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Abstract: This study estimates the impact of dust aerosols on surface solar radiation and solar energy in
Egypt based on Earth Observation (EO) related techniques. For this purpose, we exploited the synergy
of monthly mean and daily post processed satellite remote sensing observations from the MODerate
resolution Imaging Spectroradiometer (MODIS), radiative transfer model (RTM) simulations utilizing
machine learning, in conjunction with 1-day forecasts from the Copernicus Atmosphere Monitoring
Service (CAMS). As cloudy conditions in this region are rare, aerosols in particular dust, are the most
common sources of solar irradiance attenuation, causing performance issues in the photovoltaic (PV) and
concentrated solar power (CSP) plant installations. The proposed EO-based methodology is based on the
solar energy nowcasting system (SENSE) that quantifies the impact of aerosol and dust on solar energy
potential by using the aerosol optical depth (AOD) in terms of climatological values and day-to-day
monitoring and forecasting variability from MODIS and CAMS, respectively. The forecast accuracy was
evaluated at various locations in Egypt with substantial PV and CSP capacity installed and found to
be within 5-12% of that obtained from the satellite observations, highlighting the ability to use such
modelling approaches for solar energy management and planning (Mé&P). Particulate matter resulted in
attenuation by up to 64-107 kWh/m? for global horizontal irradiance (GHI) and 192-329 kWh/m? for
direct normal irradiance (DNI) annually. This energy reduction is climatologically distributed between
0.7% and 12.9% in GHI and 2.9% to 41% in DNI with the maximum values observed in spring following
the frequent dust activity of Khamaseen. Under extreme dust conditions the AOD is able to exceed 3.5
resulting in daily energy losses of more than 4 kWh/m? for a 10 MW system. Such reductions are able to
cause financial losses that exceed the daily revenue values. This work aims to show EO capabilities and
techniques to be incorporated and utilized in solar energy studies and applications in sun-privileged
locations with permanent aerosol sources such as Egypt.
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1. Introduction

The various observed and predicted changes in global climate stem from the short-sighted use
of fossil fuels as an energy source. To mitigate climate change while permitting continued industrial
development, it is necessary to make greater use of renewable energy sources as soon as possible [1].
To this direction, renewables currently account for more than 22% of total global electricity generation,
of which last year more than 400 GW (32.4%) were produced from solar energy [2]. Over the last 5 years
(2013-2017), an estimated 15 Gt CO,eq of emissions was avoided through renewables, compared
to the emissions that would otherwise have occurred from fossil fuels-based power [3]. As a result,
the exploitation of renewables is becoming a main requirement in order to meet the sustainable
development goals (SDG), which were institutionalized by the United Nations [4], without decelerating
economic growth and reducing welfare.

The above situation is most relevant in developing countries like Egypt, which have historically
been reliant on fossil fuels for electricity and the market for renewable energy was underdeveloped,
without clear business models and practices to make energy more reliable and more affordable for
citizens. Nevertheless, given its geographical location, the most important potential source of renewable
energy for Egypt is the Sun. A country with high average solar energy potential [5] and a massive land
mass, well positioned to benefit from the continued growth in solar power generation [6]. In order to
succeed in providing 22% of its energy supply by renewables before 2030 [7,8]. By the end of 2015, 70 MW
of solar power was already operational in Egypt, with 1.8 GW in project development [9], while almost
7,600 km? of desert were allocated in 2014 for future renewable energy projects, with permits for
land allocation already obtained by the New and Renewable Energy Authority (NREA). As cloudy
conditions in Egypt are rare, aerosols, mainly dust aerosols, are the most common source of solar
irradiance attenuation [10,11], causing performance problems in the photovoltaic (PV) and concentrated
solar power (CSP) plants. In various cases aerosol and dust are able to cause solar energy losses of
the order of 80% and 50%, respectively [12-16]. In particular, the main source of aerosols in Egypt is
Saharan dust and more specifically the Khamassen dust storms, which is a fifty days phenomenon
(Khamaseen in Arabic means “fifty”), frequent from mid/March through April [17-22]. Aerosols are
also responsible for changes in the radiative forcing (RF) of the Earth-Atmosphere system through their
interaction with solar radiation [23]. As defined by the recent World Meteorological Organization report
on “Aerosol Measurements, Procedures and recommendations” [24], “Aerosol Optical Depth (AOD) is
the most important aerosol parameter, in terms of climate sensitivity along with well mixed greenhouse
gases, for determining the direct radiative effect and forcing”.

At the same time, continuous monitoring of the impact of particulate matter on solar energy
has become an important activity at many research and operational weather centres [12,25] due to
the growing interest from the solar energy industry. In brief, aerosols, reduce the energy generation
potential of solar panels by absorbing and scattering light, reducing the strength of the direct beam
(from which energy generation is most efficient). Electricity supplied to the grid must balance
demand such that unexpected fluctuations in the power generated by the solar facility are costly
since they require the use of rapid-response generators (e.g., natural gas). Being able to predict solar
generation allows cheaper energy sources to be used. As a result, the need for improved EO-based
estimation and forecasting services of AOD and solar energy potential is substantial in order to
fulfil the increasing integration of solar systems into the electricity grid and load exchanges with
direct impacts for the transmission and distribution system operators (TSO and DSO, respectively)
and their coordination [26]. The lack of forecasts or inaccurate forecasts results in an inefficient
operation of the electricity system and can even endanger the security of supply. The prediction of
AOD in Numerical Weather Prediction (NWP) models faces a number of challenges owing to the
complexity of atmospheric aerosol processes and their sensitivity to the underlying meteorological
conditions [27-29]. At the moment, there are numerous aerosol monitoring satellite sensors and
operational forecasting services which provide the AOD at a high spatial and temporal resolution,
while accurate predictions of the irradiance received at individual PV (where GHI is needed) or CSP
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installations (where DNI applies) are able to be estimated by various solar energy nowcasting and
forecasting methods and systems [30-35], which are able to use as input the aerosol information from
the aforementioned sources.

