 42.16

1200 40% | 51.81 54.69 49.63 51.10 0.42 0.60 0.52 0.48 53.50 57.13 45.23 52.39

1200 50% | 91.25 58.37 54.95 55.86 0.34 0.52 0.50 0.46 126.66 61.55 55.21 62.86
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Table 5.3 Panel 2
RMSE and Coverage Rate of Estimated Coefficients for Semi-continuous Dependent Vari-
able (Multivariate MAR Missing Data) – Grouping by Sample sizes
The logistic model was used as the estimation method in this table.  

Note 1: MCAR = missing completely at random; MAR = missing at random; MNAR = missing not at random; RMSE = 

root mean square error; CP = coverage rate of the 95% confidence interval of the coefficient estimated with complete 

data to each estimated coefficients; BIAS = standard bias in percentage; size = raw sample size before missingness 

stimulation; mis = stimulated missing data rate; ccp = complete case analysis; pmm = predictive mean matching; mi = 

multiple imputation; ml = maximum likelihood estimation;

Note 2: RED – CCA performs the best; PURPLE – PMM outperforms MI and ML; BLUE – MI outperforms ML; SHADED –

coverage rate under 90%, or standard bias with absolute value < 40.

size mis cca pmm mi ml cca pmm mi ml cca pmm mi ml

3200 10% | 8.74 9.29 9.38 9.41 0.88 0.96 0.82 0.82 12.93 15.52 20.37 20.83

3200 20% | 20.11 14.73 17.29 17.31 0.62 0.90 0.60 0.60 36.91 17.20 60.85 61.03

3200 30% | 37.04 31.25 35.26 35.20 0.40 0.62 0.30 0.28 226.46 121.25 205.63 206.20

3200 40% | 48.63 31.82 37.24 37.21 0.42 0.62 0.36 0.34 387.91 208.64 304.79 304.79

3200 50% | 69.19 46.23 58.82 59.00 0.24 0.48 0.16 0.16 412.17 297.55 374.93 375.10

2700 10% | 9.47 9.53 13.97 13.90 0.86 0.90 0.86 0.84 21.32 24.87 46.21 46.91

2700 20% | 20.55 16.26 22.10 22.18 0.66 0.80 0.66 0.66 62.56 55.57 73.98 74.45

2700 30% | 32.36 25.30 29.09 29.05 0.46 0.60 0.46 0.44 222.90 163.91 202.68 204.37

2700 40% | 54.40 38.52 43.99 44.11 0.34 0.52 0.28 0.26 185.19 165.76 242.92 244.44

2700 50% | 65.03 56.83 61.97 62.03 0.20 0.30 0.12 0.12 404.56 363.55 489.53 493.51

2200 10% | 17.41 17.33 19.41 19.20 0.88 0.90 0.86 0.86 33.13 33.83 34.06 34.65

2200 20% | 23.84 19.38 24.88 24.39 0.68 0.82 0.70 0.70 83.37 57.46 93.19 94.42

2200 30% | 38.05 33.64 41.83 41.80 0.48 0.68 0.56 0.52 237.17 157.63 203.10 205.48

2200 40% | 46.81 39.85 51.06 51.24 0.40 0.52 0.34 0.32 188.38 178.65 262.67 266.22

2200 50% | 70.15 53.37 68.95 68.83 0.18 0.30 0.24 0.24 328.37 227.60 294.18 295.11

1700 10% | 20.06 22.82 22.89 22.94 0.80 0.82 0.76 0.76 11.07 18.74 19.56 20.35

1700 20% | 23.61 22.06 22.99 23.03 0.70 0.78 0.76 0.70 75.05 65.27 69.75 71.09

1700 30% | 38.23 27.16 32.73 32.97 0.40 0.58 0.48 0.46 134.53 103.79 128.05 128.64

1700 40% | 63.39 59.27 67.06 67.15 0.47 0.48 0.36 0.36 234.76 180.89 205.77 209.23

1700 50% | 85.34 54.80 63.26 63.34 0.26 0.38 0.30 0.28 455.21 281.69 345.02 350.23

1200 10% | 22.49 29.49 33.86 33.31 0.80 0.88 0.84 0.84 35.87 36.65 57.55 57.95

1200 20% | 34.93 33.87 39.01 38.93 0.75 0.76 0.74 0.70 75.48 74.84 98.92 103.94

1200 30% | 41.18 39.49 60.20 60.69 0.50 0.58 0.50 0.50 130.84 124.35 138.49 138.73

1200 40% | 47.48 39.70 39.16 40.18 0.48 0.58 0.56 0.52 133.34 125.57 156.30 158.81

1200 50% | 78.73 71.55 77.55 77.99 0.20 0.34 0.26 0.26 224.32 202.19 233.66 235.12
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Table 5.3 Panel 3
RMSE and Coverage Rate of Estimated Coefficients for Semi-continuous Dependent Vari-
able (Multivariate MNAR Missing Data) – Grouping by Sample sizes
The logistic model was used as the estimation method in this table.  

Note 1: MCAR = missing completely at random; MAR = missing at random; MNAR = missing not at random; RMSE = 

root mean square error; CP = coverage rate of the 95% confidence interval of the coefficient estimated with complete 

data to each estimated coefficients; BIAS = standard bias in percentage; size = raw sample size before missingness 

stimulation; mis = stimulated missing data rate; ccp = complete case analysis; pmm = predictive mean matching; mi = 

multiple imputation; ml = maximum likelihood estimation;

Note 2: RED – CCA performs the best; PURPLE – PMM outperforms MI and ML; BLUE – MI outperforms ML; SHADED –

coverage rate under 90%, or standard bias with absolute value < 40.

size mis cca pmm mi ml cca pmm mi ml cca pmm mi ml

3200 10% | 1.03 1.06 1.23 1.15 1.00 1.00 1.00 1.00 2.22 3.23 3.32 3.25

3200 20% | 12.70 6.20 6.72 6.82 0.90 0.96 0.94 0.94 14.92 4.16 4.26 5.18

3200 30% | 14.41 6.33 6.85 6.99 0.76 0.92 0.78 0.76 20.52 7.25 3.67 2.45

3200 40% | 23.74 14.99 12.15 12.37 0.58 0.76 0.74 0.74 55.13 24.68 24.22 25.37

3200 50% | 33.83 18.46 15.87 16.72 0.32 0.62 0.58 0.58 113.21 23.52 12.69 15.36

2700 10% | 1.41 1.43 1.63 1.57 1.00 1.00 1.00 1.00 3.91 4.11 4.76 4.47

2700 20% | 12.95 3.83 3.89 3.98 0.88 0.92 0.92 0.92 14.04 6.94 7.85 7.77

2700 30% | 18.69 13.95 15.41 15.60 0.72 0.86 0.84 0.84 35.92 28.97 20.50 21.83

2700 40% | 32.11 18.67 14.45 15.03 0.40 0.76 0.64 0.62 40.18 37.64 22.09 20.04

2700 50% | 36.41 30.21 23.48 24.70 0.38 0.61 0.60 0.58 207.51 158.51 120.17 120.25

2200 10% | 0.98 1.77 1.90 1.78 1.00 1.00 1.00 1.00 1.07 5.70 3.64 3.92

2200 20% | 18.64 4.87 6.14 6.31 0.84 0.96 0.92 0.92 74.40 36.67 33.60 33.99

2200 30% | 22.81 14.58 16.64 16.82 0.70 0.86 0.80 0.78 70.70 47.90 33.81 36.68

2200 40% | 29.85 14.01 10.77 11.27 0.62 0.82 0.74 0.70 140.61 116.57 103.92 106.54

2200 50% | 47.49 35.95 32.35 33.70 0.40 0.56 0.56 0.46 173.14 52.77 43.29 49.54

1700 10% | 1.40 1.61 1.43 1.42 0.98 1.00 1.00 1.00 4.40 9.87 8.84 8.23

1700 20% | 19.02 13.15 10.71 10.73 0.76 0.90 0.88 0.88 35.08 20.04 9.47 10.55

1700 30% | 25.66 26.55 24.62 24.76 0.68 0.80 0.74 0.74 92.87 70.57 55.48 55.79

1700 40% | 33.47 23.78 21.79 21.87 0.42 0.68 0.66 0.64 118.91 68.83 53.95 62.05

1700 50% | 41.93 41.99 32.75 33.51 0.36 0.56 0.54 0.50 165.64 108.96 74.78 69.83

1200 10% | 1.94 4.65 3.01 2.93 1.00 1.00 1.00 1.00 10.49 28.39 11.17 12.24

1200 20% | 17.05 11.97 11.88 11.91 0.82 0.92 0.88 0.88 5.61 11.68 4.26 4.67

1200 30% | 45.43 40.78 34.57 35.55 0.78 0.80 0.78 0.74 44.54 57.52 42.80 42.59

1200 40% | 42.49 28.02 27.23 27.69 0.58 0.72 0.72 0.68 60.25 53.08 49.76 49.76

1200 50% | 74.17 53.67 47.31 50.27 0.34 0.54 0.44 0.42 94.61 96.00 92.61 107.48
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Table 5.4 Panel 1
RMSE and Coverage Rate of Estimated Coefficients for Binary Dependent Variable (Uni-
variate MCAR Missing Data) – Grouping by Sample sizes
The logistic model was used as the estimation method in this table.  

