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ABSTRACT

The Silk Road pattern (SRP) teleconnection manifests in summer over Eurasia, where it is associated with

substantial temperature and precipitation anomalies. The SRP varies on interannual and decadal scales;

reanalyses show an increase in its decadal variability around the mid-1970s. Understanding what drives this

decadal variability is particularly important, because contemporary seasonal prediction models struggle to

predict the phase of the SRP. Based on analysis of observations andmultiple targeted numerical experiments,

this study proposes a mechanism for decadal SRP variability. Causal effect network analysis confirms a

positive feedback loop between the eastern portion of the SRP pattern and vertical motion over India on

synoptic time scales. Anomalies over a larger region of subtropical South Asia can reinforce a background

state that projects onto the positive or negative SRP through this mechanism. This effect is isolated and

confirmed in targeted numerical simulations. The transition from weak to strong decadal variability in the

mid-1970s is consistent with more spatially coherent interannual precipitation variability over subtropical

South Asia. Furthermore, results suggest that oceanic variability does not directly force the SRP. Never-

theless, sea surface temperatures in the North Atlantic and the North Pacific may indirectly affect the SRP by

modulating South Asian rainfall on decadal time scales.

1. Introduction

The Silk Road pattern (SRP) teleconnection mani-

fests in June–August (JJA), associated with a stationary

Rossby wave that is trapped along the subtropical Eur-

asian jet stream (Lu et al. 2002; Enomoto et al. 2003). Its

most prominent features are zonally oriented, geograph-

ically anchored anomalies in the upper-tropospheric me-

ridional wind field (Fig. 1a; Lu et al. 2002; Enomoto et al.

2003; Kosaka et al. 2009). Interannual SRP variability

(Fig. 1b) is accompanied by substantial regional surface

temperature anomalies across Eurasia (green boxes in

Fig. 1c; see also Figs. 2a,b; Lu et al. 2002; Wu 2002;

Enomoto et al. 2003; Ding and Wang 2005; Huang et al.

2011; Chen andHuang 2012; Saeed et al. 2011; Saeed et al.

2014; Hong and Lu 2016;Wang et al. 2017). However, it is

not knownwhat factorsmodulate the SRP on interannual

(IA) to interdecadal (ID) time scales, or whether there

exists the potential for predictability.

The SRP can be interpreted as the Eurasian portion

of the summertime circumglobal teleconnection (CGT;

Ding andWang 2005), which over Eurasia has a similar

structure to the SRP, but is associated with upper-

tropospheric wind anomalies across the entire North-

ern Hemisphere. The CGT may be excited by tropical

Atlantic convection and sea surface temperature (SST)

anomalies (Lu et al. 2002) or by convection over the

northern Indian Ocean (Chen and Huang 2012). El

Niño–Southern Oscillation (ENSO) may modulate the

CGT through the impact of ENSO on monsoonal heat

sources in the tropics (Ding et al. 2011). This ENSO–

CGT relationship has been associated with anoma-

lously strong or weak Indian summer monsoon (ISM)

rainfall (Ding and Wang 2005).

Energy conversion through the extraction of avail-

able potential energy from the baroclinic Asian jet was

shown to be critical for the self-maintenance of the SRP,

and for anchoring the strongest vorticity anomalies to

the observed preferred locations (Sato and Takahashi

2006; Kosaka et al. 2009; Chen et al. 2013). Another
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proposed mechanism for the self-maintenance is a two-

way interaction with the ISM (Ding andWang 2005): on

the one hand, upstream disturbances triggered by baro-

tropic instabilities in the North Atlantic jet exit region

can lead to an anomalous upper-level high over western

Europe. A secondary anomalous upper-level high over

west-central Asia, east of the Caspian Sea, is induced

through an eastward-propagating Rossby wave on the

subtropical westerly jet. This is associated with stronger

convection over northwest India. On the other hand, an

anomalous ISM creates a baroclinic circulation north-

west of India, which in turn excites an anomalous upper-

level west-central Asian high and may trigger additional

eastward-propagating Rossby waves (Fig. 15 of Ding

and Wang 2005).

Ding and Wang (2007) suggested that this two-way

interaction also occurred on intraseasonal scales (see

their Fig. 11). Interaction and feedback between

extratropical disturbances associated with the SRP

and the South Asian monsoon can lead to disas-

trous meteorological events, such as the 2010 Pakistan

flooding and Russian heat wave (Lau and Kim 2012;

Kosaka et al. 2012). Processes for monsoon–extratropical

circulation interactions, leading to intraseasonal ex-

tremes, include midlatitude blocking, Rossby wave

breaking, the migration of the monsoon trough, and

diabatic forcing from strong convection (Vellore et al.

2016). In August IA SRP variability has been associated

with a stronger Bonin high and heat waves over Japan

(Enomoto 2004).

FIG. 1. (a) Regression of ERA-Interim JJA V200 against the normalized 1979–2010 ERA-

Interim SRP index. (b) 1900–2010 ERA-20C SRP index (black line) and its ID component

(blue and red shading). (c) Locations of the CEN actors, which are also listed in Table 2: SRP

index (golden box), 500-hPa vertical velocityv (red boxes), 2-m temperatureT (green boxes),

and V200 (magenta triangles).
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Anomalous convection associated with the ISM af-

fects not only the strength of the eastern portion of the

SRP through the west-central Asian high, but also ver-

tical motion over the easternMediterranean through the

‘‘monsoon–desert mechanism.’’ Sinking over the east-

ern Mediterranean and in the west-central Asian high

region is associated with the positive phase of the un-

filtered SRP (Fig. 3a), the ID SRP (Fig. 3c), and the IA

SRP (Fig. 3e). A positive SRP is associated with in-

creased precipitation over India (Figs. 3b,d,f). Com-

pared to unfiltered or IA-filtered (Figs. 3b,f) anomalies,

ID precipitation anomalies associated with the SRP

cover a larger area of India (Fig. 3d). According to

Rodwell and Hoskins (1996), heating associated with

the ISM triggers westward-propagating equatorial

Rossby waves that induce subsidence over the eastern

Mediterranean through their interaction with the

midlatitude westerlies. Tyrlis et al. (2013) analyzed the

dynamics of the monsoon–desert mechanism on intra-

seasonal scales with an emphasis on the synchronicity

and causality of processes over the Mediterranean Sea

and the Asian monsoon regions. They confirmed that

the eastern Mediterranean is a ‘‘passive receiver of the

monsoon signal.’’ Central India (158–288N, 708–808E)
and an area over and to the north of the Bay of Bengal

(158–288N, 828–1008E) were identified as the most

important regions for triggering subsidence over the

eastern Mediterranean. Tyrlis et al. (2013) argued that

heat sources in these regions are relatively efficient

generators of Rossby waves, which are able to propagate

west because the July 200-hPa zonal winds are weaker at

258–308N than farther south. Such waves are suppressed

in easterly or strong westerly flow (Lin et al. 2007;

Lin 2009).