Many recent papers have studied the impact of aerosols and dust on the GHI and DNI [15,36-38]
and particularly in Egypt [39—42]. In this study we investigate the particulate matter impact on solar
radiation and energy in the region of Egypt by analysing long-term and forecast data sets of AOD
in conjunction with a state-of-the-art real-time RTM technique. This technique [34] was developed,
used and applied within several EU-funded projects (e.g., Geo-Cradle; http://geocradle.eu/en/)
as the so-called Solar Energy Nowecasting SystEm (SENSE). SENSE is based on the synergy of RTM
simulations, machine learning and real-time atmospheric inputs from satellites and models. In order
to estimate and forecast the aerosol and dust impact on the solar irradiances, we integrated MODIS
observations in a daily and climatological basis or CAMS 1 day forecasts, which is a combination
of NWP modelling and measuring approach [43,44], to the SENSE. The analysis was performed by:
(i) calculating a 16-year AOD climatology from MODIS and quantifying the corresponding impact on
GHI and DN, (ii) using the MODIS daily AOD observation values for the last 3 years (2015-2017) to
evaluate the CAMS forecasts for the whole Egyptian domain and for specific locations with high solar
energy exploitation potential and (iii) proposing and testing three energy M&P techniques; the CAMS
as an holistic approach, the MODIS persistence (PERS) based on the previous day values and the
MODIS climatology (CLIM) by using the 16-year average values. Finally, we made a brief financial
analysis for a hypothetical scenario of a 10 MW system in order to quantify the impact of aerosol
and dust presence on the energy production from PV and CSP systems and on the annual, monthly
and daily revenues under climatological and extreme dust event conditions. Section 2 presents data,
methods and techniques used. Section 3 describes the solar power and energy results including the
financial analysis for the aforementioned scenarios and in Section 4 we present our conclusions on the
proposed EO solutions.

2. Data and Methodology
2.1. Data

2.1.1. Model Forecasts

For aerosols, dust estimation and forecasting we used the CAMS 1-day total AOD and dust AOD
forecasts at 550 nm, which are based on the Monitoring Atmospheric Composition and Climate (MACC)
reanalysis tool and its aerosol type classification identifier [45]. The CAMS data set includes modelling
of aerosols and satellite AOD data assimilation from MODIS and other data sources for consistent
bias correction purposes [43,46]. The modelling part uses the ECMWF physical parameterizations
for aerosol interaction processes and follows the corresponding particulate matter treatment in the
LOA/LMD-Z model [47,48]. As presented in Reference [34] the main uncertainty of SENSE is linked
with the uncertainty of the model inputs. In this case with the aerosol related ones, most importantly
AOD. Reported CAMS AOD forecast uncertainty ranges from —0.1 to 0.2 in terms of mean bias against
Aeronet sun photometer data [49] in winter and summer months respectively. In addition to the
results of [49] we have used the El Farafra Aeronet site in Egypt and we have compared 180 existing
Level 2 days of AOD data for the 20152017 period, with the CAMS AOD data used in this study.
We found a mean AOD bias of 0.107 showing a CAMS overestimation, with a correlation coefficient
of 0.74 which is in a relative agreement with [46,49]. [46] report also that the spatial agreement of
CAMS AOD compared to MODIS, is very good confirming the capture of dust outbreaks and their
spatiotemporal evolution.

Aerosol classification, in brief, is based on annual or monthly climatology derived from the
emission database for global atmospheric research and the speciated particulate emission wizard as
described by [50], especially for dust particles, is a combination of source functions [51,52], 10 m wind
fields, land coverage, soil moisture and albedo in the ultraviolet—visible spectral region [53].
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The CAMS AOD and dust AOD 1 day forecasts were obtained for the period from January
2015 to December 2017, at 3 hour time steps and 0.4 degree spatial resolution for the regions of
Alexandria, Cairo, Suez, Hurghada, Aswan, Luxor, Marsamatrouh and Asyut as described in Table 1.
NREA proposed these specific locations because of their appropriateness for the installation of solar
farms that are able to cover the energy requirements of nearby residential areas and support the
Egyptian electricity grid. Subsequently, this aerosol forecast information was the main input parameter,
together with solar elevation, to the proposed RTM methodology for the determination of impacts on
solar irradiances.

Table 1. Coordinates (degrees), population and average height (meters above sea level) of the specific

locations in Egypt.

Location Population Code Latitude Longitude Height (m.a.s.l.)

