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Abstract
We assess the ability of the DePreSys3 prediction system to predict austral summer precipitation (DJF) over southern Africa, 
de�ned as the African continent south of 15°S. DePresys3 is a high resolution prediction system (at a horizontal resolution of 
~ 60�km in the atmosphere in mid-latitudes and of the quarter degree in the Ocean) and spans the long period 1959–2016. We 
�nd skill in predicting interannual precipitation variability, relative to a long-term trend; the anomaly correlation skill score 
over southern Africa is greater than 0.45 for the �rst summer (i.e. lead month 2–4), and 0.37 over Mozambique, Zimbabwe 
and Zambia for the second summer (i.e. lead month 14–16). The skill is related to the successful prediction of the El-Nino 
Southern Oscillation (ENSO), and the successful simulation of ENSO teleconnections to southern Africa. However, overall 
skill is sensitive to the inclusion of strong La-Nina events and also appears to change with forecast epoch. For example, the 
skill in predicting precipitation over Mozambique is signi�cantly larger for the �rst summer in the 1990–2016 period, com-
pared to the 1959–1985 period. The di�erence in skill in predicting interannual precipitation variability over southern Africa 
in di�erent epochs is consistent with a change in the strength of the observed teleconnections of ENSO. After 1990, and 
consistent with the increased skill, the observed impact of ENSO appears to strengthen over west Mozambique, in association 
with changes in ENSO related atmospheric convergence anomalies. However, these apparent changes in teleconnections are 
not captured by the ensemble-mean predictions using DePreSys3. The changes in the ENSO teleconnection are consistent 
with a warming over the Indian Ocean and modulation of ENSO properties between the di�erent epochs, but may also be 
associated with unpredictable atmospheric variability.

Keywords Southern African precipitation�· ENSO�· Seasonal prediction�· High resolution climate models

1 Introduction

Predicting climate for the upcoming season to several dec-
ades helps decision makers to adapt policies to near-term 
climate change (Meehl et�al. 2009). The need to anticipate 
damages due to climate variability is a stressing problem, 
especially in developing countries, which are more vulner-
able to climate hazards. Climate projections are mostly pro-
vided by simulations performed with Atmosphere–Ocean 
General Circulation Models (AOGCM) under the Climate 
Model Intercomparison Project, phase 5 (CMIP5; Taylor 
et�al. 2012). However, uninitialized predictions have shown 
limitations in predicting climate on short-time horizons 
(< 10�years) due to uncertainties in simulating internal cli-
mate variability, as highlighted by the “hiatus” in global-
mean surface temperature rise (Watanabe et� al. 2013; 
Kosaka and Xie 2013; Meehl et�al. 2014). Prediction sys-
tems are initialised from observations, and provide more 
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skilful near-term climate predictions, i.e. from seasonal to 
decadal timescales (Bellucci et�al. 2013; Karspeck et�al. 
2015; Sha�rey et�al. 2017), and narrow such uncertainties.

There is signi�cant skill in initialised climate predic-
tions. For example, there is considerable skill in predicting 
North Atlantic Sea Surface Temperature (SST) on seasonal-
to-decadal timescales (Pohlmann et�al. 2009; Yeager et�al. 
2012, 2018; Matei et�al. 2012; Doblas-Reyes et�al. 2013a; 
Karspeck et�al. 2015; Monerie et�al. 2017; Sha�rey et�al. 
2017; Robson et�al. 2017). There is also substantial skill 
in predicting the El-Niño Southern Oscillation (ENSO) 
on seasonal (Barnston et�al. 2011; Imada et�al. 2015) and 
multi-year timescales (Gonzalez and Goddard 2016) and in 
predicting the Paci�c Decadal Oscillation a few years ahead 
(Mochizuki et�al. 2012; Chikamoto et�al. 2013). Although 
the evidence for improvement over land is weak in decadal 
predictions (Sha�rey et�al. 2017; Yeager et�al. 2018), there 
is signi�cant evidence that improved predictions over land is 
possible on seasonal timescales (Doblas-Reyes et�al. 2013b) 
due to soil moisture, snow and ice cover initialisation (Dou-
ville and Chauvin 2000; van den Hurk et�al. 2012; Orsolini 
et�al. 2013; Day et�al. 2014). In addition, land Surface Air 
Temperature (SAT) and precipitation are associated with 
SST variability, which is better predicted, providing oppor-
tunities to improve and predict climate over land. Substantial 
skill has for instance been shown in predicting Sahel pre-
cipitation (Gaetani and Mohino 2013; Mohino et�al. 2016; 
Sheen et�al. 2017) and North East Asian temperature Mon-
erie et�al. (2017b) due to the remote impacts of the Atlantic 
Multidecadal variability.

