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Turbulent mixing processes are important in determining the evolution of convective clouds, 1 

and the production of convective precipitation. However, the exact nature of these impacts 2 

remains uncertain due to limited observations. Model simulations show that assumptions made 3 

in parametrising turbulence can have a marked effect on the characteristics of simulated 4 

clouds. This leads to significant uncertainty in forecasts from convection-permitting numerical 5 

weather prediction (NWP) models. This contribution presents a comprehensive method to 6 

retrieve turbulence using Doppler weather radar to investigate turbulence in observed clouds. 7 

This method involves isolating the turbulent component of the Doppler velocity spectrum 8 

width, expressing turbulence intensity as an eddy dissipation rate, 𝛆. By applying this method 9 

throughout large datasets of observations collected over the southern UK using the (0.28° 10 

beam-width) Chilbolton Advanced Meteorological Radar (CAMRa), statistics of convective 11 
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cloud turbulence are presented. Two contrasting case days are examined: a shallow “shower” 12 

case, and a “deep convection” case, exhibiting stronger and deeper updrafts. In our 13 

observations, 𝛆 generally ranges from 𝟏𝟎−𝟑 − 𝟏𝟎−𝟏 𝐦𝟐 𝐬−𝟑, with the largest values found 14 

within, around and above convective updrafts. Vertical profiles of 𝛆 suggest that turbulence is 15 

much stronger in deep convection; 95th percentile values increase with height from 0.03 – 0.1 16 

𝐦𝟐 𝐬−𝟑, compared to approximately constant values of 0.02 – 0.03 𝐦𝟐 𝐬−𝟑 throughout the depth 17 

of shower cloud. In updraft regions on both days, the 95th percentile of 𝛆 has significant (𝐩 <18 

𝟏𝟎−𝟑) positive correlations with the updraft velocity, and the horizontal shear in the updraft 19 

velocity, with weaker positive correlations with updraft dimensions. The 𝛆-retrieval method 20 

presented considers a very broad range of conditions, providing a reliable framework for 21 

turbulence retrieval using high-resolution Doppler weather radar. In applying this method 22 

across many observations, the derived turbulence statistics will form the basis for evaluating 23 

the parametrisation of turbulence in NWP models. 24 

 25 

Keywords: Radar; Doppler spectrum width; turbulence; convection; eddy dissipation rate; clouds. 26 

 27 

1     Introduction  28 

     The effects of turbulence on the structure and evolution of convective clouds remain unclear in 29 

observations and numerical weather prediction (NWP) models. The turbulent entrainment of dry 30 

environmental air into cumulus clouds has long been known to play an important role in their growth 31 

and decay (Blyth, 1993). The specific location of entrained air can have a varied and substantial 32 

impact on resulting air motions within the cloud (Blyth et al., 1988). Turbulent mixing within clouds 33 

significantly impacts the microphysical processes governing the initiation of convective 34 

precipitation; the presence of turbulence accelerates cloud drop growth through increased rates of 35 

collision and coalescence (Grover and Pruppacher, 1985; Khain and Pinsky, 1995; Vohl et al., 1999; 36 
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Falkovic et al., 2002; Pinksy and Khain, 2002). Although there is much evidence for the effects of 37 

turbulence on cloud processes, there remains uncertainty in their precise nature, and the implications 38 

for cloud evolution. 39 

     In recent years, regional numerical weather prediction (NWP) has improved to sufficient 40 

resolution that it is worthwhile abandoning the parametrisation of deep convective clouds, and, 41 

instead, allowing the unstable growth of explicit convective clouds. However, it is not feasible to 42 

forecast using resolutions sufficient to properly resolve all of the important features of the flow. 43 

Hence such models are known as 'convection-permitting models' (CPMs, Clark et al., 2016). Physical 44 

processes occurring on scales below those resolved in CPMs, such as turbulence, remain 45 

parametrised. CPMs generally adopt mixing-length-based turbulence closure schemes from Large-46 

Eddy Simulation (LES) models, such as the Smagorinsky-Lilly sub-grid scheme. It is not often clear 47 

whether the assumptions implicit in these schemes (such as the ability of the model to resolve an 48 

inertial sub-range of turbulence) are valid for CPMs, especially when using grid-lengths larger than 49 

100 m. Model simulations show that the configuration of turbulence parametrisations can have a 50 

profound effect on the characteristics of simulated clouds (e.g. Hanley et al., 2015). Until we advance 51 

our understanding of the effects of turbulence in observed clouds, justifiable attempts to evaluate and 52 

improve these parametrisations are difficult to make. 53 

     To improve our understanding of turbulence in observed clouds for model evaluation, 54 

observations of convective storm turbulence can be made with Doppler weather radar. By isolating 55 

the turbulent component to the Doppler velocity spectrum variance, near-instantaneous observations 56 

of turbulence can be made across large swathes of atmosphere. Turbulence retrieval with weather 57 

radar has clear benefits over using methods such as aircraft or ascent measurements which can only 58 

collect time-series information from single points in space. Radar retrieved fields of turbulence, 59 

expressed for convenience in terms of the dissipation rate of turbulent kinetic energy, ε, can be used 60 

to investigate relationships with storm strength and structure in a statistical sense for model 61 

evaluation.  62 
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     The accuracy to which ε can be derived using the Doppler variance method is dependent on the 63 

accurate removal of variances associated with processes aside from inertial sub-range turbulence. 64 

Due to this somewhat indirect approach, evaluation of the Doppler variance method has previously 65 

been necessary through comparison of ε estimates with in situ measurements and other radar retrieval 66 

techniques. Using Doppler weather radar, Labitt (1981) and Meischner et al. (2001) demonstrated 67 

good agreement between ε derived from the Doppler variance method when compared with co-68 

ordinated aircraft measurements in convective storms. Brewster and Zrnic (1986) found a high level 69 

of agreement between ε from Doppler variance and ε estimated from the “spatial spectra” method – 70 

a method which involves taking the Fourier transform of a dataset of Doppler velocity measurements 71 

sampled either along a single ray at a given time, or at a fixed range gate over a period of time. 72 

Bouniol et al. (2003) performed a similar evaluation of the Doppler variance method using the spatial 73 

spectra method with a vertically-pointing Doppler cloud radar. Point-for-point comparison of ε from 74 

the two methods showed a high level of agreement, especially for larger values. They concluded that 75 

the Doppler variance provides a reliable estimate of ε. The spatial spectra method itself has been 76 

evaluated by Shupe et al. (2012), who analysed Doppler velocity time series sampled with a 77 

vertically-pointing cloud radar in stratocumulus clouds. They found ε estimates from spatial spectra 78 

to correspond well with aircraft and sonic anemometer measurements. Albrecht et al. (2016) 79 

examined cloud-top entrainment processes in non-precipitating stratocumulus using vertically-80 

pointing Doppler cloud radar. In this study, estimates of ε were derived using both the Doppler 81 

spectrum variance and the Doppler velocity power spectrum (Fang et al., 2014), with good agreement 82 

found between the two methods. Methods to retrieve ε at vertical incidence in (precipitating and non-83 

precipitating) stratocumulus using Doppler cloud radar are not well suited to retrieve ε with scanning 84 

Doppler weather radar in precipitating convective clouds; as pertains to this study. 85 

     For scanning Doppler weather radar, the most significant contributor to Doppler variance aside 86 

from turbulence is generally shear of the radial wind across the three dimensions of the beam (see 87 