Alexandria 5,172,000 ALE 31.2001 29.9187 12

Cairo 9,153,000 CAI 30.0444 31.2357 75

Suez 744,000 SUE 29.9668 32.5498 5

Hurghada 288,000 HUR 27.2579 33.8116 14

Aswan 290,000 ASW 24.0889 32.8998 194

Luxor 507,000 LUX 25.6872 32.6396 76

Marsamatrouh 448,000 MAR 31.3543 27.2373 30

Asyut 4,123,000 ASY 27.1783 31.1859 70

2.1.2. Satellite Observations

MODIS, onboard the polar orbiting Aqua satellite, has provided cloud-free multi-wavelength
aerosol retrievals, among other EQ, since 2002. The primary aerosol product is the AOD, reported
at 550 nm, which is retrieved via the implementation of three individual algorithms operating
separately over dark continental [54,55] and maritime targets [56,57] while thanks to the deployment
of the enhanced Deep Blue (DB) algorithm [58], aerosol observations are possible over land areas
characterized either by limited vegetation coverage, depending on the season, or by high surface albedo
(i.e., deserts), excluding snow/ice covered regions [59]. These AOD retrievals, are merged providing
almost full spatial coverage of the planet [60]. In the present study, MODIS-Aqua observations acquired
from different collections (i.e., versions of the retrieval algorithm) and at different spatiotemporal
resolutions (i.e., levels) have been utilized. More specifically, the Level 2 Collection 6 MODIS-Aqua
AOQODs, over the period 2002-2017, as well as the corresponding L3 C061 datasets, over the period
2015-2017, have been processed. The former data are provided in 5 min intervals (i.e., swaths) and their
spatial resolution is 10 km x 10 km (nadir view) while the latter ones, aggregated to 1° x 1° lat-lon grid,
are available on a daily basis. The climatology of AOD in Egypt and its impact on solar energy potential
was calculated in order to identify in monthly basis the attributes of the local and regional climatological
conditions that favour the presence of aerosols from local emissions and/or long-range transport.
Regarding the fine resolution of MODIS data, these have been regridded at an equal 0.1° x 0.1°
projection and then the monthly values, used as inputs to the RTM, have been calculated for the
entire domain of Egypt. From the raw L2 and L3 files, both accessible at the Level-1 and Atmosphere
Archive & Distribution System Distributed Active Archive Centre (https://ladsweb.modaps.eosdis.
nasa.gov/), the scientific data sets named as “AOD_550_Dark_Target_Deep_Blue_Combined” and
“AOD_550_Dark_Target_Deep_Blue_ Combined_Mean”, respectively, have been extracted and
analysed. There are four Quality Assurance (QA) flags (0: No Confidence, 1: Marginal Confidence,
2: Good Confidence and 3: Very Good Confidence) assigned to each MODIS L2 AOD retrieval
indicating its “reliability.” In the “merged” L2 AODs, the QA flags vary among the Dark Target (DT)
(QA>1 over ocean and QA=3 over land) and DB (QA>2) algorithms while the derivation of the L3
AOQODs is relied on spatial averages of L2 pixels weighted by their QA confidence level [61]. Finally,
MODIS AOD uncertainty and validation are presented in References [59,60,62] showing an agreement
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with Aeronet measurements in the regions of North Africa and Middle East. In particular, the bias of
DB AOD product is —0.036 and the corresponding of DT is reduced to —0.013 [60].

2.2. Methodology

2.2.1. Radiative Transfer Modelling Technique

We used an existing technique, which is based on RTM simulations produced by libRadtran [63,64],
machine learning in the form of a continuous function-approximating model, or a Neural Network (NN)
model and a variety of atmospheric inputs covering clear-sky and all-sky conditions. This technique is
the so-called SENSE system and its technical background and validation were described in detail in
Reference [34]. In brief, we first developed a large scale look-up-table (LUT) with more than 2.5 million
RTM simulations by using the pseudo-Spherical Discrete Ordinate Radiative Transfer solver [65] and
with input parameters the solar zenith angle (SZA), the AOD, the ice and water cloud optical thicknesses,
the Angstrom exponent (AE), the single-scattering albedo (SSA), the total ozone column (TOC) and
the columnar water vapor (WV) (Abbreviations presents the complete list of abbreviations). All the
technical and structural information about the RTM simulations, the LUT construction and specific
features are presented in Reference [66]. Then, a series of NNs were trained on solar irradiances spectra
and on integrated irradiances to produce instantaneous results covering the wavelength region between
285 and 2700 nm. For multivariate input-output data, feed-forward NNs with a minimum of one
layer of “hidden” neurons have been shown to be a universal function approximation [67]. For our
approach we connected the input-output vectors via two network layers—one containing the hidden
neurons with tanh activation functions and another containing output neurons with linear activation
functions [66,68] as depicted in Figure 1. This configuration allows the continuous and nonlinear
functional approximation that relates the output vector (e.g., surface solar radiation; SSR) with the input
vector (e.g., combination of atmospheric parameters).

Inputs Layer 1 Layer 2 Outputs
N 4 N 7 N\ N
4 N

X a' = OW"X+b") 2 =F(LW"a'+b) Y

Figure 1. Schematic showing the NN architecture connecting the input and outputs parameters [66].

The above computing architectures, in conjunction with operational inputs from EO data sources
like satellites and models, brought the “birth” of the SENSE system, which is capable of producing solar
power and energy results in terms of GHI and DNI of the order of 1 million simulations in less than 1
minute in high spectral resolution (1 nm) depending spatially and temporally on the input parameter
resolution (e.g., MODIS 0.1 degree and 1 day, CAMS 0.4 degree and 3 hours). SENSE was applied
to various solar energy related applications through the EU-funded coordination and support action
Geo-Cradle project by developing targeted and subsequent solar energy applications (http://solea.gr/).
In this study, since cloudy conditions in Egypt are rare, we focused on the aerosols’ quantification of
impact on SSR by retrieving and exploiting the AOD from MODIS observations and the CAMS forecasts
through the SENSE. In our RTM simulations we used the default aerosol model of [69] for ordinary
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particulate matter conditions (e.g., rural type aerosol in the boundary layer, background aerosol above
2 km, spring-summer conditions and a visibility of 50 km), which is the simplest way to include aerosols
in libRadtran [63,64]. Since we specified the AOD impact on SSR, we simulated this parameterization by
overwriting the default parameters with the integrated AOD using the aerosol_set_tau command [63].
More recent aerosol modelling efforts (e.g., the software package of Optical Properties of Aerosols
and Clouds; OPAC [70]) are based on the aerosol component descriptions of [69], demonstrating
the reliability and durability of the original aerosol model approaches. The parameterization was
band-based [71] (correlated K-approximation) and for the gas absorption the molecular bands provided
by Low-resolution atmospheric Transmittance and Radiance (LOWTRAN), while the code for spectral
irradiance for the extra-terrestrial solar source spectrum was implemented.

