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Key Points:11

• The CAPTIVATE optimal estimation retrieval algorithm is applied to zenith-pointing12

Doppler cloud radars deployed during the Biogenic Aerosolos—Effects on Clouds and13

Climate field campaign (BAECC 2014), in Hyytiälä, Finland.14

• Doppler velocity is exploited to retrieve a parameter that modulates the mass, area and15

radar backscatter cross-sections to represent the continuum of particle morphologies16

from unrimed aggregates to graupel and hail.17

• The retrieval provides insights into microphysical processes including aggregation18

and riming. Retrieved particle density is correlated with the availability of super-19

cooled liquid water, demonstrating potential to use the retrieval to diagnose embedded20

layers of mixed-phase clouds.21
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Abstract22

Retrievals of ice and snow are made from Ka- and W-band zenith-pointing Doppler radars at23

Hyytiälä, Finland, during the snow experiment (SNEX) component of the Biogenic Aerosols:24

Effects on Clouds and Climate (BAECC 2014) field campaign. In a novel optimal estimation25

retrieval, mean Doppler velocity is exploited to retrieve a “density factor” parameter which26

modulates the mass, shape, terminal velocity and backscatter cross-sections of ice particles.27

In a case study including aggregate snow and graupel we find that snow rate and ensemble28

mean ice density can be retrieved to within 50 % of in-situ measurements at the surface us-29

ing dual-frequency Doppler radar retrievals. While Doppler measurements are essential to30

the retrieval of particle density, the dual-frequency ratio provides a strong constraint on parti-31

cle size. The retrieved density factor is strongly correlated with liquid water path, indicating32

that riming is the primary process by which the density factor is modulated. Using liquid wa-33

ter path as a proxy for riming, profiles classified as unrimed snow, rimed snow and graupel34

exhibit distinct features characteristic of aggregation and riming processes, suggesting the35

potential to make estimates of process rates from these retrievals. We discuss the potential36

application of the technique to future satellite missions.37

1 Introduction38

Estimates of the global volume and distribution of snow are critical to understanding39

the atmospheric water budget and surface hydrology. While the first generation of space-40

borne cloud and precipitation radars has greatly improved the detection of snow, remote-41

sensed estimates of snow mass flux and its microphysical properties remain highly uncer-42

tain. Understanding the microphysics of snow production within ice clouds is also critical43

to global rainfall: CloudSat 94-GHz radar [Stephens et al., 2002] observations reveal that44

85–90% of all precipitation events in the extratropics and poles originate in the ice phase,45

and that 34–40% of rain events in the subtropics and tropics fall from melting ice [Field and46

Heymsfield, 2015]. CloudSat snow retrievals [e.g. Liu, 2008; Kulie and Bennartz, 2009] have47

enabled the first remote-sensed estimates of snow over remote polar regions [Palerme et al.,48

2014], and surveys of snow regimes [Chen et al., 2016; Kulie et al., 2016], but further micro-49

physical insights are anticipated from upcoming satellite missions. The first of a second gen-50

eration of satellite radars is the dual-frequency precipitation radar (DPR) aboard the global51

precipitation measurement mission [GPM; Hou et al., 2014]; however, initial comparisons52

suggest DPR detects only about one-third of the mass of snow seen by CloudSat, concen-53
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trated in the heaviest 5% of snow events [Casella et al., 2017]. Work is ongoing to better54

evaluate remote-sensed snow rate at the surface [e.g. Heymsfield et al., 2016] with the aim of55

reducing uncertainties in retrievals from current satellite capability and informing the design56

of future satellite sensors.57

Remote-sensing of ice and snow requires knowledge of the morphology of ice par-58

ticles, which may be any combination of pristine ice crystals grown by vapour deposition,59

aggregates or fragments formed from interactions between ice particles, or rimed particles60

and graupel having collected liquid drops in mixed-phase cloud. While a majority of snow61

is assumed to fall as aggregate snowflakes [Langleben, 1954], the masses and fallspeeds of62

ice particles remain fundamental to uncertainties in radar retrievals [Hiley et al., 2011]. Ice63

particle properties are especially uncertain in and below mixed-phase clouds, which are com-64

mon in the extratropics and poles [Hogan et al., 2003, 2004; Cesana et al., 2012], radiatively65

important in the polar regions and extratropics [e.g. Shupe et al., 2004], imperfectly detected66

by spaceborne radar and lidar [e.g. Ceccaldi et al., 2013], and poorly represented in models67

[e.g. Tan et al., 2016]. Studies at ground stations have attributed 40% or more of the mass of68

snow to rimed ice [Harimaya and Sato, 1989; Mitchell et al., 1990; Moisseev et al., 2017],69

suggesting large uncertainties in remote-sensed estimates of snow rate while riming goes70

undiagnosed, and riming has been strongly associated with heavy accumulation events in71

mountainous regions [Grazioli et al., 2015]. Remote-sensed estimates of snow stand to be72

improved by the capability to diagnose riming in mixed-phase clouds, hence to better esti-73

mate ice particle properties and the mass flux of snow.74

Recent ground-based measurement campaigns have facilitated studies of snow micro-75

physics using deployments of advanced radars, lidars and passive remote-sensors co-located76

with in situ measurements of snow particles [e.g. Szyrmer and Zawadzki, 2014; Petäjä et al.,77

2016]. Combined particle imaging and snow gauge instruments have enabled the quantifi-78

cation of ice bulk density and rime mass [Tiira et al., 2016; Moisseev et al., 2017; von Ler-79

ber et al., 2017; Grazioli et al., 2015], building upon previous studies characterising particle80

morphologies and degrees of riming [e.g. Harimaya and Sato, 1989; Mitchell et al., 1990].81

These campaigns provide opportunities to evaluate and intercompare the representation of82

ice and mixed-phase microphysics used in numerical models [Lin et al., 2011; Morrison and83

Milbrandt, 2015; Morrison et al., 2015], as well as of ice particle morphology and growth84

processes as they relate to radar backscatter [Kneifel et al., 2011; Leinonen and Szyrmer,85

2015]. Triple-frequency radar measurements have allowed for the evaluation of particle mod-86
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els using the signatures of rimed and unrimed ice particles [Kneifel et al., 2015; Stein et al.,87

2015], a technique that has recently been applied to colocated CloudSat and GPM measure-88

ments [Yin et al., 2017]. With Doppler radar capability, the morphology of snow can also be89

inferred from terminal velocities of particles to estimate the degree of riming [Mosimann,90

1995] or the density of rimed aggregates [Szyrmer and Zawadzki, 2014; ?], and it is possible91

in some cases to distinguish ice from cloud droplets using Doppler spectra in mixed-phase92

cloud [Kalesse et al., 2016]. Recent ground-based remote-sensing and in situ measurement93

campaigns have demonstrated the application of Doppler and multiple-frequency radar ob-94

servations to improved retrievals of snow and riming.95

In this study we demonstrate the novel retrieval of the properties of snow particles us-96

ing vertically-pointing dual-frequency Doppler radars at Hyytiälä, Finland. Mean Doppler97

velocity, a measure of the terminal velocity of hydrometeors, is used to estimate a parameter98

that modulates the properties of ice particles along a continuum from unrimed aggregates99

to graupel and hail. The retrieval is carried out within the optimal estimation framework for100

Cloud Aerosol and Precipitation from mulTiple Instruments using a VAriational TEchnique101

(CAPTIVATE), which provides the flexibility to assimilate observed variables from a range102

of ground-based instruments. We consider the contribution of Doppler velocity and dual-103

frequency radar reflectivity measurements to the retrieval, and compare against retrievals in104

which particle density does not vary. The retrieved snow rate, particle size distribution and105

bulk density are evaluated against in-situ measurements at the surface. This method for es-106

timating ice particle morphology from mean Doppler velocity should be applicable to the107

network of ARM and Cloudnet [Illingworth et al., 2007] “supersites” with multi-frequency108

Doppler radars, as well as to the upcoming ESA/JAXA Earth Cloud Aerosol Radiation Ex-109

plorer [EarthCARE; Illingworth et al., 2015], which will feature the first spaceborne Doppler110

cloud radar in synergy with lidar and radiometers. In addition to Doppler capability, space-111

borne multiple-frequency cloud radars have long been of interest to further improve global112

observations of ice clouds and snow [Hogan and Illingworth, 1999; Tanelli et al., 2009; Löh-113

nert et al., 2011; Leinonen and Szyrmer, 2015; National Academies of Sciences Engineering114

and Medicine, 2018].115

The paper is structured as follows: we describe the components of the CAPTIVATE116

retrieval framework pertinent to estimates of ice and snow from radar measurements, with117

a focus on formulating a new parameter with which to represent ice particles over a range118

of densities from unrimed aggregates to graupel and hail (Section 2), and lay out the mea-119
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surements and atmospheric state data used for the present study (Section 3). We then present120

the results of retrievals for a case study of a frontal snow event with significant riming (Sec-121

tion 4.1), and a statistical evaluation of a retrieval of 10 snow events over a 2 month observa-122

tion period (Section 4.2). In our concluding remarks we consider applications of the retrieval123

to future satellite radar missions (Section 5).124

2 Retrieval framework125

The CAPTIVATE retrieval framework [Mason et al., 2017] has been developed for126

radar–lidar–radiometer synergy retrievals from EarthCARE [Illingworth et al., 2015]. CAP-127

TIVATE therefore includes instrument forward-models for the Doppler radar and high-spectral128

resolution lidar aboard EarthCARE, but is also designed to be easily configurable for active129

and passive sensors on ground-based and airborne platforms. Here we focus on the retrieval130

of snow from zenith-pointing ground-based radar measurements. The retrieval of ice and131

snow builds upon the methods employed for the synergy of CloudSat/CALIPSO observations132

[Delanoë and Hogan, 2008, 2010]; the novelty of the present retrieval is the availability of133

Doppler velocity measurements.134

2.1 Cost function and minimization135

The retrieval operates on a column-by-column basis to make an optimal estimate of the136

vector of state variables x that best explains the observed variables y within the bounds of137

prior expectations and measurement uncertainties [Rodgers, 2000]. The optimal estimate is138

that which minimizes the cost function139

J =
1
2
δxᵀB−1δx +

1
2
δyᵀR−1δy + Jc (x) , (1)

where δx = x − xa is the difference between the state vector and its prior, and B the er-140

ror covariance matrix of the priors; δy = y − H (x) is the difference between the observed141

variables and the forward-modelled observations H(x), and R the error covariances of the142

observations and forward models; and Jc (x) optionally applies regularization constraints to143

the vertical profile of the state vector [Twomey, 1977]. By quantifying uncertainties in the144

prior estimates of the state, measurement errors, and uncertainties in the implementation of145

the forward-models, the retrieval yields a robust best-estimate of the state variables and their146

associated error uncertainties. The cost function is minimized by iterating on the state vec-147

tor from the prior in the direction of the first and second derivatives of the cost function [the148
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Levenberg-Marquadt method; Rodgers, 2000]. The derivatives are computed efficiently and149

transparently using the combined array and automatic differentiation C++ software library,150

Adept [Hogan, 2014, 2017].151

The vectors of state variables through the vertical profile xi for n classes of hydrome-

teor are retrieved from the observed variables yj of m instruments:

x =

©­­­­­­­­«

x1

x2
...

xn

ª®®®®®®®®¬
, y =

©­­­­­­­­«

y1

y2
...

ym

ª®®®®®®®®¬
.

