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Key Points: 10 

 Core distributions and extreme events of geomagnetic activity are studied as a function of 11 

averaging timescale  12 

 The autocorrelation is shown to have a dominant role determining how these core 13 

distributions vary with averaging timescale  14 

 Models for computing the distribution of geomagnetic activity for a given timescale  and 15 

annual mean are presented 16 

Abstract  17 

We study how the probability distribution functions of  power input to the magnetosphere Pα and of 18 

the geomagnetic ap and Dst indices vary with averaging timescale, , between 3 hours and 1 year.  19 

From this we develop and present algorithms to empirically model the distributions for a given  20 

and a given annual mean value.  We show that lognormal distributions work well for ap, but 21 

because of the spread of Dst for low activity conditions, the optimum formulation for Dst leads to 22 

distributions better described by something like the Weibull formulation. Annual means can be 23 

estimated using telescope observations of sunspots and modelling, and so this allows the 24 
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distributions to be estimated at any given  between 3 hour and 1 year for any of the past 400 years, 25 

which is another important step towards a useful space weather climatology. The algorithms apply 26 

to the core of the distributions and can be used to predict the occurrence rate of “large” events (in 27 

the top 5% of activity levels): they may contain some, albeit limited, information relevant to 28 

characterizing the much rarer “superstorm” events with extreme value statistics.  The algorithm for 29 

the Dst index is the more complex one because, unlike ap, Dst can take on either sign and future 30 

improvements to it are suggested. 31 

1. Introduction 32 

This paper is the third of a series of three that is aimed at putting in place some of the key elements 33 

that will be needed to build a space weather climatology that covers both grand solar maximum and 34 

grand solar minimum conditions.  As discussed in the introductions to Papers 1 and 2 [Lockwood et 35 

al., 2018b; c], information on space climate over an interval long enough to cover both a grand 36 

solar minimum and a grand solar maximum (of order 400 years) is available only in the form of 37 

modelled annual means of some key variables [Owens et al., 2017].   Hence developing a 38 

climatology giving the probability of space weather events of a given geoeffectiveness that covers 39 

both these extremes of the long-term solar variation requires us to develop an understanding of 40 

relationships between these annual means and the distributions of event amplitudes, quantified over 41 

the relevant timescales. Because space weather events come in bursts, the integrated value of any 42 

activity index X over the most relevant timescale ,  IX, is a useful metric [Echer et al., 2008; 43 

Lockwood et al., 2016; Borovsky, 2017; Tindale et al., 2018], and this equals the arithmetic mean 44 

value times  (i.e., IX = Xdt  = <X>).  Hence it is important to study how <X> varies with  and 45 

how it relates to the annual arithmetic mean value <X>=1yr.   Lockwood et al. [2018a] have 46 

demonstrated how annual means can be used to quantify the frequency of geomagnetic disturbance 47 

events above a given (large but not extreme) threshold for the past 400 years, but they studied only 48 

hourly and daily means ( = 1 hr and  = 1 day) which, in general, will not be the most relevant 49 

timescales for all space weather phenomenon. For example, Lockwood et al. [2016] recently studied 50 

the interplanetary conditions leading to large geomagnetic storms as detected in the Dst index and 51 

found   6 hrs (with a 2 uncertainty range of 4-12 hrs) was optimum for predicting the maximum 52 

of the storm (i.e., the minimum Dst) but    4.5 days was needed to best predict the integrated Dst 53 

over the duration of the storm.   Paper 1 [Lockwood et al., 2018b] studied energy coupling from the 54 
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solar wind into the magnetosphere and showed that neglecting the effects of gaps in interplanetary 55 

data has, in the past, introduced serious errors into derived solar wind-magnetosphere coupling 56 

functions. Paper 1 also used near-continuous data to show that there is no evidence that the 57 

coupling function varies with averaging timescale  between 1 minute and 1 year.  Paper 2 58 

[Lockwood et al., 2018c] used this result to study the distribution of power input into the 59 

magnetosphere Pα and why the probability density function (p.d.f.) of  <Pα> (i.e., Pα averaged over 60 

intervals of duration )  has the form it does at  = 1 min. Paper 2 also showed how this p.d.f. 61 

evolves with increasing  up to 3 hours, giving the observed p.d.f.s of 3-hourly geomagnetic 62 

indices.  In the present paper, we study how the distributions of power input into the 63 

magnetosphere, and of the geomagnetic indices, continue to evolve with increasing  between 3 64 

hours and 1 year, allowing us to study the relationships of the p.d.f. at any relevant  to the annual 65 

mean. These are key relationships that can make it possible to construct a climatology of space 66 

weather events based on observations of solar variability over the past 400 years.  67 

1.1 Core distributions of space weather variables and extreme events 68 

In this section, we make clear the distinctions between the “core” distribution of space weather 69 

events, “large events” (for example, Lockwood et al. [2017a; 2018a] studied events in the top 5%) 70 

and “extreme events”.  Our aim is to investigate how much information on the extreme events 71 

could potentially be gleaned from the annual means and the core distribution.  We use the 3-hourly 72 

ap planetary geomagnetic range index which are available continuously since 1932.  This index is 73 

used because of the longevity of the data series and because it is more robust than the aa index as it 74 

employs more than just two observatories.   Appendix B shows that the ap index has a marked 75 

tendency to exaggerate the semi-annual variation in average values by having a larger response to 76 

events occurring at the equinoxes and also has a lower response to large events during northern-77 

hemisphere winter.   We here use a version of ap, apC, that includes a correction for the effect of 78 

this uneven response in ap, as described in Appendix B. To compare to any events before 1932 we 79 

use the aa geomagnetic index, using inter-calibration curves that are also presented in Appendix B.  80 

Allen [1982] pointed out that averages of ap over a calendar day (by convention referred to as Ap = 81 

<ap>=1day) are not appropriate for defining storm days because an isolated storm that spans 82 

midnight UT would be recorded as two moderately disturbed days rather than a single large storm 83 
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day. Hence Allen proposed using 24-hour boxcar (running) means of ap, which he termed Ap*. 84 

These have been employed by Kappenman, [2005] and Cliver and Svalgaard [2004].  For the 85 

purposes of identifying and ranking storm days we take the largest value of the 8 such running-86 

means of the corrected ap index in each calendar day,  [ApC*]MAX. A rank-order listing of the 87 

largest events defined this way is given in the Supporting Information file, along with available 88 

references. 89 

Many papers have found variables of near-Earth interplanetary space and the magnetosphere 90 

approximately follow a lognormal (or similar) distribution for the great majority of the time 91 

[Hapgood et al., 1991; Dmitriev et al., 2009, Vaselovsky et al., 2010; Farrugia et al., 2012; 92 

Lockwood and Wild, 1993, Weigel and Baker, 2003; Vörös et al., 2015, Love et al., 2015; Lotz and 93 

Danskin, 2017; Riley and Love, 2017, Xiang and Qu, 2018].  This mathematical formulation 94 

describes the “core” of the distribution, but often fails to match the occurrence of very large or 95 

extreme events [e.g., Riley, 2012; Baker et al., 2013, Cliver and Dietrich, 2013; Lotz and  Danskin, 96 

2017].  Hence such cases are often described by substituting a distribution to the large-event tail 97 

that is different to that which fits the core of the distribution.  Extreme Value Statistics (EVS) [e.g., 98 

Kotz and Nadarajah 2000; Beirlant et al. 2004; Coles, 2004] has been widely applied, initially in 99 

studies of hydrology but subsequently to extreme terrestrial weather events and many other areas 100 

such as in engineering, insurance and finance. The “extremal types theorem” (also called the 101 

“Fisher–Tippett–Gnedenko” theorem) [Coles, 2004], states that extreme maxima follow one of 102 

three types of distribution (“Gumbel”, “Fréchet” and “(negative) Weibull”, which are encapsulated 103 

in a family of continuous probability distributions called the Generalized Extreme Value (GEV) 104 

distribution. In the “block maxima” (BM) approach to extreme values, the observation period is 105 

divided into non-overlapping periods of equal size and attention given to the maximum observation 106 

in each period to which the GEV distribution applies.  In the “peaks-over-threshold” (POT) 107 

approach, observations that exceed a certain high threshold are selected.  The second theorem in 108 

extreme value theory is the Pickands–Balkema–de Haan theorem and states that the threshold 109 

excesses have an approximate distribution within the “Generalized Pareto Distribution” (GPD) 110 

family.   EVS has been applied to geomagnetic indices (for example by Siscoe [1976], Tsubouchi 111 

and Omura, [2007], Silbergleit [1996; 1999], Chapman et al. [2018] and Mourenas et al. [2018]), 112 

to the occurrence of very large Geomagnetically-Induced Currents (GICs) [Thompson et al., 2011; 113 
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Lotz and Danskin, 2017], and to the fluxes of energetic magnetospheric particles [Koons, 2001; 114 

O’Brien et al., 2007]. 115 

Figure 1 places into context the relationship of the extreme event tail to the core distribution for 116 

geomagnetic activity as measured by the (corrected) ap index, apC.  The plot shows (top) some 117 

selected annual distributions of the ApC* index and (bottom) the corresponding distributions of 118 

ApC*  as ratio of the annual mean value, ApC*/<apC>=1yr.  The gray histograms are for all available 119 

ApC* data (i.e. covering the years 1932-2016).  Note that we here quote ap, and hence apC, ApC* 120 

and [ApC*]MAX, as indices without units (the standard ap values are an index in units of 2nT and 121 

hence the values in nT would be double those given here [Menvielle and Berthelier, 1991]). The 122 

black vertical dashed line shows Apo, the 95th percentile of all available samples.   The year 1960 123 

(shown in red) was one year after the maximum of the largest sunspot cycle (number 9) of the 124 

recent grand solar maximum [Lockwood et al., 2009] and gave the largest annual mean value since 125 

ap measurements began (<apC>=1yr = 23.65) and also contained the largest observed event since 126 

1932, as determined by a daily [ApC*]MAX value of 249 on 13 November of that year.  The year 127 

2009 (in blue) was at the low sunspot minimum (between cycles 23 and 24) gave the smallest 128 

annual mean in the record (<apC>=1yr = 3.93). The year 1859 (in orange) has been chosen because 129 

between 28 August and 5 September of that year, the Carrington event took place (see 130 

contemporary reports by E. Loomis, collected together by Shea and Smart [2006]), which is 131 

thought to be the largest terrestrial space weather event to have been observed as it happened 132 