Concerning other than AOD aerosol optical properties, water vapor and traces gases, that affect
solar irradiance, input parameters were set to constant monthly climatological values from relevant
data sources. In particular, the WV climatology was retrieved by the medium resolution imaging
spectrometer onboard the European Space Agency’s environmental satellite, the TOC from Ozone
Monitoring Instrument (2008-2017) and the parameters SSA and AE were retrieved by the AeroCom
database [72]. The impact of TOC on SSR is of the order of 0.5% for 100 Dobson unit differences,
while for WV columns ranging between 0.5 and 2 cm the SSR difference is almost 3-5% under low
SZA (< 15 degrees) [34]. Regarding SSA and AE, we have used for both the constant value of 0.9
for the Egypt region. In order to assess the impact of the day-to-day variability of these properties
on the SSR-related outputs and analysis, we have used their mean and standard deviation from the
El Farafra Aeronet site for the period 2015-2017, which was found to be 0.91 =+ 0.02 for SSA440nm
and 0.96+0.51 for AE440-870nm, With the mean AODy4pnm, at 0.2. Since the impact of these parameters
in the total solar irradiance is a function of AOD (and solar elevation) we have calculated the k =1
uncertainties on the solar output based on the statistical standard deviations of the measured SSA
and AE. Under climatological AOD levels, that is, 0.2, the SSA uncertainty is £0.22 for GHI and it is
not affecting the DNI. The corresponding AE uncertainties were found to be £0.5 and £2.9 for GHI
and DNI respectively. For a case of a dust episode (e.g., AOD440nm=0.8) the uncertainties of SSA440nm
increase to £0.8 for GHI and for AE they are +2.8 and +11.4 respectively, pointing out that they
become significant only for DNI and AE variability, while for all other cases is less than 4%. These
results are comparable with similar sensitivity analysis of radiative transfer studies [66,73] considering
overall these differences as a scale of error introduced by this approach.

The solar irradiance outputs were produced in terms of solar power (in W/m?) and based
on the time dimension provided by the CAMS and MODIS temporal resolution we calculated the
corresponding daily, monthly and annual sum of solar energy (in kWh/m?). The reliability of the
RTM techniques of SENSE were tested against ground-based measurements from southern Africa to
northern Europe [34] by comparing the simulated outputs with selected stations from the baseline
solar radiation network as well as under high aerosol loads [15], while CAMS outputs are continuously
validated through analytical reports [74].

2.2.2. Energy Management and Planning (M&P)

Accurate solar energy forecasts are crucial in the energy exchange marketplace, where on-the-spot
energy prices are defined by supply and demand equilibriums [2]. Simultaneously, knowledge of the
solar energy potential of each location is a basic condition for solar farm investment for effective energy
planning and determination of the break-even point, at which the total cost and total revenue are equal.
Therefore, the energy M&P requires interactive decision making solutions in order to forecast the input
and output loads of the solar facilities. Based on the combination of SENSE with the CAMS aerosol
input, we propose this synergy as a robust approach that provides operationally aerosol and dust
impact on solar energy. Additionally, we test other EO—Dbased solutions which use as aerosol input
information to SENSE the MODIS observations by the following ways: (i) by exploiting the previous
day of observations and apply them to the current day as persistent (PERS) aerosol conditions, forming
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a forecasting technique that from hereafter we will call MODIS PERS and (ii) by calculating the MODIS
AOD climatology (CLIM) and use monthly averages, an approximation method that we will call
MODIS CLIM. The utility behind these two approaches has to do with the ease of application but
with consequential uncertainties, especial under unusually high aerosol loads (e.g., dust events).
Figure 2 depicts the procedural flows, starting from the two aerosol data sources (CAMS and
MODIS), converting the AOD values to solar irradiances (GHI and DNI) through the SENSE and the
corresponding solar energy forecasting outputs. SENSE-CAMS solution is operational-ready with
continuous provision of modelled AOD inputs, while SENSE-MODIS solution is the observational
AQOD solutions but under deferred and homogenized aerosol actual conditions. This modelling scheme
is able to act as an holistic approach for energy M&P in sun-privileged locations like Egypt with
dominant particulate matter sources.

Aerosol & dust forecasts Aerosol observations &
(CAMS) climatology (MODIS)

Radiative transfer models & <% 4.

+

Machine learning §\
i - "

X o
Solar energy forecasts Solar energy estimations
(GHI, DNI) (GHI, DNI)

Operational - ready Post-processed estimations
Model 1-day predictions Past accurate data
3 h temporal frequency 1 day temporal frequency
0.4° spatial resolution 0.1° spatial resolution

Figure 2. Flowchart of the SENSE scheme. The initial data sources followed by the observational or
forecasted aerosol inputs to the SENSE and the analogue solar energy related outputs.

2.2.3. Financial Analysis

For the financial analysis we simulated a hypothetical scenario of a PV and a CSP system with
nominal power of 10 MW assumed to be installed in Cairo, Asyut and Aswan. Figure 3 presents all the
studied locations, including CAI, ASY and ASW, located along the river Nile and we will describe
the financial analysis in Section 3.4. These locations were selected because of their different latitudes
to represent conditions with various aerosol sources and solar energy potential levels. The system
specifications were classified into the exploitation of GHI from PV technologies and DNI from CSP
plants. The annual energy production results were cross validated with existing solar farms in Morocco,
California and South Africa. Particularly, in Morocco the Noor 1 CSP (160 MW) produces almost
370 GWh on an annual basis, while in California, a CSP of nominal power 392 MW gives back annually
1,079 GWh. In South Africa, from a 100 MW CSP they exploit 480 GWh and from 96 MW and 75 MW
PVs they take back energy output of about 180 and 150 GWh respectively.

Bringing the above solar farm projects into the solar energy potential levels of the selected locations
in Egypt we found the corresponding energy outputs [8], which reflect the local latitudinal conditions.
As aresult, a 10 MW system in the region of Egypt is able to produce annually almost 25,687 MWh
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by using a required area of 130,000-150,000 m? for PV (depends on the material used, for example,
crystalline silicon, cadmium telluride) and 280,000-360,000 m? for CSP installation (depends on the
technology used, for example parabolic trough, solar tower).

Alexandria

e

i)

055 110 20" V330 440
&

R -y " kn|
Figure 3. Study region and the specific locations of ALE, CAI, SUE, HUR, ASW, LUX, MAR and ASY.
In CAI, ASY and ASW a financial analysis was additionally performed.