The SRP is reproduced as the dominant mode of

upper-tropospheric meridional wind variability in

those models from phase 3 of the Coupled Model In-

tercomparison Project (CMIP3) that simulate well the

structure of the Eurasian jet (Kosaka et al. 2009). The

CGT can also be simulated by a dry nonlinear model

forced with global heating derived from monthly ob-

servations (Yasui and Watanabe 2010). Coupled sea-

sonal prediction models from the Climate Prediction

and Its Application to Society (CliPAS) project (Wang

et al. 2009; Lee et al. 2010) initialized on 1 May are

also able to produce the SRP’s spatial structure as the

leading mode of atmospheric variability, but they can-

not reliably predict its phase at monthly to seasonal

lead times (Kosaka et al. 2012).

Decadal changes in temperature and precipitation

over Eurasia have been associated with SRP-like wave

patterns (Zhu et al. 2011; Hong et al. 2017; Piao et al.

2017; Si and Ding 2016). Huang et al. (2015) concluded

that the SRP, ISM precipitation, and Atlantic multi-

decadal oscillation (AMO) contributed to decadal pre-

cipitation changes in midlatitude Eurasia. Based on

observational and reanalysis data, Wang et al. (2017)

reported that the magnitude of the ID SRP variability

was substantially smaller before the mid-1970s than

after (see also Fig. 1b). They extracted the ID com-

ponent of the SRP using a low-pass filter and separately

analyzed the spatial structures of the ID and residual

components. The ‘‘ID SRP’’ had a greater meridio-

nal extent than the traditional SRP, with circulation

anomalies spreading farther north than in Fig. 1a.

Anomalies associated with the ID SRP explained up to

50% of the variance of surface air temperature over

eastern Europe, western Asia, and eastern Siberia.

However, on IA scales, temperature anomalies in

FIG. 2. Regressions of 1920–2006 UDEL 1.5-m temperature

against (a) the ID component of the ERA-20C SRP index, (b) the

IA component of the SRP index, and (c) the ID component of the

AMO index [the AMO sign was flipped to allow for a better

comparison with (a) and (b)]. All values shown are significant at

the 10% level. All indices were first normalized. (d) The normal-

ized ID SRP, AMO (flipped sign), and PDO indices.
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eastern Siberia are not associated with the SRP (cf.

Figs. 2a,b). This discrepancy was also noticed by Wang

et al. (2017), but the reason remains elusive. In addition,

Wang et al. (2017) found that the SRP was not signifi-

cantly affected by the Pacific decadal oscillation (PDO),

but that negative (positive) SRP was more likely during

positive (negative) AMO.

In this studywe take a different approach toWang et al.

(2017): instead of separating the IA and ID components

of the SRP, we seek to identify one mechanism for SRP

variability on synoptic to decadal scales. We test the hy-

pothesis that coherent precipitation variability in the In-

dianmonsoon region is a common controllingmechanism

for SRP variability. Hence, we start with the premise that

ID and IA variability of the SRP can be understood as

the low-frequency rectification of variability on shorter

scales. Implicitly, we consider that temperature anoma-

lies associated with only the ID SRP (i.e. those in areas

of Siberia and also North America and Greenland; cf.

Figs. 2a–c) are not related to the SRP but are driven by

another mechanism. We seek to clarify whether Atlantic

and Pacific SST anomalies may cause SRP variability

through their effect on the ISM. Our main goal is to

explain the increase in ID SRP variability around

the mid-1970s. To do so, we analyze two historical

atmosphere-only climate simulations and four coupled

climate simulations. The effects of SST forcing in the

Atlantic and Pacific are further isolated in atmosphere-

only simulations with prescribed phases of the AMO,

and ocean–atmosphere coupled experiments with pre-

scribed phases of decadal SST variability in the North

Pacific and North Atlantic. We propose a mechanism

FIG. 3. Regression of (a) 1979–2010 ERA-20C 500-hPa pressure velocity and (b) UDEL precipitation against the

normalized 1979–2010 ERA-20C SRP index. Also shown are the regression of 1920–2006ERA-20C (c),(e) 500-hPa

pressure velocity and (d),(f) UDEL precipitation against the (c),(d) ID or (e),(f) IA components of the ERA-20C

SRP index. Stippling indicates values that are significant at the 10% level. The 1920–2006 time series are obtained

by filtering 1916–2010 data, which causes a 4-yr data loss at each end of the time series.
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for the recently increased SRP variability, which is

summarized in Fig. 4: ocean variability on decadal time

scales is associated with more coherent South Asian

monsoon precipitation in recent decades. Through the

monsoon–desert mechanism, this increased coherence

in precipitation forces larger SRP amplitudes. To our

knowledge, no previous study has addressed SRP vari-

ability in this way using observations and a hierarchy of

targeted experiments.

Section 2 introduces the observational data, model simu-

lations, and analysis methods. Results from numerical sim-

ulations are discussed in section 3. Observed IA and IDSRP

variability is analyzed in section 4, and intraseasonal vari-

ability in section 5. Section 6 is a discussion and section 7

summarizes the main findings. For frequently used abbrevi-

ations, please see the definitions in Tables 1–4.

2. Data and methods

a. Observational data

For simplicity,we refer to reanalysis data as observations

throughout the text. The reliability of the datasets is dis-

cussed in section 6.

Monthly-mean 1979–2016 200-hPa meridional winds

V200 from the 0.78 3 0.78 European Centre for Medium-

RangeWeather Forecasts (ECMWF) interim reanalysis

(ERA-Interim; Dee et al. 2011) are used to study the

recent ID variability of the SRP; for consistency with

Wang et al. (2017) 1979–2010 data are used to define the

SRP spatial pattern.

A longer record of the SRP is constructed based on 1900–

2010V200 from the 2.58 3 2.58 ECMWFTwentieth Century

Reanalysis (ERA-20C; Poli et al. 2016). ERA-20C assimi-

lates observations of surface pressure and marine winds

only. The variability of the SRP in ERA-20C is almost

identical to that in ERA-Interim over the common period,

since 1979 (Wang et al. 2017). We also show maps derived

from 1916–2010 500-hPa pressure velocity from ERA-20C.

For consistency with Wang et al. (2017), we use 1916–

2010 JJA precipitation and 1.5-m air temperature from

the 0.58 3 0.58 University of Delaware monthly dataset

FIG. 4. Negative phases of Atlantic decadal variability (ADV) or Pacific decadal variability (PDV) lead to more coherent, stronger South Asian

monsoon precipitation (red arrows and large blue ellipse). This leads to anomalous sinking motion over the Mediterranean region (orange arrow)

through themonsoon–desert mechanism. A positive phase of the SRP is then induced downstream along the subtropical westerly jet (green arrows;

first giving anomalous northward, then southward winds). The positive phase of the SRP induces anomalous rising motion over South Asia,

reinforcing the monsoon in a positive feedback loop (yellow arrows). Positive phases of the ADV or PDV drive negative and less coherent rainfall

anomalies over SouthAsia (small blue hatched ellipse). This leads to anomalous ascending motion over theMediterranean (hatched orange arrow)

and ultimately leads to anomalous sinking motion over South Asia, reinforcing the original anomaly.