[Nevanlinna, 2006; Cliver and Dietrich, 2013; Ngwira et al., 2014].  The mean <ap>=1yr  for 1859 133 

has been estimated to have been 10.98 by Lockwood et al. [2018a]. The distribution of daily Ap 134 

occurrence for 1859 shown in Figure 1 has been generated from the estimated mean value for that 135 

year using a model that will be developed in the present paper and is described in Appendix A. The 136 

distribution for 2012 is included (in green,  <apC>=1yr = 9.20) because on 23 July of that year a 137 

very large and very rapid Coronal Mass Ejection (CME) erupted, an event which would have 138 

generated extreme terrestrial space weather (a “superstorm”) had it hit the Earth. It was observed as 139 

it passed over the STEREO-A spacecraft and, from modelling based on the measurements taken by 140 

that craft and by solar instruments, it is estimated it would have caused a terrestrial event as large as 141 

the Carrington event, had the eruption taken place just one week earlier such that the CME would 142 

have hit Earth’s magnetosphere instead of STEREO-A [Baker et al., 2013; Ngwira et al., 2013].  143 
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From available magnetometer data, Nevanlinna [2006] has estimated that the daily aa geomagnetic 144 

index reached Aa = 400nT during the Carrington event. This estimate allows for missing data, but 145 

may still be an under-estimate and Cliver and Svalgaard [2004] estimated the peak value of the 146 

running mean of a corrected version of the aa index over 24 hours of Aa* to be 425nT.  The aa 147 

index was designed by Mayaud [1972, 1980] to act as an equivalent to the ap index using data from 148 

just two stations: however, the data since 1932 show that the two are not linearly related, with ap at 149 

large aa being significantly lower than would be obtained from a linear fit.  Polynomial fits of daily 150 

means, Ap, as a function of the daily means in aa (by convention termed Aa) are given in Appendix 151 

B for the four quarter-year intervals around the equinoxes and solstices. Taking the peak Aa to be 152 

425nT for the Carrington event, the relevant equation (B3) gives an estimated maximum Ap* value 153 

of 28430.  Because it is considered that the STEREO event would have given a storm comparable 154 

to the Carrington event, we here take this Ap* to apply to it as well. These values of  [Ap*]MAX of 155 

284 are shown by the vertical dot-dash lines. Applying the time-of year correction given in 156 

Appendix B, this yields [ApC*]MAX of 21523 and 21123, respectively, for these two events. 157 

These estimated [ApC*]MAX values for the Carrington and STEREO events are shown in Figure 1a 158 

by, respectively, the solid vertical orange and green vertical lines.   By way of comparison, the 159 

largest daily-mean in the observed [ApC*]MAX record (since 1932) is 249, recorded on 13 November 160 

1960.   161 

The list of storm days, since 1932 ranked by their [ApC*]MAX values is given in the Supporting 162 

Information file. It has similarities to other such lists [e.g., Nevanlinna et al., 2006; Kappenman, 163 

2005; Cliver and Svalgaard, 2004], but there are differences because we have made allowance for 164 

the variation with time-of-year of the Ap* response and, in the case of the Carrington event, the 165 

relationship between the Aa* and Ap* indices.  Even quite small changes in the estimated 166 

magnitude of the storm day can have a large effect on its ranking order. The major surprise is that 167 

the positions of both the Carrington and STEREO events in the list is somewhat lower than in other 168 

lists if we correct for the tme-of-year dependence of ap (estimate 1, [ApC*]MAX). This raises the 169 

question as to whether this correction should be applied to these events or not. Logically, there is no 170 

doubt that it should be as equation B-3 converts the Aa* estimate into an Ap* value which should 171 

then need correcting to become ApC*.  The main argument for not applying the correction is that the 172 

original Aa* estimate is a proxy compiled from other sources.  That these sources are largely 173 
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European-sector mid-latitude observatories and Ap is heavily weighted to mid-latitude European 174 

station data, does argue that this correction should indeed be applied.   However, there remains 175 

great uncertainty in the true magnitude of the Carrington event.  We also note that [ApC*]MAX is 176 

almost certainly not a fully adequate metric of  this superstorms because it does not take account of 177 

the fact that the Carrington event on 3 September was in the middle of an extended interval of very 178 

high geomagnetic activity between 28 August and 5 September and this almost certainly drove 179 

excessively large negative Dst values through the integrated effect on the ring current population, 180 

giving the famously large negative deflection recorded at the lower-latitude Colaba observatory in 181 

Mumbai.    182 

Lockwood et al. [2017a] estimated the annual mean power input into the magnetosphere <P> 183 

from the reconstructed solar wind and interplanetary field variables derived by Owens et al. [2017], 184 

and from this Lockwood et al. [2018] have estimated that the annual mean of ap for 1859 was 185 

10.98.  Hence the estimated peak [ApC*]MAX /<apC>=1yr for the Carrington event is 19.52.1 186 

(shown by the solid orange line in the lower panel of Figure 1) for the corrected data and 187 

[Ap*]MAX/<apC>=1yr = 25.92.7 for the uncorrected value (the orange dot-dashed line). From the 188 

observed <apC>=1yr  of 9.20 for 2012 the [ApC*]MAX /<apC>=1yr for the STEREO event would have 189 

been 23.02.5 (shown by the green line in the lower panel of Figure 1) and [Ap*]MAX /<apC>=1yr = 190 

30.93.3 for the uncorrected data (green dot-dash line).  These ratio estimates are much larger 191 

values than for the observed 13 November 1960 event, for which [ApC*]MAX/<apC>=1yr  is 192 

considerably lower, being 10.51 because it occurred during the most active geomagnetic year on 193 

record. Table S-7 of the Supporting Information shows that the largest value of  194 

[ApC*]MAX/<apC>=1yr  in the observational record  (since 1932) is 16.27 for 8 February 1986 (for 195 

which [ApC*]MAX = 203, the 7th largest value). This is the outstanding example in the observational 196 

record of a big storm being observed very close to sunspot minimum; however, its 197 

[ApC*]MAX/<apC>=1yr  ratio is still very much smaller than that estimated for the Carrington and 198 

STEREO events. In their absolute corrected ApC* values or uncorrected Ap* values, the Carrington 199 

and STEREO events appear to be comparable with, or somewhat larger than, the largest events seen 200 

since 1932; however, they arose in years of relatively low average activity and so are wholly 201 

exceptional in their ApC*/<apC>=1yr and Ap*/<apC>=1yr values.  202 
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Figure 1 demonstrates why the description of superstorms requires more than an extrapolation of 203 

the core and hence needs the application of EVS.  However, there may still some valuable 204 

information on extreme events to be obtained from the core distribution, as Love [2012] and Love et 205 

al. [2015] have demonstrated for large geomagnetic storms (as defined and quantified using the Dst 206 

geomagnetic index).  The points in Figure 2 show the available 31040 24-hour [ApC*]MAX samples 207 

as a function of the annual mean of the year in which they occur: the cyan points are the top 100 208 

days (0.32%) in terms of [ApC*]MAX value (shown by the short vertical cyan lines in Figure 1); the 209 

mauve points are the top 6 days (0.02%, shown by the short vertical mauve lines in Figure 1);  and 210 

the grey points are the remaining 99.68%.  Figure 2 stresses how much our understanding rests 211 

rather critically on the estimates of the 1859 and 2012 superstorm values of (the orange and green 212 

squares being the  uncorrected values and the triangles being the corresponding corrected values).  213 

If we do not consider these two events and look just at the observed record since 1932, we see a 214 

quite strong relationship between the largest value seen in the year and the average value for that 215 

the year with the data points falling in the bottom right half of the plot. The corrected [ApC*]MAX 216 

values for the 1859 and 2012 superstorms (the orange and green triangles) are close to being in line 217 

with this relationship, especially the lower values of the uncertainty range. These values suggest 218 

that the occurrence of extreme superstorms is (weakly) related to the average activity in those years 219 

and that the extreme events are forming something like the negative Weibull distribution “pile up” 220 

towards a maximum possible value not much greater than that for the November 1960 event.  221 

However the uncorrected values, [Ap*]MAX (shown by the green and orange squares)  appear to be a 222 

completely different class of event from the events seen after 1932 and not obeying any sort of  223 

relationship between the peak and mean values. We should here also note that it is possible that 224 

even these uncorrected values are underestimates (being based on the Cliver and Svalgaard [2004] 225 

estimate of Aa*) that have been limited by procedure of quantizing the available data into k-index 226 

bands [see Lockwood et al., 2018d].  Thus the uncertainty in the estimated severity of the 227 

Carrington and STEREO events becomes crucial.  On the other hand, the lower estimates for the 228 

Carrington and STEREO events suggest that the annual mean value and the core distribution could 229 

be helpful in quantifying the probability of the extreme events. 230 

Even if the former proves to be the case and annual means or of no assistance in predicting 231 

superstorms, characterizing the core of the distribution (as opposed to the extreme tail) is, however, 232 

still important in space weather applications where the integral of the space weather activity is of 233 
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relevance and the threshold to the effect is not in the extreme tail. Examples would include the 234 

effect of GICs on pipeline corrosion [Boteler, 2000; Pulkkinen et al., 2001; Gummow, 2002;  Cole, 235 

2003; Pirjola, 2005; Pirjola et al., 2005, Viljanen et al., 2006; Ingham and Rodger, 2018]; the 236 

effect of GICs on power grid transformer degradation  [Kappenman, and Radasky, 2005; Gaunt, 237 

2016]; the effect of energy deposition in the upper atmosphere on the orbits of LEO satellites and 238 

space debris [Doornbos and Klinkrad, 2006]; and the effect of integrated radiation dose on the 239 

degradation of spacecraft electronics [Baker, 2000; Fleetwood et al., 2000].  In all these examples, 240 

although the extreme superstorm events have a large effect, they are rare and a much larger number 241 

of smaller events, described by the core distribution, can also have a significant integrated effect. 242 

Lastly, we note that Chapman et al. [2018] have recently studied the extreme event tails in several 243 

terrestrial disturbance indices during recent maxima of the solar cycle and fitted Generalized Pareto 244 

Distributions. They found that if the mean and variance of the large-to-extreme observations can be 245 

predicted for a given solar maximum, then a relationship between the core distribution and the 246 

extreme tail can be found giving a description of the full distribution. Thus it does appear possible 247 

that the study of the core of the distributions presented here could be extended to characterize the 248 

extreme tails: this will be the subject of a future study. 249 

As mentioned above, the [ApC*]MAX values are unlikely be the best indicators of all storm 250 

characteristics, in particular in relation to the ring current and the Dst geomagnetic index. This 251 

gives another reason why we should study the core of the distributions, associated with storm “pre-252 

conditioning” and the fact that the best predictors of large Dst storm occurrence are time-integrated 253 

over long intervals (several days) [Lockwood et al., 2016; Borovsky, 2017].  The largest and most 254 

disruptive geomagnetic storms tend to be the longest lived [Balan et al., 2016; Echer et al., 2008; 255 

Mourenas et al., 2018]. Many large and long-lived storms show a “two-step” development 256 

[Tsurutani et al., 1999; Xie et al., 2006]; however, these multistep storms have been shown not 257 

originate from just a simple superposition of individual events [Chen et al., 2000; Kozyra et al., 258 

1998, 2002] and it is not yet fully clear how the implied pre-conditioning originates. Kozyra et al. 259 

[1998] argued that prior energetic particle injections are swept out of the dayside magnetopause as 260 

the second population from the plasma sheet moves into the inner magnetosphere and so suggested 261 

that the preconditioning occurs in a multistep storm through the cumulative effects of the 262 

successive storms on the population in the source plasma sheet [Chen et al., 2000; Kozyra et al., 263 