Note 1: MCAR = missing completely at random; MAR = missing at random; MNAR = missing not at random; RMSE = 

root mean square error; CP = coverage rate of the 95% confidence interval of the coefficient estimated with complete 

data to each estimated coefficients; BIAS = standard bias in percentage; size = raw sample size before missingness 

stimulation; mis = stimulated missing data rate; ccp = complete case analysis; pmm = predictive mean matching; mi = 

multiple imputation; ml = maximum likelihood estimation;

Note 2: RED – CCA performs the best; PURPLE – PMM outperforms MI and ML; BLUE – MI outperforms ML; SHADED –

coverage rate under 90%, or standard bias with absolute value < 40.

size mis cca pmm mi ml cca pmm mi ml cca pmm mi ml

3200 10% | 248.5 273.3 200.7 202.0 1.00 1.00 1.00 1.00 0.26 6.06 0.48 0.51

3200 20% | 370.5 402.7 303.1 309.3 1.00 0.98 1.00 1.00 0.55 5.81 0.70 0.99

3200 30% | 483.1 504.3 387.8 390.3 0.98 0.96 0.99 0.98 3.97 15.13 4.27 5.15

3200 40% | 620.0 621.6 514.6 528.5 0.91 0.88 0.96 0.95 4.33 21.13 5.78 6.03

3200 50% | 674.2 747.5 624.4 627.5 0.87 0.86 0.88 0.86 5.11 21.08 5.61 6.19

2700 10% | 271.0 287.9 226.5 228.8 1.00 1.00 1.00 1.00 0.23 4.60 1.00 1.17

2700 20% | 396.9 416.1 323.8 327.3 1.00 0.99 1.00 1.00 0.32 12.71 2.13 2.14

2700 30% | 521.9 540.0 422.6 443.2 0.97 0.95 0.99 0.98 0.99 14.13 3.39 3.71

2700 40% | 648.6 638.8 540.0 546.2 0.92 0.92 0.96 0.95 2.07 16.14 3.40 3.90

2700 50% | 826.5 812.6 714.0 741.0 0.78 0.82 0.92 0.86 4.01 17.27 4.04 5.02

2200 10% | 288.8 308.4 235.8 236.2 1.00 1.00 1.00 1.00 1.04 6.18 1.17 1.18

2200 20% | 450.7 471.5 382.1 388.3 0.99 0.98 0.99 0.99 1.77 8.73 2.47 2.57

2200 30% | 595.1 568.3 479.9 498.0 0.97 0.97 0.99 0.98 2.06 10.92 3.07 4.07

2200 40% | 704.7 667.4 605.8 620.0 0.94 0.94 0.95 0.95 2.28 11.10 4.06 4.98

2200 50% | 898.7 745.8 607.3 637.7 0.84 0.92 0.98 0.94 2.77 21.68 4.41 6.44

1700 10% | 358.0 357.1 298.3 300.9 1.00 0.99 1.00 1.00 1.15 5.65 1.38 1.39

1700 20% | 497.3 497.5 419.7 432.8 0.99 0.98 0.99 0.99 1.37 8.82 3.16 3.77

1700 30% | 655.4 653.8 543.3 560.5 0.97 0.97 0.98 0.97 2.44 14.26 4.56 5.02

1700 40% | 826.7 783.2 693.8 741.1 0.91 0.93 0.96 0.95 3.02 18.35 6.53 6.59

1700 50% | 1092.9 976.8 823.7 929.0 0.82 0.88 0.94 0.90 3.60 23.21 10.27 10.60

1200 10% | 391.9 413.4 318.0 325.9 1.00 0.99 1.00 1.00 2.04 3.99 1.22 1.35

1200 20% | 618.9 632.8 500.6 540.7 0.99 0.97 0.99 0.99 2.70 6.38 1.37 1.84

1200 30% | 740.4 651.1 631.7 642.6 0.98 0.98 0.96 0.96 2.73 10.25 1.44 2.43

1200 40% | 1075.9 971.2 824.0 982.2 0.84 0.92 0.96 0.92 2.76 14.14 1.65 2.52

1200 50% | 1150.8 1044.9 960.2 1079.0 0.85 0.88 0.90 0.88 3.13 14.56 2.64 3.63
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Table 5.4 Panel 2
RMSE and Coverage Rate of Estimated Coefficients for Binary Dependent Variable (Uni-
variate MAR Missing Data) – Grouping by Sample sizes
The logistic model was used as the estimation method in this table.  

Note 1: MCAR = missing completely at random; MAR = missing at random; MNAR = missing not at random; RMSE = 

root mean square error; CP = coverage rate of the 95% confidence interval of the coefficient estimated with complete 

data to each estimated coefficients; BIAS = standard bias in percentage; size = raw sample size before missingness 

stimulation; mis = stimulated missing data rate; ccp = complete case analysis; pmm = predictive mean matching; mi = 

multiple imputation; ml = maximum likelihood estimation;

Note 2: RED – CCA performs the best; PURPLE – PMM outperforms MI and ML; BLUE – MI outperforms ML; SHADED –

coverage rate under 90%, or standard bias with absolute value < 40.

size mis cca pmm mi ml cca pmm mi ml cca pmm mi ml

3200 10% | 296.8 294.4 230.8 234.9 1.00 1.00 1.00 1.00 6.57 1.55 5.82 6.13

3200 20% | 402.8 390.3 320.1 326.2 1.00 1.00 1.00 1.00 7.23 2.02 6.59 7.58

3200 30% | 518.0 516.8 416.7 419.7 0.97 0.96 0.98 0.98 7.82 10.15 6.80 7.88

3200 40% | 640.2 604.3 513.8 520.7 0.90 0.93 0.96 0.95 9.41 11.81 9.38 9.52

3200 50% | 743.8 685.7 603.6 636.4 0.83 0.86 0.92 0.90 11.45 14.30 10.21 10.49

2700 10% | 328.0 343.3 249.1 254.1 1.00 1.00 1.00 1.00 8.79 2.60 5.68 7.14

2700 20% | 414.8 404.0 348.1 352.8 1.00 0.99 1.00 1.00 8.90 2.79 8.04 8.77

2700 30% | 559.4 536.5 463.7 476.7 0.97 0.97 0.99 0.98 10.07 4.41 8.96 9.55

2700 40% | 686.6 653.4 559.9 580.0 0.92 0.92 0.96 0.96 10.45 10.83 10.44 11.32

2700 50% | 836.5 731.5 673.4 716.9 0.81 0.87 0.89 0.88 11.11 11.08 10.73 11.56

2200 10% | 374.4 389.2 292.4 298.4 1.00 1.00 1.00 1.00 7.93 2.83 6.19 7.66

2200 20% | 474.0 467.0 380.8 393.9 1.00 1.00 1.00 1.00 9.52 7.21 8.20 9.11

2200 30% | 612.2 575.8 497.7 507.9 0.98 0.97 0.98 0.98 13.33 8.49 8.72 9.27

2200 40% | 762.9 707.8 603.1 632.7 0.92 0.93 0.96 0.95 13.36 12.94 10.59 11.68

2200 50% | 901.6 808.3 728.7 799.5 0.85 0.87 0.92 0.89 13.66 13.57 12.99 13.01

1700 10% | 390.2 383.7 312.4 323.5 1.00 1.00 1.00 1.00 9.68 3.48 6.92 8.99

1700 20% | 541.9 513.1 429.7 448.1 1.00 0.99 1.00 1.00 10.01 8.03 9.16 9.67

1700 30% | 677.5 630.9 554.8 584.0 0.98 0.97 0.98 0.98 10.10 8.67 9.65 10.09

1700 40% | 928.8 877.2 654.1 678.4 0.96 0.90 0.96 0.94 13.19 13.12 9.99 10.77

1700 50% | 1043.4 824.8 820.7 958.3 0.78 0.88 0.86 0.86 14.85 14.36 12.25 13.83

1200 10% | 458.8 484.2 366.4 397.3 1.00 0.99 1.00 0.99 9.91 3.49 2.19 2.58

1200 20% | 653.1 656.8 641.8 676.1 0.98 1.00 0.98 0.96 10.31 8.66 5.14 7.70

1200 30% | 855.3 828.9 641.3 674.9 0.96 0.96 1.00 0.98 11.05 9.88 7.18 9.24

1200 40% | 946.2 924.9 853.8 960.9 0.90 0.90 0.92 0.90 12.56 14.60 8.12 9.33

1200 50% | 1011.6 888.2 862.7 951.8 0.92 0.96 0.94 0.88 14.30 16.78 8.36 9.76
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Table 5.4 Panel 3
RMSE and Coverage Rate of Estimated Coefficients for Binary Dependent Variable (Uni-
variate MNAR Missing Data) – Grouping by Sample sizes
The logistic model was used as the estimation method in this table.  

Note 1: MCAR = missing completely at random; MAR = missing at random; MNAR = missing not at random; RMSE = 

root mean square error; CP = coverage rate of the 95% confidence interval of the coefficient estimated with complete 

data to each estimated coefficients; BIAS = standard bias in percentage; size = raw sample size before missingness 

stimulation; mis = stimulated missing data rate; ccp = complete case analysis; pmm = predictive mean matching; mi = 

multiple imputation; ml = maximum likelihood estimation;

Note 2: RED – CCA performs the best; PURPLE – PMM outperforms MI and ML; BLUE – MI outperforms ML; SHADED –

coverage rate under 90%, or standard bias with absolute value < 40.