Section 5), which requires careful separation from turbulence before estimates of ε can be made. 88 
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Melnikov and Doviak (2009) present a detailed method to retrieve ε from the Doppler spectrum in 89 

vertical cross-sections through stratiform precipitation collected using an S-band Doppler weather 90 

radar. In their study, the radial and elevation shear components are calculated by least-squares fitting 91 

contiguous Doppler velocity measurements separately in each direction. A similar, though more 92 

sophisticated technique is applied in Section 5.3 to use linear regression to fit a 2-D linear velocity 93 

surface model (Neter and Wasserman, 1974) to Doppler velocities to evaluate shear over a spatial 94 

scale that we can specify and fix, guided by estimates of the inertial sub-range outer-scale (see Section 95 

5.2). Using this method, we have been able to test the sensitivity of retrieved ε to the scale over which 96 

shear is calculated and removed (Section 5.5).  97 

     Melnikov and Doviak (2009) calculated the azimuthal (transverse) shear from velocity gradients 98 

between two adjacent scans separated by 2°. They found variances from azimuthal shear to be small 99 

compared to elevation shears in stratiform clouds. However, stronger horizontal shears are likely to 100 

be found in the convective clouds analysed in this application; in particular, along the edges of 101 

updrafts (e.g. Istok and Doviak, 1986). In the present application, our radar data includes one scan 102 

performed through one azimuth per cloud. Consequently, we have developed new methods to 103 

estimate the azimuthal shear component from the radial shear alone (Section 5.4), allowing for its 104 

variance contribution to be estimated when adjacent scans are not available.  105 

     Generally, past studies focus on single storm cases when using radar methods to investigate 106 

convective storm turbulence (e.g. Brewster and Zrnic, 1986; Istok and Doviak, 1986). Often, the 107 

contributions to the Doppler spectrum width from mechanisms aside from turbulence are either 108 

purely assumed to be negligible, or are shown to be negligible only for the purpose of the application. 109 

As a result, a comprehensive method to retrieve ε from radar fields under a wide range of conditions, 110 

and the statistical assessment of ε that such a method permits, have not been presented. In developing 111 

this comprehensive approach, comparison is made with the more limited approaches that have 112 

appeared in the literature.  113 
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     In Sections 2 – 5 of this paper, we present methods to accurately determine ε from radar fields. 114 

This includes a summary of the conditions under which certain terms in the Doppler spectrum width 115 

equation can be neglected, and detailed methods for their calculation when they cannot. By applying 116 

this method across a dataset of radar observations, we have performed a statistical assessment of ε in 117 

convective storms; this is presented in Section 6. 118 

 119 

2     Data and Methods 120 

2.1   DYMECS – Radar observations with CAMRa 121 

     This investigation follows on from the Dynamical and Microphysical Evolution of Convective 122 

Storms (DYMECS) project (Stein et al., 2014). The primary objective of DYMECS is to apply a 123 

statistical approach to investigate the dynamics, morphology and evolution of convective storms over 124 

southern England, both in radar observations and in high-resolution Met Office Unified Model 125 

(MetUM) simulations. An innovative track-and-scan method was used to obtain radar observations 126 

of hundreds of convective storms in 2011-2012. These were collected using the Chilbolton Advanced 127 

Meteorological Radar (CAMRa) located at the Chilbolton Observatory in Hampshire, UK. CAMRa 128 

is a 3 GHz (S-band) Doppler weather radar with dual-polarisation capability. The 25-m diameter 129 

antenna provides an angular beam-width of 0.28°. The narrow beam provides elevation, 𝜃 and 130 

azimuthal, 𝜑 resolutions of 100 m at 20 km range, and 500 m at 100 km range. In the radial direction, 131 

the pulse has a length of 75 m, however, this is averaged to 300 m in our observations.       132 

     Observations were collected by scanning with CAMRa in two modes: elevation scanning with 133 

RHIs (range-height indicator) and azimuthal scanning with PPIs (plan-position indicator). By 134 

alternating between these two modes, detailed observations of hundreds of convective storms were 135 

collected on 40 days between July 2011 and August 2012. These observations have been compared 136 
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with MetUM simulations to characterise storm morphology (Stein et al., 2014) and convective 137 

updraft characteristics (Nicol et al., 2015) in model and observations. 138 

     In Section 6, turbulence retrievals are analysed with corresponding fields of vertical velocity 139 

retrieved by Nicol et al. (2015) for DYMECS observations made on 20 April 2012 and 25 August 140 

2012.  These updraft velocities were estimated from the Doppler velocity by vertically integrating 141 

local changes in horizontal convergence under the assumption of flow continuity, accounting for the 142 

changes in density with height. The use of horizontal convergence to estimate vertical velocity 143 

removes the need to consider corrections for hydrometeor fall-speeds. The method required a zero-144 

velocity boundary condition, either at the surface or cloud echo top. A weighted combination of 145 

velocity derived under both conditions was developed to minimise the vertical propagation of errors. 146 

In using only single-Doppler measurements, the omission of convergence in the direction 147 

perpendicular to the scanning plane led to a consistent under-estimation of the vertical velocity. To 148 

correct for this under-estimation, the suitable scaling for the vertical velocity was estimated from 149 

500-m grid-length simulations of the MetUM for each case. These were made under assumptions that 150 

the simulated three-dimensional wind flows were suitably realistic and that the range of observed 151 

vertical velocities was represented in the model. The uncertainty in retrieved updraft velocities was 152 

estimated through point-for-point comparison of the scaled retrievals with model updrafts. For 153 

updraft velocities larger than 1 m s−1 (as analysed in this study), a root-mean-square difference of 154 

2.5 m s−1 was found. It is likely that this uncertainty introduces scatter into the relationships between 155 

ε and characteristics of updraft velocity presented in Section 6, resulting in weaker measured 156 

correlations than may exist between ε and the true updraft strength. 157 

 158 

2.2   Dissipation rates from CAMRa  159 

     Doppler weather radar, such as CAMRa, can be used to infer characteristics of atmospheric 160 

turbulence from observations of the radial velocity field. The mean Doppler velocity 𝑣̅, is the 161 
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reflectivity-weighted average of radial point velocities found within a resolution volume (the volume 162 

of atmosphere observed by a single radar pulse, 𝑉6). The Doppler spectrum variance 𝜎𝑣
2, estimated 163 

by CAMRa, is the variance in the velocity of reflectors within 𝑉6. Therefore, 𝜎𝑣
2 includes velocity 164 

variance due to the turbulent motion of hydrometeors, among contributions from several other 165 

mechanisms. We assume that 𝜎𝑣
2 can be decomposed into a sum of statistically independent variance 166 

contributions (Doviak and Zrnic, 1984). 167 

𝜎𝑣
2 =  𝜎𝑠

2 +  𝜎t
2 +  𝜎TV

2 +  𝜎𝛼
2 +  𝜎o

2                                                (1) 168 

Where 𝜎𝑣
2 has contributions primarily from radial wind shear across the sample volume 𝜎𝑠

2, 169 

turbulence 𝜎t
2, the distribution of hydrometeor fall-velocities 𝜎TV

2 , antenna rotation 𝜎𝛼
2, and 170 

hydrometeor oscillations 𝜎o
2. 171 

     Using the theoretical framework presented by Frisch and Clifford (1974), we can calculate the 172 

eddy dissipation rate, ε from 𝜎t
2. Details of turbulent motion cannot be directly measured from 𝜎𝑣

2. 173 

We can only infer 𝜎t
2 from 𝜎𝑣

2 by accounting for all other variance contributions in (1), either by 174 

subtracting their variance from 𝜎𝑣
2, or by demonstrating that they are negligibly small compared to 175 

𝜎t
2. 176 

     The eddy dissipation rate is the rate of energy transfer through the inertial sub-range of isotropic 177 

turbulence. For calculations of ε to be accurate, 𝜎t
2 must consist only of velocity variance due to 178 

eddies with a spatial scale less than the largest scale of the inertial sub-range, Ʌ0. Ensuring this 179 

involves the careful separation of shear and turbulence, which is summarised in Section 5. 180 