TABLE 1. Table of frequently used abbreviations.

Abbreviation Expansion

SRP Silk Road pattern

CGT Circumglobal teleconnection

AMO Atlantic multidecadal oscillation

PDO Pacific decadal oscillation

ENSO El Niño–Southern Oscillation

ISM Indian summer monsoon

IA Interannual

ID Interdecadal

CEN Causal effect network

MetUM Met Office Unified Model

GOML Global Ocean Mixed Layer coupled

configuration of the MetUM

ATL Atlantic

PAC Pacific

GFDL Geophysical Fluid Dynamics

Laboratory

CAM Community Atmosphere Model

CCM Community Climate Model

CLIVAR Climate Variability and

Predictability, here: the set of

GFDL, CAM, and CCM

simulations
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(UDEL, version 4.01; Willmott and Matsuura 2001) in

the analysis of IA and ID variability. This gridded dataset

is based on station measurements and rain gauge data.

Monthly mean 1979–2010 SSTs are obtained from

the 18 3 18 Hadley Centre Sea Ice and SST dataset

(HadISST; Rayner et al. 2003). The 1920–2006 AMO

and PDO index are also based on HadISST, with global

warming trends removed; these are obtained fromhttp://

climexp.knmi.nl.

To analyze the SRP and its associated synoptic-scale

variability, we use daily 1900–2010V200, 500-hPa ver-

tical pressure velocity v, and 2-m temperature T from

ERA-20C.

b. Definition of the SRP

To directly compare to Wang et al. (2017), our defi-

nitions of the SRP index and its IA and ID components

follow theirs.

The SRP is defined as the first empirical orthogonal

function (EOF) of JJA-mean 1979–2010 ERA-Interim

V200 in the ‘‘SRP domain’’ (208–608N, 308–1308E), that
is, a domain containing the Northern Hemisphere sub-

tropical westerly jet stream over Eurasia. The corre-

sponding normalized principal component (PC) time

series is defined as the SRP index. For ERA-20C and our

simulations (described in section 2d), the SRP index is

the so-called pseudo-PC, defined as the projection of the

dataset onto the 1979–2010 ERA-Interim spatial pattern

within the SRP domain. Wang et al. (2017) showed that

their results were insensitive to choosing slightly dif-

ferent domains or time periods for the EOF analysis.

To extract ID components from any given dataset, we

use a 9-yr Lanczos low-pass filter (Duchon 1979). The

IA component is the unfiltered time series minus the ID

time series.

TABLE 2. Definitions of all CEN actors. From left, columns show

the abbreviations used in the text; the geographical locations; the

variables, where V200 stands for 200-hPa meridional wind, T for

2-m temperature, and v for 500-hPa pressure velocity; and the

latitude and longitude bounds for averaging, or the location of the

grid point, respectively. All actors use pentad-averaged ERA-20C

data for JJA from 1900 to 2010.

Approx. location Variable Lat–lon bounds

SRP SRP EOF region SRP index 208–608N, 308–1308E
V1 SRP peak 1 V200 578N, 178E
V2 SRP peak 2 V200 458N, 478E
V3 SRP peak 3 V200 418N, 798E
V4 SRP peak 4 V200 438N, 1118E
V5 SRP peak 5 V200 458N, 1458E
NERU Northeast Russia T 608–708N, 1408–1608E
ARPI Arabian Peninsula T 258–358N, 408–508E
CEAS Central Asia T 358–458N, 608–808E
MONG Mongolia T 408–508N, 908–1108E
WEUR Western Europe T 408–508N, 108W–108E
EEUR Eastern Europe T 458–558N, 308–508E
MED Mediterranean v 308–418N, 178–318E
IND Western India v 158–288N, 708–808E

TABLE 3. For all simulations, columns show the abbreviations used in the text, atmospheric horizontal resolution, resolution at the

equator, integration length (of each ensemble member), number of ensemble members, and details of the experiment. Please refer to the

text for a description of the different configurations and experiments.

Simulation Model Resolution

Resolution at

equator (km) Length (yr)

No. of

members Configuration

A96 MetUM GA6 N96 208 27 (1982–2008) 1 AMIP

A216 MetUM GA6 N216 88 27 (1982–2008) 1 AMIP

C96 MetUM GC2 N96 208 100 1 Fully coupled

C216 MetUM GC2 N216 88 100 1 Fully coupled

C512a MetUM GC2 N512 39 100 1 Fully coupled

C512b MetUM GC2 N512 39 100 1 Fully coupled

PAC.C MetUM GOML N96 208 30 3 MC-KPP, cold Pacific

PAC.N MetUM GOML N96 208 30 3 MC-KPP, neutral Pacific

PAC.W MetUM GOML N96 208 30 3 MC-KPP, warm Pacific

ATL.C MetUM GOML N96 208 30 3 MC-KPP, cold Atlantic

ATL.N MetUM GOML N96 208 30 3 MC-KPP, neutral Atlantic

ATL.W MetUM GOML N96 208 30 3 MC-KPP, warm Atlantic

GFDL.C GFDL AM2.1 28 3 2.58 280 50 1 SST-driven, cold AMO

CAM.C NCAR CAM3.5 T85 155 50 1 SST-driven, cold AMO

CCM.C LDEO/NCAR CCM3 T42 310 50 1 SST-driven, cold AMO

GFDL.W GFDL AM2.1 28 3 2.58 280 50 1 SST-driven, warm AMO

CAM.W NCAR CAM3.5 T85 155 50 1 SST-driven, warm AMO

CCM.W LDEO/NCAR CCM3 T42 310 50 1 SST-driven, warm AMO

GFDL.N GFDL AM2.1 28 3 2.58 280 50 1 SST-driven, neutral AMO

CAM.N NCAR CAM3.5 T85 155 50 1 SST-driven, neutral AMO

CCM.N LDEO/NCAR CCM3 T42 310 50 1 SST-driven, neutral AMO
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Note that, by definition, the EOF algorithm requires

removing the time mean from each grid point. When

computing the SRP index for a dataset, we remove

the time mean based on the entire length of the data.

For comparing our experiments, however, this method

would not allow us to detect offsets in the SRP index

between one simulation and another. Therefore, we first

form synthetic time series by concatenating V200 data

from each simulation involved in the comparison. We

then remove the time mean from the synthetic dataset

and compute the pseudo-PC as usual.

To analyze intraseasonal SRP variability, we com-

pute daily and pentad-mean pseudo-PC time series.

Computing the daily SRP index combines all JJA days

of a given set of years, before removing the mean of

the entire time series. The computation of the pentad

SRP index follows the causal effect network algorithm

described below.

c. CEN analysis

To better understand how positive or negative SRP

years arise from its intraseasonal evolution, we per-

form a causal effect network (CEN) analysis, following

Kretschmer et al. (2016). Similar causal discovery anal-

ysis has been applied to various problems in atmo-

spheric and oceanic science, such as the role of the

North Atlantic overturning in global-mean temperature

variability (Schleussner et al. 2014), Arctic drivers of the

midlatitude winter circulation (Kretschmer et al. 2016),

and tropical air–sea coupled processes (Runge et al. 2014,

2015).