size mis cca pmm mi ml cca pmm mi ml cca pmm mi ml

3200 10% | 357.3 380.0 291.6 301.7 0.99 0.98 1.00 0.99 1.05 8.31 2.49 2.08

3200 20% | 459.3 477.2 375.2 392.5 0.98 0.95 0.99 0.98 1.18 14.50 3.23 2.48

3200 30% | 578.7 592.7 474.8 496.4 0.93 0.92 0.96 0.95 1.64 15.30 3.86 3.27

3200 40% | 691.7 698.0 571.0 591.8 0.87 0.85 0.92 0.91 1.89 15.42 4.80 3.77

3200 50% | 814.8 777.2 686.6 714.4 0.78 0.79 0.85 0.85 2.29 16.56 5.04 3.95

2700 10% | 390.5 414.0 304.1 323.2 0.99 0.98 1.00 1.00 1.33 10.67 2.35 1.52

2700 20% | 513.3 539.7 430.1 449.9 0.97 0.96 0.98 0.98 1.43 11.14 2.62 1.91

2700 30% | 617.3 631.9 507.6 539.9 0.95 0.92 0.97 0.96 1.95 11.46 3.19 2.45

2700 40% | 732.6 704.9 608.1 637.9 0.88 0.89 0.92 0.91 4.80 11.48 6.81 5.60

2700 50% | 892.5 825.9 742.8 794.0 0.78 0.81 0.87 0.85 6.76 19.93 9.73 8.44

2200 10% | 413.5 420.0 332.8 358.2 0.99 0.98 1.00 0.99 0.24 6.03 1.50 0.59

2200 20% | 594.6 584.0 495.1 525.8 0.97 0.96 0.98 0.98 0.40 8.87 1.91 1.00

2200 30% | 709.0 690.5 600.4 636.2 0.93 0.94 0.96 0.95 0.57 9.29 2.18 1.33

2200 40% | 784.2 730.2 665.7 689.3 0.91 0.91 0.93 0.93 0.86 16.26 2.71 2.24

2200 50% | 969.7 895.8 826.0 893.7 0.78 0.82 0.86 0.84 1.22 16.34 6.31 4.48

1700 10% | 467.4 459.5 362.3 384.9 1.00 0.99 1.00 1.00 0.19 4.06 0.82 0.72

1700 20% | 602.5 604.6 495.5 520.2 0.98 0.97 0.99 0.99 0.58 7.42 1.44 1.29

1700 30% | 703.2 665.4 583.5 611.6 0.96 0.95 0.97 0.97 1.11 12.45 4.78 3.81

1700 40% | 898.2 831.2 721.5 790.8 0.90 0.92 0.95 0.93 1.43 12.91 5.26 4.33

1700 50% | 1125.5 931.4 886.3 974.9 0.80 0.89 0.89 0.88 8.01 19.35 12.40 11.28

1200 10% | 561.4 563.1 445.5 493.6 0.99 0.98 1.00 0.99 1.45 5.76 1.84 1.51

1200 20% | 706.7 659.0 563.9 604.2 0.99 0.99 1.00 0.99 1.48 6.38 2.54 2.34

1200 30% | 842.0 776.3 697.2 754.7 0.97 0.97 0.98 0.97 1.51 9.11 5.75 4.49

1200 40% | 1233.9 1162.7 1112.3 1250.5 0.80 0.84 0.94 0.82 2.25 12.94 6.17 5.40

1200 50% | 1619.5 1233.1 1148.8 1254.8 0.68 0.78 0.82 0.78 5.26 17.42 6.21 5.64
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Table 5.5 Panel 1
RMSE and Coverage Rate of Estimated Coefficients for Binary Dependent Variable (Mul-
tivariate MCAR Missing Data) – Grouping by Sample sizes
The logistic model was used as the estimation method in this table.  

Note 1: MCAR = missing completely at random; MAR = missing at random; MNAR = missing not at random; RMSE = 

root mean square error; CP = coverage rate of the 95% confidence interval of the coefficient estimated with complete 

data to each estimated coefficients; BIAS = standard bias in percentage; size = raw sample size before missingness 

stimulation; mis = stimulated missing data rate; ccp = complete case analysis; pmm = predictive mean matching; mi = 

multiple imputation; ml = maximum likelihood estimation;

Note 2: RED – CCA performs the best; PURPLE – PMM outperforms MI and ML; BLUE – MI outperforms ML; SHADED –

coverage rate under 90%, or standard bias with absolute value < 40.

size mis cca pmm mi ml cca pmm mi ml cca pmm mi ml

3200 10% | 294.4 225.5 130.6 125.1 1.00 1.00 1.00 1.00 0.10 3.46 0.11 0.10

3200 20% | 453.8 328.6 197.0 186.0 0.98 1.00 1.00 1.00 0.17 4.20 0.30 0.62

3200 30% | 592.2 392.6 272.6 251.8 0.94 0.99 1.00 1.00 0.28 5.42 0.35 0.78

3200 40% | 877.7 508.0 356.2 347.3 0.76 0.96 1.00 1.00 1.30 10.88 1.38 1.85

3200 50% | 1132.4 545.5 413.4 422.1 0.62 0.94 0.98 0.98 6.62 19.46 4.23 4.28

2700 10% | 311.7 246.1 139.7 132.1 1.00 1.00 1.00 1.00 0.15 4.72 0.72 0.71

2700 20% | 534.1 328.3 232.1 216.2 0.98 1.00 1.00 1.00 0.71 12.43 2.01 2.36

2700 30% | 741.5 429.1 298.7 292.7 0.87 0.99 1.00 1.00 1.12 13.52 2.31 2.38

2700 40% | 923.7 495.6 396.0 384.5 0.73 0.97 1.00 1.00 2.30 16.39 2.82 3.95

2700 50% | 1329.0 639.8 490.6 494.7 0.55 0.91 0.98 0.97 7.89 22.08 3.31 4.31

2200 10% | 354.3 217.5 182.9 176.1 0.99 1.00 1.00 1.00 0.15 5.62 0.89 0.70

2200 20% | 663.6 441.9 318.8 296.1 0.97 1.00 1.00 1.00 0.86 13.52 1.41 2.31

2200 30% | 879.1 535.2 415.0 413.7 0.90 1.00 1.00 1.00 1.81 14.92 2.46 3.91

2200 40% | 1155.4 565.3 469.2 446.6 0.72 0.99 1.00 1.00 4.99 20.16 5.05 6.38

2200 50% | 1491.2 715.9 610.4 611.0 0.58 0.86 0.97 0.97 10.36 23.68 5.11 6.80

1700 10% | 378.5 275.1 242.6 239.6 1.00 1.00 1.00 1.00 0.22 6.71 1.98 1.87

1700 20% | 782.9 526.8 363.5 346.1 0.97 0.99 1.00 1.00 1.18 14.89 2.70 2.99

1700 30% | 1091.9 583.8 514.3 513.5 0.87 0.97 0.99 0.99 2.39 15.12 4.48 5.08

1700 40% | 1151.8 691.4 642.6 594.9 0.85 0.98 0.99 0.99 3.63 21.61 4.82 5.22

1700 50% | 1277.2 799.9 722.9 737.9 0.61 0.92 0.97 0.96 13.06 32.12 8.87 10.56

1200 10% | 449.2 345.6 257.1 242.9 1.00 1.00 1.00 1.00 0.78 8.09 0.99 0.92

1200 20% | 788.9 528.4 518.4 488.6 0.98 1.00 1.00 1.00 2.70 19.57 4.01 5.16

1200 30% | 990.2 618.3 615.5 560.4 0.96 0.99 1.00 1.00 6.24 23.51 5.26 6.15

1200 40% | 1249.1 722.6 676.2 657.5 0.81 0.99 0.99 0.98 14.04 24.08 8.74 8.98

1200 50% | 1774.6 857.3 829.5 829.9 0.72 0.96 0.96 0.96 20.23 34.70 9.02 12.01
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Table 5.5 Panel 2
RMSE and Coverage Rate of Estimated Coefficients for Binary Dependent Variable (Mul-
tivariate MAR Missing Data) – Grouping by Sample sizes
The logistic model was used as the estimation method in this table.  

Note 1: MCAR = missing completely at random; MAR = missing at random; MNAR = missing not at random; RMSE = 

root mean square error; CP = coverage rate of the 95% confidence interval of the coefficient estimated with complete 

data to each estimated coefficients; BIAS = standard bias in percentage; size = raw sample size before missingness 

stimulation; mis = stimulated missing data rate; ccp = complete case analysis; pmm = predictive mean matching; mi = 

multiple imputation; ml = maximum likelihood estimation;

Note 2: RED – CCA performs the best; PURPLE – PMM outperforms MI and ML; BLUE – MI outperforms ML; SHADED –

coverage rate under 90%, or standard bias with absolute value < 40.

size mis cca pmm mi ml cca pmm mi ml cca pmm mi ml

3200 10% | 536.9 223.6 307.4 314.7 1.00 1.00 1.00 1.00 14.73 1.19 9.11 14.40

3200 20% | 982.6 397.1 443.0 458.0 0.82 0.98 0.98 0.98 17.96 2.59 12.79 20.13

3200 30% | 1207.6 520.1 546.9 570.4 0.63 0.94 0.94 0.94 31.73 2.88 20.07 21.32

3200 40% | 1912.4 810.4 813.0 869.1 0.51 0.91 0.88 0.87 41.61 3.05 21.19 22.74

3200 50% | 2836.6 803.6 978.2 1117.1 0.28 0.82 0.61 0.60 46.39 5.34 21.12 30.42

2700 10% | 571.0 343.0 352.3 353.7 0.96 1.00 1.00 1.00 15.81 1.38 10.93 17.77

2700 20% | 984.9 471.2 510.8 527.0 0.73 0.98 0.98 0.98 35.03 3.00 13.49 21.03

2700 30% | 1396.1 601.0 608.7 640.3 0.67 0.98 0.96 0.96 35.83 3.03 21.23 22.54

2700 40% | 2173.6 809.1 860.8 936.7 0.52 0.83 0.83 0.80 46.74 4.25 21.52 23.53

2700 50% | 3230.3 1094.3 1190.5 1381.1 0.41 0.82 0.73 0.68 52.24 6.25 22.60 31.20

2200 10% | 685.7 363.9 407.1 407.6 0.93 1.00 1.00 1.00 25.33 1.63 11.49 21.74

2200 20% | 1182.0 520.1 546.9 570.4 0.75 0.98 0.98 0.98 28.27 3.04 14.92 16.43

2200 30% | 1523.9 683.3 713.7 739.5 0.74 0.93 0.96 0.87 32.88 3.44 22.32 27.70

2200 40% | 2234.5 901.7 945.4 1013.9 0.51 0.85 0.83 0.77 48.38 6.88 27.78 32.29

2200 50% | 3364.1 1100.7 1295.5 1488.5 0.41 0.82 0.71 0.60 53.57 7.64 32.50 34.97

1700 10% | 740.2 373.9 412.7 424.5 0.91 1.00 1.00 1.00 3.91 1.86 12.98 15.36

1700 20% | 1207.6 555.0 562.2 600.2 0.73 0.98 0.98 0.98 34.88 7.52 22.66 25.63

1700 30% | 1641.0 712.1 734.3 747.7 0.72 0.98 0.96 0.87 39.19 11.75 23.84 28.02

1700 40% | 2522.0 1021.4 1049.5 1169.5 0.59 0.85 0.84 0.82 42.11 22.97 29.10 30.07

1700 50% | 3808.6 1140.2 1299.0 1516.3 0.32 0.75 0.72 0.58 56.54 26.75 29.57 32.29

1200 10% | 794.1 404.8 420.2 444.3 0.86 1.00 1.00 1.00 25.73 9.62 17.30 18.25

1200 20% | 1271.1 575.3 695.6 728.2 0.65 0.95 0.89 0.88 37.55 20.62 27.00 29.04

1200 30% | 1700.4 809.7 854.3 900.3 0.58 0.87 0.85 0.82 47.61 20.73 28.96 31.18

1200 40% | 2546.4 1025.6 1080.9 1192.9 0.40 0.68 0.58 0.54 68.88 34.32 36.50 44.59

1200 50% | 4108.6 1224.0 1399.9 1649.1 0.37 0.65 0.63 0.45 52.53 34.90 39.14 48.67
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Table 5.5 Panel 3
RMSE and Coverage Rate of Estimated Coefficients for Binary Dependent Variable (Mul-
tivariate MNAR Missing Data) – Grouping by Sample sizes
The logistic model was used as the estimation method in this table.  