     Once 𝜎t
2 has been determined, ε can be estimated from, 181 

ε ≈  
1

𝛼
[

𝜎t
2

1.35𝐴 (1 −
𝛾2

15
)

]

3
2

                                                       (2a) 182 
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ε ≈  
1

𝛽
[

𝜎t
2

1.35𝐴 (1 +
𝜉2

15
)

]

3
2

                                                      (2b) 183 

Where 𝛼 (in metres) is the angular standard deviation of the two-way Gaussian beam pattern in the 184 

transverse (or elevation) direction (see 𝜎2 in Appendix S1), multiplied by the range from the radar. 𝛽 185 

is the standard deviation of the pulse in the radial dimension (assumed uniform; for CAMRa 𝛽 =186 

26.25m). From this, 𝛾2 = 1 − (
𝛽

𝛼
)

2

 and 𝜉2 = 1 − (
𝛼

𝛽
)

2

, and 𝐴 is the universal constant of inertial 187 

sub-range turbulence, with a value of 1.6. 188 

     If  𝛼 > 𝛽, then (2a) is used, with (2b) to be used if 𝛼 < 𝛽. This distinction has often been ignored 189 

in past studies, which typically employ a simplified version of (2a) to determine ε (as stated in Doviak 190 

and Zrnic (1984)). For CAMRa, 𝛼 > 𝛽 at all ranges further than 17.9 km from the radar, so a similar 191 

approximation could be used. However, the application of (2a) and (2b) is straight-forward and any 192 

further approximation should be unnecessary. 193 

     Values of 𝜎𝑣
2 generally range from 1 – 25 m2 s−2 in our observations. In reality, the negligibility 194 

of terms in (1) depends on their value relative to 𝜎t
2, and as a result, no fixed variance value will 195 

always be negligibly small. Assuming that turbulence is only significant when 𝜎t
2 >  5 m2 s−2 (this 196 

translates to ε > 0.03 m2 s−3 when 𝛼 = 𝛽), we choose a negligibility threshold 𝜎neg
2 , of 0.5 m2 s−2 197 

for the purpose of this application. Whereby, variance contributions that are less than 𝜎neg
2  can be 198 

neglected. We can test the impact of this selection on ε by determining the maximum combined 199 

variance of terms we may neglect. The variance contribution from 𝜎𝛼
2 is small enough to be ignored 200 

completely (𝜎𝛼
2 < 0.01 m2 s−2, see Section 4). We can calculate 𝜎𝑠

2 directly (Section 5), so no 201 

element of this contribution is neglected, regardless of value compared to 𝜎neg
2 . However, 202 

contributions from 𝜎TV
2  and 𝜎o

2 are not simple to measure directly in our observations. Contributions 203 

from 𝜎TV
2  can be larger than 𝜎neg

2  for rain and hail (Section 3), while 𝜎o
2 is generally less than 204 

0.25 m2 s−2 (Section 4). A maximum error would be incurred in 𝜎t
2 of 0.75 m2 s−2 when neglecting 205 
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𝜎TV
2  at 0.5 m2 s−2 (in the extreme case that hail or heavy rain is observed very close to the radar) and 206 

𝜎o
2 at 0.25 m2 s−2. If 𝜎t

2 = 5 m2 s−2, this would translate to a 21.6% positive error in ε. The error 207 

decreases as turbulence becomes more significant, to only 4.5% when 𝜎t
2 = 25 m2 s−2, and is 208 

independent of the range of the 𝜎t
2 observation. 209 

     The range of ε values we can estimate using the Doppler spectrum width technique is determined 210 

from the range of 𝜎𝑣
2 values we can observe. This is related to the maximum ambiguous velocity 211 

interval (Nyquist velocity) of the radar. Keeler and Passarelli (1990) state that reliable measurements 212 

of the Doppler spectrum width can only be made between 0.02 – 0.2 of the Nyquist interval. CAMRa 213 

has a Nyquist interval of 30 m s−1, so we can only reliably observe 𝜎𝑣 between 0.6 – 6 m s−1, 214 

corresponding to 𝜎𝑣
2 of 0.36 – 36 m2 s−2. In the case where 𝜎𝑡

2 = 𝜎𝑣
2, we can determine the maximum 215 

detectable range in ε from using this method with CAMRa. If observing such a range in 𝜎𝑡
2 at a range 216 

of 50 km, (the typical range of our storm observations), this would correspond to a maximum 217 

detectable range in ε of 10−3 − 1 m2 s−2. 218 

     The following three sections outline methods to assess the contribution of the non-turbulent terms 219 

in (1). By either calculating these terms directly, or showing that they are negligibly small compared 220 

to 𝜎t
2, we can remove them from 𝜎𝑣

2. This allows us to find 𝜎t
2 as a residual velocity variance, and 221 

then convert this to ε using (2a) and (2b). 222 

 223 

3     Doppler variance due to a distribution of hydrometeor fall velocities, 𝜎TV
2  224 

3.1   Theoretical framework and derivation of spectral variance equations 225 

     In a given sample volume 𝑉6, the presence of a distribution of hydrometeor diameters will lead to 226 

a distribution of hydrometeor fall velocities. In the circumstance where the radar beam is not 227 

perpendicular to hydrometeor velocity, this broadens the Doppler velocity spectrum. The observed 228 

variance contribution, 𝜎TV
2  in (1), is at its maximum for a vertically pointing radar beam and decreases 229 
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with angle from zenith. Values of 𝜎𝑣
2 include the total variance of hydrometeor velocity within the 230 

pulse volume. According to (1), the variance in hydrometeor velocity from a fall-speed distribution 231 

(𝜎TV
2 ) is statistically independent from the variance in hydrometeor velocity resulting from air 232 

motions within the cloud (included in 𝜎𝑠
2 and 𝜎t

2). Consequently, we require no assumptions 233 

regarding the vertical motion of air within the cloud when estimating 𝜎TV
2 . 234 

     Previous studies to estimate turbulence characteristics from Doppler velocity spectra typically 235 

assume 𝜎TV
2  to be negligible (e.g. Frisch and Clifford, 1974; Chapman and Browning, 2001; 236 

Meischner et al., 2001; Melnikov and Doviak (2009)) unless observations were made at vertical 237 

incidence (Brewster and Zrnic, 1986). The expected variance due to 𝜎TV
2  is reduced significantly by 238 

scanning at lower elevations (often the reason 𝜎TV
2  is assumed negligible), however, this does not 239 

ensure the contribution is always negligibly small. Melnikov and Doviak (2009) neglected variance 240 

contributions from 𝜎TV
2  purely by assuming they remained below 0.2 m2 s−2 when scanning at 241 

elevations below 20° through stratiform precipitation. However, results presented in Section 3.2 242 

suggest 𝜎TV
2  from raindrops can reach 1 m2 s−2 when scanning at 20°, though this remains dependent 243 

on radar reflectivity. The objectives of this section are to: provide a means to estimate 𝜎TV
2  when 244 

required, provide justification when neglecting 𝜎TV
2  contributions (showing that 𝜎TV