The added value of Ocean initialisation could therefore 
lead to high skill in seasonal prediction, and in particular for 
precipitation over southern Africa (here de�ned as the Afri-
can continent south of 15°S), where Landman et�al. (2001), 
Reason et�al. (2006), Landman and Beraki (2012) and Beraki 
et�al. (2013) have all demonstrated that skill in predicting 
precipitation is strongly associated with model’s ability to 
predict ENSO events. It has been shown that southern Afri-
can precipitation is better predicted during El-Niño and La-
Niña years than during neutral years (Landman and Beraki 
2012). Thus, there is a growing body of evidence showing 
that initialised climate prediction systems provide valuable 
skill in predicting regional climate over land, and to their 
ability to reproduce the remote impact of SST on interannual 
to interdecadal timescales.

Interannual climate variability over southern Africa is 
indeed primarily related to ENSO (Ropelewski and Halp-
ert 1987, 1989; Lindesay 1988; Matarira 1990; Mason and 
Jury 1997; Mason and Goddard 2001; Rouault and Richard 
2005; Lyon and Mason 2007; Crétat et�al. 2012; Ratna et�al. 
2013; Ratnam et�al. 2014; Malherbe et�al. 2016): El-Niño 
events favour droughts, while La-Niña events favour wet 
conditions over southern Africa in austral summer. During 

El-Nino years, the South Atlantic and Indian subtropical 
Highs shift northward, hence reducing moisture transport 
convergence and precipitation over southern Africa (Mason 
and Jury 1997; Reason and Mulenga 1999; Cook et�al. 2004; 
Rouault and Richard 2005; Reason and Jagadheesha 2005; 
Vigaud et�al. 2009; Crétat et�al. 2012; Ratnam et�al. 2014; 
Dieppois et�al. 2015). Similarly, the subsidence associated 
with El-Niño events over southern Africa modulates the 
strength and location of the Angola Low, a cyclonic circu-
lation associated with low values in surface pressure, over 
Angola, Namibia and Botswana (Reason and Jagadheesha 
2005; Lyon and Mason 2007, 2009; Crétat et�al. 2012, 2018; 
Munday and Washington 2017; Howard and Washington 
2018). ENSO events are also associated with an eastward 
shift of the South Indian Convergence Zone (SICZ; Cook 
2000; Ratnam et�al. 2014) and the associated synoptic-scale 
rain-bearing systems that a�ect southern Africa, e.g. tropi-
cal-temperate troughs (TTTs: Fauchereau et�al. 2009). These 
systems are responsible for signi�cant amounts of rainfall 
during austral summer (Harrison 1984; Crimp et�al. 1998; 
Todd and Washington 1999; Hart et�al. 2012, 2013; Macron 
et�al. 2013).

Although many studies show that ENSO is a crucial 
driver of interannual variability over southern Africa, and a 
source of skill in seasonal predictions, there remain impor-
tant questions. For example, given the discussion above, 
there is a rationale to expect skill in predicting variability 
in precipitation over southern Africa beyond seasonal time-
scales owing to the strong remote impact of SST upon inter-
annual precipitation variability over southern Africa, and the 
relatively high skill in predicting SSTs at interannual time 
scales, including ENSO (Barnston et�al. 2011; Imada et�al. 
2015). Evidence also suggests that the impact of ENSO on 
southern African precipitation at the synoptic to interannual 
timescales is modulated by decadal modes of climate vari-
ability (Dyer and Tyson 1977; Tyson 1981; Mason and Jury 
1997; Dieppois et�al. 2016; Malherbe et�al. 2016; Pohl et�al. 
2018). Furthermore, such a modulation could explain non-
stationarities in the impact of ENSO over land (Richard et�al. 
2000, 2001). Therefore, the quality of predictions of south-
ern African precipitation may depend not only on the period 
over which they are evaluated, but potentially on a prediction 
system’s ability to simulate the modulation of the ENSO 
teleconnection on decadal timescales, as has been argued for 
the predictability of the North Atlantic Oscillation (O’Reilly 
et�al. 2017; Weisheimer et�al. 2017). A further motivation 
comes from the fact that, according to Dieppois et�al. (2015), 
some models perform well in reproducing the remote impact 
of ENSO on the southern African regional circulation and 
rainfall through a change of the upper atmospheric circula-
tion. In particular, CMIP5 models di�er signi�cantly in their 
representation of austral summer rainfall amounts over the 
historical period (Hewitson and Crane 2006; Christensen 



et�al. 2007; Nikulin et�al. 2012; Dieppois et�al. 2015; Mun-
day and Washington 2017).