Concerning the system and calculation assumptions, for the PV calculations, a realistic efficiency
value of 12% has been used alongside a spatial coverage of 80% and material combined losses of 29%
for the most common material used, which is the crystalline silicon [75]. For the CSP, the energy storage
facilities have been considered, for a required capacity of 14 hours which ensures full self-sufficiency,
as well as its heat losses, the losses by shading, incidence angle modifier, the end losses and the peak
optical efficiency [76,77]. For the hypothetical system scenario and its nominal power, the actual
system power performance in MW has been used instead of MWp, where the peak power rating
on a solar system represents the most power that it would produce under ideal conditions for solar
production. For the calculation of the provided financial analysis results, the associated revenue is
straightforward; one needs to multiply the produced energy by the price (USD/kWh) applicable to this
hypothetical 10 MW system scenario. NREA proposed a realistic selling-electricity-to-the-grid price
value (feed-in tariff) of 0.0382 USD/kWh [6]. As real new projects are procured or launched globally
and the “feed-in” prices are reduced in correlation to reduced investment and operation costs (for both
CSP and PV projects), prices like the used in this study might be also reduced by the time a project
kicks-off. As a result, this price should be seen as an assumption that should be further substantiated
in direct contact with the Egyptian Authorities. Another assumption is the maintenance of the PV
and CSP plants including the solar panels cleaning after for example dust deposition [13]. Finally,
the presented financial analysis was expressed in terms of Energy Production (EP), Daily Revenue
(DR) and Financial Losses (FL). EP is the sum of the generated energy in kWh/ m?2. DR is the EP
multiplied by the feed-in tariff price. FL are described by the equation FL = (EPpossible — EPactual) *
price, where EPpogsiple is the possible EP under aerosol-free conditions and EP,cq is the actual EP
taking into account the particulate matter impact.
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3. Results and Discussion

3.1. Climatological Impact

Figure 4a shows the 16-year climatology of AOD from MODIS for the greater Egypt region. It is
a combination of the MODIS algorithms DT and DB Level 2 which provides reliable aerosol optical
properties for arid regions like Egypt at high spatial resolution (0.1 degree). The AOD at 550 nm was
found to range from 0.034 to 0.966 indicating the strong particulate matter background of the region
especially in spring and summer months. Summer was found to present high aerosol loads [10,16,22]
mainly because particle accumulation is favoured in this season by the absence of precipitations
and by atmospheric stability [78]. On the other hand, the highest values (>0.8) are in April when
particles produced by natural processes like the wind-erosion of desert surfaces and in particular the
Khamaseen dust storms [17-22]. The Nile Delta was depicted also from February to October with large
AOD values caused by burning activities of local agricultural wastes [19,78], while other highlighted
locations like the Red Sea and the central parts of Egypt are a combination of aerosol sources as other
studies found [22].

January

 February

0258
<

GHI percentage attenuation (%)

DNI percentage attenuation (%)

2% 2% 30°% 33 BE 24 2% 30°% 33 J6°E 24 2% 30°E 3 IE 26 27"E 0% E 6°E 24°F 27° a0°E G3E °E 24°E 27 30°E 30 36°E

Figure 4. Monthly averages of (a) AOD at 550 nm in Egypt using the DT and DB Combined Level 2
product of MODIS for the period 2002-2017, (b) GHI and (c) DNI solar energy percentage attenuations
relative to the aerosol-free simulations under MODIS-based AODs.

These aerosol patterns denatured into GHI and DNI percentage attenuations in Figure 4b,c,
respectively. The percentage attenuations were calculated by the RTM calculations using as aerosol
input the AOD and were compared to clean and clear sky conditions with the aerosols set to zero
value, while the simulated time for both MODIS aerosol and aerosol-free conditions was at local noon.
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For the RTM calculations the SENSE was used which produced almost 1.5 million simulations for the
implementation of these results. The range of GHI attenuation was found to be 0.7 to 12.9% while
for the DNI component the corresponding attenuation values range from 2.9% to 41.0% highlighting
the months and regions with the highest AOD climatological conditions as well as the fact that the
majority of Egypt presents attenuation values larger than 15-20%. These results are comparable with
similar approaches [13] and indicate that the most important irradiance attenuation in the region is the
particulate matter [10,11]. The corresponding impact from clouds is minimal reaching values of 2.8%
under the annual period [79].

3.2. Performance of CAMS

Figure 5 describes the correlation of the CAMS forecasted AOD with the MODIS AOD
observations (a), as well as the corresponding surface solar radiation levels (b) by using as inputs
to SENSE the CAMS 1 day forecasts and the MODIS daily AOD observation values. We note that
the comparison was performed for the locations of ALE, CAI, SUE, HUR, ASW, LUX, MAR and
ASY for the past 3 years (2015-2017) during the MODIS overpass time positions. The coefficient of
determination (R) for the AOD data sources is 0.521, while for the corresponding irradiance levels this
correlation measure is significantly improved reaching R = 0.998. This means that the observed AOD
differences between CAMS and MODIS present minor affectability on SSR, with the spread increasing
at higher SSR levels [12]. Such data behaviour shows that the AOD absolute differences in Egypt with
standard deviation (SD) of 0.137 results absolute differences in solar radiation less than 1% under low
radiation levels (SD = 11.72 W/m?) as discussed in various similar comparison approaches [15,46,74].
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Figure 5. Scatterplots of (a) the CAMS forecasted AOD as compared to the MODIS observed values
and (b) the SENSE simulated surface solar radiation (SSR) using as input the CAMS forecasted AOD as
compared to the SENSE SSR using as input the MODIS AOD in Egypt for the period 2015-2017.