2 < 𝜎neg
2 ), and 245 

inform how future scanning strategies for turbulence retrieval can be tailored to ensure 𝜎TV
2  is always 246 

negligible. 247 

     For application to RHI radar observations, we classify two hydrometeor types based on the height 248 

of the 0°C isotherm, 𝑧0°C, which is estimated from the location of bright-band radar reflectivity in 249 

our observations. Though 𝑧0°C varies for different DYMECS case days, the average height is ~ 1.5 250 

km. For simplicity, we assume any reflectivity returned from below this level is due to liquid 251 

raindrops, and any reflectivity from above is due to ice aggregates. By making this simple distinction, 252 

we can estimate 𝜎TV
2  in all areas of an RHI scanning domain.   In addition to aggregates and raindrops, 253 

graupel and hail are also important hydrometeor types, especially in convective clouds. We therefore 254 
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extend our analysis to assess the impact of hail, and consider the effects of graupel (treated as low-255 

density hailstones) in Section 3.3. 256 

     We assume the reflectivity for a given 𝑉6 is dominated by one hydrometeor type, and that 257 

hydrometeors are falling vertically downwards at terminal velocity relative to the vertical air motions 258 

within the cloud. We assume hailstones are dry and are of solid ice with homogeneous density. For 259 

hydrometeor mass calculations, we assume that both raindrops and hailstones are spherical. 260 

     To estimate the relative size of 𝜎TV
2  when compared to 𝜎𝑣

2, we can characterise 𝜎TV
2  as the variance 261 

of the reflectivity-weighted mean fall velocity in 𝑉6 as, 262 

𝜎TV𝑗

2  =  𝑊𝑗
2̅̅ ̅̅̅ −  𝑊̅𝑗

2,                                                                  (3) 263 

where 𝜎𝑇𝑉𝑗

2  has units m2s−2,  𝑊 is the reflectivity-weighted hydrometeor fall velocity, and 𝑗 refers 264 

to the hydrometeor type. We estimate 𝑊𝑗
2̅̅ ̅̅̅ and 𝑊̅𝑗

2 by evaluating the following integrals, 265 

𝑊𝑗
2̅̅ ̅̅̅ =

∫  𝑉𝑗(𝐷)2 𝑀𝑗(𝐷)2 𝑛𝑗(𝐷)
∞

0
𝑑𝐷

∫  𝑀𝑗(𝐷)2 𝑛𝑗(𝐷) 𝑑𝐷
∞

0

,                                                   (4) 266 

𝑊̅𝑗
2 = (

∫  𝑉𝑗(𝐷) 𝑀𝑗(𝐷)2 𝑛𝑗(𝐷)
∞

0
𝑑𝐷

∫  𝑀𝑗(𝐷)2 𝑛𝑗(𝐷) 𝑑𝐷
∞

0

)

2

,                                               (5) 267 

where  𝑉𝑗(𝐷), 𝑀𝑗(𝐷) and 𝑛𝑗(𝐷) are terminal velocity-diameter, mass-diameter and particle-size 268 

distribution (DSD) relationships for hydrometeor 𝑗, respectively, and 𝐷 is the hydrometeor diameter 269 

in metres.  270 

     In (4) and (5), we assume that particle reflectivity is proportional to 𝑀𝑗(𝐷)2. We are in the 271 

Rayleigh scattering regime, and hence this is a reasonable assumption for a 3 GHz radar. The integral 272 

𝑅𝑗 ∫ 𝑀𝑗(𝐷)2 𝑛𝑗(𝐷) 𝑑𝐷
∞

0
 provides the radar reflectivity in mm6 m−3. The term 𝑅𝑗 is cancelled out in 273 

(4) and (5), but is given by, 274 
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𝑅𝑗 = 1018
|𝐾𝑗|

2

|𝐾water|2
(

6

𝜋𝜌𝑗
)

2

 ,                                                      (6) 275 

where |𝐾𝑗|
2
 and 𝜌𝑗 are the dielectric factor and density of hydrometeor 𝑗. 276 

     Terminal velocity-diameter relationships are commonly expressed as simple power laws, 277 

𝑉𝑗(𝐷) = 𝑝𝑗𝐷𝑞𝑗  ,                                                                   (7) 278 

where 𝑉 is the fall velocity and 𝐷 is the drop diameter. For ice aggregates, 𝐷 is the melted diameter. 279 

Values of 𝑝 and 𝑞 for raindrops, ice aggregates and hailstones are taken from Atlas and Ulbricht 280 

(1977), Gunn and Marshall (1958) and Cheng and English (1982), respectively. These have been 281 

converted into S. I. units (See Table 1). 282 

     The hydrometeor mass 𝑀, as a function of particle diameter 𝐷, can be expressed in the form, 283 

𝑀𝑗(𝐷) = 𝑎𝑗𝐷𝑏𝑗                                                                    (8) 284 

where 𝑀 and 𝐷 are in S. I. units.      285 

     We assume that the DSD of each hydrometeor class can be approximated by an exponential 286 

distribution of form given by Marshall and Palmer (1948). 287 

𝑛𝑗(𝐷) =  𝑁0𝑗
exp(−𝜆𝑗𝐷)                                                       (9) 288 

Where 𝑁0𝑗
 and 𝜆𝑗 are the intercept (𝑛𝑗(𝐷 = 0)) and slope parameters, respectively, for hydrometeor 289 

type 𝑗. We consider this a suitable approximation; spectral broadening owing to a distribution in fall 290 

velocity has been shown to be nearly independent of the precise shape of the size distribution 291 

(Lhermitte, 1963).  292 

     For rain and ice aggregates, values of 𝜌, |𝐾|2, 𝑎, 𝑏 and 𝑁0, are sourced from the UK Met Office  293 



Observing turbulence in convective clouds 

 

14 
 

Unified Model microphysics scheme, as summarised in Stein et al. (2014) (See Table 1). For hail, 294 

we use an 𝑁0 of 1.2 ×  10⁴ m−4 taken from Waldvogel et al. (1978). The sensitivity of 𝜎TV𝑗

2  to 𝑁0𝑗
 295 

is discussed in Section 3.3. 296 

     To evaluate (3), we first substitute (7) – (9) into (4) and (5) using values from Table 1. By using 297 

a gamma function solution for the integrals in (3) we derive expressions for Doppler spectral variance 298 

contribution for the three hydrometeor varieties. At this point, they are functions only of DSD 299 

parameter, 𝜆𝑗. Stein et al. (2014) provide an expression relating 𝜆𝑗 to radar reflectivity, 𝑍𝑗, 300 

𝜆𝑗 =  (
𝑅𝑗𝑎𝑗

2𝑁0𝑗
Γ(1 + 2𝑏𝑗)

𝑍𝑗
)

1
1+2𝑏𝑗

,                                               (10) 301 

where 𝑍𝑗 is the radar reflectivity of hydrometeor 𝑗 and has linear units of mm6 m−3. 302 

     Substituting (10) into the 𝜎TV𝑗

2 (𝜆𝑗) expressions and simplifying using values from Table 1, 303 

produces spectral variance equations for rain, ice aggregates and hail, 304 

𝜎TVrain

2 = 0.62 𝑍0.191 sin2 𝜃el  ,                                                   (11) 305 

𝜎TVagg

2 = 0.029 𝑍0.119 sin2 𝜃el  ,                                                 (12) 306 

𝜎TVhail

2 = 1.7 𝑍0.143 sin2 𝜃el  ,                                                     (13) 307 

Where 𝑍 is in mm6 m−3, 𝜎TV𝑗

2  has units of m2 s−2 and 𝜃el is the elevation angle of the reflectivity 308 

observation measured from the surface. Together, these expressions can be used to estimate the 309 

Doppler variance contribution due to the distribution of hydrometeor fall speeds in 𝑉6. 310 

 311 

3.2   Analysis of 𝜎TV𝑗

2  312 

     Reflectivity measurements in our observations with CAMRa are generally no less than -20 dBZ 313 

(the minimum detectable echo at 10 km range), and no more than 60 dBZ. In our application, we 314 
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therefore classify 𝜎TV𝑗