In order to address the uncertainties we will study pre-
dictions made with the UK Met O�ce Decadal Prediction 
System version3 (DePreSys3; Dunstone et�al. 2016, 2018). 
Hindcasts from DePreSys3 span a much longer period than 
other seasonal forecasting data sets (i.e. from 1959 to 2016) 
and have a large number of members (i.e. 30 for a lead time 
of up to 17�months). Furthemore, DePreSys3 has signi�-
cant skill at predicting ENSO up to a year ahead (Dunstone 
et�al. 2016). Therefore, this particular dataset will allow us 
to more accurately assess skill of southern African precipita-
tion at seasonal and interannual timescales. Speci�cally, we 
aim to address the following questions:

– Is DePreSys3 able to predict interannual variability in 
summer precipitation over southern Africa at seasonal 
or interannual timescales?

– What are the sources of skill?
– Is the skill signi�cantly dependent upon the forecast vali-

dation period?

The paper is structured as follows. The model, data and 
methodology are described in Sect.�2. Section�3 focuses on 
the model ability to predict the southern African precipita-
tion. We analyze the source of skill in Sect.�4. A discussion 
is given in Sect.�5 and a conclusion in Sect.�6.

2  Data and�method

2.1  DePreSys3

DePreSys3 is a high resolution AOGCM developed at the 
Met O�ce (Dunstone et�al. 2016, 2018), based on the Had-
ley Centre Global Environment Model version 3, global 
coupled con�guration v2 (HadGEM3-GC2; Williams et�al. 
2015). The atmosphere model is the Global Atmospheric 
version 6.0 of the Met O�ce Uni�ed Model, ran at the N216 
resolution (~ 60�km in mid-latitudes) with 85 vertical levels 
ensuring a resolved stratosphere. The Ocean model is the 
Global ocean version 5.0 (Megann et�al. 2014), based on the 
Nucleus for European Models of the Ocean Model (NEMO; 
Madec 2008). The ocean resolution is run at a quarter degree 
using the NEMO tripolar grid with 75 vertical levels (the 
ORCA025L75 grid; Bernard et�al. 2006). The sea-ice model 
is CICE version 4.1 (Hunke and Lipscomb 2004) from the 
United States Los Alamos National Laboratory and the land 
surface model is the Joint UK Land Environment Simulator 
(JULES; Best et�al. 2011). The di�erent model components 
are coupled with OASIS3 (Valcke 2013). For an extended 
description of the UM-JULES and NEMO-CICE coupling 

the reader can refer to Walters et�al. (2014) and Megann 
et�al. (2014).

Hindcasts are started every year between 1959 and 2015 
(i.e. 57 start dates). Thirty ensemble members are initialized 
on the 1st November of each start date, and are generated 
using di�erent seeds to a stochastic physics scheme (MacLa-
chlan et�al. 2015). Each hindcast lasts for 16 months, and are 
forced by the historical evolution of external forcings (GHG, 
aerosols, ozone, solar radiation and volcanoes). After 2005, 
external forcing is taken from the RCP4.5 scenario, as in the 
CMIP5 protocol (Taylor et�al. 2012). DePreSys3 is full-�eld 
initialized by relaxing a coupled integration of HadGEM3-
GC2 towards gridded observations. Three-dimensional 
ocean temperature and salinity are relaxed toward the Met 
O�ce statistical ocean reanalysis (MOSORA; Smith and 
Murphy 2007; Smith et�al. 2015), the sea-ice concentration 
is taken from HadISST (Rayner et�al. 2003) and the atmos-
phere model is initialised from ERA-40 before 1979 and 
ERA-interim atmospheric temperature and winds afterwards 
(Dee et�al. 2011).