Note 1: MCAR = missing completely at random; MAR = missing at random; MNAR = missing not at random; RMSE = 

root mean square error; CP = coverage rate of the 95% confidence interval of the coefficient estimated with complete 

data to each estimated coefficients; BIAS = standard bias in percentage; size = raw sample size before missingness 

stimulation; mis = stimulated missing data rate; ccp = complete case analysis; pmm = predictive mean matching; mi = 

multiple imputation; ml = maximum likelihood estimation;

Note 2: RED – CCA performs the best; PURPLE – PMM outperforms MI and ML; BLUE – MI outperforms ML; SHADED –

coverage rate under 90%, or standard bias with absolute value < 40.

size mis cca pmm mi ml cca pmm mi ml cca pmm mi ml

3200 10% | 673.6 405.4 297.8 322.9 0.94 1.00 1.00 1.00 1.93 0.72 1.07 1.08

3200 20% | 1040.1 570.4 517.1 539.8 0.70 0.97 0.96 0.97 3.38 1.35 1.36 1.44

3200 30% | 1490.5 681.2 592.8 647.3 0.60 0.93 0.90 0.92 7.82 3.93 4.38 5.12

3200 40% | 2031.0 809.1 844.7 853.8 0.46 0.88 0.88 0.82 11.18 4.61 5.26 6.89

3200 50% | 2395.1 1050.1 1154.8 1275.6 0.30 0.73 0.67 0.63 13.85 11.53 10.62 10.80

2700 10% | 797.7 437.9 386.1 400.2 0.92 0.99 1.00 1.00 2.40 4.83 2.51 1.12

2700 20% | 1057.5 630.3 535.8 585.1 0.66 0.97 0.97 0.97 6.07 5.56 4.15 1.59

2700 30% | 1584.9 728.7 631.0 636.1 0.59 0.85 0.92 0.92 10.00 10.45 6.18 5.69

2700 40% | 2393.3 815.1 847.8 866.5 0.45 0.82 0.84 0.80 13.05 21.54 9.29 8.01

2700 50% | 2835.9 1056.4 1392.6 1471.3 0.30 0.72 0.73 0.65 14.66 22.98 14.26 11.97

2200 10% | 813.9 507.7 424.1 436.4 0.84 0.98 1.00 1.00 3.18 6.42 3.68 1.43

2200 20% | 1251.9 654.5 583.1 590.1 0.66 0.97 0.99 0.97 7.95 9.75 5.92 3.85

2200 30% | 1825.2 769.4 787.3 811.3 0.48 0.82 0.94 0.92 16.76 14.58 8.10 8.81

2200 40% | 2640.3 965.1 967.2 1005.5 0.43 0.80 0.85 0.78 24.40 23.40 10.81 9.18

2200 50% | 3333.4 1147.5 1465.1 1607.0 0.29 0.68 0.72 0.60 26.37 31.10 18.76 14.96

1700 10% | 966.0 531.3 438.7 443.4 0.76 0.98 1.00 1.00 6.01 7.18 4.67 3.62

1700 20% | 1312.3 755.9 612.2 642.7 0.64 0.97 0.98 0.93 8.81 13.47 7.17 4.44

1700 30% | 1838.0 902.4 833.5 854.4 0.54 0.83 0.87 0.92 17.33 20.23 13.10 8.52

1700 40% | 2646.3 973.8 1139.6 1095.5 0.40 0.78 0.84 0.74 27.06 25.31 14.74 11.94

1700 50% | 3900.2 1151.8 1523.5 1543.3 0.28 0.65 0.66 0.62 47.98 43.40 21.03 16.40

1200 10% | 1171.3 725.2 527.4 591.9 0.76 0.98 1.00 1.00 14.22 20.63 5.08 4.09

1200 20% | 1359.3 891.5 730.2 793.4 0.53 0.96 0.94 0.93 15.04 21.50 12.14 7.18

1200 30% | 2315.5 955.1 950.3 962.1 0.53 0.82 0.79 0.78 21.25 22.44 13.70 9.82

1200 40% | 3063.6 1000.2 1020.3 1130.3 0.36 0.74 0.60 0.53 33.46 34.21 20.09 14.62

1200 50% | 4871.4 1228.3 1613.2 1757.4 0.22 0.58 0.56 0.54 49.61 45.28 24.14 20.15
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Table 5.6 Panel 1
RMSE and Coverage Rate of Estimated Coefficients for Ordinal Dependent Variable (Uni-
variate MCAR Missing Data) – Grouping by Sample sizes
The ordered logistic model was used as the estimation method in this table.  

Note 1: MCAR = missing completely at random; MAR = missing at random; MNAR = missing not at random; RMSE = 

root mean square error; CP = coverage rate of the 95% confidence interval of the coefficient estimated with complete 

data to each estimated coefficients; BIAS = standard bias in percentage; size = raw sample size before missingness 

stimulation; mis = stimulated missing data rate; ccp = complete case analysis; pmm = predictive mean matching; mi = 

multiple imputation; ml = maximum likelihood estimation;

Note 2: RED – CCA performs the best; PURPLE – PMM outperforms MI and ML; BLUE – MI outperforms ML; SHADED –

coverage rate under 90%, or standard bias with absolute value < 40.

size mis cca pmm mi ml cca pmm mi ml cca pmm mi ml

3200 10% | 65.3 102.7 46.3 51.5 1.00 1.00 1.00 1.00 0.29 6.70 0.63 0.28

3200 20% | 100.2 160.5 74.5 76.5 1.00 1.00 1.00 1.00 0.29 12.55 1.31 0.47

3200 30% | 125.1 218.2 96.5 107.8 1.00 0.99 1.00 1.00 0.30 18.49 2.26 1.79

3200 40% | 159.9 271.4 116.9 119.0 1.00 0.97 1.00 1.00 0.32 24.04 3.19 2.17

3200 50% | 189.9 316.1 156.6 163.8 0.99 0.91 0.99 0.99 0.33 28.81 3.50 2.34

2700 10% | 76.5 116.8 51.1 56.1 1.00 1.00 1.00 1.00 0.40 7.09 0.69 0.37

2700 20% | 114.4 180.5 79.8 89.9 1.00 1.00 1.00 1.00 0.41 12.75 1.34 1.00

2700 30% | 139.5 230.8 104.7 104.8 1.00 0.99 1.00 1.00 0.42 18.59 2.43 1.29

2700 40% | 172.9 266.5 132.3 135.1 1.00 0.98 1.00 1.00 0.68 23.64 2.94 2.22

2700 50% | 222.5 327.3 171.4 167.8 0.99 0.91 0.99 0.99 0.73 30.06 3.07 2.76

2200 10% | 92.6 134.9 50.3 68.1 1.00 1.00 1.00 1.00 0.43 7.05 0.39 0.51

2200 20% | 141.6 178.7 88.4 95.6 1.00 1.00 1.00 1.00 0.46 10.30 2.12 1.01

2200 30% | 184.3 246.4 105.2 133.7 1.00 0.99 1.00 1.00 0.53 18.93 3.81 3.41

2200 40% | 240.2 306.7 163.7 162.7 1.00 0.98 1.00 1.00 0.54 23.13 3.90 3.61

2200 50% | 295.6 322.1 203.7 200.3 0.99 0.90 0.99 0.99 0.63 26.04 4.41 3.93

1700 10% | 108.1 146.4 58.4 74.5 1.00 1.00 1.00 1.00 0.37 6.26 0.30 0.58

1700 20% | 171.5 231.5 108.9 111.6 1.00 1.00 1.00 1.00 0.42 13.43 1.61 1.30

1700 30% | 221.6 269.6 133.3 126.8 1.00 0.99 1.00 1.00 0.53 14.17 2.04 1.90

1700 40% | 280.2 352.6 187.9 180.6 1.00 0.96 1.00 0.99 0.97 17.07 3.43 2.31

1700 50% | 289.1 186.8 241.2 210.0 1.00 0.90 0.98 0.97 1.45 26.49 5.65 2.40

1200 10% | 98.1 152.6 97.3 93.0 1.00 1.00 1.00 1.00 0.23 3.87 0.22 0.27

1200 20% | 115.7 228.7 122.9 105.2 1.00 1.00 1.00 1.00 0.25 7.64 1.28 0.31

1200 30% | 175.0 289.9 164.3 144.0 1.00 0.99 1.00 1.00 0.33 10.32 1.64 1.35

1200 40% | 421.2 480.7 268.7 260.5 1.00 0.94 1.00 0.99 1.94 31.86 2.15 1.73

1200 50% | 609.1 508.3 363.2 356.9 0.99 0.90 0.97 0.97 2.20 33.56 2.23 2.80
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Table 5.6 Panel 2
RMSE and Coverage Rate of Estimated Coefficients for Ordinal Dependent Variable (Uni-
variate MAR Missing Data) – Grouping by Sample sizes
The ordered logistic model was used as the estimation method in this table.  