2 (𝑍𝑗 = −20 dBZ) and 𝜎TV𝑗

2 (𝑍𝑗 = 60 dBZ) as the minimum and maximum 315 

potential variances we encounter from each hydrometeor type.  316 

     Equations (11) – (13) show that 𝜎TV𝑗

2  increases with radar reflectivity and elevation angle of 317 

observation. Assuming a vertically pointing radar beam, and given 𝑍𝑗 in the range of -20 dBZ to 60 318 

dBZ, 𝜎TVrain

2  increases from 0.26 to 8.62 m2 s−2,  𝜎TVagg

2  from 0.02 to 0.15 m2 s−2 and 𝜎TVhail

2  from 319 

0.90 to 12.53 m2 s−2. For DYMECS observations, RHIs scanned at a maximum elevation angle of 320 

15°. Figure 1a displays (11) – (13) for a vertically pointing beam (black lines) and for 15° elevation 321 

(grey lines). Compared with a vertically pointing beam, if 𝑍𝑗 is sampled at 15° elevation, values of 322 

𝜎TV𝑗

2  are respectively reduced by a factor of 14. 323 

     A maximum 𝜎TVagg

2  of 0.15 m2 s−2 suggests that the contribution from ice aggregates is always 324 

less than 𝜎neg
2 . Assuming that ice aggregates constitute all hydrometeors above 𝑧0°C, then 𝜎TV

2  is 325 

negligible for all observations made above this level. For rain observations, which we assume are 326 

limited to below 𝑧0°C, the equivalent maximum of 8.62 m2 s−2 is comparably large, and so 𝜎TVrain

2  327 

cannot always be neglected. Using (11), we see 𝜎TVrain

2 (60 dBZ) < 𝜎neg
2  for all rain observed at 𝜃el <328 

 13.9°.  329 

     Under the circumstances that: 𝜎TVagg

2  is always negligible, 𝜎TVrain

2 is negligible when 𝜃el < 13.9°, 330 

𝑧0°C can be estimated, and hail is not present, we can describe the negligibility of 𝜎TV
2  in terms of a 331 

minimum range from the radar, 𝑅min. For our application, 𝑅min is simply the range from the radar a 332 

pulse reaches a height of 𝑧0°C when transmitted at 𝜃el < 13.9°. In our RHI observations (where 333 

𝑧0°C ~ 1.5 km),  𝜎TV
2  is negligibly small everywhere at ranges further than 6.1 km from the radar. 334 

While 𝜎TV
2  can still be significant due to rain occurring nearer than 𝑅min, below 𝑧0°C, it remains 335 

conditional on both 𝑍rain and 𝜃el. Observations used in this application were rarely made closer than 336 

30 km from the radar, and so we neglect 𝜎TV
2  for rain and ice aggregates. 337 
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     According to (13), hail can contribute more to 𝜎𝑣
2 than rain. However, hail is generally a much 338 

less common, more localised occurrence than rain. As a result, the detection of hail using retrieved 339 

radar parameters (e.g. hail differential reflectivity 𝐻DR, Depue et al. (2007)) is necessary before (13) 340 

can be reliably applied. If observations do indeed include hail, (13) suggests that 𝜎TVhail

2 (60 dBZ) 341 

falls below 𝜎neg
2  for all hail observations made at 𝜃el < 11.5°. Due to the potential for hail presence 342 

both above and below 𝑧0°C, negligibility based on range from radar is not stated. However, as the 343 

minimum range of observations was 30 km, hail would need to be observed at 6 km altitude for 344 

𝜎TVhail

2  to exceed 𝜎neg
2 , which is unlikely to have occurred. 345 

     Based on our threshold for negligibility 𝜎neg
2 , the estimation of 𝑧0°C, and under the assumptions 346 

made in the derivation of (11) – (13), we can neglect variance contributions from 𝜎TV
2  in our 347 

observations. Due to the dependence of (11) – (13) only on 𝑍 and 𝜃el, we expect this conclusion to 348 

hold true for other scanning weather radars. 349 

 350 

3.3   Sensitivity of 𝜎TVrain

2  and 𝜎TVhail

2  to assumptions 351 

     In this section, we examine the sensitivity of our results to some of the assumptions made in the 352 

derivation of (11) and (13). For ice aggregates, no reasonable sensitivity testing has resulted in the 353 

factor 3 increase in 𝜎TVagg

2  required to even conditionally exceed 𝜎neg
2 . As a result, sensitivity tests 354 

involving ice aggregates have been omitted from this discussion, and we conclude that 𝜎TVagg

2  is 355 

always negligible. 356 

     For rain and hail, we expect little uncertainty in the majority of values in Table 1. The first 357 

potential source of uncertainty lies with the treatment of hail as dry with the density of solid ice. We 358 

compare 𝜎TVhail

2  when hailstones are dry with the density of solid ice (assumed in (13)), to low-359 

density and melting hailstones. Melting hailstones will possess a thin outer layer of liquid water, 360 

appearing to the radar as large raindrops. To simulate this effect, we change the dielectric factor 361 
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|𝐾hail|
2, in (6) from 0.174 to 0.93. Resulting variance contributions are 21% lower than for dry 362 

hailstones for any given reflectivity. Assuming all hailstones below 𝑧0°C have a liquid water layer, 363 

this reduction leads to 𝜎TVhail

2 (60 dBZ) ≈ 𝜎TVrain

2 (60 dBZ) below 𝑧0°C.  For observations made below 364 

𝑧0°C = 1.5 km, we find that 𝜎TV
2 < 𝜎neg

2  at all ranges further than 6.5 km from the radar, regardless 365 

of hydrometeor type. If we further consider melting hailstones consisting of low-density ice that is 366 

more consistent with graupel (𝜌hail = 500 kg m−3), this leads to a combined reduction in 𝜎TVhail

2  of 367 

34%, at which point 𝜎TVhail

2 (60 dBZ) < 𝜎TVrain

2 (60 dBZ), and we revert to neglecting 𝜎TV
2  at ranges 368 

further than 6.1 km. 369 

     A second source of uncertainty lies with the chosen values of 𝑁0; respective values for rain and 370 

hail are assumed constant. For rain, we use 𝑁0rain
= 8 ×  106 m−4 from Marshall and Palmer 371 

(1948), who demonstrate its independence of rainfall intensity. The assumption of a constant 𝑁0hail
 372 

is not as safe as for raindrops as it depends on the largest hail diameter, 𝐷max, and has been shown 373 

to vary from 10³ –  10⁵ m−4 (Ulbricht, 1974). Our chosen value of 𝑁0hail
= 1.2 ×  104 m−4 from 374 

Waldvogel et al. (1978) is roughly in the centre of this range, and is very similar to values of 1.1 −375 

1.4 ×  104 m−4 presented by Ulbricht (1977). We test the effect of decreasing values of 𝑁0 for rain 376 

and hail by an order of magnitude. This decrease is chosen to be large enough to roughly account for 377 

the maximum potential variability in 𝑁0. The result is a 55% increase in 𝜎TVrain

2  and a 39% increase 378 

in 𝜎TVhail

2 . Such a large increase in 𝜎TVrain

2  is unlikely given the confidence in our selection of 𝑁0rain
 379 

(Marshall and Palmer, 1948). However, the corresponding increase for 𝜎TVhail

2  is more likely realised 380 

given the stated uncertainty in 𝑁0hail
. Such an increase would imply that 𝜎TVhail

2 (60 dBZ) < 𝜎neg
2  381 

only if observed at 𝜃el < 9.8°. By instead increasing values of 𝑁0 by an order of magnitude (not 382 

shown), we see a reduction in 𝜎TVhail

2  and 𝜎TVrain

2  of 36% and 28%, respectively.  383 

     A final source of uncertainty lies with the selected velocity-diameter relationship for hail, 384 