1998, 2002]. Alternatively, it has been suggested that prior storms prime the inner magnetosphere 264 
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through O+ ions injected from the ionosphere [Hamilton et al., 1988; Daglis, 1997]. Lockwood et 265 

al. [2016] have shown that the key element in driving the largest storms (as measured by the Dst 266 

index) is not so much the peak magnitude of the interplanetary coupling function, rather the 267 

timescale over which it applies – large storms being a response to forcing that is both large and 268 

sustained over several days. (In other words, very large interplanetary coupling function values do 269 

not drive major storms if they persist for only short intervals).  Borovsky (2016) reached the same 270 

conclusion in relation to the damaging relativistic electron fluxes generated in the largest storms.  271 

Thus there is likely to be some information in the core of the distributions that could be exploited to 272 

predict the occurrence of the long-lived and extreme events.   Lastly, we also note that Kauristie et 273 

al. [2017] have also looked at the core distributions of ap, Dst (as well as am and dDst/dt), not with 274 

a view to identifying highly disturbed periods and large and extreme events, rather the opposite - to 275 

find the quietest intervals that could be used to generate an empirical model of the undisturbed main 276 

field. 277 

1.2 Construction of a Space-Weather Climatology 278 

A number of techniques that have been developed and refined for terrestrial meteorological and 279 

climate studies are now being deployed in the field of space weather. In addition to EVS discussed 280 

above, these include: NWP (Numerical Weather Prediction) [Pizzo et al., 2015]; DA (Data 281 

Assimilation) [Siscoe and Solomon, 2006; Schunk et al., 2014; Barnard et al., 2017; Lang, 2017]; 282 

cost-loss analysis [Owens and Riley, 2017]; ensemble forecasts [Knipp, 2016]; climate analogue 283 

forecasts [Barnard et al.,2011]; ensemble climate reconstructions [Owens et al., 2016a; b], skill 284 

scores [Balch, 2008]; cost-loss analysis [Henley and Pope, 2017]; and several others.  In 285 

meteorology, many of these techniques are used in conjunction with a “climatology” which 286 

describes statistically the probability of a relevant variable at key locations having one of the full 287 

potential range of values. “Climatological forecasts” assume that the future of a system can be 288 

determined from these statistical properties of the past behavior of that system. These will clearly 289 

often be rendered invalid by long-term changes in the system that are not covered by the 290 

climatology.  This limitation to climatological forecasts can actually be useful because deviations 291 

from climatological forecasts (“anomalies”) can be used to detect and quantify the effects of the 292 

long-term changes. Note that long-term changes can also generate false conclusions about, for 293 

example, skill scores or event occurrence, if they are neglected [e.g., Hamill and Juras, 2006].    294 
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There are four elements that we need to generate a useful climatology of space weather for each of 295 

the key variables: (1) the mean value (over a convenient period such as a year); (2) the core 296 

distribution of values about that mean; (3) the extreme tail of the distribution (giving the repeat 297 

period of superstorms); and (4) the autocorrelation function, ACF. All these would be available to 298 

us, if we possessed the time series at high enough temporal resolution and over an interval long 299 

enough that adding any more data does not significantly alter the distribution. This approach has 300 

been employed by Matthes et al. [2017] to build a space climatology using the aa index 301 

geomagnetic that extends back to 1868.  Unfortunately, as discussed below, this does not include 302 

the grand minima conditions such as existed during the Maunder minimum [Usoskin et al., 2015] 303 

that we know from cosmogenic isotopes to have prevailed for extended periods roughly 30 times in 304 

the last 9000 years [e.g., Barnard et al., 2011].  These four elements would enable us to evaluate 305 

integrated deterioration of systems influenced by space weather, the probability of an event over a 306 

certain size and the probability of multiple events that may have a greater effect than the sum of the 307 

effect of the events individually. There is great emphasis in space weather on protecting systems 308 

from the largest events or, at least, evaluating the risk posed by those events.  However, evaluating 309 

the distribution core and mean and the probabilities of quiet conditions is also important to avoid 310 

the cost and other wasted resources associated with “over-engineering” systems (such that they 311 

become obsolete long before they are lost or degraded) and so ensuring that the designs are cost-312 

effective. As pointed out by Henley and Pope [2017], the development of a useful space weather 313 

climatology, as with forecasting procedures, requires a detailed dialogue with the system design 314 

engineers and end-users.   315 

The biggest problem in trying to assemble a space-weather climatology is the long timescales of the 316 

variations [Henley and Pope, 2017].  The primary periodicity in space weather is the solar cycle 317 

oscillation the period of which averages about 11 years. Since in-situ observations of the near-Earth 318 

space environment began, we have accrued direct space-weather data for just four such cycles.  To 319 

put this in context, consider a terrestrial tropospheric weather climatology: the dominant periodicity 320 

is one year and a climatology based on just four years would not be of much value for most 321 

applications.  Hence, as pointed out by Lockwood [2003], we need to extend the interval by using 322 

other measurements and inferring the space weather variables, rather than just using the directly 323 

measurments.   324 
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The most direct way of doing this is to employ geomagnetic activity observations, as used by 325 

Matthes et al. [2017]. In theory these could extend back to 1832, when Gauss established the first 326 

well-calibrated geomagnetic observatory in Göttingen.  Reviews of the development of the 327 

observation of geomagnetic activity have been given by Stern [2002] and Lockwood [2013]. Some 328 

composites have used geomagnetic activity data from soon after the establishment of Gauss’ 329 

observatory; for example, Svalgaard and Cliver [2010] used regressions with different types of 330 

geomagnetic data to extend the sequence back to 1835.  However, there are concerns about the 331 

calibration, stability and homogeneity of the earliest data [Lockwood, 2013]. 332 

Geomagnetic activity on annual timescales depends on both the solar wind speed VSW and the IMF 333 

field strength, B, and the first separation of the two was made by Lockwood et al. [1999] using two 334 

different geomagnetic indices (the aa index and Sargent’s recurrence index derived from aa). Later, 335 

Lockwood [2014] used 4 different pairings of different indices to derive VSW, B and the open solar 336 

flux, with a full Monte-Carlo uncertainty analysis, back to 1845.  From this date, the geomagnetic 337 

data give us almost 17 full solar cycles, considerably more useful than the 4 available in direct 338 

observations but still not enough for a full climatology that allows for centennial scale solar change. 339 

Crucially, this interval does not include the Maunder minimum (or even the lesser Dalton 340 

minimum) and hence a climatology based on geomagnetic data would not cover grand minimum 341 

conditions or even periods like the Dalton minimum. 342 

Recent advances allow us to start to construct a climatology based on sunspot numbers which are 343 

available with reasonable regularity from about 1612, soon after the invention and patenting of the 344 

telescope in 1608.  Owens et al. [2017] have used the sunspot number data in conjunction with 345 

modelling to reconstruct the solar wind number flux NSW, as well as B and VSW from 1615 onwards. 346 

This has enabled Lockwood et al. [2017] to reconstruct the annual mean power input into the 347 

magnetosphere from 1615 and from this Lockwood et al. [2018a] have estimated the annual means 348 

of the ap index.  These advances make it possible to construct elements of a climatology which 349 

extends over 30 clear solar cycles as well as the 50-year break to normal solar cycles during the 350 

Maunder minimum.   During the Maunder minimum, the modelling predicts 8 small-amplitude, 351 

smaller-period cycles which show a different phase relationship with the weak cycles in sunspot 352 

numbers. Owens et al. [2012] have shown evidence for these small Maunder-minimum cycles in 353 

galactic cosmic ray fluxes.  354 
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In addition to the increased number of solar cycles, these reconstructions that extend back to the 355 

early 17th century cover both a grand minimum (the Maunder minimum [Usoskin et al., 2015]) and 356 

the recent grand solar maximum [Lockwood et al., 2009]. There is also potential to even extend the 357 

climatology to cover up to 9000 years, covering 24 grand maxima and 30 grand minima, using 358 

cosmogenic isotope abundance measurements which generally require decadal averages or which 359 

are smoothed by the time constants of the isotope deposition into the terrestrial reservoirs where 360 

they are measured.  Barnard et al. [2011] have discussed a method for temporal scale-changing 361 

from these decadal-scale data to annual means. At the present time we are lacking one key element, 362 

namely a way to determine the times of solar cycle minimum and/or maxima and hence the phase 363 

of the solar cycle of each year.  364 

In paper 1 of this series of 3 papers [Lockwood et al., 2018b], we showed that the total power input 365 

into the magnetosphere Pα can be computed using a constant coupling exponent  that does not 366 

depend on the averaging timescale  (previous studies that had suggested it did were adversely 367 

influenced by data gaps). Paper 2 [Lockwood et al., 2018c] studied how the core distributions of Pα 368 

on timescales of 3 hours and less arise.   In the current paper we study how and why these 369 

distributions in Pα evolve with averaging timescale  and the subsequent evolution with  of the ap 370 

(section 2) and Dst (section 3) geomagnetic indices. In each of these two sections we develop an 371 

algorithm that allows the core distribution for that geomagnetic index to be evaluated for a given 372 

mean value and at a required timescale, . The formulae required to implement these algorithms are 373 

given in Appendix A.   374 

2.  Distributions of power input to the magnetosphere and geomagnetic indices  375 

Figure 3 studies the evolution with averaging timescale  of the distribution of three space weather 376 

indicators. The left-hand panels show the power input into the magnetosphere, computed from the 377 

near-continuous interplanetary data for 1996-2016 (inclusive) and normalized to the mean value 378 

over the calendar year, <Pα>/<Pα>1yr .  The central panels show the normalized geomagnetic ap 379 

index, <ap>/<ap>1yr from the full dataset available (for 1932-2016) and the right-hand panels how 380 

the normalized negative geomagnetic Dst index, < Dst  >/<Dst>1yr, (where Dst  is defined below),  381 

again using all the available data (for 1957-2016). 382 
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The coupling function of   = 0.44, shown in Paper 1 [Lockwood et al., 2018b] to apply at all , is 383 

used with the equation of Vasyluinas et al. [1982] to generate Pα [described in Lockwood et al., 384 

2017, 2018a;b].  The ap index responds primarily to the substorm current wedge [see Lockwood, 385 

2013] and the Dst index primarily to the ring current. However, Dst is importantly also influenced 386 

by other currents [e.g. Turner et al., 2000] such as the Chapman-Ferraro currents in the 387 

magnetopause and so also varies with compressions of the dayside magnetosphere by solar wind 388 

dynamic pressure enhancements.  The ring current effect dominates meaning that Dst is 389 

increasingly negative as activity increases but the dynamic pressure effect mean that positive Dst 390 

value can occur. Corrections for the effect of solar wind dynamic pressure on Dst, via 391 

magnetopause currents, have been developed [O'Brien and McPherron, 2000; Consolini et al., 392 

2008] but we do not use them here, mainly because it reduces the available dataset to after 1996 393 

(when quasi-continuous interplanetary data are available) but also because a great many papers 394 

have used the uncorrected Dst index to characterize magnetic storms in the past.  The fact that Dst, 395 

unlike ap (or Pα), can have either sign generates a fundamental difference between the ap and Dst 396 

indices when trying to formulate a long-term climatology: when activity is low ap tends to a 397 

limiting value of zero whereas Dst tends towards a distribution of values spread around zero.  Half-398 

wave rectifying Dst so that positive values are put to zero is not an option as this generates a large 399 

number of samples at zero that distorts the distribution. Instead we here treat Dst  0 as data gaps 400 