Both the selection of appropriate state variables for ice particles (Section 2.3) and the for-152

mulation of a radar forward-model for the observed variables (Section 2.4) depend on an153

underlying physical representation of ice particles: their size distribution, shape and mass,154

and their terminal fallspeeds.155

2.2 Representation of ice particle properties156

The bulk quantities of primary interest for remote-sensing are related to integrals over157

the particle size distribution (PSD; N(D)) with the average properties of ice particles, as a158

function of maximum particle dimension D. Unless stated otherwise, SI units are used. The159

ice water content (IWC) requires the mass of ice particles, m(D):160

IWC =
∫ ∞

0
m(D) N(D) dD, (2)

while the mass flux or snow rate also includes particle terminal velocities, v(D):161

S =
∫ ∞

0
v(D)m(D) N(D) dD. (3)

A characteristic bulk density of ice particles can be calculated as a volume flux-weighted162

density:163

ρ =

∫ ∞
0 m(D) v(D) N(D) dD

π
6 AR

∫ ∞
0 D3 v(D) N(D) dD

(4)

where AR is the aspect ratio of a horizontally-aligned oblate spheroid enclosing the parti-164

cle. A volume flux-weighted density for ease of comparison with estimates derived from in165

situ measurements of accumulation with a snow gauge [e.g. Moisseev et al., 2017; von Ler-166

ber et al., 2017]. While integrated quantities such as snow rate are especially sensitive to167

the formulation of the mass-size relation [Heymsfield et al., 2010; Delanoë et al., 2014], in168
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this study it will also be important to relate the mass and shape of particles to their terminal169

velocity in order to retrieve the morphology of snow particles from Doppler radar measure-170

ments.171

In the following sections we first describe the PSD (Section 2.2.1), then the mass-size172

(Section 2.2.2) and area-size (Section 2.2.3) relations for a range of ice particles, and finally173

how particle properties are combined to estimate terminal fallspeeds (Section 2.2.4).174

2.2.1 Particle size distribution175

The PSD is represented as a normalized spectrum of the form176

N(D) = NwF (D/D0) . (5)

where Nw is the normalized number concentration, D0 is the median volume diameter [Tes-177

tud et al., 2001], and the function F(D/D0) can be either that of the normalized gamma dis-178

tribution [Testud et al., 2001; Illingworth and Blackman, 2002; Delanoë et al., 2005], or the179

universal modified gamma distribution derived by Field et al. [2005] for extratropical ice180

clouds [see also Field et al., 2007; Delanoë and Hogan, 2008]. The normalized number con-181

centration can be estimated from the moments of the PSD:182

Nw = M4
2 /M

3
3 (6)

where Mn is the nth moment. When using the gamma function a constant shape parameter183

of µ = 2 is assumed in order to simplify the representation of the PSD; the shape parameter184

makes the smallest contribution to uncertainties in the retrieved ice water content [Delanoë185

et al., 2005]. In practice for the present study, the differences between the retrieved quantities186

using the normalized gamma and Field et al. [2005] PSD were found to be within the uncer-187

tainty of the retrievals; in the results presented here the Field et al. [2005] PSD is used unless188

otherwise stated.189

2.2.2 Mass-size relations190

Ice particle mass is expressed as a function of maximum dimension by the power law191

m(D) = amDbm, (7)

where the prefactor am scales the density of ice at all sizes, and the exponent bm controls the192

size-dependence of particle mass and is related to the particle growth mechanism or shape193
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of the particle. Aggregate snowflakes have exponents around bm = 2, close to the theoretical194

value for fractals [Westbrook et al., 2004; Stein et al., 2015]. More rounded graupel and hail195

particles have exponents closer to bm = 3, the physical maximum for spheres [Leinonen and196

Moisseev, 2015].197

While snow particles are observed to vary greatly in morphology, the majority of snow198

is thought to fall as aggregate snowflakes [Langleben, 1954]—indeed, the mass-size rela-199

tions used for ice and snow tend to be derived from measurements dominated by unrimed200

aggregates. We follow the approach of Hogan et al. [2012], who showed that in-situ mea-201

surements of cirrus were consistent with radar reflectivities when the mass-size relation de-202

rived for “aggregates of unrimed bullets, columns and side-planes” by Brown and Francis203

[1995] was used. In this representation the smallest particles are assumed to be solid quasi-204

spheroidal ice crystals, while larger aggregates occupy the volume of a horizontally-aligned205

oblate spheroid with an aspect ratio—that between the minimum (vertical) dimension and the206

maximum (horizontal) dimension—of AR = 0.6. Hogan et al. [2012] found that this value207

provided a good fit to a database of aircraft measurements as well as other studies in the liter-208

ature. Combining dual-polarization weather radar and surface based snowfall measurements209

at Hyytiälä, [Li et al., 2018] found that the aspect ratio varies with riming fraction between210

0.4 and 0.9, while analysis of PIP images by Tiira et al. [2016] yielded a median aspect ratio211

of 0.72. However, the applicability of particle images to derive particle geometrical prop-212

erties was questioned by Jiang et al. [2017]; hence, Tiira et al. [2016] also used a single as-213

pect ratio value of 0.6 for density retrievals. In the present study it was found that assuming214

AR = 0.8 instead of AR = 0.6 led to an increase in retrieved ice water content of approxi-215

mately 20 %, demonstrating that the shape and orientation of ice particles is an important216

uncertainty in the remote-sensing of snow [see also Hogan and Westbrook, 2014].217

How does riming affect the mass-size relation of snow? Numerical analogues for “bal-218

listic” collisions between ice particles (aggregation) and between ice particles and super-219

cooled liquid drops (riming) suggest that aggregating particles will retain mass-size expo-220

nents around bm = 2, while those growing by riming will tend toward exponents of bm = 3221

[Jullien, 1992]. A conceptual model for riming introduced by Heymsfield [1982] proposes a222

two stage process for the riming of aggregate snowflakes [see also Morrison and Milbrandt,223

2015; Moisseev et al., 2017], in which an aggregate is first “filled in” by freezing supercooled224

drops, increasing the mass of the particle but not its size: this increases the prefactor of the225

mass-size relation while the exponent remains close to bm = 2 [e.g. Szyrmer and Zawadzki,226
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2014; Morrison and Milbrandt, 2015; Moisseev et al., 2017; von Lerber et al., 2017]. That227

the first stage of riming does not scale the exponent of the mass-size relation is consistent228

with earlier studies of rimed snow [e.g. Harimaya and Sato, 1989; Mitchell et al., 1990].229

Once the particle geometry is closed by in-filling, it is classified as graupel. In this second230

stage rime is accreted to the outside of the particle, adding to both its mass and diameter, and231

as the particles become rounder in shape the exponent approaches bm = 3 [Mitchell, 1996].232

The morphology of an ice particle encodes a history of multiple and interacting processes,233

including aggregation and transitions between stages of riming, which may be observed mi-234

croscopically [Fujiyoshi and Wakahama, 1985] or tracked within a microphysical parame-235

terization scheme [Morrison et al., 2015; Morrison and Milbrandt, 2015], but are unlikely to236

be instantaneously grasped by remote sensing. In a modelling study Leinonen and Szyrmer237

[2015] compared particles that have grown first by aggregation then riming to those that have238

grown by simultaneous aggregation and riming. While it was found that aggregation and239

riming, whether in series or in parallel, form particles that are indistinguishable in terms of240

radar backscatter—an important result for remote-sensing—the corresponding mass-size re-241

lations were distinct: when riming followed aggregation the exponent was found to remain242

close to bm = 2.1 until a relatively high degree of riming; but when riming and aggrega-243

tion were simultaneous the exponent varied significantly even at low degrees of riming. This244

complicates the two-stage conceptual model of riming. While we may attempt to formulate a245

representation of the range of morphologies and densities of ice particles for remote-sensing246

applications, the possibility of multiple interacting ice processes means we should be cau-247

tious about attributing all variations in particle density to riming.248

It has been observed that the mass-size relations derived from studies of snow and ice249

form a continuum of ice particles from unrimed snowflakes to graupel and hail [Lin and250

Colle, 2011]; Fig. 1 shows the mass-size prefactors and exponents am and bm in cgs units251

and converted where necessary into terms of maximum particle dimension D. Particles with252

low mass-size prefactors and exponents—in the lower left part of the diagram—include a253

range of unrimed aggregates, as well as other low-density species such as dendrites, needles254

and columns. Measurements of unrimed snow from ground-based studies [Tiira et al., 2016;255

von Lerber et al., 2017] are consistent with aircraft studies of ice clouds [Heymsfield and256

Westbrook, 2010; Brown and Francis, 1995], with bm varying between 1.9 and 2.1. Larger257

mass-size prefactors and exponents—in the centre to the upper-right part of the diagram—258

include denser or more compact particles of various kinds, often with some degree of rim-259
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ing. Exponents for rimed aggregates and low-density graupel are between 2.1 and 2.4 [Er-260

fani and Mitchell, 2017; von Lerber et al., 2017]; while for lump graupel and hail classifi-261

cations [Mitchell, 1996; Mace and Benson, 2017; Zikmunda and Vali, 1972] the exponent262

approaches 3.0. We note that the position on the mass-size relation diagram is not solely263

related to the effect of riming, especially for slender 1- and 2-dimensional species such as264

columns and dendrites: for example, the rimed dendrites in Erfani and Mitchell [2017] have265

a lower mass-size exponent than the unrimed dendrites; and the different sizes of hexagonal266

columns in Mitchell [1996] range from the upper-right part of the diagram for the smallest267

columns, to the extreme lower-left for the largest.268

Variations in ice particle density have been parameterized in many ways. Fixed den-275

sities can be assumed depending on the cloud type, with low-density aggregates in strati-276

form cloud and graupel-like particles in convective cloud [e.g. Grecu et al., 2016]. Lin et al.277