𝑉hail(𝐷). There is a broader diversity in these relationships in the literature than for rain; we assume 385 
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the Vrain(D) power law provided by Atlas and Ulbricht (1977) to be accurate. Figure 1b compares 386 

𝜎TVhail

2  from (13) derived using 𝑉hail(𝐷) from Cheng and English (1982), Ulbricht (1977), and 387 

Pruppacher and Klett (1978). As the 𝑉hail(𝐷) proposed by Ulbricht (1977) involves the same 388 

exponent (𝑞 =  0.5) as that used for (13), the resulting effect is a 29% increase in 𝜎𝑇𝑉hail

2  for all 389 

reflectivity owing to the different values of 𝑝. The 𝑉hail(𝐷) relationship from Pruppacher and Klett 390 

(1978) however, involves 𝑞 =  0.8. This leads to a change in exponent in (13), causing a decrease in 391 

𝜎TVhail

2 (𝑍 < 40 dBZ) and an increase for 𝜎TVhail

2 (𝑍 > 40 dBZ). 𝜎TVhail

2 (60 dBZ) is increased by 43%. 392 

Figure 1b suggests that the selection of 𝑉hail(𝐷) can have a substantial and varied effect on 𝜎TVhail

2  393 

which somewhat limits how precisely we can state the conditions that allow us to neglect 𝜎TVhail

2 . 394 

   395 

4     Spectral variance due to antenna rotation, 𝜎𝛼
2 and hydrometeor oscillations, 𝜎o

2. 396 

     The movements of the radar antenna while scanning will broaden the Doppler spectrum. 397 

Assuming a constant antenna scan rate 𝛼, in rad s−1, the spectral variance contribution due to antenna 398 

rotation is provided by Doviak and Zrnic (1984), 399 

𝜎𝛼
2 =  (

𝛼𝜆 cos 𝜃el √ln (2)

2𝜋𝜃1
)

2

  ,                                                  (14) 400 

where 𝜆 is the wavelength of the radar in metres, 𝜃el is the elevation angle from the surface, and 𝜃1 401 

is the one-way half-power beam width in radians.  402 

     For CAMRa, 𝜆 = 0.0975 m and 𝜃1 = 5 × 10−3 rad. During DYMECS, RHI and PPI 403 

observations were made using scan speeds of 𝛼RHI = 7 × 10−3 rad s−1 and 𝛼PPI = 35 ×404 

10−3 rad s−1. The contribution from 𝜎𝛼
2 is largest when scanning horizontally (cos(𝜃el = 0) = 1); 405 

in this case 𝜎𝛼
2 < 0.01 m2 s−2 for both RHI and PPI observations, making a negligible (𝜎𝛼

2 < 𝜎neg
2 ) 406 

contribution to 𝜎𝑣
2. Observations collected at non-zero elevations (up to 15° in DYMECS) would 407 
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only reduce the value of 𝜎𝛼
2. Equation (14) can be used simply to determine the contribution of 𝜎𝛼

2 408 

for radars with much faster scanning speeds. 409 

     The oscillation of hydrometeors can contribute to 𝜎𝑣
2, and has been speculated in Zrnic and Doviak 410 

(1989) to lead to over-estimation of ε. They find that 𝜎o
2 decreases with rain-rate, and generally does 411 

not increase above 0.25 m2 s−2, so we neglect these contributions. 412 

 413 

5     Spectral broadening due to shear of the radial wind, 𝜎𝑠
2 414 

5.1   Spectral variance equations for shear 415 

     Since we are justified in neglecting 𝜎TV
2 , 𝜎𝛼

2 and 𝜎o
2 in (1) for DYMECS observations, we are left 416 

with Doppler variance contributions from shear and turbulence. We can derive the turbulent 417 

contribution from,  418 

𝜎t
2 =  𝜎𝑣

2 − 𝜎𝑠
2 ,                                                                   (15) 419 

for use in (2a) and (2b) to calculate ε.  420 

     In (15), 𝜎𝑠
2 represents the sum of Doppler variance contributions from the shear of the radial wind 421 

in the elevation 𝜃, azimuthal (transverse across the beam) 𝜑, and radial 𝑟, directions. Similar to 𝜎𝑣
2, 422 

𝜎𝑠
2 can be decomposed into a sum of statistically independent variance contributions from shear in 423 

each direction. 424 

𝜎𝑠
2 = 𝜎𝑠𝜃

2 + 𝜎𝑠𝜑
2 +  𝜎𝑠𝑟

2                                                            (16) 425 

     Various equations have been used in past literature to calculate 𝜎𝑠𝜃
2  and 𝜎𝑠𝜑

2  that are not mutually 426 

consistent (e.g. Chapman and Browning, 2001). In Appendix S1, we provide a derivation of these 427 

equations that produces results in agreement with those stated in Doviak and Zrnic (1984). An 428 

expression for 𝜎𝑠𝑟
2  is also taken from Doviak and Zrnic (1984), assuming a rectangular transmitted 429 

pulse. 430 
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𝜎𝑠𝜃
2 =

(|𝑆𝜃|𝑅𝜃1)2

16 ln 2
                                                                (17) 431 

𝜎𝑠𝜑
2 =

(|𝑆𝜑|𝑅𝜃1)
2

16 ln 2
                                                               (18) 432 

𝜎𝑠𝑟
2 = (

0.35|𝑆𝑟|𝑐𝜏

2
)

2

                                                           (19) 433 

     Where 𝑅 is the radial distance from the radar in metres, 𝑐 is the speed of light in m s−1, and 𝜏 is 434 

the pulse duration in seconds (for CAMRa, 𝜏 = 0.5 μs). |𝑆𝜃|, |𝑆𝜑| and |𝑆𝑟| are shear magnitudes in 435 

s−1, calculated from the mean Doppler velocity field. In (17) – (19), velocity and reflectivity 436 

gradients are assumed to be linear across 𝑉6. Equations (17) and (18) differ only in the shear involved, 437 

as the beam profiles in the 𝜃 and 𝜑 dimensions are the same. 438 

     In application to CAMRa, the variability of 𝜎𝑠(𝜃,𝜑,𝑟)
2  with |𝑆| and 𝑅 is illustrated in Figure 1c. For 439 

|𝑆𝑟| in the range of 0 to 0.02 s−1, 𝜎𝑠𝑟
2  increases with |𝑆𝑟|2 from 0 to 0.28 m2 s−2. As the pulse length 440 

is constant, 𝜎𝑠𝑟
2  does not vary with range. If |𝑆𝑟| < 0.027 s−1 then 𝜎𝑠𝑟

2 < 𝜎neg
2 , indicating that for our 441 

observations, 𝜎𝑠𝑟
2  is negligibly small except in cases of extreme shear. However, although 𝜎𝑠𝑟

2  is likely 442 

to be small, our chosen method of calculating shear (Section 5.3) permits direct measurement of |𝑆𝑟| 443 

to be made simply. We therefore include contributions from 𝜎𝑠𝑟
2  in 𝜎𝑠

2. 444 

     At 30 km range, for |𝑆𝜃,𝜑| in the range of 0 – 0.02 s−1, 𝜎𝑠(𝜃,𝜑)
2  increases from 0 – 0.75 m2 s−2. At 445 

150 km range, this increase is to 18.7 m2 s−2 when |𝑆𝜃,𝜑| is 0.02 s−1. This suggests that, even at the 446 

minimum range of 30 km, if |𝑆𝜃,𝜑| > 0.016 s−1, then 𝜎𝑠(𝜃,𝜑)
2  is always greater than 𝜎neg