2.2  Observations/reanalysis

Model skill is evaluated using observations and reanalysis. 
For precipitation we used the Global Precipitation Clima-
tology Centre (GPCC) version v7 (Schneider et�al. 2014). 
GPCC is available over the long period 1901–present on 
a 0.5° × 0.5° latitude-longitude grid. For a large range of 
atmospheric variables (i.e. SAT, winds, speci�c humid-
ity, geopotential height, pressure) we used the data from 
the National Centers for Environmental Prediction (NCEP) 
reanalysis (R-1; Kanamitsu et�al. 2002). NCEP is given on 
a 2.5° resolution (144 × 72) with 17 vertical levels. NCEP 
spans 1948 to present, allowing assessing the ability of 
DePreSys3 to retrospectively predict climate over a long-
period (i.e. over the period 1959–2015). Observed changes 
in ENSO teleconnection have also been assessed using the 
twentieth Century reanalysis (Compo et�al. 2006) avoiding 
results to be dependent to NCEP.

2.3  Southern African rainfall index and�Niño3.4 
INDEX

We de�ned two areas for which we found high skill in pre-
dicting austral summer precipitation interannual variabil-
ity with DePreSys3: SAF covers South Africa [15–30°E; 
35–25°S] and MOZ covers southern Mozambique, Zim-
babwe and Northern Botswana [20–35°E; 15–25°S] (see 
Fig.�1a). The seasonal cycle of precipitation is not homoge-
nous over the SAF box, where the maximum of precipitation 
is obtained in austral summer over a large part of southern 
Africa, while the south-western coastal regions of South 
Africa experience a maximum of precipitation in austral 
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winter (Philippon et�al. 2012; Dieppois et�al. 2016). Thus, 
we checked the sensitivity of the results to the exclusion 
of these grid points for which the seasonal cycle peaks in 
winter prior to computing the summer precipitation index. 
Very similar results were found in terms of skill and telecon-
nections with SAT worldwide (not shown). We performed 
an empirical orthogonal function (EOFs) to the ACC skill 
in southern African precipitation, using a 25-year running 
window, to detect spatially coherent changes in skill. The 
leading mode highlights that both MOZ and SAF areas are 
consistent in terms of skill variability (not shown). The 
skill of DePreSys3 to predict southern African precipita-
tion interannual variability is assessed throughout the paper 
using GPCC. We also used UDEL (Willmott and Matsuura 
2001) and CRU (Harris et�al. 2014) to analyse the observed 
precipitation index but �nd that results are not sensitive to 
the choice of the observed dataset (Fig. S1; see the supple-
mentary material).

We used the El Niño3-4 [170–120°W; 5°S–5°N] 
index (hereafter noted EN3.4) to assess the ability of 
DePreSys3 to simulate ENSO variability. Using EN3.4 
enables the comparison of results with other prediction 
systems (see for instance Gonzalez and Goddard 2016). 

We also computed an EOF to estimate ENSO variabil-
ity and found similar evolution between the �rst princi-
pal component and EN3.4 (with correlation coe�cients 
varying from 0.95 to 0.99 when considering NCEP and 
DePresys3, and for the �rst and second DJF lead-time). 
We also used the El-Niño3 [150–90°W; 5°S–5°N] and 
El-Niño4 index [160E–150°W; 5°S–5°N], and we did 
not �nd any signi�cant di�erence to results when using 
EN3.4 (not shown), as also suggested in Ratnam et�al. 
(2014). We thus consider here the EN3.4 index as a good 
descriptor of ENSO variability, as also seen in Barnston 
et�al. (1999). We do not aim at assessing the impact of 
the Interdecadal Paci�c Oscillation (Zhang et�al. 1997; 
Power et�al. 1999), or of the Paci�c Decadal Oscillation 
(Mantua et�al. 1997; Minobe 2000; Mantua and Hare 2002; 
Mills and Walsh 2013), because of the relatively short 
hindcast durations. The Subtropical Indian Ocean Dipole 
(SIOD) index allows documenting climate variability over 
the Indian Ocean, and is de�ned as the di�erence between 
the western [55–65°E; 37–27°S] and eastern [90–100°E; 
28–18°S] subtropical Indian Ocean SST anomalies after 
Behera and Yamagata (2001).