[2011] parameterize ice density according to temperature. Szyrmer and Zawadzki [2014]278

demonstrate a radar retrieval of lightly rimed snow from ground-based dual-frequency Doppler279

radars in which the prefactor am is scaled to increase the density of ice due to riming, while280

the exponent is fixed at bm = 2. Similarly, Moisseev et al. [2017] represented the density of281

snow by scaling the prefactor of the mass-size relation and holding the exponent constant.282

In order to represent a continuum of ice particles from unrimed and rimed aggregates283

to graupel and hail, we parameterize particle mass based on a “density factor" r (grey line284

in Fig. 1) that is continuous between the mass-size relation for the unrimed aggregates of285

Brown and Francis [1995] (m = 0.0121 D1.9 kg where r = 0) and that of oblate spheroids of286

solid ice (m = 288 D3 kg at r = 1). The parameterized exponent varies linearly with density287

factor between these two reference points (bm = 1.9 and bm = 3):288

b′m(r) = 3r + 1.9(1 − r), (8)

while the prefactor is scaled according to the requirement that particle masses are equivalent289

for all r at some critical diameter Dc , which can be calculated as (0.0121/288)1/(3−1.9) = 105 µm,290

similar to the transition from quasi-spheroids to aggregates in Hogan et al. [2012]. Normal-291

izing by the critical diameter, the mass-size relation for all particles can be expressed292

m(D, r) = a′m

(
D
Dc

)b′m
, (9)

where the normalized prefactor a′m = amDbm
c = 33.3 µg is the particle mass at the critical293

diameter. A similar normalized mass-size relation was employed in Szyrmer and Zawadzki294

–10–



Confidential manuscript submitted to JGR-Atmospheres

0.17
0.0

0.3

0.5

0.7

1.0

density
 fac

tor
 r

1.7 1.9 2.1 2.5 3.0
exponent bm

10 3

10 2

10 1

100

pr
ef

ac
to

r a
m

 [g
cm

b m
]

Mitchell (1996)
hexagonal plates
hexagonal columns
rimed long columns
sector-like branches
broad branches
stellar
dense rimed dendrites
side planes
bullet rosettes
aggregates
lump graupel
hail

Spheres of solid ice
Spheroids of solid ice
(AR = 0.6)
Aggregates of unrimed bullets,
columns and side-planes
(Brown & Francis 1995)
ARM
(Schmitt & Heymsfield 2010)
CRYSTAL-FACE
(Schmitt & Heymsfield 2010)
All
(Heymsfield et al. 2010)
"Cold"
(Heymsfield et al. 2010)
"Warm"
(Heymsfield et al. 2010)
Convective
(Heymsfield et al. 2010)
Unrimed dendrites
(Erfani et al. 2017)
Rimed dendrites
(Erfani et al. 2017)
Graupel
(Erfani et al. 2017)
Aggregates
(Mace and Benson 2017)
Graupel
(Mace and Benson 2017)
BAECC 2014
(Tiira et al. 2016)
BAECC 2014
(von Lerber et al. 2017)
BAECC 2014
(Moisseev et al. 2017)
Lump graupel
(Zikmunda and Vali 1972)
Conical graupel
(Zikmunda and Vali 1972)

Figure 1. A comparison of m(D) power-law prefactors and exponents. Coloured circles show am, bm for

various studies of ice and snow. Black markers correspond to particle types summarized in Mitchell [1996];

where multiple markers of a particular type are shown, their relative size indicates the size range for which

the mass-size relation was derived. Unrimed aggregates [Brown and Francis, 1995] and spheroids of solid

ice define the mass-size relation as a function of density factor r: the grey line indicates the values of am, bm

parameterized by the density factor in the range −0.17 < r < 1.0.
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[2014] [see also Maahn et al., 2015; Maahn and Löhnert, 2017], but in that study the criti-295

cal diameter was selected to be close to the median particle diameter to minimize the effect296

of fixing the exponent of the mass-size relation bm = 2. In the present retrieval all particles297

smaller than the critical diameter are assumed to be solid quasi-spheroids; expressed another298

way, the fractional volume of a particle occupied by ice is given by the ice fraction,299

f (D, r) =


1.0 D ≤ Dc

(D/Dc)b
′
m−3 D > Dc

(10)

The ice fraction-size relation for a range of density factors is shown in Fig. 3.300

In terms of the density factor, the unrimed and lightly-rimed snow correspond to low301

values (r < 0.3), and heavily-rimed snow and graupel [von Lerber et al., 2017; Mace and302

Benson, 2017] relate to higher values (0.3 < r < 0.7). While r = 1 is the upper limit, small303

negative density factors are possible, and allow for the representation of particles with lower304

densities such as dendrites [Erfani and Mitchell, 2017] or large hexagonal columns [Mitchell,305

1996].306

We note that the density factor is not intended to explicitly represent the effect of the307

riming process on the mass of a particle, but allows for a smooth transition between unrimed308

and rimed aggregates to graupel and hail which we hope will be sufficient to allow an esti-309

mate of ice morphology based on particle fallspeeds. The density factor pivots the mass-size310

relation of ice particles larger than the critical diameter (Fig. 3), but without representing311

the transition features that would corresponding to the multiple stages of riming. A more312

process-oriented parameterisation of the “in-filling” stage of rimed aggregate snowflakes313

would be to scale the mass-size prefactor with the density factor, while the exponent re-314

mains constant. While this would better represent the conceptual model of the riming pro-315

cess, it would not encompass the observed variability in the mass-size relations of unrimed316

snowflakes, or the transition to graupel-like particles. A comparison of the two parameterisa-317

tions indicated that the retrieval was not strongly sensitive to the representation of the density318

factor, especially for estimates of unrimed to moderately rimed aggregates. With additional319

observational evidence, a more complex representation of the effects of riming on particle320

morphology—including expected changes in the masses and shapes of particles during dif-321

ferent stages of riming—may allow for improved retrievals and better quantified uncertain-322

ties. This should be the subject of future work.323
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2.2.3 Area-size relation324

Similar to the mass-size relation, the cross-sectional area of ice particles is expressed325

as a power law:326

A = aADbA . (11)

The area-size relation of unrimed aggregates is derived from the mass-size [Brown and Fran-327

cis, 1995] and mass-area relations [Francis et al., 1998] from aircraft measurements of cirrus328

clouds A = 0.02038 D1.624 m2 in SI units and in terms of maximum dimension. The geo-329

metric upper limit for horizontally-aligned oblate spheroids with maximum dimension on330

the horizontal plane is A = π/4 D2 m2. A comparison of area-size relations from a range331

of studies (Fig. 2) again shows a relationship between the prefactors and exponents across332

particle types: lower density factors are consistent with unrimed ice particles [Schmitt and333

Heymsfield, 2010; Mace and Benson, 2017], and larger density factors with rimed parti-334

cles [Heymsfield and Kajikawa, 1987], graupel and hail [Mitchell, 1996]. While increases335

in cross-sectional area are consistent with the conceptual model of riming leading to the in-336

filling of aggregates and a transition to rounded graupel-like particles, there is significant337

variability between particle types: for example, columns may retain low cross-sectional areas338

despite riming, while riming may have little effect on the cross-sectional area of plates.339

To represent the increased cross-sectional area of rimed aggregates and graupel, we345

scale the area-size relation by the density factor r; however, to represent the more rounded346

shapes of heavily rimed aggregates and graupel, the cross-sectional area is maximized for347

r = rmax, so that348

b′A = 2
r

rmax
+ 1.624(1 − r

rmax
). (12)

The prefactor is scaled by a critical diameter DcA , the size at which the cross-sectional area349

of unrimed aggregates and spheres are equal, which can be calculated to be 61 µm. The nor-350

malized area-size relation is therefore351

A = a′A

(
D

DcA

)b′
A

(13)

where the modified prefactor is the area at the critical diameter a′A = aAD
b′
A

cA . Most rimed352

and unrimed aggregates correspond to density factors r < 0.3, while quasi-spheroidal and353

heavily rimed particles, graupel and hail have r ≈ rmax. A marginally more complex area-354

size relation that better fits the observations would be to allow both the prefactor and expo-355

nent to vary for r < rmax, before scaling only the prefactor up to r = 1.356
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Particle area is often expressed as the area ratio, which is the cross-sectional area of the357

particle normalized by area of the circumscribing circle, or358

Ar (D) =


1.0 D ≤ DcA

(D/DcA)b
′
A
−2 D > DcA

. (14)

2.2.4 Velocity-size relation359

The boundary layer or hydrodynamic method provides an estimate of the terminal ve-360

locity of a hydrometeor based on size, area ratio and mass [e.g. Mitchell, 1996; Mitchell and361

Heymsfield, 2005; Khvorostyanov and Curry, 2005; Heymsfield and Westbrook, 2010] or362

conversely, an estimate of particle mass from measured diameter, cross-sectional area and363

fallspeed [e.g. von Lerber et al., 2017]. In the previous sections the mass- and area-size re-364

lations for ice particles were expressed as functions of diameter and density factor; hence a365

look-up table for particle terminal velocities is produced using the method of Heymsfield and366

Westbrook [2010].367

The terminal fallspeed of ice particles v(D, f ) for a range of maximum dimensions and372

ice fractions (see eq. 10) is overlaid with curves corresponding to the mass-size relations for373

a range of density factors (Fig. 3). As the mean Doppler velocity relates to the reflectivity-374

weighted average of particle fallspeeds, the density factor has the greatest effect on the fall-375

speeds of the largest particles. While the largest unrimed aggregates do not exceed terminal376

velocities of 2 m s−1, even low density factors effect significant increases in fallspeed for par-377

ticles of the same size.378

2.3 State variables379

2.3.1 Extinction coefficient and primed number concentration380

The choice of retrieved state variables is flexible within CAPTIVATE, as are any ver-381

tical or temporal smoothing applied to the state variables. In this retrieval, a state variable382

related to the density factor is added to those used for retrievals of ice clouds from radar–383

lidar synergy described in Delanoë and Hogan [2008, 2010]. The first state variable is the384

visible extinction coefficient of ice in the geometric optics approximation, αv . The second385

state variable is the primed number concentration,386

N ′0 = Nwα
−0.6
v (15)
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from which the normalized number concentration Nw from (5) can be recovered, since the387

extinction coefficient is also retrieved. Delanoë and Hogan [2008] showed using in situ air-388

craft data that this choice of state variables for ice allows for a convenient a priori estimation389

of the primed number concentration as a function of atmospheric temperature (Table. 1). An390

additional parameter, the lidar extinction-to-backscatter ratio, can also be retrieved in radar-391

lidar synergy applications; however, in this study we assume this variable is constant.392