2  for our data. 447 

Given that shears of this magnitude are quite possible (especially in the elevation direction), 𝜎𝑠(𝜃,𝜑)
2  448 

will need to be considered for all of our observations. The high resolution of CAMRa means that 449 

radial velocity shear measured over small distances often result in negligible (less than 0.5 m2 s−2) 450 

contributions to 𝜎𝑣
2, however, as illustrated, this is not true for shear of sufficient values. To ensure 451 
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accuracy in point-to-point values of ε, and consistency in application across full RHI scans, we 452 

measure and remove 𝜎𝑠
2 at each point in our data. In Section 6.2, we provide and discuss an example 453 

retrieval for a shower cloud (Figure 8) in which 𝜎𝑠
2 exceeds 𝜎neg

2  quite widely and represents a 454 

significant proportion of 𝜎t
2. This example is used to highlight the potential for significant over-455 

estimation of ε in our cases if shear corrections are neglected. 456 

5.2   Separation of shear and turbulence - theory 457 

     The separation of shear and turbulence is a significant challenge. However, methods to make this 458 

distinction are guided by the framework employed to derive ε from 𝜎𝑣
2 summarised in Section 2.2. 459 

The calculation of 𝜎𝑠
2 is necessary to remove velocity variance contributions to 𝜎𝑣

2 from outside the 460 

range of scales sampled by the radar. The scale over which to calculate shear (hereafter referred to 461 

as Ʌ𝑠) in (17) – (19), should ideally be equal to the largest scale of the inertial sub-range, Ʌ0. 462 

However, Ʌ𝑠 should be strictly no larger than Ʌ0, otherwise the inclusion in 𝜎t
2 of variance from 463 

outside the inertial sub-range will lead to an over-estimation of ε. 464 

     Without the means to routinely estimate Ʌ0 for each of the convective storm observations 465 

collected in DYMECS, we refer to past literature. Past studies have utilised Doppler spatial spectra 466 

and aircraft measurements to estimate Ʌ0 in individual convective clouds (Battan, 1975; Knupp and 467 

Cotton, 1982; Brewster and Zrnic, 1986). They found that Ʌ0 can be as large as 1.5 – 3 km. These 468 

estimates were made in severe thunderstorms/hailstorms with strong, large-scale circulations. In 469 

comparison, the convective storms constituting the DYMECS observations are generally much 470 

weaker, limiting how applicable these values are to our cases. We assume Ʌ0 scales with the size of 471 

the largest eddy-generating mechanisms in a convective cloud, i.e. the main updraft circulation. If 472 

this circulation is shallow, we expect Ʌ0 to be small as the downscale cascade to isotropic turbulence 473 

begins at a smaller eddy scale. As updraft heights on DYMECS case days generally ranged from 3 – 474 

8 km (Nicol et al., 2015), we assume  Ʌ0 ~ 1 km for this application. Chapman and Browning (2001) 475 

found a factor two change in Ʌ0 to have very little effect on their resulting values of ε. However, this 476 
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involved assuming a Ʌ0 of only 200 m for shallow shear layers, so we test the sensitivity of our 477 

retrieved ε to the value of Ʌ𝑠, summarised in Section 5.5. 478 

 479 

5.3   Separation of shear and turbulence – linear velocity surface approach 480 

     The application of methods to distinguish 𝜎𝑠
2 from 𝜎t

2 will depend on the relationship between the 481 

spatial resolution of the radar and Ʌ0. As long as the largest dimension of 𝑉6 is less than Ʌ0, 𝜎t
2 can 482 

be used to estimate ε (Frisch and Clifford, 1974). As this is generally the case for a radar of CAMRa’s 483 

resolution, scanning deep convective clouds, 𝜎𝑠
2 can then be determined from radial velocity shear 484 

calculated over enough contiguous 𝑉6 volumes to constitute a spatial scale of Ʌ0.      485 

     To evaluate shear over a constant spatial scale in data with polar co-ordinates is not straight-486 

forward. With two-dimensional radar data, the most effective way to achieve this is to use least-487 

squares regression to fit a velocity surface to Doppler velocity data. A suitable framework for this 488 

velocity surface is taken from Neter and Wasserman (1974), and has been applied in previous ε-489 

retrieval studies (Istok and Doviak 1986, Meischner et al., 2001). When applied to RHIs, the velocity 490 

surface is given by 491 

𝑉𝑖 = 𝑉0 + 𝑆𝜃 𝑙𝜃𝑖
+ 𝑆𝑟𝑙𝑟𝑖

+ 𝐸𝑖                                                          (20) 492 

where 493 

𝑙𝜃𝑖
= 𝑅0(𝜃𝑖 − 𝜃0)    ;     𝑙𝑟𝑖

= 𝑅𝑖 − 𝑅0                                                              494 

The range from the radar is given by 𝑅, 𝜃 is the elevation angle in radians, and (𝜃0, 𝑅0) is the centre 495 

point of the surface. 𝑉𝑖 is the radial velocity at the point (𝜃𝑖 , 𝑅𝑖), and 𝐸𝑖 is the velocity difference 496 

between the data and the surface. 𝑉0 is the estimated central point velocity and 𝑆𝜃 and 𝑆𝑟 are linear 497 

elevation and radial shears, respectively. 𝑙𝜃𝑖
 and 𝑙𝑟𝑖

 are the elevation and radial distances between 𝑉𝑖 498 

and 𝑉0. 499 
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     The parameters 𝑉0, 𝑆𝜃 and 𝑆𝑟 are determined from the matrix operation, 500 

[

𝑉0

𝑆𝜃

𝑆𝑟

] = [

𝑛 ∑ 𝑙𝜃𝑖
∑ 𝑙𝑟𝑖

∑ 𝑙𝜃𝑖
∑ 𝑙𝜃𝑖

2 ∑ 𝑙𝑟𝑖
𝑙𝜃𝑖

∑ 𝑙𝑟𝑖
∑ 𝑙𝜃𝑖

𝑙𝑟𝑖
∑ 𝑙𝑟𝑖

2

]

−1

[

∑ 𝑉𝑖

∑ 𝑉𝑖𝑙𝜃𝑖

∑ 𝑉𝑖𝑙𝑟𝑖

]                                   (21)      501 

     Centred to best approximation on a chosen Doppler velocity point, neighbouring data points are 502 

used to constitute (as closely as is possible) a Ʌ𝑠 – by – Ʌ𝑠 grid of data, 𝐺. Using velocities from 𝐺, 503 

(21) is used to compute linear shears 𝑆𝜃 and 𝑆𝑟, which are attributed back to the data point at the 504 

centre of 𝐺. By completing this process for all points in a scan, we obtain fields of 𝑆𝜃 and 𝑆𝑟, 505 

calculated over a fixed scale. If Ʌ𝑠 = Ʌ0, 𝑆𝜃 and 𝑆𝑟 are representative of large eddies and/or velocity 506 

gradients in the ordered background flow. As a result, they can be used in (17) and (19) to determine 507 

𝜎𝑠𝜃
2  and 𝜎𝑠𝑟

2 .  508 

     In applying (20) to our observations, we find that data located less than ~ 
Ʌ𝑠

2
 from the edge of 509 

observed clouds will be lost in surface fitting. The grid 𝐺 will only be partially filled with data for 510 

those 𝑉 located on the periphery of reflectivity echoes, meaning (21) cannot be performed. The 511 

degree of data loss therefore increases with the value of Ʌ𝑠. As we can only account for 𝜎𝑠
2 where 512 

shear can be measured, this data loss is imposed on retrieved fields of ε. Consequently, this limits 513 

our ability to investigate values of ε associated with entrainment processes near cloud edges. 514 