Fig. 1  Anomaly correlation 
coe�cient (ACC) of the sum-
mer precipitation in DePreSys3 
hindcasts (with respect to 
GPCC) for a the �rst sum-
mer (i.e. DJF(0)) and b the 
second summer (i.e. DJF(1)). 
c SAF and d MOZ precipita-
tion (mm�day� 1 ) for observa-
tions (GPCC, black line), and 
DJF(0) (DePreSys3; red line), 
and DJF(1) (DePreSys3; blue 
line). Red and blue shadings 
indicate the ensemble standard 
deviation. Stippling (on the top 
panels) indicate that the ACC 
is signi�cantly di�erent to zero 
at the 95% con�dence-level 
according to the Monte Carlo 
signi�cance test (see text; one 
sided test). Correlation between 
observed and simulated precipi-
tation are given on the top right 
of panels c and d, stars indicat-
ing a correlation signi�cantly 
di�erent to zero at the 95% 
con�dence-level

(a) (b)

(c) (d)



2.4  Bias adjustment

Climate models have biases in simulating the observed cli-
mate. Consequently, once initialised from reanalysis, models 
drift to their preferred (and imperfect) mean climatology. The 
drift in temperature can reach several degrees Celsius and 
needs to be removed prior to compare observed and simulated 
ENSO impacts on southern African precipitation. The most 
common way to remove the drift is to follow the procedure 
described in the World Climate Research Program recommen-
dation (ICPO 2011). The drift is then removed, a posteriori 
and in a linear way, and computed as:

where �  and � are given for a member � and a start date � for 
respectively DePreSys3 and the corresponding observations/
reanalysis (i.e. NCEP for atmospheric variables and GPCC 
for precipitation), spanning n start dates and m members. 
Thus, the drift, �� � is only lead-time ( �  ) dependent, and is 
assumed to be start date independent. Here, we assume that 
the ICPO method is reliable to remove the drift for a large 
range of variables and over several regions.

2.5  Evaluation of�the�model skill

We evaluate the ability of DePreSys3 to predict climate by 
computing the Anomaly Correlation Coefficient (ACC) 
between DePreSys3 hindcasts and observations/reanalysis for 
a given lead-time. The signi�cance of ACC values is assessed 
by performing a Monte Carlo procedure through resampling 
(5000 permutations). Synthetic time-series are randomly re-
sampled using blocks of 5-year periods and �lled until the 
size of the original time-series is reached, to preserve the 
multi-annual variability. Correlation between DePreSys3 and 
observed/reanalysed time-series are then computed for each 
permutation. The obtained correlations follow a Gaussian 
distribution, and are considered as signi�cant at p � 0.05 (i.e. 
95% con�dence level) when observed correlation values are 
greater than the 95th percentile of the permutation distribution 
(i.e. a one-sided test). The same procedure is used to evaluate 
the signi�cance of the regressions, but using a two-sided test 
(regression values are then considered signi�cant when regres-
sion coe�cients are lower than the 2.5th percentile, or greater 
than the 97.5th percentile, of the permutation distribution).
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3  Skill in�predicting southern African 
precipitation

3.1  Overall skill in�predicting southern African 
precipitation

The ACC for DePreSys3 to predict interannual southern 
African precipitation variability in austral summer (DJF) is 
shown in Fig.�1. A linear trend was removed for each grid-
point, to compute the ACC, relative to the long-term trend. 
For the �rst summer [hereafter noted DJF(0)], ACC val-
ues are signi�cant and up to 0.45 over both South Africa 
and West of Mozambique, over the period 1959–2015 
(Fig.�1a). Skill in predicting precipitation decreases for 
the 2nd summer [hereafter noted DJF(1)], 13–16�months 
ahead; Fig.�1b. DePreSys3 is not able to predict precipita-
tion over South Africa for the 2nd summer, but prediction 
skill remains positive and signi�cant between 15°S and 
25°S (Fig.�1a, b). Prediction skill has also been assessed 
using CRU and UDEL data sets, and very similar results 
were found (Fig. S2).

As expected, simulated ensemble-mean precipita-
tion anomalies have a smaller variability to the observed 
(Fig.�1c, d). However, resampling the dataset (i.e. by com-
puting 10,000 synthetic 57�years long time series, taking 
one randomly selected member by start dates) shows that 
DePreSys3 underestimates SAF precipitation variance and 
overestimates MOZ precipitation variance for both DJF(0) 
and DJF(1) (Fig. S3).

The large observed peaks of the extreme years tend 
to be reproduced (e.g. precipitation anomaly of a same 
sign; Fig.�1c, d). Generally, anomalously wet years are 
associated with La-Niña (e.g. 1973–1974, 1975–1976, 
1988–1989, 1999–2000, 2007–2008 and 2010–2011), 
while exceptional dry years are associated with El-Niño 
(e.g. 1972–1973, 1982–1983, 1991–1992, 2015–2016).