The minimization scheme does not limit the values of retrieved variables, so we formu-393

late state variables such that they remain physically meaningful at all values; this is achieved394

by using the natural logarithms of N ′0 and αv .395

While these choices of state variables for ice and snow are convenient for the reasons396

described above, they are not necessarily the most physically meaningful quantities. For397

comparison with in situ measurements, an integrated quantity such as the melted-equivalent398

snow rate, as well as the median diameter and normalized number concentration, are more399

convenient. As the extinction coefficient is an integral over the PSD and the primed number400

concentration relates to a parameter of the PSD by (15), the two state variables are sufficient401

to calculate the PSD.402

2.3.2 Density index403

The natural logarithm of the density factor is not a suitable state vector; the density404

factor should not exceed r = 1, but small negative values are physically meaningful. Instead405

we retrieve the density index r ′, a state variable defined such that:406

r =
f (r ′ + r0) + f (r0)

1 − f (r0)
, (16)

where407

f (x) = 1
2
+

tan−1 x
π

(17)

and r0 = −2. This transform function has the property that r = 0 when r ′ = 0, and for any408

value of r ′, r is within the range −0.173 to 1.0. The transform is illustrated in Fig. 4.409

2.3.3 Representation of the state vector413

To reduce the effect of measurement noise on the retrieval, the profile of each state414

variable is represented as the basis functions of a cubic spline [Hogan, 2007]. The degrees of415

freedom of the retrieval can therefore be controlled by altering the spacing of the basis func-416
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tions, which modifies the effective scales over which features are retrieved [Rodgers, 2000].417

A Kalman smoother [Rodgers, 2000] is applied to the extinction coefficient and density in-418

dex, so that the retrieval of these quantities is constrained by adjacent profiles. In the first419

pass of the smoother the retrieval is constrained by subsequent rays and, on the second pass,420

in both directions. For the retrieval of the density factor, this will have the effect of filtering421

out smaller-scale fluctuations in the mean Doppler velocity due to turbulent vertical air mo-422

tion.423

The state vector for ice cloud and snow is therefore

xice =

©­­­­­«
lnαv

ln N ′0

r ′

ª®®®®®¬
.

The prior estimate of the state vector and associated uncertainties represent our knowledge424

of the state before the measurement vector is assimilated. The values and uncertainties of the425

priors, and the vertical representation of each state variable are summarized in Table 1; note426

that the uncertainties in the priors are in terms of the natural logarithm of the physical param-427

eters. From a large database of in situ measurements of ice clouds [Delanoë et al., 2005] an428

expression has been derived for ln N ′0 as a function of atmospheric temperature, with a vari-429

ance of 1.0 [Fig. 3b in Delanoë and Hogan, 2008], and a similar function of temperature is430

used for the prior extinction coefficient. When fewer observational variables are used it may431

be necessary to reduce the number of degrees of freedom by holding some state variables at432

their a priori values; these state variables can be represented within the retrieval as a “model”433

variable, wherein its value does not vary but its prior uncertainty is assimilated.434

2.4 Observed variables and radar forward model438

2.4.1 Reflectivity factor439

The observed variables for each radar are the apparent radar reflectivity factor Z f and440

mean Doppler velocity Vf at the radar frequency f . The reflectivity factor is given by441

Z f = 1018 λ4

π5 |K f |2

∫ ∞

0
σf (D) N(D) dD (18)

where λ is the radar wavelength, K f is the dielectric factor, and σf (D) is the radar backscat-442

ter cross-section. Radar attenuation due to atmospheric gases is modelled from the atmo-443

spheric state using Liebe [1985], so that this effect is included in the observed and forward-444

modelled radar reflectivities.445
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Table 1. State variables for ice and snow, their priors, uncertainties and vertical representation. Note that

we take as the state variables the natural logarithms of key parameters; stated uncertainties are therefore

uncertainties in the natural logarithm of the priors.

435

436

437

State variable xi Prior xai Prior uncertainty

σ(xai )

Cubic spline

spacing [m]

Extinction coefficient lnαv −9.2103 − 0.03148T

(where T is in ◦C)

10.0 150

Primed number concentra-

tion ln N ′0

23.03 − 0.12997T

(where T is in ◦C)

1.0 600

Density index r ′ 0.0 1.0 150

Attenuation due to liquid water can be significant for millimetre-wavelength radars,446

and can either be accounted for by simultaneously retrieving the liquid water content, or by447

correcting for attenuation in the radar reflectivities prior to the retrieval. The former option448

is most suited to a radar–lidar–radiometer retrieval wherein the lidar backscatter and a visible449

radiance may provide adequate constraints; for a radar-only retrieval the available observed450

variables are dominated by ice, and the retrieval of liquid water content would be undercon-451

strained. Radar reflectivities can be pre-corrected for liquid attenuation based on an esti-452

mate of the liquid water path, such as from a microwave radiometer. In this study we follow453

the correction described in Kneifel et al. [2015]; the vertical distribution of SLW not being454

known, it is distributed evenly over the lowest 4 km of the atmosphere. Alternative correc-455

tions may be made by assuming all of the attenuation takes place below the lowest radar gate,456

or by locating the liquid in one or more shallow layers based on other evidence such as a re-457

cent sounding, or Doppler spectra [e.g. Kalesse et al., 2016]. In practice we found that the458

uncertainty in W-band radar reflectivity between the different corrections was on the order459

of 1 to 2 dB; this can be accounted for within CAPTIVATE by increasing the observational460

uncertainty applied to the measurement vector (see Section. 2.4.4).461

Reflectivity enhancement due to radar multiple scattering can be modelled using the462

method of Hogan [2008]; however, in this application with ground-based narrow beamwidth463

radars, we assume multiple scattering is negligible. The uncertainty in the radar reflectivity464

includes both observational and forward-model errors.465
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2.4.2 Mean Doppler velocity466

Mean Doppler velocity is the reflectivity-weighted fallspeed of hydrometeors467

Vf =

∫ ∞
0 v(D)σf (D) N(D) dD∫ ∞

0 σf (D) N(D) dD
, (19)

where v(D) is corrected for air density, and positive values of mean Doppler velocity are468

toward the surface. The forward-modelled mean Doppler velocity neglects air motion, the469

effects of which are also included in the observational uncertainty. In the stratiform snow470

events in this study we assume that the mean Doppler velocity is dominated by the terminal471

velocities of hydrometeors rather than vertical air motions. In convective situations or where472

ice particles are very small, this assumption may not be justified, and would lead to a misdi-473

agnosis of particle density; this will be considered in Section 4.1.474

2.4.3 Scattering models475

In addition to the density and shape of snow particles (Section 2.2), variability in par-476

ticle morphology has a significant impact on the scattering of microwave radiation, which477

must be approximated within the radar forward-model. The self-similar Rayleigh-Gans ap-478

proximation [SSRGA; Hogan and Westbrook, 2014; Hogan et al., 2017] provides an accurate479

estimate of the radar backscatter cross-section for unrimed aggregates, but underestimates480

the radar backscatter of higher-density rimed particles. Snow particles have often been ap-481

proximated by “soft spheroids”—oblate spheroids composed of a homogenous mixture of ice482

and air—for which the radar backscatter can be estimated using the T-matrix method [e.g.483

Hogan et al., 2012]. Leinonen and Szyrmer [2015] found that soft spheroids provide a good484

approximation to the backscatter of dense graupel-like particles, but not to rimed aggregates.485

In both approximations particles are represented as occupying the volume of horizontally-486

aligned oblate spheroids with an aspect ratio of AR = 0.6 [Hogan et al., 2012].487

In the absence of an explicit model for rimed aggregates, we represent the backscatter488

cross-section in the transition from unrimed aggregates to graupel as an external mixture be-489

tween SSRGA (r ≤ 0.2) and soft spheroids (r ≥ 0.5). These thresholds were selected based490

on the ranges of density factors associated with mass-size relations for studies of unrimed ag-491

gregates and graupel (Fig. 1). As a check on this representation, the forward-modelled radar492

backscatter from a gamma distribution of particles was used to generate dual-wavelength ra-493

tios (DWRs) at Ka–W-bands and X–Ka-bands for a range of density factors (Fig. 5); these494

curves are overlaid with triple-frequency radar measurements from three snow events during495
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BAECC 2014 [Kneifel et al., 2015, c.f. their Fig. 1]. A thin contour highlights the most fre-496

quent DWRs observed during the snow event that is studied in Section 4.1. The upright band497

of DW RKa−W < 10 dB and large DW RX−Ka corresponds to the “hook” feature identified for498

unrimed aggregates, while the flat feature with low DW RX−Ka is associated with denser499

graupel-like particles. The triple-frequency signatures represented by SSRGA (r ≤ 0.2)500

resemble those of unrimed aggregates, while the soft spheroids (r ≥ 0.5) fit the flatter sig-501

nature associated with graupel. This demonstrates that a simple hybrid representation at502

least qualitatively permits the signatures of unrimed aggregates and dense rimed particles in503

multiple-frequency radar observations—but does not necessarily address known limitations504

in the soft spheroid approximation for a range of dense particles [Leinonen and Szyrmer,505

2015; Hogan et al., 2017]. The modelling and measurement of the morphology and multiple-506

frequency radar scattering of ice particles are of significant research interest [e.g. Kneifel507

et al., 2018], and improved approximations for the backscatter cross-sections for rimed ag-508

gregates will both reduce uncertainties in the present retrieval, and allow for increased confi-509

dence in multiple-frequency radar retrievals of snow.510

2.4.4 Measurement vector518

The vector of observed variables for a dual-frequency Doppler radar retrieval is

y =

©­­­­­­­­«

Zf0

Vf0

Zf1

Vf1

ª®®®®®®®®¬
.