We first select a set of variables that represent pro-

cesses relevant to SRP variability. The SRP has five

prominent V200 extrema over Eurasia (Fig. 1a,c), two of

which are outside the SRPdomain (goldenbox inFig. 1c).

We refer to V200 at these five locations as V1, V2, V3, V4

andV5, respectively, fromwest to east (magenta triangles

in Fig. 1c). Regions with strong temperature anomalies

identified in Figs. 2a and 2b aremarked by green boxes in

Fig. 1c. The SRP is correlated with precipitation over

northwest India (Wang et al. 2017). To measure this in-

fluence, we diagnose the monsoon–desert mechanism,

involving opposite-signed vertical motions over western

India (IND) and the easternMediterranean (MED). IND

and MED are marked by red boxes in Fig. 1c; their

bounds are chosen to coincide with key locations defined

in Tyrlis et al. (2013). Table 2 lists all variables and their

locations.

One can expect that on scales from days to weeksmost

of the above variables are strongly autocorrelated and

mutually correlated. However, we do not expect causal

relationships between most of them. CEN allows us to

separate cause and effect on intraseasonal time scales

despite autocorrelations and common causes. We form

pentad-mean time series of the variables in Table 2 and

follow the steps described in Kretschmer et al. (2016),

summarized below.

We compute a single time series for each variable, also

called ‘‘actors’’ X, in Table 2 by computing area aver-

ages of T and v in the boxes specified. For V200 we av-

erage over the 28 3 28 area around the given coordinate.

Anomaly time series are formed by removing the linear

trend and climatological mean from each pentad, then

combining the 30 JJA pentads of all years.

A set of causal ‘‘parents’’ Pi � X is found for each

actor xi 2 X by performing iterative conditional in-

dependence tests using partial correlations. Note that

Pi only consists of processes that are significantly cor-

related with xi after removing the possible influence of

all xi 2 X, including xi itself, at lead times t 2 1, . . . , 18;

that is, we test all lead times up to 90 days.

To quantify the strength of the causal relationship, all

parents Pi are included in a multiple linear regression

analysis. For each xi we perform a set of multiple re-

gressions: each multiple regression includes the parents

Pi and one xtk 2 X. The xtk 2 X include all actors in X at

all lead times t 2 0, . . . , 18, except those that are al-

ready included in Pi. This second step allows us to de-

termine the strength of causal links. These are defined as

the partial regression coefficients b. This second step

allows us to test, in a mathematically strict way, if b is

significant at the 1% level.

d. Simulations

The observational record from 1920 onward indicates

that the SRP is negatively correlated with the AMO and

positively with the PDO (Fig. 2d). The IA (ID) corre-

lation coefficients for 1920–2010 are 20.10 (20.24)

(AMO) and 0.10 (0.26) (PDO), but none of them is

TABLE 4. Linear correlation coefficients of the interannual JJA

SRP index from ERA-20C (SRP), UDEL rainfall in northwest

India (208–308N, 708–808E; PNIND), southwest India (108–208N,

708–808E;PSIND), to the north of the Bay of Bengal (158–288N, 828–
1008E; PNBEN), and ERA-20C pressure velocity over the eastern

Mediterranean Sea (308–418N, 178–318E) for the periods 1904–

2006, 1904–70 and 1971–2006. Boldface numbers indicate that

correlations are significant at the 90% confidence level.

1904–2006 1904–70 1971–2006

SRP, PNIND 0.33 0.31 0.34

SRP, PSIND 0.16 0.09 0.25

PNIND, PSIND 0.59 0.48 0.75

SRP, PNBEN 0.01 20.03 0.09

PNIND, PNBEN 0.09 20.17 0.41

SRP, vMED 0.45 0.36 0.59
PNIND, vMED 0.40 0.38 0.42
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statistically significant at the 90% confidence level

(Wang et al. 2017). Based on observations alone, how-

ever, it is difficult to infer whether these correlations

have a physical foundation or are due to chance. Our

record of reliable observations is short relative to the

period of slow modes of climate variability, such as the

AMO and PDO. Furthermore, the AMO and PDO

may not be independent. There is additional variability

forced by other phenomena, such as ENSO (see

section 1).

To help mitigate these difficulties and untangle

possible causes of decadal-scale changes in the SRP,

we analyze numerical simulations with models of

varying complexity (Table 3). These include six cli-

mate simulations of the Met Office Unified model

(MetUM): two historical AMIP-style simulations

(A96, A216) of the Global Atmosphere 6.0 configura-

tion (GA6; Walters et al. 2017) and four coupled simu-

lations (C96, C216, C512a, and C512b) of the Global

Coupled configuration 2.0 (GC2; Williams et al. 2015).

The nodal number following ‘‘A’’ or ‘‘C’’ denotes the

atmospheric horizontal resolution (see Table 3). The

AMIP experiments test the impact (if any) of ob-

served SST variability on the SRP in the recent pe-

riod of 1982–2008. The GC2 experiments test the

impact of simulated SST internal variability (if any)

on the SRP over a much longer period, albeit with

complicating effects of biases in mean SST and possi-

ble misrepresentations of modes of variability. We in-

clude experiments at different horizontal resolutions

to increase the number of ensemble members. These

experiments were previously analyzed by Stephan et al.

(2018b), where more details of the simulations are

given. Stephan et al. (2018a) showed that these simu-

lations well capture extratropical Rossby wave propa-

gation over Eurasia.

To isolate the impact of the AMO on the phase of

the SRP in atmosphere-only global climate model

simulations, we analyze simulations from the U.S.

Climate Variability and Predictability (CLIVAR)

Drought Working Group. The North Atlantic SST

anomaly is calculated as the third rotated EOF of

annual-mean 1901–2004 SSTs (Fig. 5e). The annual-

mean anomaly is prescribed on top of a seasonally

varying SST climatology. The U.S. CLIVAR experi-

ments are available online at http://gmao.gsfc.nasa.

gov/research/clivar_drought_wg/index.html and are

described in Schubert et al. (2009). We analyze simula-

tions from the Geophysical Fluid Dynamics Laboratory

(GFDL) Atmosphere Model, version 2.1 (AM2.1;

Delworth et al. 2006), the National Center for Atmo-

spheric Research (NCAR) Community Climate Model,

version 3.0 (CCM3.0; Kiehl et al. 1998), and the NCAR

Community Atmosphere Model, version 3.5 (CAM3.5;

Neale et al. 2008).