Note 1: MCAR = missing completely at random; MAR = missing at random; MNAR = missing not at random; RMSE = 

root mean square error; CP = coverage rate of the 95% confidence interval of the coefficient estimated with complete 

data to each estimated coefficients; BIAS = standard bias in percentage; size = raw sample size before missingness 

stimulation; mis = stimulated missing data rate; ccp = complete case analysis; pmm = predictive mean matching; mi = 

multiple imputation; ml = maximum likelihood estimation;

Note 2: RED – CCA performs the best; PURPLE – PMM outperforms MI and ML; BLUE – MI outperforms ML; SHADED –

coverage rate under 90%, or standard bias with absolute value < 40.

size mis cca pmm mi ml cca pmm mi ml cca pmm mi ml

3200 10% | 104.9 87.8 85.4 73.4 1.00 1.00 1.00 1.00 2.22 5.15 5.44 6.20

3200 20% | 144.4 143.3 128.5 124.6 1.00 1.00 1.00 1.00 2.25 7.90 7.07 7.27

3200 30% | 170.3 218.2 138.8 133.9 1.00 0.99 1.00 1.00 4.32 16.80 8.21 7.57

3200 40% | 200.1 278.1 154.8 162.6 0.99 0.96 1.00 0.99 7.32 25.00 9.52 8.76

3200 50% | 260.9 288.8 216.2 223.0 0.92 0.92 0.97 0.95 10.89 23.26 13.52 12.86

2700 10% | 83.4 98.3 95.6 89.7 1.00 1.00 1.00 1.00 2.50 6.24 7.02 7.40

2700 20% | 154.9 199.3 123.6 121.5 1.00 1.00 1.00 1.00 4.07 13.45 7.52 7.71

2700 30% | 188.9 225.8 133.9 151.7 1.00 0.99 1.00 1.00 5.01 16.14 7.68 7.90

2700 40% | 244.1 279.5 209.1 212.9 0.99 0.95 0.98 0.95 5.20 20.79 11.57 10.47

2700 50% | 301.9 304.9 225.0 234.4 0.91 0.91 0.96 0.94 13.01 24.68 13.07 12.23

2200 10% | 120.0 101.5 106.5 109.2 1.00 1.00 1.00 1.00 4.34 6.34 6.64 7.21

2200 20% | 195.7 210.5 152.9 152.2 1.00 1.00 1.00 1.00 5.45 10.13 9.43 9.47

2200 30% | 250.0 268.9 169.7 185.4 1.00 0.98 1.00 0.99 6.84 16.95 9.65 10.33

2200 40% | 294.0 348.5 213.8 216.1 0.99 0.95 0.98 0.99 7.27 26.65 10.08 10.59

2200 50% | 330.2 404.2 250.6 264.3 0.95 0.84 0.96 0.96 12.85 34.78 13.26 12.02

1700 10% | 137.0 115.6 117.3 116.8 1.00 1.00 1.00 1.00 4.69 6.41 6.60 7.88

1700 20% | 166.9 158.3 194.3 172.6 1.00 1.00 1.00 1.00 5.62 6.97 7.63 8.90

1700 30% | 214.3 223.6 214.7 231.2 1.00 0.98 1.00 0.99 6.92 15.89 11.69 13.05

1700 40% | 270.9 272.3 267.1 284.6 1.00 0.93 0.98 0.95 13.00 25.71 13.31 15.83

1700 50% | 381.3 386.6 306.1 322.2 0.93 0.83 0.95 0.95 14.29 35.75 20.77 17.27

1200 10% | 152.6 114.6 164.7 156.0 1.00 1.00 1.00 1.00 5.56 6.64 6.82 8.78

1200 20% | 190.4 150.9 174.3 152.5 1.00 1.00 1.00 1.00 6.08 7.77 8.85 9.42

1200 30% | 244.2 300.9 224.0 266.9 1.00 0.98 0.98 0.98 7.64 9.81 9.28 9.68

1200 40% | 456.8 503.3 304.7 369.1 0.99 0.92 0.98 0.95 15.51 33.51 17.84 18.09

1200 50% | 607.6 554.1 431.8 462.6 0.90 0.82 0.95 0.94 19.96 36.52 22.32 16.37
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Table 5.6 Panel 3
RMSE and Coverage Rate of Estimated Coefficients for Ordinal Dependent Variable (Uni-
variate MNAR Missing Data) – Grouping by Sample sizes
The ordered logistic model was used as the estimation method in this table.  

Note 1: MCAR = missing completely at random; MAR = missing at random; MNAR = missing not at random; RMSE = 

root mean square error; CP = coverage rate of the 95% confidence interval of the coefficient estimated with complete 

data to each estimated coefficients; BIAS = standard bias in percentage; size = raw sample size before missingness 

stimulation; mis = stimulated missing data rate; ccp = complete case analysis; pmm = predictive mean matching; mi = 

multiple imputation; ml = maximum likelihood estimation;

Note 2: RED – CCA performs the best; PURPLE – PMM outperforms MI and ML; BLUE – MI outperforms ML; SHADED –

coverage rate under 90%, or standard bias with absolute value < 40.

size mis cca pmm mi ml cca pmm mi ml cca pmm mi ml

3200 10% | 123.5 120.3 114.9 124.4 1.00 1.00 1.00 1.00 2.00 1.15 6.75 7.37

3200 20% | 155.6 161.9 128.8 126.2 1.00 1.00 1.00 1.00 3.53 6.80 9.23 7.47

3200 30% | 166.5 203.7 141.0 136.4 1.00 0.99 1.00 1.00 5.43 14.45 11.66 9.90

3200 40% | 201.8 250.4 150.2 140.5 1.00 0.96 1.00 0.99 6.20 19.68 11.87 11.14

3200 50% | 257.2 276.9 197.0 180.0 0.94 0.93 0.99 0.98 6.38 21.97 12.42 11.69

2700 10% | 125.8 141.2 116.9 120.2 1.00 1.00 1.00 1.00 1.87 1.60 7.01 7.50

2700 20% | 174.0 172.1 128.7 126.7 1.00 1.00 1.00 1.00 2.88 6.85 9.89 9.12

2700 30% | 190.4 242.9 184.3 173.6 1.00 0.97 1.00 1.00 4.24 17.29 10.86 10.68

2700 40% | 242.1 261.8 208.0 196.2 0.98 0.97 0.99 0.99 6.36 18.44 15.18 13.29

2700 50% | 276.2 325.8 209.4 208.8 0.93 0.89 0.99 0.96 6.82 25.54 17.62 16.41

2200 10% | 173.9 190.6 157.7 169.1 1.00 1.00 1.00 1.00 3.06 1.97 8.28 9.07

2200 20% | 215.1 226.4 176.8 169.2 1.00 1.00 1.00 1.00 4.77 6.86 11.59 9.50

2200 30% | 241.4 242.5 179.7 177.4 1.00 0.99 1.00 1.00 6.85 11.32 11.86 10.85

2200 40% | 288.6 300.7 202.6 196.6 0.98 0.98 1.00 0.99 7.39 20.31 13.11 13.71

2200 50% | 363.9 375.2 222.2 212.0 0.91 0.89 1.00 0.99 7.56 26.59 13.76 13.96

1700 10% | 186.2 224.5 145.0 161.6 1.00 1.00 1.00 1.00 3.14 2.98 8.66 9.14

1700 20% | 232.8 240.6 169.0 168.0 1.00 1.00 1.00 1.00 5.43 7.78 11.97 10.32

1700 30% | 279.7 299.0 182.9 171.4 1.00 0.98 1.00 1.00 7.76 15.96 12.20 11.65

1700 40% | 345.5 382.6 206.6 200.0 0.97 0.93 1.00 1.00 8.71 26.41 14.12 12.59

1700 50% | 425.0 396.7 353.7 341.2 0.91 0.88 0.95 0.94 8.93 27.87 23.76 20.74

1200 10% | 137.0 124.9 111.5 116.5 1.00 1.00 1.00 1.00 4.19 3.89 9.68 10.67

1200 20% | 187.4 151.5 174.0 168.8 1.00 1.00 1.00 1.00 6.02 9.00 13.63 12.02

1200 30% | 261.7 228.4 259.5 248.7 0.97 0.93 1.00 1.00 8.09 16.67 15.36 15.09

1200 40% | 440.0 451.2 283.3 268.1 0.97 0.91 0.98 0.98 9.20 21.92 19.62 18.52

1200 50% | 612.3 545.1 377.4 361.3 0.86 0.87 0.98 0.96 9.56 35.52 31.27 29.69
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Table 5.7 Panel 1
RMSE and Coverage Rate of Estimated Coefficients for Ordinal Dependent Variable 
(Multivariate MCAR Missing Data) – Grouping by Sample sizes
The ordered logistic model was used as the estimation method in this table.  

Note 1: MCAR = missing completely at random; MAR = missing at random; MNAR = missing not at random; RMSE = 

root mean square error; CP = coverage rate of the 95% confidence interval of the coefficient estimated with complete 

data to each estimated coefficients; BIAS = standard bias in percentage; size = raw sample size before missingness 

stimulation; mis = stimulated missing data rate; ccp = complete case analysis; pmm = predictive mean matching; mi = 

multiple imputation; ml = maximum likelihood estimation;

Note 2: RED – CCA performs the best; PURPLE – PMM outperforms MI and ML; BLUE – MI outperforms ML; SHADED –

coverage rate under 90%, or standard bias with absolute value < 40.