In principal more than two radar frequencies could be included in the measurement vector;519

and in practice, as discussed in the next section, some of the observed variables may not be520

assimilated in the present study.521

The uncertainties in the measurement vector includes the stated measurement error for522

the instruments (Table 2), other sources of observational uncertainty, and an estimate of the523

uncertainties in the assumptions that form the basis of the instrument forward-model. For a524

retrieval that relies upon the mean Doppler velocity to estimate the properties of hydromete-525

ors, the treatment of and sensitivity to uncertainties in Doppler measurements are of partic-526

ular interest. For the present study we assume uncertainties of 3 dB in the radar reflectivities527

and 1.0 m s−1 in the mean Doppler velocity.528
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Figure 5. Joint histogram of measured dual-wavelength ratios (DWRs) for triple-frequency radar ob-

servations from the three cases studied in Kneifel et al. [2015]; a thin contour encloses the most frequent

measurements during the February 21–22 2014 case considered in Section 4.1, highlighting distinct features

associated with aggregates and graupel. Black curves represent the forward-modelled DWR for an expo-

nential distribution of particles with density factors from unrimed aggregates (using SSRGA for r < 0.2) to

graupel (“soft spheroids” for r > 0.5); the transition between rimed aggregates and graupel is represented by

an external mixture of the two approximations to the radar backscatter cross-section.
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3 BAECC 2014 data529

As part of the Biogenic Aerosols—Effects on Clouds and Climate field campaign530

[BAECC 2014; Petäjä et al., 2016], the US Department of Energy atmospheric radiation531

measurement (ARM) program’s second mobile facility (AMF2) was deployed at the Univer-532

sity of Helsinki’s Hyytiälä forestry field station (61◦51’N, 24◦17’E). The remote-sensing and533

in situ instrumentation, and their deployment are documented in Kneifel et al. [2015]. Be-534

tween 1 February and 31 March 2014 the snowfall measurement experiment (SNEX) inten-535

sive observation period (IOP) focused on the measurement of snow microphysics. Remote-536

sensing observations include vertically-pointing Doppler radars, lidar and microwave ra-537

diometer instruments, and the state of the atmosphere from reanalysis (Section 3.1) will be538

evaluated against in situ measurements at the surface (Section 3.2).539

3.1 Remote sensed measurements540

Two vertically-pointing Doppler radars are the primary remote-sensing instruments541

in this study. The 35GHz Ka-band Zenith Radar (KAZR) and the 95GHz Marine W-band542

cloud radar (MWACR) were deployed at Hyytiälä during the SNEX IOP. Due to a mispoint-543

ing of MWACR, mean Doppler velocity measurements from that radar are not used in this544

study. It is important that KAZR and MWACR sampling volumes are broadly overlapping;545

both radar measurements are resampled from approximately 2 s to 120 s. Calibration of546

MWACR and KAZR against a colocated vertically-pointing X-band radar is carried out as547

described in Kneifel et al. [2015], after accounting for attenuation due to atmospheric gases548

and liquid; when X-band radar is not available the most recent calibration is applied, and549

MWACR radar reflectivity is calibrated against KAZR radar reflectivity at cloud-top after550

correcting for attenuation.551

Additional observations are available from the AMF2 high-spectral resolution lidar553

(HSRL), which measures molecular and particulate backscatter at 532 nm with gate spac-554

ing of 30 m and temporal resolution of 120 s. HSRL could be used for radar–lidar synergy555

retrievals of non-precipitating ice cloud, where the lidar provides valuable information on556

smaller ice particles and liquid droplets; however, in the rimed snow events of interest here557

the lidar is completely attenuated by liquid water near the surface. HSRL data are therefore558

presented alongside the radar data, but are not assimilated in the retrieval.559
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Table 2. AMF2 zenith-pointing radar instruments and observational uncertainties552

Instrument KAZR MWACR

Frequency 35GHz 95GHz

Wavelength 8.6mm 3.2mm

Gate spacing 30m 30m

Beam width 0.38 ◦ 0.3 ◦

Reflectivity uncertainty 1 dB 1 dB

Mean Doppler velocity uncertainty 0.5 m s−1 n/a

Microwave radiometer (MWR) measurements at 23.8 and 31.4 GHz are used to re-560

trieve liquid water path (LWP) and water vapour path [Cadeddu et al., 2013]. While mi-561

crowave radiometer measurements are not included in the retrieval, estimates of LWP pro-562

vide information on the magnitude of supercooled liquid water (SLW) that are used to cor-563

rect for radar attenuation due to liquid (discussed above and in Section 2.4) and to provide564

context for the retrieval of riming based on the availability of supercooled liquid water in565

mixed-phase clouds [e.g. Kalesse et al., 2016; Moisseev et al., 2017].566

To assist in interpreting the remote-sensed data, atmospheric state profiles are obtained567

from European Centre for Medium-Range Weather Forecasts (ECMWF) re-analysis at 1 hour568

temporal resolution over the site. Variables are re-interpolated onto a height grid using pres-569

sure measurements from 6 hourly radiosondes. Profiles of atmospheric temperature, pressure570

and humidity are used in the target classification scheme and within the retrieval algorithm to571

estimate radar attenuation due to atmospheric gases.572

Prior to the retrieval remote-sensed and atmospheric data are averaged onto a com-573

mon grid using the reflectivity-weighted mean Doppler velocity for averaging. A detection574

mask is generated for each radar instrument, using the texture of the mean Doppler velocity575

[Helmus and Collis, 2016] and radar signal-to-noise ratio after subtracting an estimate of the576

noise.577

3.2 In situ measurements578

The BAECC 2014 campaign provides a valuable opportunity to evaluate remote-sensed579

estimates of snow against reliable and sustained in situ observations at the surface; this is580
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rarely possible at lower latitudes where both in situ and millimeter-wavelength radar mea-581

surements are affected by melting. Images of ice particles from the precipitation imaging582

package (PIP) video disdrometer [Newman et al., 2009] are converted to measurements of583

particle number concentration, size, area and fallspeed. The mass of each particle is esti-584

mated from PIP observations of particle size, area and terminal velocity as described in von585

Lerber et al. [2017]; the maximum dimension of the ice particles are scaled to derive the par-586

ticle masses that result in the best fit with snow accumulation measured by nearby Pluvio587

snow gauges. PIP measurements at 5 min resolution are used, and shifted by 5 minutes for588

comparison against remote-sensing measurements around 500 m above ground level. Kneifel589

et al. [2015] discuss a more precise approach to estimating the time-lag for evaluation against590

the lowest radar gates, but given the time-averaging used in this retrieval a constant lag was591

sufficient.592

The median diameter D0 and normalized number concentration Nw parameters are593

derived from the measured particle size distribution. Ice particle bulk density is estimated594

from PIP measurements using the measured PSD and velocity-size relation, and estimated595

mass-size relation according to (4) [von Lerber et al., 2017]. This method was found to be596

consistent with complementary methods using the Pluvio snow accumulation to estimate the597

bulk density of ice [Tiira et al., 2016; Moisseev et al., 2017].598

4 Results599

We first demonstrate the retrieval for a case study (Sec. 4.1), before presenting statisti-600

cal evaluation of retrievals over 10 snow events during the SNEX IOP (Sec. 4.2).601

4.1 Case study: February 21–22 2014602

At 23:00 UTC on February 21 2014 a warm occluded front passed over Hyytiälä,603

bringing about an hour of snow dominated by large aggregates. The light pre- and post-604

frontal snow was characterised by rimed particles, including both heavily rimed aggregates605

and graupel. With a total melted-equivalent accumulation of 5 mm comprising rimed and606

unrimed snow, this event has been extensively studied with in situ [Tiira et al., 2016; von607

Lerber et al., 2017; Moisseev et al., 2017] and radar remote-sensing [Kneifel et al., 2015;608

Kalesse et al., 2016] methods. The remote-sensed and in situ measurements for this case are609
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shown in Figs. 6 and 7, respectively. We divide the case into pre-frontal, frontal and post-610

frontal regimes.611

In the prefrontal regime (18:00 to 23:00 UTC) snowfall is relatively constant with612

melted-equivalent rates between 0.2 and 1 mm h−1 (Fig. 7d) from clouds with tops around613

5 km and −20 ◦C (Fig. 6a–c). Particles measured in situ are dominated by a high concen-614

tration of compact ice particles, with bulk densities between 200–400 kg m−3. PIP imagery615

confirms the presence of graupel during this period [Fig. 14 from Kneifel et al., 2015]. In616

the hour prior to the front, cloud-top lowers to around 3 km and −15 ◦C, and relatively little617

snow is measured at the surface. Moisseev et al. [2017] and von Lerber et al. [2017] note that618

the low particle counts measured by PIP during this period lead to reduced confidence in the619

retrieved quantities, and the bulk density (Fig. 7d) is not retrieved here.620

The frontal regime (23:00 and 00:00 UTC) brings heavier snow with a peak snowfall621

rate of 4.0 mm h−1, and PIP imagery and measurements indicate large aggregates with me-622

dian diameters up to 5 mm (Fig. 7d); however, particle fallspeeds do not exceed 1.5 m s−1
623

(Fig. 7b). Here cloud-top is around 9 km and the maximum KAZR reflectivity factor exceeds624

20 dBZ near the surface.625

The post-frontal regime (00:00 to 03:00 UTC) is dominated by patchy and very light626

snow with the exception of two showers in which the snow rate exceeds 2 mm h−1; cloud-627

top is again between 3 and 5 km. PIP measurements of bulk density are higher than in the628

pre-frontal period, between 200 and 500 kg m−3, and the particle size distribution confirms629

that the post-frontal snow features a higher concentration of larger and fast-falling particles,630

which von Lerber et al. [2017] noted comprised a mixture of rimed aggregates and graupel.631

The presence of rimed snow and graupel throughout the pre- and post-frontal regimes632

is indicative of persistent mixed-phase cloud layers in the lower atmosphere; however, the633

vertical distribution of supercooled liquid water cannot be observed directly. The liquid wa-634

ter path retrieved from microwave radiometer (Fig. 6f) and strong HSRL backscatter (Fig. 6d)635

in the lowest liquid layers suggest that the vertically-integrated amount of liquid water in-636

creases throughout the case, while the cloud base lowers. Above this lowest layer, Kalesse637

et al. [2016] used Doppler spectra and soundings to infer the presence of embedded mixed-638

phase cloud layers around 1 and 3.2 km. The exception is in the frontal snow, when both mi-639

crowave radiometer and lidar backscatter indicate that the liquid water layers are depleted640