Furthermore, we examine several integrations of the

Global OceanMixed Layer coupled configuration of the

MetUM (MetUM GOML2; Hirons et al. 2015), which

couples GA6 to the multicolumn K profile parameteri-

zation ocean model (MC-KPP). Each one-dimensional

ocean column is coupled to one atmospheric grid cell to

allow the exchange of heat, moisture, and momentum

every 3 h. The individual ocean columns simulate ver-

tical mixing, but not advection. To account for the lack

of advection and for biases in atmospheric surface fluxes,

seasonally varying temperature and salinity tendencies

are applied to the full MC-KPP column at each grid

point. These tendencies constrain MC-KPP to a de-

sired seasonally varying ocean mean state. Tendencies

are computed from initial 10-yr GOML simulations, in

which theMC-KPP is relaxed to the desired ocean mean

state with a 15-day time scale. The mean seasonal cycle

of tendencies from these simulations is then imposed in

the simulations described below. This method ensures

that the tendencies do not damp variability. See Hirons

et al. (2015) for further details. The MC-KPP columns

are 1000m deep, with 100 points on a stretched grid

for finer resolution near the surface; the top layer is

1.2m thick.

To test the effect of SST variability in the Atlantic on

the SRP, we constrain the ocean in GOML2 ‘‘ATL’’

experiments to a warm (ATL.W), cold (ATL.C), and

neutral (ATL.N) background (Fig. 5a). The ATL SST

anomaly is derived from the years 1925–61 (ATL.W)

and 1962–96 (ATL.C), corresponding to a positive

and a negative phase of the AMO, respectively.

ATL.N is constrained to the 1925–96 average. Simi-

larly, our GOML2 Pacific (‘‘PAC’’) experiments use

warm (1976–2005; PAC.W), cold (1946–75; PAC.C),

and neutral (1946–2005; PAC.N) SST backgrounds in

the Pacific; the time period 1976–2005 (1946–75) cor-

responds to a positive (negative) phase of the PDO

(Fig. 5b).

The target ocean mean states are constructed from

the Met Office EN4 ocean analysis (version 4.2.0;

Good et al. 2013). For the warm and cold experiments,

annual-mean ocean temperature and salinity anoma-

lies are computed relative to the neutral experiment,

using the time periods specified above. These anoma-

lies are then scaled by a factor of 3 (for the Atlantic)

and 2 (for the Pacific) to give SST anomalies of simi-

lar magnitudes to those used in the CLIVAR AMO

and PDO experiments. The anomalies are imposed on

the mean seasonal cycle of the neutral experiment,

only in the basin of interest, and only north of 208S. A
five-grid-point transition region at the 208S boundary
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blends the anomalies and the climatology. We em-

phasize that the GOML experiments are constrained

not to idealized AMO or PDO phases, but to ocean

temperature and salinity anomalies extracted from

multidecadal periods of interest. While these periods

correspond to AMO and PDO phases, the imposed

ocean anomalies also contain the influence of other

phenomena.

3. SRP variability in simulations and reanalysis

Figure 5f compares the variability of the SRP in 1900–

2010 ERA-20C and all simulations to that in 1979–2016

ERA-Interim. ID variability in the longer ERA-20C

period is only a third of that inERA-Interim, highlighting

again that ID variability has increased since the mid-

1970s in reanalysis data (Fig. 1b). IA and ID variability

in all MetUM and CLIVAR simulations varies from

close to ERA-20C to about 20% greater than ERA-

Interim, indicating that the simulations produce a de-

gree of variability that is consistent with observations.

SRP variance does not systematically change with

resolution or air–sea coupling in MetUM. Figure 5f

also shows the SRP-explained fraction of V200 variance

inside the SRP domain relative to ERA-Interim.

Values are between ;0.7 and 1.0 except for CAM.N

and CAM.W, where they are ;0.5–0.6, but these sim-

ulations also have the smallest variability. Overall, the

simulations capture the SRP, consistent with Kosaka

et al. (2009).

FIG. 5. Composites of simulated SST anomalies from the GOML (a) ATL and (b) PAC experiments, and re-

gression of 1920–2006 detrended and filteredHadISST SSTs against the normalized ID component of the (c) AMO

and (d) PDO indices. (e) The SST anomaly used in the CLIVARAMO experiments. (f) For the JJA SRP index in

ERA-20C (1904–2006) and each simulation (full length), the fraction of IA and ID standard deviation (circles)

relative to ERA-Interim (1979–2016). Also shown (plus symbols) is the fraction of the SRP-explained variance in

V200 in the SRP domain (208–608N, 308–1308E) relative to that in ERA-Interim. For the GOML PAC and GOML

ATL experiments, the values shown correspond to the ensemble average.
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We next examine the relationship between SRP

variability and SSTs in observations and MetUM GA6

and GC2. As noted by Wang et al. (2017), a positive

unfiltered 1979–2010ERA-Interim SRP index is associated

with SST anomalies that resemble a negative AMO

and a positive PDO (Figs. 6a and 5c,d). The 1982–2007

A96 and A216 simulations use observed SSTs and

historical solar, aerosol, and greenhouse gas forcings.

Neither A96 nor A216 produces the observed SRP

variability. Correlations of their SRP indices with that

of ERA-Interim are only 0.26 (A96) and 0.14 (A216).

The four GC2 simulations do not show consistent SST

anomalies associated with the SRP, either with each

other or with observations (Figs. 6b–e). Thus, the SRP

in GC2 is not linked to realistic coupled modes of de-

cadal variability.

Starting with the CLIVAR AMO experiments,

we next analyze targeted simulations from reduced-

complexity models. We compute the SRP index from

synthetic time series that combine the warm, cold, and

control simulations of each model (GFDL, CAM,

CCM), as outlined in section 2b. The average normalized

SRP indices in GFDL are 10.03, 20.14, and 10.04 for

the cold, neutral, and warm AMO simulations, re-

spectively; 20.05, 10.14, and 20.09 in CAM; and

0.04, 20.16, and 0.12 in CCM. Therefore, the imposed

AMO SST anomaly does not systematically modulate

the SRP. This is consistent with MetUM A96 and

A216.

The above findings support the hypothesis of Kosaka

et al. (2012) that the ocean does not force the SRP,

which they suggested explained why models showed low

seasonal prediction skill for the SRP phase. Neverthe-

less, we cannot conclude that SST variability is irrele-

vant to SRP variability, as the SST signal may be

mediated through the ISM (Krishnan and Sugi 2003;

Goswami et al. 2006; Joshi and Rai 2015). The GA6 and

GC2 simulations may not correctly capture these tele-

connections. We discuss this further in section 6.

The GOML experiments include air–sea coupling

with minimal SST biases relative to the desired mean

ocean state. The ATL and PAC GOML experiments

consist of three 30-yr simulations each for the warm,

cold, and control ocean states in the respective basins

FIG. 6. Regression of (a) the normalized 1979–2010 ERA-Interim SRP index against observed 1979–2010 JJA

SSTs, and (b)–(e) the normalized SRP indices for each MetUM GC2 simulation against simulated JJA SSTs.

Stippling indicates significance at the 10% level.
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(Table 3). This allows us to compute 27 synthetic time

series for each set of experiments (PAC and ATL). The

average SRP phases of these 27 time series are shown

in Figs. 7a and 7b. For both PAC and ATL, the phase

of ocean variability shifts the SRP phase significantly.