3.2  Sources of�skill in�predicting southern African 
precipitation

Skill in predicting southern African precipitation is pri-
marily related to ENSO (Landman et�al. 2001; Reason 
et�al. 2006; Landman and Beraki 2012; Beraki et�al. 2013). 
Thus we explore the ENSO teleconnection with south-
ern African precipitation, as simulated and predicted by 
DePreSys3. We have chosen to focus mainly on ENSO tel-
econnection for DJF(0) in the main text, which is the most 
skilful over both SAF and MOZ areas. Results obtained 
for DJF(1) are also relevant, as they provide prediction up 
to 16 month ahead and are discussed throughout the text 
and presented in the supplementary materials. However, 
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time-evolution of skill in predicting precipitation and tem-
perature for DJF(0) and DJF(1) are presented side-by-side 
to allow comparing both lead-times and document better 
their dependence on the forecast evaluation period.

Figure�2 shows the SST anomalies that are related to 
southern African precipitation variability by regressing the 
standardized linearly detrended index of SAF and MOZ pre-
cipitation with linearly detrended SAT globally at each grid 
box. The largest SAT anomalies are found over the equa-
torial Paci�c Ocean in both observations and DePreSys3 
(Fig.�2). Therefore, Fig.�2 suggests that DePreSys3 is able 
to simulate the observed link between ENSO variability 
and southern African precipitation. High correlations are 
also found between the EN3.4 index and SAF precipitation 
(� 0.55 and � 0.67 in observation and DePreSys3, respec-
tively) and MOZ precipitation (� 0.60 and � 0.63 in obser-
vation and DePreSys3, respectively), with DePreSys3 over-
estimating correlations between EN3.4 index and southern 
African precipitation.

In Fig.�3, we explore the relationship between ENSO and 
southern African climate in observations and DePreSys3. 
Speci�cally, precipitation, 250�hPa velocity potential and 
divergence wind, 850�hPa geopotential height and moisture 
�ux are regressed onto the EN3.4. In both observations 
and DePreSys3 regressions show negative precipitation 

anomalies south of 15°S (Fig.�3a, b). The change in pre-
cipitation in both observations and model is associated with 
large-scale changes occurring in the upper troposphere, 
with anomalously strong divergence over the eastern Paci�c 
Ocean, while anomalously strong convergence occurs over 
the warm pool, i.e. a modulation of the Walker circulation 
(Fig.�3c, d). As a consequence, anomalous subsidence is 
found over the western Paci�c Ocean, eastern Indian Ocean 
and southern Africa. In addition, the large-scale changes 
are associated with a northward shift of both South Atlan-
tic and South Indian Ocean anticyclonic circulations (Cook 
et�al. 2004; Vigaud et�al. 2009; Philippon et�al. 2012; Rat-
nam et�al. 2014; Dieppois et�al. 2015), as evidenced by the 
decrease in geopotential height at 850�hPa (zg850) south of 
35°S, and an increase north of 35°S (Fig.�3e, f). The shift 
in the location of the subtropical highs leads to a change 
in the low-level atmospheric circulation and reduced mois-
ture �ux inland south of 20°S (Fig.�3e, f), consistent with 
decreased SAF and MOZ precipitation (Rouault et�al. 2003; 
Reason and Jagadheesha 2005; Lyon and Mason 2007; Rat-
nam et�al. 2014; Vizy et�al. 2015; Dieppois et�al. 2015). 
Additionally, anomalous subsidence over southern Africa 
favours stable conditions and the decrease in precipitation 
(Fig.�3c, d). Therefore, DePreSys3 is able to simulate the 
relationship between southern African precipitation and 

(a) (b)

(c) (d)

Fig. 2  Surface air temperature (°C/STD) regressed onto the precipita-
tion index for (top panels) observations (NCEP and GPCC) and (bot-
tom panels) DePreSys3 for the �rst summer lead time (i.e. DJF(0)). 
Left panels: regressions to the SAF precipitation index. Right pan-
els: regressions to the MOZ precipitation index. Regressions are 

performed over the period 1959–2015. Stippling indicates that the 
regression is signi�cantly di�erent to zero at the 95% con�dence-
level according to the Monte Carlo procedure (see text; two-sided 
test). For DePreSys3 results were computed using the ensemble mean
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