A more analytical description of the CAMS performance against MODIS observations is depicted
in Figure 6. The CAMS AOD was plotted for a week with the MODIS daily and climatological values
for the region of Aswan (a) as well as the simulated GHI (b) and DNI (c). The higher frequency of
data from CAMS (1 per 3 hours) provides a more detailed monitoring of AOD and solar irradiances,
while the differences from using MODIS AOD and CAMS inputs to SENSE are lower than 50 W/m? for
GHI but are able to reach 150 W/m? for DNI. We note that the use of MODIS daily and climatological
AOD encompasses the assumption of persistent aerosol conditions for the daily (MODIS daily value)
and monthly (MODIS climatological value) time period performed. Furthermore, the comparison of
the CAMS forecasts against the MODIS’s "truth’ representation (real satellite observations), shows that
the AOD differences presented in (a), have a minor impact on GHI, while on DNI highlight a known
underestimation of CAMS under higher aerosol loads [15,46,74].
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Figure 6. The AOD from MODIS climatology, MODIS daily observations and CAMS forecasts for a
week period (20-26 March 2017) in Aswan (a) and the simulated by SENSE GHI (b) and DNI (c) using
as inputs the SZA and the aforementioned AOD sources collocated to the CAMS temporal resolution
of 3 hours.

3.3. Performance of M&P Techniques

The main scope for this comparison of M&P techniques performance is to highlight the impact
of the different temporal resolutions between CAMS forecasts and MODIS observations (1 per
day for MODIS PERS and 1 per month for MODIS CLIM). The MODIS CLIM is able to provide
information about the aerosol background for each location but is unable to monitor the intraday
aerosol variability. The MODIS PERS makes the assumption that the AOD is persistent from the
previous day’s observation. This is useful for accurate aerosol levels but does not account for upcoming
dust events or other spontaneous aerosol events. The CAMS 1-day forecasts provides information
about the total aerosol and the dust particle levels based on the MACC classification as described in
the previous Section 2.1.1. In any case this comparison between the forecasting techniques is able
to provide useful information to the energy managing authorities and investors about the current
potential EO solutions and to consider the opportunity cost from each aerosol, dust and energy
forecasting approach.

Figure 7 depicts the monthly 3-year average (2015-2017) forecasting behaviour of CAMS, MODIS
PERS and MODIS CLIM approaches as absolute energy losses for GHI and DNI (in kWh/m?) for the
eight locations in Egypt. In general, the greatest losses are during the spring and summer months,
while the average losses of GHI range from 5 to 24 kWh/m? and for DNI reaches 72 kWh/m?.
By comparing the CLIM technique with the CAMS we found an overestimation in summer months
at ALE and MAR locations and an underestimation at LUX [80]. ASW and ASY are being affected by
continuous periods of dust transport and we highlight the high mean losses in ASW and the remarkably
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good agreement for the CAMS and PERS techniques in ASY in April, where Khamaseen dust storms
are frequent in this month, showing that under such persistently high particulate matter levels the
variability is lower, marking prediction easier. Overall, good agreement of CAMS and PERS is presented
in all locations except CAI because of the complexity of the multi-source aerosol conditions [79].

8-, 2 e o S D af
Ry N e o S R e e AP
o ORI 2SS g =k 164 N e e ° 3 [
g 209 e [ 20 . e— . 3
£ 249 L u Fo24] = * 1 F
> 284 L P 284 W r
g 324 7 Fo32d o™ e
8 -
2 36 - ¥ F 36 = = = F
= \ . o
5 40 . A F 40 e o g F
5 444 N\ e [ 44 | / F
5 48] i P89 LN r 8 k
g 52 K Eos2] L
E 564 . F 564 S Vi F
60 . / F 60 \ = F
64 . o F o4 s E
681 | Alexandria = F 687 |Cairo o r
7 2
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
4 4 o )
81 ¢ =23 [ B Ome—guigg s o
T s s - ®ob 12} guainl S F
167 — o164 B e aane T B . &1
e 204 o = F 20, » ..t
£ 249 . == 24 S . F
2 284 0 b 28] - ) = |
g 324 a F o2 . ] / F
2 . [/ . Ly
2 36 " F 364 . P 4 F
7 404 e = - F 40 / F
5 44 \ = n F a4 N - r
2 48 e, - ” [ o4s] o / F
g 52 e ST o524 e F
£ 564 . ‘ o Fose6d W ™ F
= 60 TN F 60 " F
64 \ Fo64 F
68 : P i
72 72
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
4 4 N
] L ] —=e [
81—, _——% 81 ==, . =
12 e SN S iy $ Fo124 $——0——8- —g L
164 R e e e o STE D e = . . 3
rg ;2_ = e, : [ ig_ : . 1 : b
< 1= [ r 7] S 4 o r
i 28 " /B mf 28] o\ ol L
g 324 % : 7 32 - W w L
% 36 Q) s Fo36 e P F
. 404 N\ oo F o404 s " A o F
B P / . .
5 44 . m Eo44] " F
5 48] A gt o Fo48q » | S R F
g 521 RO " F o524 . o F
g 564 . F 56 L
=60 " E 60 F
64 e Foe4d F
681 r 687 |Hurghada r
72 72
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
4 : 4
] 8= L gd L
81 =0 s v 81 e, 3
12 e o . s s L e o F
16 = S x b o16d e oo 8 g F
N’E\ 209 5 A "r 204 e, $— o—¢ - L
§ 243 a2 F 24 « o
Z 28 !\ v r 284 = Y
7 32 \ - i Fo324 /) F
2 \ i _
Z 36 \ N Fo3e] & o/ F
5 407 I " Fo40d R F
5 44 . e W Foa4] - F
5 48] ' » [ 48] R % P I F
g 52 . o524 Ny g L
g 56 v Fos6 e o L
= 604 F 604 T . F
64 Eooa] b S L
68 | Marsamatrouh r 684 r
7 12
Jan  Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Months Months
‘ =— CAMS DNI *— CAMS GHI =— PERS DNI e — PERS GHI =— CLIM DNI ¢ CLIM GHI