Composites of temperature (Figs. 7c,d) and precipita-

tion (Figs. 7e,f) show that both cold simulations (PAC.C

and ATL.C) have common anomalous wet conditions

over India relative to the warm simulations (PAC.Wand

ATL.W); this is consistent with observed decadal ISM

variability associated with Atlantic and Pacific forcing

(Krishnan and Sugi 2003; Goswami et al. 2006; Joshi and

Rai 2015).

Precipitation in India is correlated with the SRP in-

dex in observations and in GA6 and GC2 (not shown).

This makes it difficult to infer whether precipitation

anomalies over India occur in response to an anom-

alous SRP or drive an anomalous SRP (Ding and

Wang 2005, 2007). The GOML simulations, on the

other hand, suggest that precipitation anomalies over

India may be responsible for modulating the SRP

phase via their impact on the west-central Asian high,

FIG. 7. Results fromGOML experiments: (a) the average phase of the SRP index for the 27 synthetic time series

constructed from the PAC experiments (dots), with their mean (box) and standard deviation (solid horizontal

lines). Also shown are composites of (c) 1.5-m temperature and (e) precipitation for PAC.C–PAC.W. (g) As in (a),

but for 500-hPa pressure velocity over the easternMediterranean Sea (308–418N, 178–318E). (b),(d),(f),(h)As in (a),

(c), (e), and (g) respectively, but for the GOMLATL experiments. For each SST experiment (PAC and ATL), the

27 synthetic time series are constructed by combining cold, neutral, and warm ensembles (three members each) in

every possible way, using one cold, one neutral, and one warm run.
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connected to the monsoon–desert mechanism (Tyrlis

et al. 2013). To provide evidence for this mecha-

nism in GOML, in Figs. 7g and 7h, we reproduce

Figs. 7a and 7b, but this time for pressure velocity

over MED (see Table 2 for definition). Subsidence

over MED is indeed increased or decreased by about

the same order of magnitude as the SRP index in

Figs. 7a and 7b.

The nonlinearity in Fig. 7h occurs because SST

anomalies in the ATL GOML simulations do not only

induce precipitation anomalies over India, but also a

meridional dipole pattern over Europe with drier

(wetter) conditions over northern (southern) Europe in

ATL.C and vice versa in ATL.W. Thus in ATL.C and

ATL.W, precipitation anomalies over southern Europe

and India are of the same sign; rising (sinking) over

southern Europe compensates the sinking (rising) in-

duced by rising (sinking) over India. In ATL.N there is

no dipole anomaly over Europe but ATL.N still shows

wet anomalies along the southern Himalayas. It is

likely that this induces sinking over theMediterranean,

which in ATL.N is not compensated, explaining why

ATL.N has the most positive vMED in Fig. 7h. Recall,

however, that while the monsoon–desert mechanism is

connected with a modulation of the SRP, the vertical

motion over MED is not the immediate cause for a

weaker or stronger SRP. Hence, the SRP response in

Fig. 7b is still linear.

4. Observed IA and ID SRP variability

Since the SRP index is based on EOF analysis, it is

instructive to examine the temporal variability of the

SRP’s individual V200 peaks (magenta triangles in

Fig. 1c). Time series of normalized 1979–2016 ERA-

Interim V200 at these peaks are shown in Figs. 8b–f.

Peaks V2–V4 exhibit the strongest decadal shift. If

the decadal shift of the SRP had its source over Europe,

we would expect V1 to show a pronounced decadal shift.

Instead, Figs. 8a–f are consistent with an upstream im-

pact of South Asia, which mainly affects V2–V4.

We now inspect the relationship between IA and ID

SRP variability and precipitation over South Asia.

Figure 8g shows time series of the SRP index and JJA

precipitation over northwest India PNIND and southwest

India PSIND. The synchronicity of PNIND and PSIND has

increased since the mid-1970s: the correlation between

PNIND and PSIND increased from 0.48 in 1904–70 to 0.75

in 1971–2006 (Table 4). The small correlation of 0.09

between the SRP and PSIND before 1970 suggests that

the SRP does not drive PSIND variability (Table 4). In-

stead, recall that northwest and southwest India (NIND

and SIND) and the area to the north of the Bay of

Bengal (NBEN) are important for driving themonsoon–

desert mechanism (Tyrlis et al. 2013). In fact, Cherchi

et al. (2014) showed that the strongest anomalous ver-

tical motion over the Mediterranean (MED) region

occurred when they forced their linear baroclinic model

with combined heating over the Arabian Sea and the

Bay of Bengal. The increase in synchronicity between

PNIND and PNBEN is substantial as well (Table 4): PNIND

and PNBEN were insignificantly negatively correlated

(20.17) before 1970 and positively correlated (10.41)

after. The ID variability of the SRP has increased since

PNIND, PSIND, and PNBEN became synchronized. In ad-

dition, the correlations between vMED and the SRP, and

vMED and PNIND became stronger.

5. Observed synoptic SRP variability

SRP variability involves Rossby wave propagation

and monsoon precipitation, which have typical time

scales of;2–10 days. To better understand how positive

or negative SRP years derive from these synoptic-time-

scale processes, we now investigate the relationship

between South Asia and the SRP on synoptic time

scales.

Figure 9 examines the intraseasonal variability of the

SRP for particularly positive and negative years based

on the normalized daily 1900–2010 ERA-20C SRP in-

dex. The SRP has similar intraseasonal properties in

positive and negative years (Fig. 9a). The autocorrela-

tions (Fig. 9b) and power spectra (Fig. 9c) in positive

and negative years are very similar, such that the dis-

tributions of daily SRP indices are merely shifted by

the seasonal-mean anomaly (Fig. 9d). Thus, positive

and negative years do not derive from a few extreme

days or from different properties of the Rossby waves

responsible for the SRP. Instead, there is a systematic

reinforcement of background states that leads the

Rossby wave signature along the Eurasian jet to project

more preferably onto the positive or negative SRP

phase, respectively.

To investigate how different processes modulate this

background state on synoptic time scales, we applied

CEN analysis to pentad time series of the ERA-20C

variables listed in Table 2 and shown in Fig. 1c.

Figures 10a–c show the effects of the variables listed on

the x axes (called parents) on the variables listed on the

y axes (called actors). Each colored box shows the

partial correlation coefficient of a particular parent–

actor pair after removing the influence of the other

parents on the actor. The lead time at which this cor-

relation is strongest is written inside each colored box.

Thus, green boxes indicate that a parent variable is

positively correlated with an actor variable, and pink
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boxes indicate negative correlations.Where parent and

actor are identical, the colors indicate partial autocor-

relations. The CEN analysis clearly captures the east-

ward propagation of the SRP (Fig. 10a). For example,

V2–V4 lag V1; V3–V4 lag V2; V4–V5 lag V3; and V5

also lags V4. Wind extrema in the west lead wind ex-

trema in the east; the signs of the correlations are such

that positive and negative extrema alternate, as shown

in Fig. 1a. Hence, the Rossby waves clearly originate

over Europe.