(we here call the index so derived Dst  ) which yields an index that correlates much better with 401 

multiplicative interplanetary coupling functions [Lockwood, 2013]. However, such samples are still 402 

included in the total number when computing the occurrence probability of a large negative Dst 403 

value. Note that using Dst  instead of Dst is purely a measure that gives us a unipolar activity index 404 

to work with (which makes the modeling required much less complex) and is not, in any way, a 405 

correction for magnetopause currents. Of course, even strongly negative Dst values will still be 406 

influenced by magnetopause currents to some extent, which is why Dst is an imperfect metric of 407 

ring current storms.  In a later paper we will present a separate model for predicting the 408 

distributions of the pressure-corrected index, Dst*, as a function of  .  Note that Dst* also has both 409 

positive and negative values (see Figures 1 and 2 of Consolini et al. [2008]) and so the same sort of 410 

techniques will be required for the construction of a model for Dst* as are used here for Dst. 411 
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To summarize the procedure employed here: we make normalized values of the variable X, where X 412 

is one of the observed variables P, ap, and Dst for a given averaging timescale  (also done for the 413 

synthesized variables XR and XRF that are used below to clarify the behavior of the observed 414 

variables).  We normalise by dividing by the arithmetic mean for the calendar year of the sample 415 

<X>=1yr . From these normalized values we derive the distribution of X/<X>=1yr  for all 22 years 416 

studied. This distribution has an arithmetic mean m = 1 which is the “grand mean” or (the “mean-417 

of-means”) of the 22 annual normalized data subsets and which applies because we have, to a good 418 

approximation, the same number of samples in each year.  We then fit model p.d.f.s so that we can 419 

empirically model the probability of X/<X>=1yr   which is the probability of X for a given <X>=1yr  , 420 

i.e. P(X |<X>=1yr). Hence this enables us to achieve our goal of empirically modelling the 421 

distribution of X for a given <X>=1yr .  We wish this fitted distribution to reproduce the observed 422 

one as closely as possible so we use model distributions of means of   = m = 1 and find the 423 

optimum variance v using Maximum Likelihood Estimation. Some of the distributions fitted are 424 

described by shape and scale parameters instead of  and v and these are constrained so that  is 425 

unity. The procedure is repeated for the full range of averaging timescales, .  426 

 The blue histograms in Figure 3 are the observed distributions, the black lines shows the best-fit 427 

lognormal distributions and the mauve lines are the best-fit Weibull distributions (both with mean 428 

value  = 1 in the cases of Pα and ap and  = Rm() for Dst   (where Rm deviates from unity because 429 

in Dst   we treat each <Dst>  0 sample as a data gap: the factor Rm() is discussed further later).  430 

The blue histograms were generated by counting the number of samples in 150 contiguous bins 431 

centered on on k.x98/100,where k is varied between 0.5 and 149.5 in steps of 1 and x98 is the 98th 432 

percentile of the distribution. The numbers of samples n in each bin then normalized so that 433 

n(x98/100) is unity. Fitting directly a distribution to these histograms gives results which, in general, 434 

depend on the bin width adopted [e.g., Woody et al., 2016] and so we here fit distributions using 435 

Maximum Likelihood Estimation (MLE) which does not require prior binning of the data into bins 436 

of arbitrarily-chosen width. A basic description of MLE fitting, and of goodness of fit metrics (both 437 

absolute and relative) is given in the Supporting Information file. Plots of best-fit probability density 438 

functions (p.d.f.s) and cumulative distribution functions (c.d.f.s), and tables of best-fit distribution 439 

parameters and goodness of fit metrics are also given in the Supporting Information file for seven 440 

standard distribution forms: the normal (Gaussian) distribution, the Lognormal distribution, the 441 
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Weibull distribution; the Burr distribution, the Gamma distribution, the Log-logistic (Fisk) 442 

distribution, and the Rician distribution. For all these distributions the number of degrees of freedom 443 

is df = 2 , except the Burr for which df  = 3.    444 

The top row in Figure 3 is for averaging timescale  = 1yr and the rows beneath are, successively 445 

for  of 0.5 year, 27 days, 7 days, 1 day and 3 hours (0.125 day). The omission of positive <Dst> 446 

samples has no effect for  = 1 year (as all values are negative), but the number of Dst   samples is 447 

99.17%, 94.08%, 88.42%, 80.60%, and 78.48% of all Dst samples for  of, respectively, 0.5 year, 448 

27days, 7 days, 1 day and 6 hours.  Because of the normalization, the distributions for  = 1yr are, 449 

by definition, delta functions at unity. At general , the distributions for <ap>/<ap>1yr  are always 450 

close to lognormal in form (the black lines) the variance increasing with decreasing  (see 451 

Supporting Information file for goodness-of-fit evaluations).  At the larger , the low variance 452 

lognormal distributions are essentially Gaussian in form. On the other hand, the Dst  distributions 453 

are equally well fitted by the Weibull, Gamma or Log-logistic families of distributions (see 454 

Supporting Information) and in Figure 3 we show the Weibull distributions (the mauve lines), again 455 

with variance increasing with decreasing . Note that for Dst  ,  significantly better fits could be 456 

obtained using a distribution with an extra degree of freedom, such as the Burr (see supporting 457 

information).  The difference between ap and Dst   is caused by the flatter and broader distribution 458 

at small < Dst  >/<Dst>1yr values.  The <Pα>/<Pα>1yr distributions are lognormal in form for  459 

greater than about 2 days, but at lower  these distributions are increasingly Weibull-like in form. 460 

The origin of a Weibull form at low  was discussed in Paper 2 [Lockwood et al., 2018c] and is 461 

associated with the variability of the Interplanetary Magnetic Field (IMF) orientation factor on 462 

these timescales, via the quasi “half-wave rectification” effect of the southward component of the 463 

IMF on solar wind – magnetosphere coupling.  Note that because of the smoothing effect of the 464 

magnetospheric energy storage/release system, the Weibull distribution of power input to the 465 

magnetosphere for small  yields a log-normal distribution in power input on the timescales 466 

relevant to ap and hence in ap itself.   467 

The evolution of the distributions shown by the different rows of Figure 3 reveal the “Central Limit 468 

Theorem” (hereafter CLT) in action [Heyde, 2006; Fischer, 2011; Wilks, 1995]. This states that 469 

when independent random variables are added, their properly normalized sum tends toward a 470 
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normal distribution.  It applies in this context because the key operation in taking an average value 471 

is summation and because, as  is increased in relation to the correlation timescale, an increasing 472 

fraction of the samples are independent.   473 

2.1. The evolution of the distributions with timescale for ap and P                                                                              474 

Figure 4 looks in more detail at the evolution of the distributions of  <Pα>/<Pα>1yr  (for  = 0.44) as 475 

a function of the logarithm of the averaging interval. The upper plot shows the probability density 476 

function (pdf) color-coded as a function of log10() and <Pα>/<Pα>1yr   such that the distributions 477 

shown in the left-hand plots of Figure 3 are vertical slices of Figure 4.  The blue line in the lower 478 

panel shows the corresponding variation of the distribution variance v (also on a logarithmic scale). 479 

Figure 5 is the corresponding plot for <ap> /<ap>1yr  .   480 

In the Supporting Information file, the distributions shown in Figure 3 are fitted with seven 481 

distribution forms, six or which are characterized by two parameters (either the mean, m, and 482 

variance, v, or a pair of parameters that are defined by m and v).  (Note the seventh distribution 483 

form used, the Burr, has an additional shape parameter and is included to test if this gives a 484 

statistically significant improvement to the fit).  Two of the distributions, the Gaussian and the 485 

Rician, do not give good fits at low  but do quantify the evolution of the distributions towards a 486 

Gaussian-like form as  is increased towards 1 year.  Because we here look at the distributions of 487 

normalized disturbance metrics <X> /<X>1yr  (in this paper we consider X of Pα, ap and Dst) the 488 

mean m is, by definition, always unity and hence we only need to study the behavior of the 489 

variance, v, shown in Figure 4b for <Pα> /<Pα>1yr  and in Figure 5b for <ap> /<ap>1yr .  490 

2.2.  The effect of autocorrelation on the evolution of distributions                                                                               491 

To help understand Figures 4 and 5, Figure 6 shows the evolution with increased  for a synthesised 492 

variable XR that is selected  at random at time resolution  = 3 hrs from a Weibull distribution with 493 

k of 1.0625 and  of 1.0240 (giving a mean m = 1) which in Paper 2 [Lockwood et al.,2018c] was 494 

shown to be good fit to the distribution of <Pα> / <Pα>1yr  at that timescale.  The general pattern of 495 

evolution of the pdfs of <XR> /< XR>1yr   in Figure 6a is like that in Figure 4a and 5a, other than that 496 

the distributions evolve towards a delta function at unity with increasing  rather more rapidly for 497 
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XR.  This is also reflected by the mauve line in figure 6b, which shows that the variance, v, falls 498 

more rapidly than the blue and red lines in Figures 4b and 5b for Pα and ap, respectively. The initial 499 

distribution in Figure 6 is a Wiebull form but even at  as low as 9 hrs it has evolved into a 500 

lognormal form, which it keeps at all greater  (but the variance falls so it approaches a Gaussian 501 

near  = 1 yr). This evolution of the distribution form is the same sequence that Pα follows. 502 

The mauve line in Figure 7 shows the autocorrelation function (the autocorrelation at lags of 3 503 

hours, the resolution of the synthetic data) of the random variable XR employed in Figure 6.  It can 504 

be seen that XR is indeed completely random at the autocorrelation function falls to zero at lag 1. To 505 

investigate the effect of autocorrelation we generate a second random distribution which we then 506 

pass through a smoothing filter to give it autocorrelation. This generates  a synthetic data series XRf.  507 

Because the filter has a similar effect on the distribution as averaging we have to draw the original 508 

random distribution from a higher-variance Weibull. By iteration we find that for the filter we use, 509 

an initial Weibull random distribution with k of 0.2800 and  of 0.0778 (giving m = 1) generates an 510 

almost identical distribution at  = 3hr after filtering to that of XR used in Figure 6. The filter used is 511 

a triangular-weighting moving-average filter with two response peaks. The first is a [1-3-5-3-1], 512 

around lag t = 0 which adds short-range correlation into the XRf data series. The second is a [1-2-3-513 

4-5-6-7-8-7-6-5-4-3-2-1](5/8) triangular response peak centered on lag 216 (for the 3-hour 514 

resolution XRf data series, this second peak is at lag 27 day). The black line in Figure 7 shows the 515 

autocorrelation function of XRf and it can be seen that the filter has introduced short-term 516 

autocorrelation on lags up to about 1 day, and a 27-day (the mean solar rotation period seen from 517 

earth) recurrence. 518 

Figure 8 shows the equivalent plot to Figure 6 for the XRf  data series.  Figure 8a shows that the 519 

effect of the autocorrelation is to slow the progression towards the delta function at unity. This is 520 

expected from the CLT because the autocorrelation means that larger averaging timescales are 521 

needed before samples are sufficiently uncorrelated for the CLT to apply. Figure 8b shows the 522 

variation of the variance v for XRf  in black, and compares it with that for XR  (in mauve) from Figure 523 