size mis cca pmm mi ml cca pmm mi ml cca pmm mi ml

3200 10% | 108.7 78.3 80.4 97.3 1.00 1.00 1.00 1.00 0.45 8.09 0.42 0.51

3200 20% | 191.5 130.0 157.2 189.9 0.99 1.00 0.99 0.97 1.10 11.94 0.80 0.57

3200 30% | 266.7 221.9 232.9 261.4 0.94 0.96 0.96 0.89 1.68 22.97 5.68 1.00

3200 40% | 302.2 269.9 271.0 300.4 0.85 0.95 0.91 0.87 1.79 26.44 4.80 1.16

3200 50% | 489.8 375.6 393.7 417.9 0.63 0.80 0.88 0.88 2.44 35.15 6.85 2.58

2700 10% | 130.4 102.7 118.4 148.3 1.00 1.00 1.00 1.00 0.47 6.21 0.54 0.67

2700 20% | 193.2 163.7 173.7 195.5 1.00 1.00 0.99 0.98 1.69 13.89 1.56 1.42

2700 30% | 293.4 235.8 242.0 273.9 0.93 0.99 0.98 0.90 1.74 19.66 3.03 1.42

2700 40% | 399.3 303.9 305.6 355.7 0.84 0.95 0.89 0.82 1.82 27.28 4.51 1.85

2700 50% | 500.8 406.1 389.3 429.1 0.62 0.89 0.81 0.73 3.32 36.04 12.94 2.68

2200 10% | 161.9 133.7 136.3 170.6 0.99 1.00 1.00 0.98 0.54 8.16 0.45 0.68

2200 20% | 267.7 189.5 248.4 281.0 1.00 1.00 0.98 0.94 1.35 11.55 3.25 1.43

2200 30% | 354.9 271.3 309.2 360.1 0.93 0.98 0.98 0.90 3.05 20.84 3.83 3.53

2200 40% | 465.2 267.9 365.3 433.6 0.83 0.93 0.88 0.81 3.71 21.25 6.23 3.60

2200 50% | 653.9 398.3 481.0 548.5 0.62 0.85 0.78 0.67 4.78 31.81 14.02 11.33

1700 10% | 188.9 123.3 173.5 178.9 1.00 1.00 1.00 0.97 0.58 5.70 1.14 1.29

1700 20% | 248.2 186.5 179.8 208.2 1.00 1.00 0.98 0.94 1.43 13.52 1.60 1.36

1700 30% | 308.9 191.9 239.8 238.9 0.93 1.00 0.97 0.90 3.47 15.02 6.31 2.02

1700 40% | 310.2 247.6 281.1 255.6 0.82 0.99 0.87 0.80 3.39 22.01 6.31 3.55

1700 50% | 855.5 462.8 658.7 611.2 0.55 0.77 0.76 0.64 8.02 34.08 19.20 5.46

1200 10% | 170.7 104.0 107.7 98.1 1.00 1.00 1.00 0.97 0.64 3.10 1.64 1.73

1200 20% | 206.7 148.3 156.0 153.1 1.00 1.00 0.98 0.94 1.93 7.17 1.87 1.78

1200 30% | 322.0 218.2 237.4 223.1 0.93 1.00 0.96 0.90 3.25 14.74 2.80 2.55

1200 40% | 415.9 261.5 273.6 262.0 0.81 0.99 0.87 0.79 3.41 15.19 3.62 3.52

1200 50% | 616.2 293.0 352.3 352.4 0.54 0.76 0.75 0.63 15.47 16.54 4.40 4.12

RMSE CP BIAS
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Table 5.7 Panel 2
RMSE and Coverage Rate of Estimated Coefficients for Ordinal Dependent Variable 
(Multivariate MAR Missing Data) – Grouping by Sample sizes
The ordered logistic model was used as the estimation method in this table.  

Note 1: MCAR = missing completely at random; MAR = missing at random; MNAR = missing not at random; RMSE = 

root mean square error; CP = coverage rate of the 95% confidence interval of the coefficient estimated with complete 

data to each estimated coefficients; BIAS = standard bias in percentage; size = raw sample size before missingness 

stimulation; mis = stimulated missing data rate; ccp = complete case analysis; pmm = predictive mean matching; mi = 

multiple imputation; ml = maximum likelihood estimation;

Note 2: RED – CCA performs the best; PURPLE – PMM outperforms MI and ML; BLUE – MI outperforms ML; SHADED –

coverage rate under 90%, or standard bias with absolute value < 40.

size mis cca pmm mi ml cca pmm mi ml cca pmm mi ml

3200 10% | 260.1 109.3 188.0 174.0 0.98 1.00 1.00 1.00 10.19 1.23 7.59 15.46

3200 20% | 465.2 142.5 286.1 278.9 0.82 1.00 0.87 0.90 13.35 3.83 14.93 25.09

3200 30% | 671.8 181.7 390.5 315.2 0.58 0.99 0.75 0.87 16.13 4.66 16.41 26.33

3200 40% | 958.8 213.8 550.9 482.4 0.47 0.96 0.56 0.67 24.25 4.67 18.86 29.17

3200 50% | 1503.2 314.5 675.1 654.8 0.37 0.83 0.47 0.49 42.20 9.84 27.08 33.51

2700 10% | 219.6 200.1 202.9 176.9 0.98 1.00 1.00 1.00 12.88 14.10 5.68 11.53

2700 20% | 388.1 223.5 316.1 218.4 0.81 0.99 0.88 0.94 13.60 16.44 5.76 15.27

2700 30% | 466.6 281.6 406.2 260.3 0.68 0.98 0.77 0.87 17.69 17.73 8.14 20.98

2700 40% | 905.9 303.2 577.6 410.4 0.42 0.91 0.56 0.74 25.98 19.05 10.52 27.83

2700 50% | 1336.6 387.7 719.1 489.0 0.37 0.80 0.48 0.71 44.19 22.81 13.33 31.06

2200 10% | 293.7 218.5 216.6 176.2 0.98 1.00 1.00 1.00 12.64 11.48 5.88 11.94

2200 20% | 467.5 225.4 355.4 311.5 0.80 1.00 0.90 0.94 14.72 11.91 6.80 17.91

2200 30% | 760.4 295.3 455.2 342.2 0.56 0.98 0.81 0.87 18.40 15.25 7.65 18.61

2200 40% | 1101.1 346.3 634.1 444.1 0.42 0.94 0.64 0.81 27.88 16.30 8.53 22.62

2200 50% | 1252.9 392.3 684.9 408.0 0.37 0.83 0.49 0.78 45.57 21.33 9.96 29.49

1700 10% | 286.2 145.8 224.6 134.7 0.98 1.00 1.00 1.00 13.40 12.18 4.76 9.95

1700 20% | 518.6 254.3 360.6 246.4 0.79 1.00 0.83 0.98 15.80 12.91 4.39 21.27

1700 30% | 716.1 388.2 606.9 336.3 0.55 0.97 0.64 0.87 19.28 13.92 4.42 22.07

1700 40% | 1101.9 418.8 708.8 401.1 0.41 0.87 0.57 0.79 28.11 20.18 8.04 22.09

1700 50% | 1546.4 490.7 726.1 487.7 0.36 0.77 0.57 0.76 47.85 26.59 31.65 22.80

1200 10% | 404.6 201.3 255.7 177.5 0.98 1.00 0.95 1.00 14.36 17.37 7.60 10.00

1200 20% | 433.8 266.1 440.9 226.0 0.78 1.00 0.98 1.00 16.71 18.03 16.25 10.34

1200 30% | 809.2 357.0 447.0 292.3 0.55 0.97 0.84 0.87 24.35 19.12 20.76 14.33

1200 40% | 1212.5 439.2 639.4 434.1 0.34 0.86 0.64 0.78 38.44 19.15 19.54 18.21

1200 50% | 1498.3 548.5 800.4 448.2 0.35 0.75 0.52 0.75 50.42 28.00 25.76 24.00

RMSE CP BIAS
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Table 5.7 Panel 3
RMSE and Coverage Rate of Estimated Coefficients for Ordinal Dependent Variable 
(Multivariate MNAR Missing Data) – Grouping by Sample sizes
The ordered logistic model was used as the estimation method in this table.  

Note 1: MCAR = missing completely at random; MAR = missing at random; MNAR = missing not at random; RMSE = 

root mean square error; CP = coverage rate of the 95% confidence interval of the coefficient estimated with complete 

data to each estimated coefficients; BIAS = standard bias in percentage; size = raw sample size before missingness 

stimulation; mis = stimulated missing data rate; ccp = complete case analysis; pmm = predictive mean matching; mi = 

multiple imputation; ml = maximum likelihood estimation;

Note 2: RED – CCA performs the best; PURPLE – PMM outperforms MI and ML; BLUE – MI outperforms ML; SHADED –

coverage rate under 90%, or standard bias with absolute value < 40.

size mis cca pmm mi ml cca pmm mi ml cca pmm mi ml

3200 10% | 353.2 138.2 264.7 142.7 0.94 1.00 0.99 1.00 2.67 6.83 2.30 8.35

3200 20% | 586.1 192.8 364.1 214.3 0.80 0.99 0.91 0.99 4.36 9.99 3.95 13.89

3200 30% | 791.5 249.3 474.3 296.4 0.61 0.98 0.81 0.97 6.33 10.97 5.39 20.46

3200 40% | 1287.9 303.7 604.7 435.0 0.45 0.96 0.54 0.96 9.93 13.25 6.00 31.85

3200 50% | 1848.8 380.0 892.4 587.2 0.36 0.84 0.45 0.83 28.49 13.95 20.14 33.42

2700 10% | 354.4 256.9 265.3 131.4 0.92 0.97 0.98 1.00 2.77 9.32 2.26 1.79

2700 20% | 493.1 320.5 404.7 161.9 0.70 0.89 0.81 0.99 4.67 27.91 4.26 1.80

2700 30% | 603.4 390.0 488.3 223.3 0.58 0.78 0.58 0.97 6.98 29.79 10.19 5.94

2700 40% | 1052.4 430.8 711.3 271.2 0.40 0.75 0.54 0.95 10.44 30.38 10.32 6.60

2700 50% | 1695.4 496.4 925.8 433.2 0.32 0.62 0.44 0.82 33.17 36.33 32.29 8.28

2200 10% | 375.6 307.2 351.4 140.2 0.89 0.97 0.96 1.00 3.08 10.61 7.63 3.18

2200 20% | 613.3 346.2 419.3 200.7 0.64 0.88 0.79 0.98 4.93 25.85 10.46 3.18

2200 30% | 922.3 392.7 584.6 260.4 0.57 0.77 0.65 0.97 5.55 26.29 18.10 5.80

2200 40% | 1329.7 533.9 785.5 356.7 0.38 0.74 0.53 0.87 10.60 30.84 24.01 6.68

2200 50% | 2415.6 529.2 1047.4 442.4 0.30 0.73 0.41 0.81 35.23 38.96 33.53 10.14

1700 10% | 272.9 181.0 217.4 163.4 0.83 0.97 0.91 1.00 3.42 11.53 8.51 3.21

1700 20% | 694.0 384.0 546.5 215.2 0.60 0.87 0.77 0.98 5.03 24.59 11.74 5.19

1700 30% | 911.8 422.0 574.5 284.4 0.48 0.76 0.61 0.96 6.16 27.96 19.34 6.47

1700 40% | 974.2 467.1 678.5 376.8 0.36 0.72 0.50 0.79 15.78 30.05 28.92 10.85

1700 50% | 2493.3 631.6 1282.5 677.9 0.28 0.71 0.41 0.75 38.82 41.67 48.17 16.54

1200 10% | 395.3 263.2 283.9 196.8 0.80 0.97 0.90 0.99 4.29 12.78 9.57 3.94

1200 20% | 506.0 289.7 423.5 281.8 0.59 0.85 0.74 0.97 5.79 24.84 12.91 5.23

1200 30% | 886.3 387.4 583.7 344.2 0.47 0.73 0.58 0.95 12.68 28.01 21.62 9.68

1200 40% | 2383.2 659.0 1263.2 740.4 0.34 0.70 0.47 0.79 21.53 30.18 29.74 14.19

1200 50% | 2504.6 737.3 1289.7 748.5 0.22 0.67 0.34 0.68 40.64 42.25 48.86 18.34

RMSE CP BIAS
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Chapter 6: 

Conclusion

------------------------------------------------------------------------------------------------

6.1 Introduction 

The sustainability of MFIs depends on whether they can efficiently and effectively collect their 

scattered loans. The issue of loan delinquency has been well recognized and is waiting to be re-

solved. As one of the most important determinants of loan delinquency, financial literacy has 

been well studied in the past decades. However, financial awareness, which is an essential com-

ponent of financial literacy, was rarely mentioned in the literature. Among the several conjec-

tures cited about the determinants of loan default, and how to develop and improve borrowers’ 

financial awareness of interest repayment in the area of microfinance, in the empirical chapters,

this thesis test 11 hypotheses using different econometric techniques. In addition, the thesis 

also studies 4 research questions that are associated with the wider methodological debate on 

the use of missing data imputation methods with a focus on administrative loan book data in 

the context of a normal distribution violation. The hypotheses and research questions aim at 

contributing to the existing academic literature and credit scoring methods related to micro-

finance in developing countries on the following issues: 

1. Is agriculture really associated with a higher probability of loan default as most MFIs ex-

pected? Many microfinance activities in developing countries naturally focus on rural 

areas in which more than 75% of poor people live depending on agriculture. 