FIG. 8. ID variability of the SRP: JJA-mean time series (black lines) and their ID com-

ponents (blue and red shading) for the (a) normalized 1979–2016 ERA-Interim SRP index

and (b)–(f) normalized 1979–2016 ERA-Interim V200 at the peak locations of the SRP, as

defined in Table 2 and shown in Fig. 1c. ForV1, V3, andV5 the sign is flipped such that V1–V5

are positively correlated with the SRP index. The standard deviation s of the original time

series (black line) is shown above each panel. (g) The 1900–2010 ERA-20C SRP index (black)

and normalized JJAUDEL rainfall time series in northwest India (blue) and southwest India

(red).
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Figure 10b shows the effect that the SRP and V1–V5

have on 2-m temperature in different areas. Temper-

ature in western and eastern Europe is affected by V1;

temperature in Mongolia is affected by V2. Temper-

ature in central Asia lags V1 and V2; temperature over

the northern Arabian Peninsula lags V3. However,

temperature over eastern Siberia is not affected by

the SRP. This is consistent with the fact that the IA

component of the SRP does not show significant

temperature anomalies over eastern Siberia. This sup-

ports our hypothesis that temperature anomalies in this

region may not be driven by the SRP (Figs. 2a,b).

Finally, the CEN analysis confirms a positive feedback

loop between vertical motion over IND and MED and

the SRP (Fig. 10c). For example, in the positive SRP

phase, V3 northerlies precede rising motion over IND.

Rising motion over IND induces sinking over MED.

Sinking over MED precedes V2 southerlies and V3

FIG. 9. Intraseasonal variability of the SRP. All panels use the normalized daily 1900–2010

ERA-20C SRP index in JJA: (a) SRP index for the five most positive (red) and negative

(blue) years of the seasonal SRP index. (b) Autocorrelations for the 20 most positive (red)

and negative (blue) years of the seasonal SRP index (dashed lines), and their averages (thick

solid lines). (c) Power spectra for the 20 most positive (red) and negative (blue) years of the

seasonal SRP index (dashed lines), and their average (thick solid lines). (d) Fractional oc-

currence of daily SRP index values for the 20 most positive (red) and negative (blue) years of

the seasonal SRP index.
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northerlies (i.e., the positive phase of the SRP). This

feedback loop operates on synoptic time scales and can

modulate the background state of the atmosphere to re-

semble the positive or negative phase of the SRP.

Summers with anomalous South Asian monsoon pre-

cipitation would trigger this feedback loop, explaining how

coherent summer rainfall anomalies over SIND, NIND,

and NBEN can create an anomalous SRP summer.

We chose the IND area for the CEN algorithm because

it is important for driving themonsoon–desertmechanism

(Tyrlis et al. 2013) and because the SRP is associated

with strong precipitation anomalies there. We re-

peated the analysis with NBEN also included, but

this did not change any of the above conclusions.

6. Discussion

If precipitation anomalies over South Asia are re-

sponsible for the ID SRP variability, as suggested by

our analysis of GOML simulations and observations,

then we should be able to explain why the observed

relationships between SRP variability and SSTs are

not found in GA6 and GC2 (A96, A216, C96, C216,

C512a, C512b) or the CLIVAR AMO atmosphere-

only experiments.

The magnitudes of the IA SRP variability in all six

GA6 and GC2 simulations are closer to ERA-Interim

(i.e., 1979–2016) than to ERA-20C (i.e., 1900–2010)

(Fig. 5f). This is consistent with coherent IA rainfall

variability over South Asia in these simulations; corre-

lations between simulatedPNIND andPSIND are between

0.40 (A96) and 0.69 (C512a), while those betweenPNIND

and PSIND are between 0.21 (A216) and 0.64 (C216).

These values are indeed closer to the post-1970 observed

value (Table 4).

However, interannual simulated precipitation over

India in A96 and A216 differs substantially from ob-

servations with correlations of 20.08 (A96) and 20.1

(A216) between simulated and observed precipitation

averaged over northwest India (208–308N, 708–808E) for
the common period. A96 andA216 do not reproduce the

observed record of ISM precipitation despite observed

SST forcing, which is a common problem in AMIP

simulations (Kumar et al. 2005). Thus, these simulations

do not correctly represent the phase relationships be-

tween observed SSTs and the ISM, and therefore do not

reproduce the observed year-to-year SRP variability

over 1982–2008.

The GC2 simulations do not correctly capture the

teleconnections of ISM rainfall to slow modes of ocean

variability in the North Atlantic, as expected from

Goswami et al. (2006). The regression of simulated

PNIND against SSTs (Figs. 11a–d) reveals that PNIND is

FIG. 10. Results from the intraseasonal CEN analysis based on

ERA-20C: the partial-correlation coefficients b between selected

parents (‘‘cause’’) and actors (‘‘effect’’), as defined in Table 2 and

shown in Fig. 1c, showing (a) evidence of the eastward propagation

of SRP anomalies, (b) the effects that the SRP and associated V200

anomalies have on temperature in specific locations, and (c) evi-

dence that the monsoon–desert mechanism provides a positive

feedback loop. All correlations shown are significant at the 1%

level. Numbers indicate the lead time in units of pentads.
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not driven by the AMO. On the other hand, the four

GC2 simulations associate PNIND with an SST pattern

in the North Pacific that resembles the cold PDO

phase, which is consistent with the wet conditions over

NIND in the GOML PAC.C simulations.

The CLIVAR models show different patterns of

anomalous precipitation over India in response to

idealized AMO forcing with both wetter and drier

areas (Figs. 11e–g). CAM produces dry anomalies in

the mountainous terrain of northern India, the east

coast and west coast, and in the area to the north of the

Bay of Bengal, and wet anomalies in south and central

India (warm minus cold phase); CCM produces dry

anomalies along the Himalayas, wet anomalies in

central India, and dry anomalies along the coasts and

in southern India. GFDL produces wet (dry) anoma-

lies in the northern (southern) half of India. This lack

of coherent precipitation anomalies over India in each

of these models likely explains why there are no

consistent shifts of the SRP phase in response to the

AMO, since the regional diabatic heating anomaly

arising from the convective signal will not be large

enough to excite perturbations in the wave response

to the west.

Our results rely on reanalysis and rain gauge data.

Both datasets may have errors that stem from the spa-

tiotemporal incompleteness of the observational field,

particularly in the early half of the twentieth century,

variations in the density of observations and type of

instruments, and errors in numerical algorithms (Thorne

and Vose 2010). However, Wang et al. (2017) showed

that the regime shifts of the ID SRP in 1972 and 1997 are

consistent across five sets of reanalyses. Furthermore,

they showed that these regime shifts and the increased

ID variability after 1970 are still found when linear

trends are removed.

To ensure that our conclusions based on JJA-seasonal

average UDEL data are robust, we compared UDEL to

the Asian Precipitation–Highly Resolved Observational

Data Integration toward Evaluation of Water Resources

(APHRODITE; Yatagai et al. 2012). APHRODITE

has a high density of rain gauges over India; the high

quality of the data for India has been confirmed

(Rajeevan and Bhate 2009; Krishnamurti et al. 2009).