6b. It can be seen that at the  where autocorrelation has been introduced into the XRf series by the 524 

filter, the variance fall less quickly than for the random series, XR. At all  the distribution of XRf is 525 

lognormal in form and mirrors the evolution for ap.  Note that Figures 7 and 8, and the results for a 526 
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random and a smoothed-random data series (XR and XRf), are included here only to illustrate how 527 

autocorrelation influences the form of the evolution of the distribution with  and also influences 528 

the dependence of variance v on .  They are not used again in the derivation of a model of the 529 

distribution at a given . Instead we fit the v() variation derived directly from data with a 530 

polynomial in  .  531 

2.3.  Modelling the evolution of distribution of ap with increasing timescale                                                                 532 

The section describes how we model the evolutions of the distributions of <ap> / <ap>1yr  with 533 

increasing  and Figure 9a presents the results for that modelling, aimed at reproducing Figure 5a. 534 

Figure 9(b) shows the log-log plots of variance v, as a function of  from Figures 4b, 5b and 6b 535 

using the same color scheme, i.e. for Pα in blue, for ap in red and for the random variable, XR in 536 

mauve. Also shown, in cyan, is the variation for the 150-year data series of the aa geomagnetic 537 

index.  The black line is a polynomial fit to the ap variation, given by equations (A11) and (A12) of 538 

Appendix A which yield the variance, v(). The Maximum Likelihood analysis given in the 539 

Supporting Information (on which Figure 3 is based) shows that for <ap> / <ap>1yr  the observed 540 

distribution at all  is best fitted with a lognormal form with mean m = 1. (That is until  approaches 541 

1 year when the distribution becomes nearly Gaussian in form and the goodness-of-fit metrics for 542 

all 7 distributions become very similar).   Figure 9a shows the modelled lognormal distributions 543 

using the polynomial fit to the variance variation shown in Figure 9b.  The equations for 544 

reproducing the distribution for a given  are given in part (i) of Appendix A. From this, the p.d.f. 545 

of <ap> (and hence that of the time-integral of the  activity <ap>) at a given  can be computed 546 

for a known annual mean <ap>1yr .  547 

The cyan line in Figure 9b is for all the full aa index data set which covers the interval 1868-2017. 548 

The close similarity of the v() relationship to that for the ap data (1932-2017, the red line) strongly 549 

indicates that this relationship has not varied significantly over the past 150 years.  To check this in 550 

more detail, the aa data have been divided into three 50-year intervals (1868-1917, 1918-1967 and 551 

1968-2017, inclusive), and the v() relationship for these three data subsets are plotted in Figure 552 
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10b as green, blue and red lines, respectively, and can be seen to be very similar (and to that for the 553 

overall aa plot in Figure 9b).  Figure 10a studies the autocorrelation function (ACF) of the 554 

aa/<aa>=1yr data for these three intervals. The three are again very similar showing the persistence 555 

effect at low  (up to about 5 days), a recurrence peak at 27 days, plus some weak harmonics of the 556 

27 day variation, and hence are very similar to that for  the smoother random variable, XRf, in 557 

Figure 7.  In fact, the ACF for XRf could easily be made to match the observed ACFs for aa shown 558 

in figure 10 very closely, if the smoothing filter used were adjusted to give slightly lower 559 

persistence at low  (< 1day) and the response peak around 27 days were to be broadened 560 

somewhat.   There is also a small but marked and persistent diurnal signal visible in Figure 10a. 561 

The main difference between the three intervals is that the 27-day peak is a little bit larger for the 562 

earliest interval (1868-1917) and the low- persistence a little bit weaker. These differences cannot 563 

be identified in the v() plots. The only other data that are continuous and high enough time 564 

resolution to potentially investigate this further back in time are the daily values international 565 

sunspot number R, which are almost continuous since 1818.  However, sunspot numbers behave 566 

very differently to geomagnetic activity indices, showing sudden increases/decreases as spot groups 567 

rotate onto onto/off the visible disk of the Sun and rises and falls as the groups wax or wane as they 568 

rotate across the visible solar disc: they do not have the bursty nature of Earth-directed 569 

interplanetary disturbances and hence of geomagnetic disturbances. Hence they cannot help us 570 

investigate the ACF, and the associated v() relationship for near-Earth space and geomagnetic 571 

activity before the start of regular, well-calibrated geomagnetic observations.   572 

Figure 11 investigates if ACFs and variances for aa shown in figure 10 vary with sunspot number. 573 

We use the international sunspot number R, derived and distributed by WDC-SILSO, Brussels.  We 574 

take 3-year averages of the data to keep sample numbers high. For each period we evaluate the 575 

mean sunspot number, <R>=3yr , and the ACF of aa/<aa>=1yr. These ACFs were then averaged 576 

together for contiguous bins of  <R>=3yr  that are centred on values between 10 and 200 in steps of 577 

20. In addition the variance v of the distribution of all <aa>/<aa>=1yr samples in each band of 578 

<R>=3yr  was computed for each averaging timescale . The top panel of Figure 12 shows a surface 579 

plot of the ACF as a function of log10() and <R>=3yr . On timescales below about  = 25 days the 580 

ACFs hardly varies at all with the sunspot number. The major effect is on the peak at 27 days (and 581 

its harmonics) which has a larger amplitude when the sunspot number is low. The lower panel gives 582 
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the corresponding surface plot of log10(v): note that sample numbers do not allow this analysis to 583 

extend to as great a sunspot number as for the ACF analysis.   As would be expected from the 584 

ACFs, there is almost no variation in the v- relationship with sunspot number at   below about 25 585 

days but above this the larger ACF peak at 27 days for low sunspot number causes v to fall with  586 

slightly less rapidly than it does at higher sunspot numbers. There are some slight but persistent 587 

ridges and dips in the surface shown in figure 11b at certain <R> but the surface is remarkably 588 

independent of R.  Note that the lack of any dependence of the v- relationship on sunspot number 589 

(at low ) was also revealed by Figure 8c of Lockwood et al. [2018a], which plots distributions of 590 

<aa>=1day/<aa>=1yr as a function of year and no solar cycle variation can be detected.   591 

It is tempting to argue that we should modify the model form of the v- relationship at  > 25 days 592 

to allow for the (weak) sunspot number variation seen at large  in the lower panel of Figure 12. 593 

The major reason is that during the Maunder minimum the persistently low sunspot number might 594 

make this a factor.  However, this is not necessarily the case because a prolonged (grand) sunspot 595 

activity minimum is in many ways quite different to a sunspot activity minimum between solar 596 

cycles: one major reason being that for the cycle minima there is residual open flux generated 597 

during the previous cycle out of which fast solar wind flows.    The 27-day ACF peak is largely 598 

caused by CIRs (Co-rotating Interaction Regions) caused by fast-solar wind emanating from 599 

coronal holes reaching down to low latitudes, catching up with Earth-bound slow solar wind of the 600 

streamer belt. Modelling for the Maunder minimum predicts that the streamer belt will have been 601 

considerably wider than in modern times with coronal holes restricted to high heliographic latitudes 602 

[Lockwood and Owens, 2014a; b; Owens et al., 2017], making CIRs that hit Earth less, rather than 603 

more, common.  Hence it is not at all clear that that the effect noted in low sunspot years at  > 25 604 

days in Figure 12 will also apply to the Maunder minimum.  For the present paper we assume that 605 

the v() relationship does not change and we fit it with a single polynomial form.  However, should 606 

a long-term changes in the v() relationship be discovered at some point in the future, it could be 607 

readily accommodated by making the fit polynomial coefficients a function of time. 608 

Figure 12 shows that the modelled distributions shown in Figure 9a can explain the variation of 609 

occurrence of large events, as a function of the annual means discussed in Paper 2.  The points in 610 

Figure 12a show probability that 3-hourly values of ap are in the ap top 5% of the overall 611 
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distribution (for 1932-2016, 252152 samples), f[ap>apo] (i.e., ap exceeds its 95-percentile of 3-612 

hourly ap values, apo = 47.91), as a function of the annual mean value <ap>=1yr.  The mauve line is 613 

the prediction for =3hrs for the model values displayed in Figure 9a. The fit can be seen to be 614 

close. The family of model predictions of f[ap>apo] as a function of <ap>=1yr is shown in Figure 615 

12b for timescales of 1day (in blue), 7 days (in orange) and 27 days (in black).  Hence the model is 616 

reproducing the behavior noted in Figure 1 of Paper 2, namely that, with some scatter, the  number 617 

of events in any one year that are in the top 5% of the overall distribution, increases hyperbolically 618 

with the mean value for that year. 619 

2.4. The evolution of the distributions with timescale for Dst                                                                                         620 

Figure 13 is the equivalent plot to Figure 4 for the Dst   data which extend from 1957-2016. Here 621 

the pdf is shown as a function of  and < Dst  > / <Dst>1yr . Generating a model fit to this plot is 622 

more complex because Dst do not converge to zero for low activity and we have to use Dst   623 

instead, where Dst   is the same as Dst, but all positive values are treated as data gaps. In annual 624 

mean data, this makes no difference, because all annual means are negative, but with decreasing  625 

the number of Dst  samples falls compared to the number of Dst samples, and the mean Rm of the 626 

distribution of < Dst  >/<Dst>1yr , although unity at  = 1 year, is greater than unity at lower  627 

because negative values of < Dst   >/<Dst>1yr  (i.e., positive values of < Dst   >) are neglected. 628 

Figure 14a shows in red the variation with  log10() of fneg (= NDst  /NDst ), the fraction of Dst samples 629 

that are negative (the subset termed Dst  ). The black line is a polynomial fit to this variation which 630 

is given by equation (A12) of appendix A. The green line shows the corresponding variation of Rm, 631 

the mean of < Dst   >/<Dst>1yr . Again the black line is best polynomial fit given by equation (A13) 632 

of Appendix A.  Appendix A-ii gives the algorithm for computing the pdf of Dst  or a given Dst 633 

and timescale  which allow for these two factors. Figure 15 corresponds to Figure 9 for the Dst 634 

index.  As shown by Figure 3, the distributions of  < Dst   >/<Dst>1yr  follow the Weibull family of 635 

distributions and these are derived from the best fit to the observed log10(v)-log10() variation 636 

(shown in green in Figures 13b and 15b), using the polynomial fit given in black which is given by 637 

equations (A10) and (A11) of Appendix A.  For comparison, Figure 15b also shows the log10(v)-638 

log10() variations for Pα (in blue), ap (in red) and the random variable, XR (in mauve).  639 
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Figure 16 corresponds to figure 12 and shows how the model can reproduce the occurrence of Dst  640 

below its 95 percentile value (Dsto = 55.142nT), as a function of the annual mean value. Figure 641 