Figure 7. Monthly mean forecast solar energy losses in kWh/m? for the regions of ALE, CAI, SUE,
HUR, ASW, LUX, MAR and ASY. The AOD forecasting techniques of CAMS, MODIS PERS and MODIS
CLIM were applied as inputs to the SENSE producing the solar energy potential in terms of GHI
(circles) and DNI (squares). The CAMS produces 1-day forecasts with 3 hour temporal resolution,
the PERS uses the MODIS AOD values of the previous day for the 1-day forecast as persistent aerosol
conditions and the CLIM uses the monthly mean MODIS AOD values as steady aerosol conditions for
every single time step of the whole month.
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For more detail of the above differences, in Figure 8 we present the daily forecast solar energy
losses in March to observe the analytical GHI and DNI losses of the 3 M&P approaches at three
representative locations in terms of latitude and aerosol sources (CAIL, ASY and ASW) [19-22]. At this
temporal resolution, the basic assumption of PERS forecasting technique emerges. We observe that
after the appearance of high aerosol loads, this method is unable to detect sudden changes and hence
losses the actual particulate matter impact on solar energy (e.g., ASY at 18 March). On the other hand,
the CLIM approach gives a fairly constant result, ignoring all fluctuations of aerosol load. Therefore,
CAMS varies more than CLIM and monitors the AOD and its impact on solar energy having to deal
with its modelling nature and the subsequently indeterminacies [74].
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Figure 8. Daily mean forecast solar energy losses in kWh/m? for the regions of CAI (a,d), ASY (b,e) and
ASW (c,f). The AOD forecasting techniques of CAMS, MODIS PERS and MODIS CLIM were applied as
inputs to the SENSE producing the solar energy potential in terms of GHI (a—c) and DNI (d-f).

Finally, Figure 9 presents time series of simulated GHI in Aswan and DNI in Asyut, using CAMS
AOD inputs to SENSE, in the form of contour plots for the past 3 years as well as direct comparison
against the MODIS PERS and MODIS CLIM approaches. The percentage differences are larger near
sunset and sunrise and during winter months (i.e., smaller absolute values) reaching 8-10% for GHI
and exceeding 20% for DNI, conditions that in both cases followed by low solar energy potential.
The assessment of such differences can be a useful tool for future scientific or solar sector oriented



Remote Sens. 2018, 10, 1870 14 of 23

business plan studies, as it will directly contribute to the particulate matter related uncertainties
introduced to solar radiation and energy calculations and/or forecasts [81,82].
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Figure 9. Contour plots of the GHI in Aswan (a—c) and DNI in Asyut (d—f) as simulated by SENSE
using as AOD input the CAMS 1-day forecasts (a,f) and the percentage differences for GHI (b,c) and
DNI (e, f) respectively as compared to the MODIS PERS and MODIS CLIM forecasting approaches for
the period 2015-2017.

3.4. Economic Impact

Figure 10 presents the financial analysis results for the three specific locations of Figure 3 focusing
on the hypothetical 10 MW system. The economic and energy impact was quantified in terms of
monthly means, total FL and solar energy potential, by using the CAMS forecasts, the SENSE and the
information of Section 2.2.3. As we move to lower latitudes the PV energy potential as well as the
annual revenue increase both, starting from 2620 kWh/ m? in CAI and reaching almost 2746 kWh/ m?2
in ASW with the revenue difference reaching almost 50,000 USD. The energy losses because of the total
AOD are 161 kWh/m? in CAI, 169 in ASY and 175 in ASW and the corresponding energy losses due to
dust AOD are 64, 88 and 107 kWh/m? for CAI, ASY and ASW, respectively. In CSP systems, the annual
aerosol and dust impact on the produced solar energy is much larger, since DNI is more affected than
GHI[15]. Indicatively, in CAI the losses are 469 kWh/ m? under total AOD and 192 under dust presence,
in ASY are 499 and 269 kWh/m? and in ASW 524 and 329 kWh/m?. The economic impact for PV and
CSP indicates that the annual FL in ASW are almost 70,000 and 200,000 USD respectively, because of the
total AOD. We note that the annual revenues are of the order of 1,098,449 and 831,697 USD for PV and
CSP plants respectively. In order to understand the relevance of these FL, the corresponding annual
operating and maintenance costs of such a 10 MW system in ASW are 221,000 and 340,000 USD for PV
and CSP plants [83]. These costs include general site inspections, cleaning of the systems (mechanical
maintenance and mirror cleaning), checking of various components (e.g., inverters, mounting/tracking,
storage), local taxes, site security and administration costs [84]. Assessing also the effect of the CAMS
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AOD uncertainty mentioned in Section 2.1.1 on the SENSE solar energy output, we found in ASW a
range of —3.6 to 1.8% (the minus symbol corresponds to an underestimation) for GHI and —12.3 to
5.7% for DNI. The magnitude of these percentages translates into annual uncertainty on the financial
calculations of —39,132 to 18,816 USD for the 10 MW PV and —101,052 to 46,668 USD for the CSP.
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Figure 10. Financial analysis of the aerosol and dust impacts on the produced solar energy from PV
(a,c,e) and CSP (b,d,f) installations with nominal power of I0MW in the regions of CAI (a,b), ASY (c,d)
and ASW (e f). The impact was quantified in terms of monthly mean and total financial losses and
solar energy potential.

Finally, Figure 11 represents the economic impact of forecasting solar energy under extreme
dust event conditions. We studied the dust event of the 18th of March 2017 at the region of Asyut
(inset map shown for the same date at 10:45 UTC from MODIS true colour imaging) as well as the
previous and next day in order to identify the differences and the overall energy and financial impact.
The AOD (a) exceeds 3 at the peak of the event as modelled by CAMS and reaches almost 3.5 on
MODIS observations. Figure 11 b and c present the forecasted solar power and financial impact for
the supposed 10 MW PV (b) and CSP (c) plants. The impact was quantified in terms of EP, DR and
total FL as described in Section 2.2.3. The blue and red insets show the corresponding solar power
and financial losses respectively, by using as input the MODIS observations, for reference purposes.
The previous and next day of the dust event were also presented in order to quantify the magnitude of
the extreme dust case on solar radiation and energy.
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Figure 11. Temporal evolution and financial analysis of an extreme dust event impact (18 March 2017)
on the CAMS AOD forecasted values (a) and on the produced solar energy from PV (b) and CSP
(c) installations with nominal power of 10 MW in the region of ASY. The impact was quantified in
terms of EP, DR and total FL. The blue and red insets show the corresponding solar power and financial

losses respectively, using as input the MODIS observations.