[Moisseev et al., 2017]. Visual inspection of the mean Doppler velocity (Fig. 6c) hints at the641
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signature of mixed-phase cloud layers in the reflectivity-weighted average fallspeed of snow642

particles: the largest near-surface mean Doppler velocities correspond in time to maxima in643

LWP around 22:00, 01:00 and 02:20 UTC (Fig. 6f) during the pre- and post-frontal regimes,644

while the frontal regime represents a minimum in both mean Doppler velocity and LWP de-645

spite being the period during which the greatest snow rate and particle size are measured.646

Through the vertical profile, increases in the mean Doppler velocity are evident at or around647

1 and 3 km, which may be related to the onset of riming in mixed-phase cloud layers. A more648

quantitative estimate of riming will be made using the CAPTIVATE retrieval algorithm.649

The CAPTIVATE retrieval is applied to the February 21 case, assimilating 35- and659

94-GHz radar reflectivities and 35-GHZ mean Doppler velocity (hereafter “ZZV”). Re-660

call that the 94-GHz Doppler velocity is not used due to a mispointing error. The retrieved661

state variables are the extinction coefficient, primed number concentration and density in-662

dex (hereafter “αvN ′0r ′”). As a check on the quality of the retrieval, we confirm that the best663

estimate of the state can be used to forward-model the observed MWACR radar reflectiv-664

ity (Fig. 8a&b) and KAZR mean Doppler velocity (Fig. 8c&d). Rather than report the val-665

ues of the state variables directly, we derive more physically meaningful parameters from666

the retrieval: the melted-equivalent snow rate (Fig. 8e), normalized number concentration667

(Fig. 8f), median diameter (Fig. 8g), and the density factor (Fig. 8h). In the prefrontal regime668

snow rate reaches 0.1–1.0 mm h−1 below 3 km. In the frontal regime the snow rate exceeds669

1 mm h−1 between 5–7 km above ground level; toward the surface, number concentration670

decreases while median diameter increases, suggesting growth by aggregation. In the post-671

frontal showers maxima in snow rate correspond to streaks of increased number concentra-672

tion and median diameter. Of primary interest is the retrieval of the density factor, which673

increases to around r = 0.2 below 3 km in the pre-frontal and post-frontal regimes and up to674

local maxima of 0.5 to 0.7 near the surface around 22:00, 01:00 and 02:20 UTC; in short,675

the retrieved density factor maps closely to the regions of high mean Doppler velocity identi-676

fied earlier. In the pre-frontal regime small but non-zero density factors are retrieved in both677

the cirrus and the midlevel cloud-tops, albeit with large estimated uncertainties (not shown);678

much of this cirrus occurs below temperatures at which supercooled liquid—and therefore679

riming—is to be expected (Fig. 6a–c), an occurrence which has not been excluded within680

the retrieval. As discussed in Section 2.2.2, small non-zero density factors are within the ob-681

served variability of mass-size relations for unrimed particles; however it may also be the682

case that vertical air motion dominates the mean Doppler velocity in this regions.683

–27–



Confidential manuscript submitted to JGR-Atmospheres

Figure 6. AMF2 measurements from Hyytiälä between 2014-02-21 16:00 UTC and 2014-02-22 03:00

UTC. KAZR radar reflectivity (a) and mean Doppler velocity (b); MWACR radar reflectivity (c); HSRL atten-

uated Mie backscatter (d) and attenuated Rayleigh backscatter (e); and microwave radiometer LWP (f). Note

the different vertical scales for HSRL backscatter (d & e). Black contours are temperature from ECMWF

re-analysis; a darker line at −40◦C denotes the temperature below which supercooled liquid water is not

expected.
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4.1.1 Profiles684

In addition to assimilating all available radar measurements and retrieving all state685

variables, it is of interest to explore the relative contributions of Doppler and dual-frequency686

measurements to the CAPTIVATE retrieval. These configurations are more easily compared687

at selected profiles, each representing 120 S of averaged radar measurements. We select a688

profile from each of the snow regimes: a pre-frontal profile at 21:30 UTC (Fig. 9 I), a frontal689

profile at 23:20 UTC (Fig. 9 II), and a post-frontal profile at 02:20 UTC (Fig. 9 III).690

The ZZV–αvN ′0r ′ retrieval of the pre-frontal profile (Fig. 9 I) shows snow rate increas-696

ing below 3 km to approximately 0.5 mm h−1 at the surface, concurrent with an increase in697

the density factor to around r = 0.3 below 1 km. Large uncertainties in the retrieved density698

factor reflect a large observational uncertainty of 1 m s−1 in the Doppler velocity; however,699

we find that the retrieved density factor is robust to changes in the observational uncertainty.700

When Doppler velocity is not assimilated (ZZ–αvN ′0r ′) there is little constraint on the den-701

sity factor, which remains close to r = 0. This leads to an underestimate in forward-modelled702

mean Doppler velocity of as much as 1 m s−1 below 2 km, and Nw greater by a factor of 5703

than that of ZZV–αvN ′0r ′; that is, when dense rimed particles are not retrieved, the lower704

density of ice is compensated by a larger concentration of snow particles such that the snow705

rate differs only slightly from that of ZZV–αvN ′0r ′. The ZZ–αvN ′0r ′ retrieval is very simi-706

lar to one in which Doppler velocity is available, but where all snow is assumed to be un-707

rimed aggregates (ZZV−αvN ′0; not shown). Conversely, when only MWACR reflectivities708

are assimilated and the full state vector is retrieved (Z94V–αvN ′0r ′; the dark green line in709

Fig. 9 I), the PSD diverges significantly from ZZV–αvN ′0r ′. A much lower number concen-710

tration of larger particles is retrieved, with median diameter a factor of two larger than that711

of ZZV–αvN ′0r ′. Despite a lower density factor, this retrieval appears well-constrained by712

the Doppler velocity—but the forward-modelled DWR indicates that the larger particles lead713

to an error in Ka-band reflectivity of around 4 dB near the surface. This is an example of an714

under-constrained retrieval in which three state variables are estimated from two measured715

variables. A better-posed retrieval can be made by treating the primed number concentration716

as a model variable which does not vary from the prior Z94V–αvr ′ (the bright green line in717

Fig. 9). The results of this retrieval much more closely resemble ZZV–αvN ′0r ′, with reduced718

errors in forward-modelled DW R and values of N ′0 and D0 closer to their priors; therefore719

in subsequent profiles only the Z94V–αvr ′ will be compared with ZZV–αvN ′0r ′ and ZZ–720

αvN ′0r ′.721

–31–



Confidential manuscript submitted to JGR-Atmospheres

Figure 9. Forward-modelled measured variables and retrieved snow rate, normalized number concentra-

tion, median diameter and density factor for ZZV, Z94V and ZZ retrievals, for a profile at 21:30 UTC (I) ,

23:20 UTC (II) and 02:20 UTC (III) within the pre-frontal regime. Black solid lines indicate the observed

variables, and dashed lines indicate the prior retrieved variables. Shading indicates the 5th to 95th percentile

uncertainty of the retrieval.
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In the frontal regime (Fig. 9 II) there is generally good agreement between retrievals,722

which consistently represent a snow rate of 1 to 2 mm h−1 below 4 km; this relatively constant723

mass flux corresponds with increasing median diameter and decreasing number concentra-724

tion consistent with strong aggregation in the shower, and confirmed by the large aggregate725

snowflakes observed at the surface (Fig. 7). Both ZZV and Z94V diagnose smallnon-zero726

density factors below about 4 km, without which ZZ under-estimates the mean Doppler ve-727

locity by around 0.5 m s−1. In the mid-levels Z94V overestimates KAZR radar reflectivities,728

once again due to a smaller concentration of larger particles. In most other regards the re-729

trievals are similar until near cloud-top, where relatively large Doppler velocities lead to the730

retrieval of small to moderate density factors in ZZV and Z94V which are unphysical (the731

contours in Fig. 6 indicate that the temperature is below −40◦C at these heights), and may be732

a result of vertical air motion in the cirrus. In stratiform precipitation, the retrieval of dense733

ice due to small-scale turbulent features in vertical air motion is somewhat suppressed by734

the use of a Kalman smoother in the retrieval of the density index; however, it would also be735

possible within CAPTIVATE to reduce prior uncertainty in the density factor where riming736

is unlikely, or to apply higher uncertainties to mean Doppler velocity measurements where737

larger contributions from vertical air motion are expected.738

In the postfrontal regime (Fig. 9 III) the Doppler velocity reaches 3 m s−1 below 1 km,739

where ZZV and Z94V estimate density factors around r = 0.6; ZZ does not diagnose resolve740

this increase in particle density, and the corresponding forward-modelled mean Doppler ve-741

locity differs from observations by almost 2 m s−1 along with overestimates in both number742

concentration and median size. While ZZV and Z94V converge upon similar PSDs below743

1.5 km where the Doppler signal is strong, near the top of the cloud Z94V remains closer to744

its priors (recall that N ′0 does not vary in this retrieval), leading to a much higher concentra-745

tion of small particles and a significant under-estimate of the KAZR radar reflectivity above746

1.5 km.747

While the uncertainties in the retrieved density factor are constrained in the parts of the748

profile where the mean Doppler velocity of denser particles differ significantly from that of749

unrimed aggregates—typically below 2 or 3 km in these profiles—very large density factor750

uncertainties are evident aloft. In these regions the Doppler velocity contains little informa-751

tion about variations in density because the smallest particles are assumed to be solid quasi-752

spheroidal particles for all values of the density factor (see Fig. 3).753
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4.1.2 Comparison against in situ measurements754

We now evaluate the CAPTIVATE retrievals against in situ measurements at the sur-755

face; ZZV, Z94V and ZZ estimates of snow rate, normalized number concentration, median756

diameter, and bulk density averaged over the radar gates up to 600 m above ground level are757

compared against those from PIP (Fig. 10).758

All of the CAPTIVATE retrievals of snow rate are within the range of uncertainty of759