16b shows the family of such variations for different values of . 642 

3.  Discussion and Conclusions 643 

It is noticeable that the log10(v)-log10() variation for ap (in red in Figure 9b) flattens off as 644 

averaging timescale  falls below about 1 day, whereas the variance v continues to rise with 645 

decreasing  for power input into the magnetosphere, Pα (in blue).  Using a synthesized random 646 

time series and a filter we have demonstrated how the flattening off is caused by autocorrelation in 647 

the time series. Hence there is autocorrelation in the ap time series at  between 3hrs and 1day that 648 

is greater than that in Pα.   As Pα is the driver of ap, this means that the geomagnetic response seen 649 

in ap is a smoothed response.  This is not surprising, given the currents that the index is sensitive to 650 

and their associated time constants.  The ap index is primarily influenced by the substorm current 651 

wedge [Lockwood, 2013] which is initiated only after a substorm growth phase lasting typically 30-652 

40 minutes.  Hence the rapid variations in the energy input into the magnetosphere, which are 653 

mainly associated with IMF orientation changes, are smoothed as energy (and open magnetic flux) 654 

are accumulated in the tail.  655 

The same effect is even more clear for Dst , for which v flattens off as  falls below about 3 days 656 

(the green line in Figure 15b which is again compared to the behavior for Pα in blue).  Hence the 657 

smoothing effect on the response of Dst has a longer time constant than that for ap. The (negative) 658 

Dst index is responding primarily to the ring current [Turner et al., 2000] which shows greater time 659 

constants, responding to the integral of solar wind forcing on timescales of order of a day or more 660 

[Lockwood et al., 2016; Borovsky, 2016].  (Note that below we discuss the implications of the fact 661 

that even large negative Dst can be influenced by other factors, in particular, the magnetopause 662 

currents). This is not to say that Pα is the best coupling function explaining the solar wind influence 663 

on the ring current, not least because the coupling exponent  has been tuned to 0.44 to make Pα 664 

reproduce ap, not Dst.  Nevertheless, the importance of southward IMF in driving disturbed Dst 665 

means that the same conclusions would be valid for any other coupling function that might better 666 

predict Dst.  667 



Confidential manuscript submitted to Space Weather 

24 
 

Breaking down the power input into the magnetosphere Pα into its component factors, Paper 2 668 

showed that the factors dependent on solar wind velocity and mass flux and on the IMF (FV, FN and 669 

FB) do not vary much on short timescales and the distribution of power input into the 670 

magnetosphere is set by the variation in the IMF orientation factor F which, although it can stay 671 

stable for several days, is typically changing on minute timescales. Thus the shape of distribution is 672 

set by F, at very short timescales, much shorter than the timescale of the geomagnetic index 673 

response – it then evolves with  according to the CLT, making the shape of the distribution a 674 

function of  only.              675 

A climatology is a statistical description that would enable us to evaluate the probability of space 676 

weather events of a given magnitude and we are working toward one that applies to the full range 677 

of solar conditions from grand solar minimum to grand solar maximum. In particular, there is value 678 

in knowing the integrated level of activity over an extended period , which equals the average 679 

value times the duration.  Hence we investigate algorithms that can give us the probability of a 680 

given average value for a given .  These algorithms will be of great value in generating a long-term 681 

climatology because they can compute the probabilities for a given annual mean and we have 682 

annual means from the past 400 years from recent modelling work based on telescopic sunspot 683 

observations [Owens et al., 2017].  The approach outlined in this paper is based on the finding that 684 

the shape of the distribution of the normalized values (normalized by dividing by the annual mean 685 

value) only depends on the averaging timescale .  This was used by Lockwood et al. [2018a] to 686 

look at the occurrence of “large” events (defined as in the top 5% since records began) over 400 687 

years. The constancy of the shape of the distributions was just taken by Lockwood et al. [2018a] as 688 

an empirical observation that could be exploited. The present series of three papers provide greater 689 

understanding of why this empirical result applies and why the distributions have the form that they 690 

do. This is important because it means the result can be applied with greater confidence to periods 691 

when inference are only made from proxy data, and in particular, to grand minima like the Maunder 692 

minimum.     693 

We have developed methods that enable computation of the core distribution of both the ap and 694 

(negative) Dst geomagnetic indices for a given annual mean value at a required averaging timescale 695 

. The algorithms for doing this are detailed in parts (i) and (ii), respectively, of Appendix A. The 696 

complications caused by the fact that the Dst index, unlike ap, does not tend to zero when activity is 697 
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quiet have led to the algorithm for Dst being somewhat more involved than that for ap, and the 698 

distributions are best fitted with a Weibull family of distributions, as opposed to the lognormal 699 

family for ap. 700 

The model distributions for the ap index make use of the lognormal form which, as shown in the 701 

Supporting Information, gives the best MLE fit of all the distribution forms with two free 702 

parameters. The Burr distribution gives slightly better fits according to the absolute goodness-of-fit 703 

metrics (least squares and modified Kolmogorov–Smirnov) but the relative metrics that allow for 704 

the degrees of freedom (AIC and BIC) show the extra degree of freedom is not justified. (Note that 705 

as  approaches one year and the observed distribution tends towards a Gaussian all the 706 

distributions are good fits and differences are minimal).  Thus there is no question that the ap model 707 

employs the best form of distribution (i.e., the lognormal). The model is also relatively 708 

straightforward because the ap index is unipolar and tends to zero at the quietest activity levels. The 709 

largest uncertainty in using the model in even the Maunder minimum relates to the occurrence of 710 

CIRs and recurrent disturbances which may influence the model at averaging timescales  greater 711 

than about 25 days. 712 

For the Dst model these considerations are less straightforward. Firstly, the Weibull, Gamma and 713 

log-logistic distributions all perform similarly, and none of them are ideal fits to the observed 714 

distribution. Furthermore, the extra degree of freedom of the Burr distribution gives fits that are 715 

better by a statistically significant degree. This means the added complexity of using two shape 716 

parameters (in addition to the mean m = 1) would be worthwhile. However, at this point it is worth 717 

remembering that the Dst index is, intrinsically, and imperfect metric and hence the additional fit 718 

accuracy is unlikely to justify the additional complexity.  Hence we propose, in a later paper, to 719 

generate a model for the pressure-corrected index Dst*. Because Dst* can, like Dst, have both 720 

positive and negative values and approach similar to that adopted here for Dst will be needed.          721 
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 1026 

Figure 1.  Distributions of apC, the ap index corrected for the annual variation in its response 1027 

function, (see Appendix B).  Annual distributions of (top) 8-point running (boxcar) means of the 1028 

three-hourly apC values, ApC*, and (bottom) of those means as a ratio of the annual mean value for 1029 

the calendar year in queetion, ApC*/<apC>=1yr, for:- (red) 1960; (blue) 2009; (green) 2012; and 1030 

(orange) modelled for 1859.  The gray histograms in the background are the distributions for all 1031 

248368 ApC* values available from the interval 1932-2016. The vertical orange lines mark the 1032 

estimated value for the peak of the 1859 Carrington event: the solid orange line is “estimate 1”, 1033 

[ApC*]MAX which makes allowance for the time-of-year response of the ap index (also marked by 1034 

an orange triangle), the dot-dash orange line is [Ap*]MAX which does not make this correction 1035 

(“estimate 2”, also marked by an orange square).  The uncertainty bars arise only from the 1036 

conversion of Aa* to Ap* and do not include the uncertainty in the Aa* estimate. The distributions 1037 

for 2012 are shown because in that year an event, that it is estimated would have caused an extreme 1038 

event almost as large as the Carrington event, passed over the STEREO A craft but missed the 1039 

Earth: the vertical green lines show the estimated maximum for that event, had it hit Earth: the solid 1040 
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green line and green triangle is for the [ApC*]MAX (estimate 1) value and the dot-dash green line and 1041 

green square are for the [Ap*]MAX (estimate 2) value. The vertical coloured dashed lines give the 1042 

95-percentiles of the annual distributions, using the same color scheme and the vertical black 1043 

dashed lines are the equivalent for Apo, the 95th percentile of all ApC* values.  The short vertical 1044 

cyan lines show the top 100 (0.32%) of the maximum ApC* values in a calendar day, [ApC*]MAX, 1045 

and the short vertical mauve lines [ApC*]MAX values are the 6 days in the top 0.02%. The top 100 1046 

events, with further details, are listed in Part 3 of the Supporting Information file.  1047 
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 1048 

Figure 2.  The largest ApC* values in a calendar day, [ApC*]MAX, as a function of the annual mean 1049 

for the calendar year of that day <apC>=1yr for 1932-2016 (inclusive). The grey points make up 1050 

99.68% of the available 31047 daily [ApC*]MAX samples, the cyan points being in the top 100 days 1051 

in terms of their  [ApC*]MAX value (also shown by the short vertical cyan lines in Figure 1) and the 1052 

mauve points the 6 days in the top 0.02% (shown by the short vertical mauve lines in Figure 1).  1053 

The top 100 days are listed in the Supporting Information file. The orange and green triangles show 1054 

the estimated [ApC*]MAX values for the Carrington and STEREO-A events (in 1859 and 2012, 1055 

respectively, see text for details) and the orange and green squares show the corresponding 1056 

uncorrected [Ap*]MAX values.  The uncertainty bars arise only from the conversion of Aa* to Ap* 1057 

and do not include any uncertainty in the Aa* estimate.  The horizontal dashed line is Apo, the 95th 1058 

percentile of all ApC* values.  The colored tickmarks along the x axis mark the annual means of the 1059 

four annual distributions shown in Figure 1 (from left to right 2009, 2012, 1859 and 1960), using 1060 

the same color scheme  1061 
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 1062 

Figure 3.  Distributions of (left hand panels) normalized power input into the magnetosphere, 1063 

<Pα>/<Pα>1yr; (central panels) normalized geomagnetic ap index, <ap>/<ap>1yr ; and (right hand 1064 

panels) normalized negative geomagnetic Dst index, < Dst  >/<Dst >1yr . The coupling function of 1065 

 = 0.44, shown in Paper 1 to apply at all , is used to generate Pα. The distributions are of the 1066 

means taken over intervals  long, divided by the annual mean of all samples in that year.  The blue 1067 

histograms are the observed distributions, with samples binned into 150 contiguous bins centered  1068 

on k.x98/100 where k is varied between 0.5 and 149.5 in steps of 1 and x98 is the 98th percentile of 1069 

the c.d.f. and the numbers of samples n are then normalized such that (x98/100)n is unity.   The 1070 

black lines shows the best-fit lognormal distributions and the mauve lines are the best-fit Weibull 1071 

distributions (with mean value m = 1 in the cases of Pα and ap and m = Rm() for Dst  ).  Fits are 1072 

made using Maximum Likeliood Estimation (see the Supporting Information file). The total 1073 

number of available samples, N, is given in each panel. (a), (b) and (c) are for  = 1yr; (d), (e) and 1074 

(f) for  = 0.5yr; (g), (h) and (i) for  = 27dy; (j), (k) and (l) for  = 7 day; (m), (n) and (o) for  = 1 1075 
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day; and (p), (q) and (r) for  = 3hr. The Pα data are from 1996-2016 (inclusive), the ap data for 1076 

1932-2016 (inclusive) and the Dst data are for 1957-2016 (inclusive).  <Dst>  0 samples are 1077 

omitted giving Dst  (so because all <Dst >1yr values are negative, these give < Dst  >/<Dst >1yr   1078 

0) in histograms and distribution fits:  as a result N for Dst  is 100%, 99.17%, 94.08%, 88.42%, 1079 