For the previous and next day, the daily energy production for PV systems was 7.47 kWh/m?
and 7.29 respectively, while at the peak of the dust event the EP was 5.3 kWh/m?2. For the CSP case,
the daily energy losses as compared to the previous and next day were almost 4 kWh/m?, meaning
that for a 10 MW system the daily FL are able to exceed the DR values [85]. This fact highlights
also the impact of not having energy forecasts, since the FL represent the economic difference of the
actual DR from the possible DR under aerosol-free conditions. So, the lack of forecasts means that
the hypothetical aerosol-free DR during the 18th of March 2017 would have been estimated close to
2,829 USD (DR+FL) and therefore indicates the usefulness of the studied approach using the SENSE.
The FL under such aerosol conditions for the 10 MW CSP system are 2,065 USD with the actual DR
not exceeding the 764 USD. We note that all the above energy calculations and results were cross
validated against real production data from the Egyptian energy market. Indicatively, a 10 MW solar
plant project in Aswan, is able to produce in a daily basis in March almost 7.43 kWh/m? or 80 MWh
in total [86]. The corresponding values we simulated are 80.4, 57.1 and 78.5 MWh during 17, 18 and
19 March 2017, respectively. The lower EP during dust events is able to impact the local economy,
since the required daily energy will be covered by the grid in higher prices (22 and 33 USD/MWh at
off-peak and peak-time tariff) [87]. Therefore, the daily EP deficit on the 18th of March 2018 translates
into an additional M&P cost of 484-726 USD, as to purchase from the Egyptian grid the remaining
~23 MWh. As a result, the ability to forecast the forthcoming dust events or in general the irregular
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high AOD differences, is translated to more efficient energy M&P, minimizing the energy inadequacy
by exploiting alternative energy sources or storing from the previous day energy into batteries for the
case of PV systems or into melted salt as thermal energy for the case of CSP plants [76].

4. Summary and Conclusions

This study presented the estimation and forecasting techniques for the impact of particulate matter
on solar energy in Egypt by exploiting the synergy of EO-based aerosol observations and forecasts
from MODIS and CAMS with a state-of-the-art solar irradiance simulation system (SENSE). AOD was
used as the main input parameter to SENSE and the aerosol effects on solar radiation revealed that
the accuracy of estimated solar energy potential depends on the aerosol input data sources dealing
with a trade-off between temporal frequency, availability of data and the overall M&P usefulness
and reliability.

We firstly described the modelling scheme and we proposed three different forecasting approaches
(CAMS, PERS and CLIM) to investigate potential solutions for the quantification of the aerosol effects
on solar energy production. The study was performed for the whole Egypt region as well as for
eight specific locations with highly installed and planned solar energy capacity. The climatological
analysis showed a dependence on seasonal variability with the highest attenuation to occur during
spring and summer, reaching values of 8% for GHI and exceeding 20% in DNI for the majority of the
Egyptian region. The evaluation of the PERS and CLIM forecasting solutions indicated alternative
roadmaps for the M&D, revealing a “shifted-reality” for the PERS, which is manageable and useful
under steady atmospheric conditions but fails to predict upcoming large AOD values and differences.
On the other hand, the CLIM is applicable only for large time-horizon averages (e.g., monthly means)
keeping the background particulate matter information but missing the continuous variability which
is a major M&P requirement. Both solutions presented higher differences as compared to CAMS in
winter months and at large SZA, conditions followed by minimum solar energy potential impact.

Opverall, the combination of CAMS 1 day forecasts with the SENSE is a promising tool for the solar
energy management community. We simulated a hypothetical energy financial scenario of a 10 MW
system under various latitudes, time-horizons and atmospheric conditions. In a climatological basis,
such a system incurs the largest energy losses in the CSP form and in spring and summer months
reaching almost 20% as compared to the annual energy production and the followed annual revenue.
In the day-to-day and intra-day time-horizon monitoring scenario, we found that the FL are able to
reach the 50% of the DR for the PV cases and overcome the DR by almost 270% for the CSP plants,
which translates into daily energy losses of 4 kWh/m?, highlighting the holistic usefulness for M&P
market operations.

The findings show the potential of such EO-based techniques for solar energy applications and
electricity grid TSO and DSO support services. As a result, the exploitation of EO data and solar energy
management systems like the SENSE, are able to provide advanced solar energy related services, in
support of large scale solar farm projects, grid operators, national and private electrical transmission
and handling entities, so as to guarantee the uninterrupted energy flow and the power grid stability.
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Abbreviations

AE Angstrom Exponent

AeroCom  Aerosol Compositions between Observations and Models
AOD Aerosol Optical Depth

CAMS Copernicus Atmosphere Monitoring Service
CLIM Climatology

coT Cloud Optical Thickness

CspP Concentrated Solar Power

DB Deep Blue

DNI Direct Normal Irradiance

DR Daily Revenue

DSO Distribution System Operator

DT Dark Target

ECMWF European Centre for Medium-Range Weather Forecasts
EO Earth Observation

EP Energy Production

EU European Union

FL Financial Losses

GHI Global Horizontal Irradiance

LUT Look Up Table

M&P Management and Planning

MACC Monitoring Atmospheric Composition and Climate
MODIS Moderate resolution Imaging Spectroradiometer

NN Neural Network

NREA New and Renewable Energy Authority
NWP Numerical Weather Prediction
PERS Persistence

PV Photovoltaic

QA Quality Assurance

R Coefficient of Determination
RTM Radiative Transfer Model

SD Standard Deviation

SENSE Solar Energy Nowcasting SystEm
SSA Single Scattering Albedo

SSR Surface Solar Radiation

SZA Solar Zenith Angle

TOC Total Ozone Column

TSO Transmission System Operator
A% Columnar Water Vapor
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