2. Can previous access to credit increase the borrowers’ financial awareness of their inter-

est repayment? To this question, in fact, is trying to study whether access to credit is a 

virtuous cycle or a vicious cycle on itself.

3. What is the best missing data imputation technique for microfinance loan book data? It 

is impossible for MFIs to identify all the determinants of missing values and make accu-

rate assumptions of the prior distribution. Answering this question helps us to find out 

the most robust imputation methods across different mechanisms of missingness.
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The thesis focuses on the practical issues that affect the performance of credit scoring systems 

used by MFIs rather than the determinants of MFIs’ financial performance. The following sec-

tions of this chapter summarize the results and provide practical implications for each of the 

three empirical chapters. 

6.2 Summary of Results

6.2.1 Delinquency of microfinance

In the first empirical chapter, I have identified the individual socio-demographic and business 

characteristics that are associated with microfinance loans based on a high-quality administra-

tive loan book data that stems from four MFIs from developing countries. I have replaced the 

omnifarious binary default indicators used in previous studies with three semi-continuous de-

fault indicators: the amount of arrears, the number of days being in delinquent, and PaR30. The 

explanatory variables are already known from classical banking and the prior literature of micro-

finance. According to the clustered structure and skewness of the data, a Two-Part model with 

Box-Cox transformation is applied here. 

The results show that agriculture is related to a lower probability of default that measured by 

the amount of arrears. However, it becomes insignificant when we use the length of delayed re-

payment as a proxy for the probability of default. In the subsample analyses, we reconfirm that 

investing in agricultural business associated with a lower probability of default in INSOTEC Ecua-

dor and FINCA Peru. In CACIL Honduras, it is found that agriculture positively relates to the in-

tensity of loan default only. Possible explanations for the inconsistent results include: 1. borrow-

ers involved in agricultural businesses cannot pay back the loan with a high repayment fre-

quency; and 2. while agriculture is claimed to be the safest sector due to high social control and 

low volatility, it is in line with the prevailing weather conditions and indeterminate natural disas-

ters that happen during the period of interest. 

On the other hand, we also found that married borrowers have a lower probability of default 

and a lower intensity of delinquency, measured by both the amount of arrears and the length of 

delayed repayment. In the subsample analyses, borrowers have a lower probability of default in 
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general. This relationship is especially pronounced in MICROCRED Madagascar but is insignifi-

cant in CACIL Honduras. What is more, we found that the relation between marital status and 

the probability of default does not differ with genders. In addition, the relation between mar-

riage and the probability of default is strengthened if a client has completed secondary school.

The results of gender and age are inconsistent in different MFIs, and they are insignificant in 

most of the subsamples. An interesting finding related to age is that the clients aged between 40 

and 49 benefit the most from marriage when it comes to repayment performance. 

It is surprising to find that education positively relates to the probability of default in FINCAR 

Peru, while the association is negative in MICROCRED Madagascar. For CACIL Honduras and IN-

SOTEC Ecuador, no significant relations between education and loan default are detected. Possi-

ble explanations for the abnormal results for FINCA Peru include: 1. borrowers participate in 

business activities that require little education, but lots of experience and skills; 2. borrowers 

with better education are more likely to be over-indebted as they have much easier access to 

credit, because education is highly related to parental income and creditworthiness in Peru. 

Finally, the results also point out that the estimation performances between Two-Part model 

and Double Hurdle model are similar, while the algorithm of the Two-Part model is more effi-

cient. By implementing a Two-Part model in credit scoring, the MFIs would obtain better results 

for the probability and intensity of default with moderate time investment.

6.2.2 What drives the financial awareness in microfinance?

In the second empirical chapter, I have tested test the individual/household effects on the cli-

ents' financial awareness of their interest rate by using a large global data set covering 51 MFIs 

in 27 countries. Financial awareness is studied through the proxies designed by Micro Finanza 

Rating. They are a pair of dummies which indicate whether a client can accurately (less than 25% 

different from the actual values) remember his/her interest rate and total interest payment. In 

order to reduce the biases caused by missing values, multiple imputations and mean imputation 

techniques have been applied in this study. 

Our findings indicate that previous access to moneylenders improved the awareness of their in-

terest. Clients who have had saving accounts before were less knowledgeable about the interest 

in general. However, previous access to a saving service has a positive effect on the clients with 
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at least primary education. On the other hand, previous access to microfinance has a positive 

relation to the financial awareness of the clients who lived in urban areas. 

The overall findings on the socio-demographic characteristics suggest that in our sample the as-

sociation between gender and financial literacy of the interest rate only exists in Latin America 

and Christian countries. Women may be more financially cautious than men in these areas. The 

results for education background and living location are all significant. It shows that a more edu-

cated client who lives in a rural area has a much higher probability of being financially cautious. 

However, there are no results for age. Because the missing rate is too high, and the results with 

multiple imputations and the results with mean imputation are inconsistent. 

6.2.3 MI, ML and PMM for semi-continuous missing data in microfinance loan book

In the final empirical study, I investigated how PMM compares to MI and ML for imputing semi-

continuous data, binary data, and ordinal data. I also investigated how performance is affected 

by sample size and missing rate in the data, and look into the effects of the missing data mecha-

nism on imputation methods for imputing different types of data. In addition, I investigate the 

aforementioned methods in the presence of univariate and multivariate missingness. The main 

contribution of this paper is to provide a systematic evaluation for the imputation performances 

of MI, ML and PMM methods with actual administrative loan book data, as there are so few per-

formance comparison studies of different missing data techniques (MDT) available in the cur-

rent literature.

To make the empirical findings of Monte Carlo studies applicable to real data, we need at least 

two assumptions for the sample size (or missing rate): 1. the relation between imputation qual-

ity and sample size (or missing rate) is strictly linear; 2. the sensitivities between imputation 

quality and sample size (or missing rate) are the same for the MDT in comparison. However, the 

findings in this paper suggest that these assumptions are too strong for administrative loan book 

data. For instance, we found that PMM usually outperforms MI and ML when the sample sizes 

are large, and the missing rates are low when the missing mechanism is MAR. Compared to MI 

and ML, PMM is more sensitive to the changing sample sizes and missing rates. It reminds us 

that we should not overestimate the capabilities of MDT and neglect the size effects. 
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Generally speaking, all MDT have comparatively the lowest biases and highest coverage rates 

when the missing data are ordinal categorical. Most of their biases and coverage rates have ex-

ceeded the significant criterion when the missing data are semi-continuous. On the other hand, 

the MDT perform better with univariate missing data than with multivariate missing data. For 

semi-continuous data, we also found that the sample size will affect the relationship between 

bias and missing rate. The biases are less sensitive to the changes of missing rates in small sam-

ples. 

When the missing data are semi-continuous, PMM outperforms MI and ML in most simulations. 

For binary or ordinal categorical data, MI and ML are generally better than PMM. But we also 

notice that PMM’s performance surpass MI and ML when the sample sizes are very large, the 

missing rates are low, and the missing mechanism is MAR.

In terms of the comparison between MI and ML, we found that MI performs better than ML 

when the missing data are semi-continuous, or when the missingness is MAR. Consistent with

the findings in the prior literature, ML outperforms MI in small samples in general. However, it 

should be stressed that the differences between the biases of MI and ML are still marginal.  

Finally, we found that MI, ML and PMM underperform the benchmark CCA in many simulations. 

In univariate missing data, CCA provides more accurate coefficient estimations in most simula-

tions across different data types and missing mechanisms. The only exception is when the miss-

ing data are binary with MAR missingness. In multivariate missing data, MI, ML and PMM per-

form better than CCA in most simulations when the missing data is MAR or MNAR. But CCA is 

still preferable when the missing data are MCAR, and the missing rates are very low.     

6.3 Implications and Recommendations

From a policy perspective, four issues are prescribed for microfinance practitioners and the gov-

ernments in developing countries. The need for investing in agriculture is increasing due to the 

rising global population. According to an estimation by the World Bank, demand for food will in-

crease by 70% by 2050, and more than $80 billion needs to be invested annually to resolve this 

issue. However, the previous market-oriented reforms in the microfinance industry seem to fail 
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as agriculture receives a very small share of total credit. Most MFIs limit their operations to ur-

ban areas with high densities of population. Poor farm households and farm-related business 

only represent a small share of their portfolios, because the MFIs consider the costs and risks 

encountered in serving the agricultural sector are high. In fact, our study has shown that agricul-

ture is associated with a lower probability of default in most cases. 

We recommend the MFIs to reconsider expanding into rural areas and agriculture to instead of 

the urban service sector. The risks of agriculture have been overestimated by them. A possible 

explanation for the overestimated risks is that the MFIs use a one-size-fits-all loan method re-

quiring all clients to adapt to operational needs. It was designed and best suited for households 

with weekly or monthly cash inflows, but impractical for farmers. Hence, we also recommend 

the MFIs to design new financial products for the clients in the agricultural sector. On the other 

hand, another explanation to the overestimation could be that the standard of being delin-

quency or default is too strict for the clients with seasonal flows. In this case, we recommend 

the MFIs to establish a new credit scoring method based on the Two-Part model, which can sep-

arate the intensity of default from the probability of default and generate better risk evaluation.  