80.60%, and 78.48% of all Dst samples for  of, respectively, 1yr. (panel c), 0.5yr. (panel f), 27days 1080 

(panel i), 7 days (panel l), 1 day (panel o), and 3hr. (panel r). The best-fit distribution parameters, 1081 

goodness-of-fit metrics and c.d.f and p.d.f plots are given in the Supporting Information file for 1082 

these two fitted distributions and 5 others.  1083 
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  1084 

Figure 4.  The variation of the observed distributions of the normalized power input into the 1085 

magnetosphere <Pα>/<Pα>1yr for  = 0.44) as a function of the logarithm of the averaging interval, 1086 

log10().  The left hand edge of the plot is at  = 3 hrs, the right hand edge at  = 1 yr., and the 1087 

vertical black lines show  of 6 hours, 1 day, 7 days, 27 days and 0.5 year.  (b) The logarithm of the 1088 

best-fit variance of the lognormal distribution (of mean value m = 1), log10(v), also as a function of 1089 

log10().   1090 
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 1091 

Figure 5.  Same as Figure 4 for the normalized ap geomagnetic index, <ap> / <ap>1yr. The 1092 

distributions for  < 9 hr. are not shown as the quantization of 3-hourly ap levels becomes a factor. 1093 

  1094 
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 1095 

Figure 6.  The same as Figure 4 for a random variable XR of the same length and time resolution as 1096 

the Pα data series and which for  = 3 hr. is drawn from a Weibull distribution with k of 1.0625 and 1097 

 of 1.0240, which in Paper 2 [Lockwood et al., 2018c] was shown to be good fit to the distribution 1098 

of Pα at that timescale.   1099 

  1100 
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 1101 

Figure 7.  The autocorrelation functions (ACFs) of (in mauve) the random variable XR employed in 1102 

Figure 6 and (in black) the filtered random variable XRf employed in Figure 8.  The ACF, a(t)  is 1103 

computed for lags t between zero and 1 year in steps of the data resolution (t=3 hrs) and are 1104 

shown as a function of log10(t+t) where t and t are both in units of days. (The t is added to t 1105 

to allow the zero lag point to be shown on a logarithmic scale). The left hand edge of the plot is at 1106 

t =0 and the right hand edge at t = 1 year and the vertical grey lines are at lags t of 1 day, 7 1107 

days, 27 days and 0.5 year. Lag 1 (t=t) is at  0.602 on the x axis.   1108 



Confidential manuscript submitted to Space Weather 

45 
 

 1109 

Figure 8.  The same as Figure 6 for a random variable XRf which has been drawn from a Weibull 1110 

distribution and then passed through a filter to generate the short-term persistence and the 27-day 1111 

recurrence shown by the autocorrelation function in blue in Figure 7 (see text for details of the 1112 

filter). In order that the distributions of XRf and XR  have the same variance at  = 3 hrs (with unity 1113 

mean), the effect of the filter means that  before filtering the distribution must be drawn from a 1114 

higher-variance Weibull distribution (with unity mean) than XR with k of 0.2800 and  of 0.0778. 1115 

The black line in (b) shows the evolution of the variance, v, (on a logarithmic scale) with  for XRf 1116 

and the blue line is the same variation for XR, as shown in Figure 6(b).   1117 
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 1118 

Figure 9.  Same as Figure 5 for a model X based on lognormal distributions and a 6th-order 1119 

polynomial fit to the variance of ap, v(). In (b) the red line shows v () for ap (on a logarithmic 1120 

scale) and the black line is the polynomial fit (see Appendix A for the polynomial coefficients and 1121 

formulae for the lognormal distribution family). Also shown are the v() variations for other 1122 

variables using the same color scheme as used in Figures 4b, 5b and 6b: Pα (in blue); random 1123 

variable, XR (in mauve), plus the aa geomagnetic index (in cyan). 1124 

  1125 



Confidential manuscript submitted to Space Weather 

47 
 

    1126 

Figure 10.  (Top) The autocorrelation function of the 3-hourly aa index, divided into three 50-year 1127 

intervals: (red) 1968-2017 (inclusive); (blue) 1918-1967; and (green) 1868-1917. The lower panel 1128 

shows the relationship of the variance v of the lognormal distribution of <aa>/<aa>=1yr as a 1129 

function of the averaging timescale (on the log-log plot format used in part (b) of Figures 4-9).  1130 
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 1131 

Figure 11.  Surface plots of (top) The autocorrelation function, ACF, and (bottom) the logarithm of 1132 

the variance, log10(v), for all the aa index data (1868-2017) as a function of the logarithm of the 1133 

averaging timescale, log10().,  and the mean international sunspot number, averaged over a 3-year 1134 

interval, <R>=3yrs.     1135 
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 1136 

 Figure 12.  Predictions by the model fit to the ap distributions with  shown in Figure 9. (a) The 1137 

points show probability that 3-hour values of ap are in the top 5% of the overall distribution (for 1138 

1932-2016, 252152 samples), f [ap > apo] (i.e., ap exceeds its 95-percentile of 3-hourly ap values, 1139 

apo = 47.91), as a function of the annual mean value <ap>=1yr. The mauve line is the model 1140 

prediction for =3hrs. (b). The family of model predictions of f [ap > apo] as a function of <ap>=1yr 1141 

for timescales  of 3 hours (in mauve), 1day (in blue), 7 days (in orange) and 27 days (in black).   1142 
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 1143 

Figure 13.  Same as Figure 4 for the normalized Dst geomagnetic index, < Dst  > / <Dst>1yr where 1144 

Dst   is the subset of Dst values that are negative.  1145 
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 1146 

Figure 14.  The variation with averaging interval  of (top) the fraction of Dst samples that are 1147 

negative (the subset termed Dst  ) and (bottom) the mean of the ratio of the mean value of  Dst   in 1148 

intervals of duration , to the annual mean values of Dst. (a) fneg = NDst  / NDst is shown as a function 1149 

of log10(), where NDst   is the number of samples at that  for which Dst  0 and NDst  is the number 1150 

of Dst samples of either sign. The red line is the mean for all Dst samples (from 1957-2016), the 1151 

black line is best polynomial fit (see Appendix A for details). (b)  Rm = <Dst >/<Dst>1yr  is shown 1152 

as a function of log10(). The green line shows the result for all the data (from 1957-2016), the 1153 

black line is best polynomial fit (see Appendix A for details).  1154 
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 1155 

Figure 15.  Same as Figure 9 for a model X based on Weibull distributions and a 6th-order 1156 

polynomial fit to the variance of Dst  , v(). Note that by only considering the negative Dst values 1157 

(Dst  ) the mean values of the fitted distributions are Rm() rather than unity and pdfs have also 1158 

been multiplied by fneg to allow for existence of positive values – in both cases, the values used here 1159 

from the polynomial fits shown in Figure 14.  In (b) the green line shows v() for Dst   (on a 1160 

logarithmic scale) and the black line is the polynomial fit (see Appendix A for the polynomial 1161 

coefficients and formulae for the Weibull distribution family). Also shown are the v() variations 1162 

for other variables using the same color scheme as used in Figures 4b, 5b and 6b: Pα (in blue); ap 1163 

(in red); random variable, XR (in mauve).  1164 
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 1165 

Figure 16. Same as Figure 12 for predictions by the model fit to the Dst distributions with  shown 1166 

in Figure 15. (a) The points show the observed probability that 1-hour values of Dst are in the top 1167 

5% of the overall distribution of Dst disturbance levels (for 1957-2016, 525960 samples), 1168 

f[Dst<Dsto] (i.e. Dst is less than its 5-percentile of 1-hourly values, Dsto = 55.14 nT), as a 1169 

function of the annual mean value of Dst values <Dst>=1yr. The mauve line is the model prediction 1170 

for  = 1hrs. (b). The family of model predictions of f [Dst<Dsto] as a function of <Dst>=1yr for 1171 

timescales  of 1 hour (in mauve), 1day (in blue), 7 days (in orange) and 27 days (in black).  1172 

  1173 
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Appendix A.  Probability distributions of ap and Dst  1174 

In the paper, we make use of two distribution forms, the Lognormal and the Weibull 1175 

(A-i). The equations of the Lognormal Distribution 1176 

For the lognormal distribution the two parameters that are usually used to specify the distribution 1177 

are  and .  These are, respectively, the mean and standard deviation of the normal distribution in 1178 

logn(x) where x is the variable that is lognormally distributed.  These are related to the mean m and 1179 

variance v of x by 1180 

m = exp(+2/2)                (A1) 1181 

v = [exp(21)]exp(2+2)        (A2) 1182 

or conversely expressing  and  in terms of m and v we have 1183 

  = logn ( m / (1 + v/m2)1/2 )                  (A3) 1184 

2 = logn (1 + v/m2 )                  (A4) 1185 

Hence specifying a lognormal distribution using  and  is precisely the same a specifying it using 1186 

m and v .  The advantage of using  and  is that the equation for the probability distribution of a 1187 

lognormal is simpler: 1188 

f(x)  = {1/x}{1/(22)1/2} exp{(logn(x))2/ (22)       (A5) 1189 

For any one combination of m and v, we compute  and  using equtions (A3) and (A4) and hence 1190 

determine the full distribution using (A5). 1191 

(A-ii) The equations for a Weibull Distribution 1192 

For Weibull distribution (also called the Rosin Rammler distribution), the two parameters used to 1193 

describe the distribution are a scale parameter  and a shape parameter k.  (Note that both  and k 1194 

are always positive).   1195 

The mean and variance of the distribution in x are again m and v, where 1196 

m = (1+1/k)                                                   (A6) 1197 

v  = 2 {(1+2/k)  ((1+1/k))2}     (A7) 1198 
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Where  is a gamma function. The converse equations for  and k cannot be derived analytically 1199 

and we solve them iteratively by varying the shape parameter k until 1200 

 = m /{(1+1/k)}          (A8) 1201 

and    1202 

 (1+2/k) = (v + m2) / 2                                            (A9)  1203 

and then checking the full range of allowed k for a given v and m that the solution is unique. 1204 

The Weibull distribution is: 1205 

f(x)  = (k/)(x/)k1exp{(x/)k}     for x  0 1206 

f(x)  = 0        for x < 0  (A10) 1207 

Hence, as for the logormal, the distribution is described by two parameters ( and  for a lognormal 1208 

and k and  for a Weibull) and in both cases specifying that pair is fully equivalent to specifying the 1209 

mean and the variance.  Note that in the paper we fit variables of the form X/<X>  and so the mean 1210 

value is m = 1 and the one fit variable is the variance v.  The remainder of this Appendix gives the 1211 

models used to generate the probability distribution functions, as a function of averaging timescale, 1212 

, for the ap and Dst geomagnetic indices, shown in Figures 9 and 15, respectively. 1213 