PIP snow rate, with under-estimates of up to 50 % especially evident in frontal and post-760

frontal showers. As was also the case in the analysis of profiles, the estimated snow rates are761

remarkably consistent between the different retrievals; this is despite significant differences762

in estimates of particle size, number concentration and density.763

As they often compensate for one another, the parameters of the PSD are evaluated769

together. ZZV and ZZ estimates of median diameter (Fig 10c) are within 50 % of PIP mea-770

surements, and estimates of normalized number concentration (Fig 10b) are usually within771

the retrieval uncertainty—with errors of up to a factor of five—of PIP measurements. With-772

out a dual-frequency constraint on particle size and therefore fewer state variables retrieved,773

the Z94V−αvr ′ estimates of N ′0 and D0 are less able to resolve the distinct snow regimes: in774

the pre-frontal period Z94V number concentrations exceed PIP measurements by up to an or-775

der of magnitude while particle sizes may be double the surface observations; the inverse is776

true in the post-frontal period.777

Finally we evaluate the retrieval against in situ measurements of bulk density (Fig. 10d).778

The volume flux-weighted bulk density is estimated from retrieved particle properties consis-779

tent with eq. 4, in which the mass- and velocity-size relations are modulated by the retrieved780

density factor. We compare this remote-sensed estimate against two in situ retrievals of bulk781

density from PIP measurements [von Lerber et al., 2017] and a combination of PIP and Plu-782

vio snow gauge measurements [Moisseev et al., 2017] to constrain the total accumulation; we783

note that the former method was calibrated against the latter, so these two retrievals are not784

independent. The retrieved density factor and median diameter are both important to the es-785

timated bulk density; when constrained by both Doppler and dual-frequency measurements,786

ZZV is therefore broadly capable of resolving the bulk density measured by PIP, although787

we note underestimates of 25–50 % between 20:30 and 22:00 in the pre-frontal period, and788

between 01:00 and 01:45 in the post-frontal period. Errors in Z94V estimates of median di-789

ameter can either exacerbate (in the pre-frontal regime) or mask (in the post-frontal) errors790
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in the bulk density: as discussed above, with a weaker constraint on particle size Z94V does791

not resolve the compact graupel ahead of the front, and underestimates post-frontal particle792

size. Conversely, without Doppler information the bulk density estimates from ZZ are chiefly793

a function of particle size: density rarely exceeds 200 kg m−3 except immediately ahead of794

the front, when median diameters of less than 1 mm are estimated.795

4.1.3 Riming as an indicator of mixed-phase cloud796

While CAPTIVATE has been developed for radar–lidar–radiometer synergy retrievals,797

in the present case the lidar is fully extinguished within less than 1 km of the surface in the798

lowest of several shallow layers of mixed-phase cloud. Our retrievals assimilate radar reflec-799

tivity and mean Doppler velocity, both of which are dominated by backscatter from larger800

ice particles; the Doppler spectrum or its higher moments can sometimes be used to iden-801

tify the presence of liquid cloud [Kalesse et al., 2016], although the broader applicability of802

these methods can be limited, especially for retrievals from airborne and spaceborne plat-803

forms where spectral broadening is significant [e.g. Illingworth et al., 2015]. The density of804

ice particles has been retrieved based on mean Doppler velocity, relying on approximations805

to the morphology of ice particles from unrimed aggregates to graupel and their associated806

terminal fallspeeds. We hypothesise that the primary process by which high density factors807

occur is the riming of ice particles within mixed-phase clouds. An independent source of in-808

formation on the potential for riming is LWP retrieved from the microwave radiometer; von809

Lerber et al. [2017] used LWP as a proxy for riming, and the connection between LWP and810

rime mass fraction is also demonstrated from in situ retrievals in Moisseev et al. [2017].811

For the present case, the timeseries of LWP is strongly correlated to the CAPTIVATE812

retrievals of density factor in the near-surface gates (Fig. 11a; ZZV-αvN ′0r ′). The highest813

density factors correspond to the presence of significant mixed-phase cloud in the pre- and814

post-frontal periods, and the dominance of unrimed aggregates to the depletion of liquid ev-815

ident during the frontal snow. The scatter plot of the LWP versus the retrieved density factor816

(Fig. 11b) is coloured by the mean Doppler velocity and sized by retrieved median diameter.817

At low LWP particles tend to be large unrimed aggregates with mean Doppler velocities less818

than 2 m s−1. Moderate LWP profiles correspond to particles ranging from larger rimed ag-819

gregates with 0.0 < r < 0.2, to compact rimed aggregates (0.2 < r < 0.5). At high LWP the820

snow is dominated by graupel (0.5 < r < 0.8), with some instances of larger, fast-falling and821

heavily-rimed aggregates.822
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In summary, the February 21 2014 case study includes significant riming below around826

3 km during pre- and post-frontal snow, interrupted by a frontal shower dominated by large827

aggregate snowflakes. Mean Doppler velocity provides an effective constraint on estimates828

of the density factor, retrieved values of which varied from r ≈ 0.1 for unrimed aggregates829

r ≈ 0.6 for graupel. Dual-frequency radar reflectivity proved critical to constraining esti-830

mates of the particle size distribution, leading to significant improvements in retrieved quan-831

tities when compared with in situ measurements at the surface. While the single-frequency832

retrieval was capable of similar estimates of snow rate and density factor, the retrieval was833

better constrained when a single parameter of the PSD was retrieved, leading to estimates834

closer to the priors in which compact pre-frontal graupel was not resolved. Our hypothesis835

that the retrieved density factor varies chiefly due to the riming of ice particles in mixed-836

phase cloud layers is supported by a strong association between the density factor and an837

independent estimate of supercooled liquid water.838

4.2 SNEX 2014 IOP839

In this section the LWP is used as an indicator of the availability of SLW for riming,840

hence to distinguish between unrimed and rimed snow, and heavily rimed snow or graupel.841

Snow events during the SNEX IOP were identified by von Lerber et al. [2017] wherein sig-842

nificant snow was falling at the surface and the surface temperature was below freezing (Ta-843

ble 3). A probability density function of LWP over the SNEX IOP (Fig. 12a) illustrates that,844

while the majority of the snow events during the period occurred in low-LWP conditions,845

significant SLW is relatively frequent during the IOP. Following a similar distinction made846

in von Lerber et al. [2017], three ranges of LWP are used to distinguish between unrimed847

(LWP < 0.1 kg m−2), moderately rimed (0.1 ≤ LWP < 0.3 kg m−2), and heavily rimed snow848

or graupel (LWP ≥ 0.3 kg m−2). In that study the mass-size and fallspeed-size relations from849

in situ measurements of particles were shown to be consistent with the LWP classification.850

Unrimed snow accounts for just over half of the profiles; rimed snow around 30 %, and grau-851

pel around 10 %; in the rest, no significant snow was measured and the profile was skipped.852

While the unrimed snow is associated with the coldest surface temperatures (Fig. 12b) on853

average, all three categories are most frequent at temperatures just below freezing; it is not854

evident that the riming events can be distinguished by temperature. Similarly, the low-LWP855

regime includes almost all events with low relative humidities (Fig. 12c), but all categories856

occur most frequently at relative humidities greater than around 90 %.857
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(300m to 600m) against LWP measured by the microwave radiometer. In the scatter plot the markers are
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Table 3. Snow events during SNEX 2014 IOP858

Surface temperature (◦C)

Date (UTC) 2014 Melted-equivalent

accumulation [mm]

Min Max

*1 Feb 00:00—06:00 7.4 −9.8 −8.9

*1 Feb 10:00—16:00 1.4 −7.9 −7.0

2 Feb 16:00—19:00 1.7 −5.4 −5.2

12 Feb 04:00—09:00 0.8 −1.0 0.0

15 Feb 21:00—16 Feb 02:00 2.6 −2.1 −1.0

21 Feb 16:00—22 Feb 03:30 5.0 −2.7 0.0

15 Mar 05:00—07:00 0.3 −2.0 −1.3

*18 Mar 08:00—19:00 4.4 −3.8 −1.8

19 Mar 00:00—20:00 1.5 −7.3 −3.7

20 Mar 16:00—00:00 6.1 −4.3 −1.3

* Denotes events where dual-frequency radar data were not always available.
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The CAPTIVATE best estimate (ZZV−αvN ′0r ′) was run over approximately 55 hours861

of available dual-frequency Doppler radar data. Joint histograms of the profile of forward-862

modelled observed variables and retrieved variables are shown for each of the LWP classifi-863

cations (Fig. 13).864

The unrimed snow (Fig. 13-I; LWP < 0.1 kg m−3) is associated with the lowest mean865

Doppler velocities (Fig. 13-Ib), which average around 1 m s−1 near the surface and never ex-866

ceed 2 m s−1. The corresponding median density factor (Fig. 13-Ig) is between 0 and 0.2867

below 4 km; this is consistent with the finding of Moisseev et al. [2017] that the mass-size of868

unrimed aggregate snow at Hyytiälä is consistently higher than that of Brown and Francis869

[1995], corresponding to roughly r = 0.15 in Fig. 1. In the earlier profile of unrimed snow870

(Fig. 9 II) it was noted that ice water content remained constant with height near the surface871

while diameter increased and number concentration decreased; these characteristic features872

of aggregation are robustly present in approximately 30 hours of aggregate snowfall, with873

the median snow rate (Fig. 13-Id) constant below 3 km, concurrent with an increase in me-874

dian size (Fig. 13-If) and a decrease in number concentration (Fig. 13-Ie) toward the surface.875

The gradient in D0 represents roughly a doubling in median particle diameter over 2 km. The876

Ka-W dual-wavelength ratio increases below 3 or 4 km to a median of around 5 dB; how-877

ever, comparison to the triple-frequency data (Fig. 5) shows that values in this range are not878

unique to either aggregates or graupel; a third radar frequency would provide valuable infor-879

mation to help constrain a retrieval based on the different scattering signatures of unrimed880

aggregates and heavily rimed particles.881

In the rimed snow (Fig. 13 II; 0.1 ≤ LWP < 0.3 kg m−3) mean Doppler velocities882

(Fig. 13IIb) are between 1 and 2 m s−1 near the surface, corresponding to density factors883

that increase below about 4 km to between 0 and 0.4 in the lowest 2 km. Unlike the unrimed884

snow, the snow rate (Fig. 13 IId) continues to increase toward the surface, indicating an ad-885

dition of ice water content which may be due to accretion of supercooled liquid or vapour886

deposition. The near-surface gradients of N ′0 and D0 (Fig. 13 IIe & f) are not significantly887

reduced from those in unrimed snow, so it seems likely that a mix of aggregation, riming and888

deposition processes occur within this regime.889

Finally, the heavily rimed snow or graupel (Fig. 13 III; LWP ≥ 0.3 kg m−3) is associ-890

ated with mean Doppler velocities (Fig. 13 IIIb) up to 3 m s−1 and density factors (Fig. 13891