There is a common assumption that the extremely poor remain poor due to inadequate financial 

management, and they need greater ‘literacy’ that can be improved by financial education pro‐

grammes. The programmes offered by MFIs usually focus on subjects like financial knowledge, 

budgeting, saving, investing, financial planning, and how to choose appropriate financial instru-

ments. While the underlying assumption of these programmes sounds right, it neglects the fact 

that who associated with low probabilities and low intensities of default often exhibit a financial 

awareness that is rarely captured in the conventional financial education. As a result, these pro-

grammes usually fail the extremely poor. Our study shows that financial awareness of borrowers 

can be improved by their previous access to savings or credits. Practical experience of using mi-

crofinance products is an important source of financial awareness, especially for the clients with 

only primary education. 

Non-experimental or observational designs have played a dominant role in the past. However, 

most microfinance studies in recent years have switched to experimental approaches as the 

evaluation results heavily depend on data quality, which is a weak spot of the non-experimental 

studies. Data quality refers to the availability of a rich dataset of appropriate variables related to 

the participants of microfinance. Researchers have no control over the origination of data in the 
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case of non-experimental studies. Most of the time, only observable outcomes for participants 

was implemented. One of the biggest obstacles to acquire rich datasets is the huge amount of 

missing values in variables of interest. As a result, the researchers have to painfully drop the var-

iables with missing values or delete the data points with missing values before evaluation. Our 

study suggests that the modern missing data imputation technique Predictive Mean Matching is 

a much better solution comparing to simple Listwise Deletion, Multiple Imputation, and Maxi-

mum Likelihood Estimation, in terms of semi-continuous data with lots of zeros. When the da-

taset is large enough, Predictive Mean Matching outperforms other methods in terms of binary 

or categorical data as well. It is a very effective technique to do imputation for missing data in 

the area of microfinance especially when the missing percentage of data is noticeable. 

6.4 Limitations and Future Considerations

The first empirical chapter has the potential of unravelling more interdependence between the 

intensity/probability of loan default and other covariates, such as loan purposes and individual 

socio-demographic characteristics. A number of influential factors that mentioned in previous 

literature are excluded in this study, such as repayment frequency, income, and the number of 

household dependents. In addition, the observed positive relationship between educational

background and the probability of loan default for the borrowers of FINCA Peru requires further 

scrutiny as it contrasts economic theory of education. This suggests a further study with a 

greater number and different types of MFIs in each country, such as Peru, so that we can ascer-

tain whether the abnormal relationship between education and default is a country-specific is-

sue or a firm-specific issue. Moreover, the comparison between the efficiencies of 2PM and DH 

lacks supporting evidence. The statistics of the runtime analysis for the algorithms of models are 

not included here.  

In the case of the second empirical chapter, that examines the determinants of financial aware-

ness of interest repayment, the issue of how to measure financial awareness is controversial. 

Our study proposes that financial awareness should be indicated and measured by whether a 

client knows his/her interest rate or interest amount. The biggest limitation of using these indi-

cators individually is that it provides only partial information on the financial awareness of cli-

ents. Therefore, a more comprehensive measure of financial awareness is needed to address 
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questions that have been put forward in the growing financial literacy literature. A recent study 

by Kalra et al. (2015) has tried to propose a theoretical framework to fulfil the needs. However, 

they just equally weighted every indicator in their index and underestimated the importance of 

interest rate. Hence, the relation between the probability of loan default and their financial 

awareness index might be weak or insignificant. More empirical studies on the effectiveness of 

these new financial awareness indexes should be done in the future.      

In terms of the final empirical chapter that compares the imputation performances between dif-

ferent MDTs, the first limitation is that bias is simply measured as the difference between the 

true correlation and the recovered correlation, as we only focus on how missing data imputation 

can be applied to credit scoring in microfinance. Other common imputation evaluation criterions 

have not been discussed in this chapter. These include: bias of the mean, the bias of the median, 

preservation of distributional shapes, and plausibility of the imputations (whether the imputed 

value could have been observed if the data was not missing). The second limitation is that we 

only consider a specific set of skewness, kurtosis, and point mass of a real administrative loan 

book data. The actual relationships between the imputation performances and they are beyond 

the scope of our study. Finally, we display empirical results for simulations with discretised sam-

ple size and missing rate. Hence, whether the imputation performances are strictly linearly asso-

ciated to sample size and the missing rate is still unclear.    
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Appendix A Top 25 Business Activities in Microcred and Finca Peru by Population

Notes: For Microcred Madagascar, there are 81 types of business activities recorded in the loan book, in which the top 
25 business activities take up 84.4% of the sample. For Finca Peru, there are 198 types of business activities recorded 
in the loan book, in which the top 25 business activities take up 72.8% of the sample. 

Sector Shares Sector Shares

Retail 12.08% Retail 9.70%

Retail 10.85% Retail 7.06%

Retail 7.03% Services 6.93%

Services 5.88% Retail 5.99%

Services 4.69% Retail 5.11%

Retail 4.38% Retail 4.66%

Production 4.34% Retail 4.36%

Retail 4.24% Retail 3.56%

Services 3.67% Retail 3.17%

Retail 2.39% Retail 2.87%

Services 2.36% Production 2.55%

Production 2.23% Services 1.90%

Farming 2.19% Retail 1.80%

Production 2.08% Retail 1.77%

Services 1.94% Services 1.79%

Retail 1.94% Retail 1.59%

Services 1.84% Retail 1.36%

Retail 1.63% Retail 1.35%

Wholesale 1.40% Farming 0.94%

Retail 1.38% Production 0.87%

Retail 1.36% Retail 0.76%

Retail 1.27% Services 0.71%

Retail 1.13% Farming 0.69%

Retail 1.09% Production 0.65%

Services 0.99% Retail 0.63%

18473 15461

Finca Peru

Sample Size Sample Size

Business ActivityBusiness Activity

Microcred

Livestock

Brick

Rootstock

Beverage

Potato

Clothing

Shoes

Passenger transport

Cheese

Bread, Pastry, Chocolate

Restaurante, Cafe, Bar

Other

Butcher, Sausage

Clearance products

Fabrics

Hardware, Electrical appliance

Nursery

Grocery

Clothing

Foods

Livestock

Cereal

Wine

Cosmetic

Vegetable

Confection

Fruit

Crafts

Other

Hairdressing, Beauty

Scrap Dealer

Other 

Fish, Crustacean

Local products collection

Other

Livestock

Joinery, Furniture

Haulage

Butcher, Sausage

Confection

Lumber, Coal

Bar

Fruits, Vegetables, Eggs

Vehicles Rental

Grocery

Other

Clothing, Confection

Other

Passenger transport

Frippery
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Appendix B Financial knowledge, attitudes and behaviour (average scores); Stacked 
points (weighted data): all respondents, sorted by overall score

Notes: Average, all countries and Average, OECD countries report the mean of the country/economy percentages.
Each country/economy is therefore given equal weight. Source: OECD/INFE International Survey of Adult Financial Lit-
eracy Competencies.
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Appendix C Basic Information of the Microfinance survey database  

Region Country Religion Year MFI

Africa Ghana Christianity 2010 ID Ghana

Africa Kenya Christianity 2009 KADET

Africa Kenya Christianity 2011 Jitigemea

Africa Mali Muslim 2010 CAMIDE

Africa Mali Muslim 2012 Nyesigiso

Africa Niger Muslim 2009 Taanadi

Africa Niger Muslim 2010 Kokari

Africa Senegal Muslim 2010 Microcred

Africa Uganda Mixture 2009 BRAC

Africa Uganda Mixture 2009 MCDT

Africa Uganda Mixture 2010 Hofokam

Africa Uganda Mixture 2011 Uganda Finance Trust

Europe BosnaI Hercegovina Mixture 2009 Sinergija

Europe BosnaI Hercegovina Mixture 2010 Partner

Europe BosnaI Hercegovina Mixture 2011 MiBospo

Europe Romania Christianity 2010 FAER

Latin America Bolivia Christianity 2008 FIE

Latin America Bolivia Christianity 2011 Banco FIE

Latin America Colombia Christianity 2009 Contactar

Latin America Ecuador Christianity 2008 Banco Solidario

Latin America Ecuador Christianity 2008 Espoir

Latin America Ecuador Christianity 2008 Huellas Grameen

Latin America Ecuador Christianity 2010 CACPE Pastaza

Latin America Ecuador Christianity 2010 Mushuc Runa

Latin America Honduras Christianity 2009 COMIXMUL

Latin America Honduras Christianity 2009 FUNED

Latin America Honduras Christianity 2010 CACIL

Latin America Honduras Christianity 2010 Ceibena

Latin America Honduras Christianity 2010 Sagrada Familia

Latin America Mexico Christianity 2009 Fampegro

Latin America Mexico Christianity 2009 Fincomun

Latin America Mexico Christianity 2009 Fojal

Latin America Mexico Christianity 2009 Progresemos

Latin America Nicaragua Christianity 2009 Prestanic

Latin America Paraguay Christianity 2010 Vision Banco

Latin America Peru Christianity 2010 EDPYME Proempresa

Latin America Peru Christianity 2010 Prisma

Latin America Republica Dominicana Christianity 2010 Banco ADEMI

Latin America Republica Dominicana Christianity 2011 ECLOF Dominicana

Middle East Afghanistan Muslim 2008 FMFB

Middle East Armenia Christianity 2011 ECLOF Armeni

Middle East Azerbaijan Muslim 2009 Azercredit

Middle East Jordan Muslim 2011 UNRWA Jordan

Middle East Kazakistan Muslim 2010 FFSA

Middle East Kazakistan Muslim 2011 Arnur Credit

Middle East Kyrgyzstan Muslim 2010 ABNCU

Middle East Pakistan Muslim 2010 ASASAH

Middle East Palestine Muslim 2011 ASALA

Middle East Tajikistan Muslim 2010 IMON

Middle East Tajikistan Muslim 2010 OXUS

Southeast Asia Philippines Christianity 2009 ASKI
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