(A-iii) Model for ap  1214 
 1215 

The polynomial fit to the variation of the logarithm of the variance, v, with timescale  for the ap 1216 

index, shown by the black line in Figure 9b, gives 1217 

log10(v) =  = 0.04716 +0.13095  +0.09544  0.35543   0.16512  0.2124  +0.2048   (A11) 1218 

such that the model variance is 1219 

v() = 10                    (A12) 1220 

By normalizing the ap values by the annual mean <ap>/ <ap>=1yr, the annual distributions have a 1221 

mean m = 1 at all  1222 

For ap the best fit is with the family of lognormal distributions. 1223 

 = 1 + (v/m2)            (A13) 1224 

 = log(m/0.5)            (A14) 1225 
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 = logn
0.5()            (A15) 1226 

x = <ap> /<ap>=1yr             (A16) 1227 

a = (x(2)0.5)-1             (A17) 1228 

b = exp{((log(x)2)/(22)}          (A18) 1229 

f(x,) = ab,  f(0,) = 0             (A19) 1230 

The equations (A11) - (A19) allows the computation of the pdf f for a value of ap for an averaging 1231 

timescale , <ap> , if we know its annual mean, <ap>=1yr . 1232 

Comparison of Figures 5a and 9a of the main text demonstrate the fit of the family of distributions 1233 

to the ap data. 1234 

(A-iv) Model for Dst  1235 
 1236 

The polynomial fit to the variation of the logarithm of the variance, v, with timescale  for the Dst 1237 

index, shown by the black line in Figure 15b, gives: 1238 

 = 0.01586 +0.03535 +0.04624 0.12833 0.13872 0.0318  0.1060 (A20) 1239 

such that the model variance is 1240 

v() = 10                    (A21) 1241 

The fraction of Dst  samples (with Dst  0), as a function of timescale  is given by the polynomial 1242 

(the black line in Figure 14a) 1243 

fneg =  0.00038 +0.00047 +0.00356  0.00395 0.01614 +0.00523 +0.04612  +0.0578 +0.8226 1244 

           (A22) 1245 

(Note that such a high-order polynomial is needed to capture the observed variation with sufficient 1246 

accuracy). 1247 

The polynomial fit to the ratio of the means of Dst  for intervals of length , < Dst  > (where 1248 

Dst  is the subset of Dst values that are negative), and the annual mean of Dst , <Dst>1yr given by 1249 

the black line in Figure 14b, is 1250 

Rm = < Dst  > / <Dst>1yr = 0.00036 0.00245 +0.00334 +0.01453 0.02152 0.0770 1.1319 1251 

           (A23) 1252 

For Dst  , the best fit is with the family of Weibull distributions, the variance of which is 1253 
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v(k)  = 2 {(1+2/k)  ((1+1/k))2}       (A24) 1254 

where  is a gamma function. The best method is to find the factor k is by iteration to the value that 1255 
gives   1256 

vm() = v(k)            (A25) 1257 

Note that the mean of the distribution is, unlike for the ap case, not in general unity because of the 1258 

exclusion of the positive Dst values. Rather, the mean is Rm given by equation (A23). This yields 1259 

 = Rm/(1+1/k)          (A26) 1260 

x = < Dst  > /<Dst>=1yr         (A27) 1261 

a = k/           (A28) 1262 

b = (x/)k-1            (A29) 1263 

c = exp((x/)k)          (A30) 1264 

fW(x,) = fneg.a.b.c    (always valid as x  0)       (A31) 1265 

The normalising factor fneg (given by equation (A22) for a given ) is needed because the product of 1266 

the terms a, b and c gives the pdf of Dst  , but they are only a fraction fneg of the whole Dst sample. 1267 

The equations (A10) - (A21) allows the computation of the p.d.f. f for a negative value of Dst for an 1268 

averaging timescale , < Dst  >, for an annual mean of Dst, <Dst>=1yr . 1269 

Comparison of Figures 13a and 15a demonstrate the fit of the family of distributions to the Dst 1270 

data.     1271 
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Appendix B. Relationship of daily means of aa and ap and correcting ap  1272 

Figure B-1 shows scatter plots of daily means of the ap index (by convention referred to as Ap) in 1273 

3-month intervals a function of the simultaneous daily mean of the aa index.  This plot is restricted 1274 

to data from between 1932 (the start of the ap index data) and 1956 (inclusive). The end date is 1275 

because in 1957 there is a calibration error in aa introduced by the move of the northern hemisphere 1276 

aa station from Abinger to Hartland. This has been corrected using the ap index by Lockwood et al. 1277 

[2014] and Matthes et al. [2017] – hence it is not appropriate to use data for 1957 and after, either 1278 

with or without that correction.  There is considerable scatter about the trend in figure B-1, much of 1279 

which is introduced by different annual responses of the two indices associated with the different 1280 

geographic distribution of stations.  Note there are also considerable diurnal differences also, but 1281 

there are averaged out by taking daily means (which are Ap for ap and Aa for aa).   The relationship 1282 

between Aa and Ap depends on time-of-year (see Figure B-1) and the best-fit polynomials to the 1283 

data for 4 fraction of year intervals, each covering a quarter of a year and centred on the times of 1284 

the March equinox, June solstice, September equinox and December solstice are:  1285 

0.09≤F≤0.34        Ap* =  (7.24110-7)Aa*3  (1.35110-3)Aa*2 +1.108Aa*  8.410  (B1) 1286 

0.34≤F≤0.59     Ap* =  (8.95910-7)Aa*3  (1.59710-3) Aa*2 +1.182Aa*   9.236 (B2) 1287 

0.60≤F≤0.85     Ap* =  (7.13110-7)Aa*3  (1.34410-3) Aa*2 +1.127Aa*   8.539 (B3) 1288 

F≤0.12 or F0.8   Ap* =  (6.62110-7)Aa*3  (1.15610-3) Aa*2 +0.907Aa*   4.969  (B4) 1289 

These polynomial fits and plus and minus their 2-sigma errors are shown in Figure B-1 (as solid 1290 

and dashed lines, respectively). For the estimated Aa* of the Carrington event [Cliver and 1291 

Svalgaard, 2004], these fits yield Ap* of  27524, 27744, 28330 and 22433 for the March 1292 

equinox, June solstice, September equinox and December solstice data, respectively. 1293 

Our research into the response functions of geomagnetic indices (the collective response of the 1294 

network of stations used to generate them and of the compilation algorithm used to combine the 1295 

data from them) using the model of Lockwood et al. [2018d, e] has shown that the am geomagnetic 1296 

index has a very flat, almost ideal, time-of-day/ time-of-year response.   This is achieved because 1297 

this index employs relatively uniform rings of mid-latitude stations in both hemispheres and uses 1298 
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weighted means to account for any spatial non-uniformity of the station network.  On the other 1299 

hand, the compilation of the ap index employs an irregular network of predominantly northern 1300 

hemisphere (mainly European) stations and look-up tables to convert the observations from each 1301 

into the value that would be seen at the reference Niemegk station before combining them by 1302 

averaging. The look-up tables are specific to the station location and depend on time-of-day (UT), 1303 

time-of-year (F) and the level of the activity.  Cliver and Svalgaard [2004] recognized the value of 1304 

the am index, compared to indices derived from less-ideal distributions of stations, and used it to 1305 

correct for the false time-of-day variation in the aa index (and so created what they termed aam).  1306 

However, they did not correct for the associated spurious time-of-year variation in aa [Lockwood et 1307 

al., 2018e] and then used the suggestion of Allen [1982] of 24-hour running means of aam (which 1308 

they termed Aam*) which largely suppresses the false UT variation anyway. We here apply the 1309 

same philosophy that Cliver and Svalgaard [2004] adopted, but use am to correct for any false 1310 

time-of-year variation in ap. We do this because the am index data only extends back to 1959 1311 

whereas the ap index is available from 1932 onward.      1312 

We have generated a corrected ap index, apC, which allows for effects as a function of the fraction 1313 

of each year (F) and the ap level using the formula 1314 

apC(F) = ap(F)  Cap(F,ap)            (B5) 1315 

where the correction factor is given by 1316 

Cap(F,ap)  = (<am(F,ap)>bin/ <am>all ) / (<ap(F,ap)>bin/ <ap>all )   1317 

                  = (<am(F,ap)>bin / <ap(F,ap)>bin)   ( <ap>all / <am>all )    (B6) 1318 

The subscript “all” refers to the averaging of all co-incident ap and am data for 1959-2017 1319 

(inclusive) and the subscript “bin” refers to the averaging of data in a given F and ap bin during the 1320 

same interval. Multiplying by the ratio of the all-over means of ap and am means that we correct for 1321 

the variation with F but do not change the average levels of ap.  In practice, the data were divided 1322 

into 40 percentiles of the overall ap distribution, giving 6282 samples in each ap bin, the values of 1323 

Cap(F,ap) were then fitted with a 6th order polynomial in F.  The derived correction factor Cap(F,ap)  1324 

is shown as a function of F (x axis) and log10(Ap) (y axis) in figure B-2.  Note that we are not 1325 
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concerned with any limitations in the UT dependence of the response of ap because we use 1326 

averages over 24-hour intervals, as discussed below.  This correction is only approximate because 1327 

the network of stations used to generate the ap index has changed several times since 1932. 1328 

However, we do not find any detectable discontinuities in Cap(F,ap) at any of the changes since 1329 

1959 and so we use the assumption that effects of changes before this date also have negligible 1330 

effect.  The effect of the correction is not great (see Figure B-3) but is largest for the most active 1331 

days. Many of these storm day values are hardly altered by the correction but those in northern 1332 

hemisphere winter, in particular, are underestimated in ap and this is corrected in apC.    1333 

We follow the procedure of Allen [1982] to make 24-hour boxcar means of apC, ApC*. For the 1334 

purposes of identifying and ranking storm days we take the largest value of the 8 such running-1335 

means in each calendar day [ApC*]MAX.   The 100 largest values of [ApC*]MAX since 1932 are given 1336 

in rank order in Table S7 of the Supporting Information file.   Although there are similarities, this 1337 

list has a somewhat different ranking order to previous studies [e.g., Nevanlinna et al., 2006; 1338 

Kappenman, 2005; Cliver and Svalgaard, 2004], largely because of the allowance we make for the 1339 

variation of the ap index response with time of year.  Note that even quite small changes in the 1340 

estimated magnitude of the storm day can have a very large effect on its position in the ranking 1341 

order.   1342 
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  1343 

 1344 

Figure B-1. Scatter plots of 24-hour means of the ap geomagnetic index, Ap*, as a function of the 1345 

corresponding means of the aa index, Aa*, for 1932-1956 (inclusive) for 0.25-yr intervals around 1346 

(a). March equinox; (b) June solstice; (c) September equinox and (d) December solstice.  Black 1347 

squares are means over aa bins 40 nT wide.  The solid lines are third order polynomial fits and the 1348 

dashed lines are plus and minus the best-fit 2-sigma error.   1349 
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  1350 

Figure B-2.  The Ap* correction factor Cap = (Am*/Ap*).(<ap>/<am>) as a function of the time of 1351 

year, F, and the ap level (shown here on a logarithmic scale) derived from all the coincident ap and 1352 

am index data (for 1959-2017, inclusive).  1353 



Confidential manuscript submitted to Space Weather 

63 
 

 1354 

Figure B-3.  The effect of correcting 24-hour means of the ap index for its dependence on time of 1355 

year, F: a scatter plot of ApC* (8-point running means of the corrected apC =ap.Cap) as a function of 1356 

the corresponding running means of the original ap values, Ap*.   The plot is for all ap index data to 1357 

date (1932-2017, inclusive).   1358 