IIIg) increasing steeply below 3 km up to as much as r = 0.5 with a median around r = 0.3.892
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Unlike the unrimed and rimed snow regimes, the snow rate in this regime increases rapidly893

toward the surface, with the median snow rate increasing by an order of magnitude over the894

lowest 2 to 3 km—a rate similar to that in the upper-level clouds of all regimes—however,895

D0 and N ′0 are near-constant in the lower levels. This is consistent with an accretion of mass896

due to riming, although deposition cannot be ruled out. An increase in normalized number897

concentration may be discernible near the surface (Fig. 13 IIIg), perhaps suggesting a relative898

increase in the concentration of small particles, or a breakup of larger particles. This may899

be indicative of a secondary ice generation process such as rime splintering; however, more900

work would be required to confirm this, and to what degree the present retrieval may help in901

the study of secondary ice processes.902

An evaluation of the CAPTIVATE retrieval over all available dual-frequency Doppler903

radar data from the SNEX IOP has shown characteristic differences between the profiles of904

snow rate, PSD parameters and density factor between profiles of unrimed and rimed snow.905

LWP provides a suitable proxy to distinguish between unrimed and heavily rimed snow906

events. This initial analysis has focused on demonstrating the potential to resolve key micro-907

physical processes from the Doppler velocity; however, many other analyses of the meteoro-908

logical and thermodynamical context of riming and aggregation processes may be envisaged.909

5 Discussion and conclusions910

The morphology of an ice particle is a record of the microphysical processes by which911

it forms; in this study we have proposed a simple parameterisation for the representation of912

the wide range of ice particle densities and shapes from unrimed aggregate snowflakes to913

graupel and hail. Remote-sensed estimates of snow typically assume snow particles that re-914

semble unrimed aggregates; however, riming is both a critical process for surface hydrology915

and a control on radiatively-important mixed-phase clouds which are difficult to remote-916

sense and poorly represented in numerical models. We have demonstrated a method for di-917

agnosing riming within the framework of CAPTIVATE, an optimal estimation algorithm for918

radar–lidar–radiometer retrievals of clouds, aerosols and precipitation.919

The retrieved density factor modulates the density, shape and radar scattering cross-920

section of ice particles, and is chiefly inferred from mean Doppler velocity, a measure of921

reflectivity-weighted particle terminal velocities. Many refinements to this parameterisa-922

tion may be envisaged to better represent the microphysical processes in question, and the923
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sensitivity of the retrieval to the formulation of the density factor and its effect on the mass,924

area and scattering cross-sections of ice particles requires further study. An alternative pa-925

rameterisation intended to more closely resemble the conceptual model for the riming of926

aggregate snowflakes was tested using a reference mass-size relation for unrimed aggregates927

at Hyytiälä [von Lerber et al., 2017] with a constant exponent of bm = 2.1, and where only928

the prefactor of the mass-size relation was scaled with the density factor. This representa-929

tion is more consistent with the conceptual model of the “in-filling” stage of riming, but does930

not encompass the observed variability amongst unrimed snowflakes or the higher exponents931

of heavily rimed graupel-like particles. The retrieved snow rate and PSD were not strongly932

sensitive to changes in how particle density is allowed to vary, suggesting the two parame-933

terisations allow for similar representation of unrimed to lightly rimed aggregates despite934

some change in the mass-size exponent; however, in situ measurements of snow rate and bulk935

particle density agreed better with the original retrieval in the densest post-frontal snow, sug-936

gesting the advantages of representing a broader range of particle morphologies, especially937

of heavily rimed graupel-like particles. Our prior density factor of r = 0 relates to the un-938

rimed aggregates of Brown and Francis [1995], but it may be possible to implement more939

sophisticated priors or constraints on the retrieval based on the atmospheric state [e.g. Lin940

and Colle, 2011; Szyrmer and Zawadzki, 2014], or from regional climatologies, to better941

resolve this variability; for example, Moisseev et al. [2017] showed that the lowest-density942

particles at Hyytiälä were significantly more dense than those of Brown and Francis [1995],943

and this could be represented with an updated prior of r ≈ 0.15 near the surface. Concurrent944

remote-sensed and in situ measurements from the BAECC 2014 campaign have provided an945

invaluable opportunity to evaluate retrievals of rimed snow. Sustained particle imaging and946

multiple-frequency radar measurements from Hyytiälä and other ARM and CloudNet “super-947

sites” will provide critical datasets for the improved representation of snow microphysics, as948

well as validation for future satellite retrievals.949

The CAPTIVATE retrieval was applied to vertically-pointing Ka- and W-band Doppler950

radar measurements from 10 snow events over the SNEX IOP of BAECC 2014. Dual-frequency951

and Doppler radar measurements provided sufficient information to retrieve two parameters952

of the PSD as well as the density factor. The dual-frequency radar reflectivities and mean953

Doppler velocity make distinct contributions to the retrieval, with radar reflectivities at Ka-954

and W bands providing a strong constraint on the particle size distribution but relatively little955

information on density; Doppler velocity provided the sole constraint on the density factor.956
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Estimates of near-surface snow rate were within 50 % of in situ measurements both with and957

without Doppler and dual-frequency measurements, showing a remarkably robust retrieval of958

ice water content from 94-GHz radar reflectivity; however, to accurately estimate the param-959

eters of the PSD as well as the bulk ice density, it was important to have both dual-frequency960

and Doppler information. With the recent availability of multiple-frequency Doppler radar961

observations of snow, and supported by observational and theoretical insights into the triple-962

frequency signatures of rimed and unrimed ice [e.g. Kneifel et al., 2018], it will become in-963

creasingly important to quantify the information content of each additional observational964

variable within an optimal estimation framework.965

The retrieval of riming provides an indirect insight into the presence of supercooled966

liquid water, and it may hence be possible to use spaceborne Doppler radars to better quan-967

tify the frequency and distribution of embedded mixed-phase clouds—at least where pre-968

cipitating ice is present. Using LWP as a proxy for riming provided a robust distinction be-969

tween retrieved snow profiles of unrimed aggregates, rimed aggregates and graupel; no such970

clear distinction was evident in surface temperature or relative humidity. For profiles with971

low LWP the dominant growth process near the surface was aggregation, while in high-LWP972

conditions the accretion of ice mass due to riming was evident. The ability to distinguish be-973

tween microphysical processes through the profile suggests the potential for using multiple-974

frequency and Doppler radars to estimate rime mass content and relate it to the budget of975

supercooled liquid [e.g. Moisseev et al., 2017], as well as to estimate microphysical process976

rates [e.g. Mace and Benson, 2017]. These features were best resolved in retrievals com-977

bining dual-frequency and Doppler measurements; however, the onset of riming was also978

reliably detected with single-frequency radar retrievals, which could be sufficient to provide979

improved insights into the position of embedded mixed-phase layers within optically thick980

ice clouds from space.981

In the mixed-phase cloud situations in which riming occurs, ground-based lidars are982

quickly attenuated by liquid water near the surface. Therefore it was not possible in this983

study to exploit radar–lidar synergy, either for the retrieval of ice [e.g. Delanoë and Hogan,984

2010] or for a simultaneous estimate of ice and liquid; instead a correction for liquid atten-985

uation was applied to the radar reflectivity, and the retrieval carried out only for ice. LWP986

estimates from a co-located microwave radiometer were combined with an assumption about987

the vertical distribution of liquid water to estimate the radar attenuation as a pre-processing988

step before the radar retrieval. A more satisfactory approach within the optimal estimation989
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retrieval framework would be to include a microwave radiometer forward model and perform990

a synergy retrieval, building upon studies into the active and passive microwave scattering991

of snow [e.g. Kneifel et al., 2010]. This would provide additional constraints on retrievals of992

cloud and precipitation to those provided by other passive shortwave and longwave radiances993

[e.g. Leinonen et al., 2016] or path-integrated attenuation from surface radar backscatter [e.g994

Haynes et al., 2009; Hawkness-Smith, 2010].995

The CAPTIVATE retrieval has been developed for the synergy of EarthCARE’s 94-996

GHz cloud profiling Doppler radar [Illingworth et al., 2015] with high-spectral resolution at-997

mospheric lidar and multi-spectral imaging radiometer. The capabilities of multiple-frequency998

Doppler radars—as well as synergies with a range of active and passive measurements in-999

cluding microwave radiometers—are also of interest. In this study we have considered the1000

contribution of Doppler velocity and dual-frequency radars to the optimal estimation of1001

snow, following a previous study using airborne dual-frequency Doppler radars for CAP-1002

TIVATE retrievals of tropical rain [Mason et al., 2017]. Retrievals assimilating both dual-1003

frequency and Doppler radar measurements to retrieve two parameters of the ice PSD and1004

the density factor performed best, producing estimates of particle number concentration,1005

size and bulk density near the surface that were close to in situ measurements. A single-1006

frequency Doppler radar was best constrained when retrieving a single parameter of the1007

PSD; however, we demonstrated that such a retrieval was sufficient to diagnose rimed snow1008

in stratiform snow—wherein the mean Doppler velocity can be assumed to be dominated by1009

hydrometeor fallspeed and not vertical air motion—and that the retrieval is robust to large1010

observational uncertainties. The many challenges of making use of Doppler velocity mea-1011

surements from space—including vertical resolution, horizontal averaging [e.g. Kollias et al.,1012

2014], ground clutter, and radar mispointing [e.g. Battaglia and Kollias, 2015]—have not1013

been considered here, and work is ongoing to apply radar simulators to airborne and ground-1014

based measurements or numerical models to better understand the outlook for retrievals1015

from EarthCARE [e.g. Battaglia and Tanelli, 2011]. Beyond EarthCARE, the prospect of1016

spaceborne multiple-frequency Doppler radars [National Academies of Sciences Engineering1017

and Medicine, 2018] provides opportunities for further advancements in the global remote-1018

sensing of ice, including estimates of the morphology and microphysics of snow and insights1019

into mixed-phase clouds.1020
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Figure 12. Histograms of remote-sensed LWP (a) and surface temperature (b) and relative humidity (c)

data from all snow events from SNEX IOP, grouped into three LWP classes.
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