For the 20 years before and after 1970 the correlations

between PNIND and PSIND in APHRODITE are 0.41

and 0.72, respectively. In UDEL they are 0.38 and

0.82, respectively. Thus there is clear enhanced spatial

FIG. 11. (a)–(d) Regression of the normalized JJA PNIND time series against SSTs in the GC2 simulations. Stippling indicates significance

at the 10% level. (e)–(g) Composite precipitation anomalies from the CLIVAR experiments.
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coherency of rainfall in India following 1970. For the

whole period (1950–90), the correlations between

APHRODITE and UDEL are 0.90 for PNIND and 0.89

for PSIND, indicating strong consistency between the

two datasets. Note that the increase in synchronicity of

PNIND and PSIND around 1970 is also consistent with

the increase in synchronicity of both the SRP and

PNIND with vMED in ERA-20C. ERA-20C may be

considered independent of APHRODITE and UDEL

because ERA-20C only assimilates surface pressure

and marine wind observations.

While the PAC and ATL SST patterns in GOML

have a specific effect on the SRP, which we argued is

mediated through changes in precipitation over South

Asia, we cannot be certain that these SST patterns

would have the same effect in reality. Similarly, even

though GC2 and GA6 did not produce a consistent re-

lationship between SRP and SST variability, it may very

well be that SSTs influence the SRP in reality through

mechanisms that are not correctly captured by models.

Such mechanisms could include, for instance, the effects

of ENSO on the location of heat sources over South

Asia (Ding and Wang 2005), or of the AMO and PDO

on the ISM (Krishnan and Sugi 2003; Goswami et al.

2006; Joshi and Rai 2015). Zhang et al. (2008) found

that the standard deviation of Niño-3 SST anomalies

increased from;0.658C in the 1940s to;0.958C in recent

decades. It is possible that the increase in ENSO and SRP

amplitudes are related through ENSO modulation of

South Asian precipitation. However, it is beyond the

scope of this study to investigate the relationship between

any particular pattern of SST variability and the SRP.

The meridional structure of the precipitation anom-

alies over the western Pacific produced by the GOML

SST experiments (Figs. 7e,f) resembles precipitation

anomalies associated with the Pacific–Japan pattern

(Kosaka et al. 2013) and with the motion of the western

Pacific subtropical high (Yang et al. 2017). Dynamically,

these patterns are unlikely to influence the SRP because

their associated circulation anomalies occur downstream

of the SRP. We cannot exclude that the SRP could

modulate the Pacific–Japan pattern. Alternatively, the

SRP and downstream patterns could be modulated by

ISM precipitation. Understanding the links between the

SRP, the Pacific–Japan pattern, and precipitation vari-

ability that is associated with the western Pacific sub-

tropical high is outside the scope of the paper.

Basedon regressions of surface temperature against the

SRP andAMO indices and results from theCENanalysis,

we argued that it is plausible that temperature anomalies

in themidlatitudes of Eurasia are driven by theAMO, but

we did not investigate the mechanism. Wang et al. (2017)

associated these midlatitude anomalies with an ID version

of the SRP that has a different spatial structure with a

greater meridional extent than the IA SRP, while we

treated the SRP as having a consistent spatial structure

across all time scales. Both are valid approaches and we

suggest interpreting the ID version of the SRP in Wang

et al. (2017) and associated temperature anomalies in

eastern Siberia as a different teleconnection pattern that

may be forced by the AMO. Similarly, the northward ex-

tension of the ID SRP may be interpreted as a mixture of

the traditional SRP and other signals. Our study examined

the traditional SRP, but investigating the ID teleconnec-

tion and its potential link to the AMO could be an in-

teresting avenue for future research.

7. Summary

Substantial surface air temperature and precipita-

tion anomalies in Eurasia are associated with SRP

variability (Lu et al. 2002; Wu 2002; Enomoto et al.

2003; Ding and Wang 2005; Huang et al. 2011; Chen

and Huang 2012; Saeed et al. 2011, 2014; Hong and Lu

2016; Wang et al. 2017). Many factors have been pro-

posed to modulate the SRP phase on interannual to

interdecadal scales, including SSTs and/or convective

anomalies in the Atlantic, Pacific, and Indian Oceans

(Lu et al. 2002; Chen and Huang 2012; Ding et al. 2011;

Ding and Wang 2005). Our findings suggest that the

ocean does not directly force the SRP, as also argued

by Kosaka et al. (2012). Understanding the physical

mechanism responsible for the variability of the SRP is

particularly important because contemporary initial-

ized coupled prediction systems cannot reliably predict

the phase of the SRP at monthly to seasonal lead times

(Kosaka et al. 2012).

Our analysis of air–sea coupled and atmosphere-only

climate simulations—the latter forced with observed

SSTs, and with prescribed SST anomalies resembling

the AMO—showed that none of these simulations as-

sociated SRP variability with a consistent SST pattern.

Furthermore, we analyzed six GOML experiments, in

which the atmosphere is coupled to one-dimensional

ocean columns that allow easily constraint of the ocean

mean state to a target climatology. These simulations,

constrained to different phases of decadal variability

in the Atlantic and Pacific separately, produced pre-

cipitation anomalies over South Asia, consistent with

observational and modeling studies based on the PDO

and AMO, that we argued were responsible for the

significant shifts of the SRP phase between these

GOML experiments. The SRP was in a more positive

phase in those GOML experiments with wet conditions

over South Asia, associated with cold phases of decadal

variability in the tropical Atlantic and the Pacific.
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Based on these results we investigated the possibility

that convection associated with the SouthAsian summer

monsoon is responsible for the decadal variability of

the SRP. We applied causal effect network analysis to

variables from ERA-20C that play a key role in the

monsoon–desert mechanism (Rodwell and Hoskins

1996; Ding and Wang 2005; Ding et al. 2011; Tyrlis et al.

2013; Cherchi et al. 2014). This confirmed the existence

of a positive feedback loop between the SRP and ver-

tical motion over India and the Mediterranean (Fig. 4).

Through this mechanism anomalous South Asian mon-

soon precipitation is able to reinforce the positive or

negative phase of the SRP on intraseasonal time scales.

By analyzing the properties of the SRP on synoptic time

scales, we found that a positive or negative SRP year can be

understood as the low-frequency rectification of variability

on synoptic time scales. We showed that the intraseasonal

variability of the SRP does not necessarily feed back onto

the decadal SRP variability. Rather, the decadal variability

alters the atmospheric background state on which intra-

seasonal SRP variability occurs. Importantly, JJA

rainfall over northwest India, southwest India, and an

area over and to the north of the Bay of Bengal have

become more synchronized since the mid-1970s, consis-

tent with stronger decadal variability in themonsoon since

that time. These areas were shown to be most important

for triggering the monsoon–desert mechanism (Tyrlis

et al. 2013; Cherchi et al. 2014). Thus, we found a plausible

explanation for the stronger interdecadal SRP variability

than earlier in the twentieth century.
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