However, turbulence associated with entrainment into updrafts can still be retrieved in cases where 515 

updrafts are further than ~ 
Ʌ𝑠

2
 from the edge of the radar echo (e.g. Figure 6c and 6f). Although we 516 

lose peripheral data, we benefit from the removal of noise in low reflectivity areas around cloud 517 

edges, which can develop large values of 𝜎𝑣
2. The 300-m range resolution of our observations restricts 518 

values of Ʌ𝑠 to multiples of 300 m in order to include whole radial cells, and a minimum of 600 m to 519 

include at least two radial cells for the calculation of shear. Under these restrictions, assuming Ʌ0 ~ 520 

1 km, we select Ʌ𝑠 = 900 m for our observations.  521 

 522 
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5.4   Variance from azimuthal shear, 𝜎𝑠𝜑
2  523 

     When RHI or PPI scans are performed, the radial velocity field is observed in two dimensions, 524 

the radial direction and the scanning direction. However, these fields include data from three-525 

dimensional sample volumes. In terms of RHIs, Doppler variance from azimuthal shear, 𝜎𝑠𝜑
2  526 

contributes to 𝜎𝑣
2, but we are unable to directly estimate it due to scanning in the elevation direction. 527 

Unless an adjacent RHI is performed, separated from the first by an angular distance comparable to 528 

the width of the beam, 𝑆𝜑 cannot be determined directly. As shown in Section 5.1, variance 529 

contributions from 𝜎𝑠𝜑
2  cannot be ignored in our observations. To account for 𝜎𝑠𝜑

2  in circumstances 530 

where it cannot be measured directly, we investigate statistical relationships between |𝑆𝜑| and |𝑆𝑟| 531 

derived from PPI radar observations.  532 

     PPI scans were performed alongside RHIs scans on DYMECS case days. Doppler velocity fields 533 

from PPI scans can be differentiated in the radial and azimuthal directions to determine fields of |𝑆𝜑| 534 

and |𝑆𝑟|. By collecting many co-located pairs of |𝑆𝜑| and |𝑆𝑟| from these fields, we attempt to 535 

parametrise |𝑆𝜑| as a function of |𝑆𝑟|. Using the result, |𝑆𝑟| found in RHIs can be used to estimate 536 

|𝑆𝜑|, and its uncertainty, allowing us to account for all components of 𝜎𝑠
2 in RHI scans. 537 

     In order for relationships derived between |𝑆𝜑| and |𝑆𝑟| to be of most benefit, we must impose 538 

they are calculated over a mutual spatial scale, consistent with that used to calculate |𝑆𝜃| and |𝑆𝑟| in 539 

RHIs, i.e. Ʌ𝑠 = 900 m. To achieve this, we use a version of (20) tailored to PPI scans, where 𝑆𝜃𝑙𝜃𝑖
 is 540 

replaced by 𝑆𝜑𝑙𝜑𝑖
, and 𝑙𝜑𝑖

 is the azimuthal distance between 𝑉𝑖 and 𝑉0. By generating |𝑆𝜑| and |𝑆𝑟| 541 

values for all 𝑉6 across many PPIs, we could build a dataset consisting of co-located values of |𝑆𝜑| 542 

and |𝑆𝑟| for statistical assessment. 543 

     Figure 2 shows the independent distributions of approximately 10⁶ values of 𝑆𝜑 and 𝑆𝑟 sourced 544 

from 31 PPIs taken on 20 April 2012 at varying elevations. 𝑆𝜑 and 𝑆𝑟 are both approximately 545 

normally distributed. The combined two-dimensional distribution of 𝑆𝜑 and 𝑆𝑟 is circular Gaussian, 546 
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approximately centred on 𝑆𝑟 = 𝑆𝜑 = 0. Once the magnitude of the values in the combined 547 

distribution is taken, which is the quantity relevant to 𝜎𝑠
2, |𝑆𝑟| is divided into contiguous intervals of 548 

width 1 × 10−4 s−1. For each of these, we extract the associated dataset of |𝑆𝜑|, and generate its 549 

probability density function (PDF). Figure 3 demonstrates that the resulting PDFs are very well 550 

approximated by the gamma distribution, given for a random variable 𝑥, by (22). 551 

𝛾(𝑥|𝑘, 𝑙) =
𝑥𝑘−1𝑒−

𝑥
𝑙

Γ(𝑘)𝑙𝑘
                                                                            (22) 552 

     Using (22), we can accurately simulate the change in the distribution of |𝑆𝜑| with |𝑆𝑟|. For each 553 

|𝑆𝑟| interval, we extract the gamma distribution parameters 𝑘 (shape) and 𝑙 (scale) from the 554 

corresponding distribution of |𝑆𝜑|. By numerically fitting functions to relationships between (𝑘, 𝑙) 555 

and |𝑆𝑟|, we define 𝑘 and 𝑙 in terms of |𝑆𝑟|, 556 

𝑘 = {
|𝑆𝑟|(𝐴1|𝑆𝑟| + 𝐴2) + 𝐴3,    if |𝑆𝑟| ≤ 0.0017 s−1

𝐵1|𝑆𝑟| + 𝐵2,                         otherwise                 
                                   (23) 557 

𝑙 = 𝐶1|𝑆𝑟| + 𝐶2                                                                    (24) 558 

where coefficient values are provided in Table 2. For a given value of |𝑆𝑟|, we use (23) and (24) to 559 

produce a PDF of |𝑆𝜑|, and derive our estimate of |𝑆𝜑| as the mean of this distribution. For a gamma 560 

distribution, the mean is simply the product of 𝑘 and 𝑙. 561 

     Figure 4 shows the change in median and inter-quartile range (IQR) percentiles of |𝑆𝜑| with |𝑆𝑟|. 562 

Distributions of |𝑆𝜑| get broader with |𝑆𝑟|. As a result, the size of the IQR, which provides a 563 

confidence interval for |𝑆𝜑|, increases with |𝑆𝑟|. The median values of |𝑆𝜑| increase with |𝑆𝑟| 564 

according to (25) which was obtained by least-squares fitting a quadratic function to the median curve 565 

in Figure 4. Mean values of |𝑆𝜑| also increase with |𝑆𝑟|, with values approximately 25% larger than 566 

the median. 567 

|𝑆𝜑|
med

= |𝑆𝑟|(𝐷1|𝑆𝑟| + D2) + 𝐷3                                               (25) 568 
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where coefficient values are provided in Table 2.       569 

     Using (23) – (25), |𝑆𝜑|, and an estimate of its uncertainty, can be determined from |𝑆𝑟| alone. |𝑆𝜑| 570 

is then used in (18) to calculate its variance contribution, 𝜎𝑠𝜑
2 . We can now account for all components 571 

of 𝜎𝑠
2 in (16), subtract 𝜎𝑠

2 from 𝜎𝑣
2 to find 𝜎t

2 using (15), and use 𝜎t
2 in (2a) and (2b) to determine ε. 572 

 573 

5.5   Sensitivity of ε to Ʌ𝑠 574 

     To perform this sensitivity test, ε is determined in RHI scans of convective clouds using different 575 

values of Λ𝑠 in methods to calculate 𝜎𝑠
2. We use 44 RHI scans performed on 25 August 2012 which 576 

provide 3.5 × 105 comparable data points for each Λ𝑠 applied. For all scans, we retrieve ε(Λ𝑠) where 577 

Λ𝑠 is 600 m, 900 m, 1500 m, 2100 m, and 2700 m. As described in Section 5.3, the degree of 578 

peripheral data loss in velocity surface fitting increases with Λ𝑠. To ensure that we are comparing the 579 

same data across different Λ𝑠, the degree of data loss seen when Λ𝑠 = 2700 m has been imposed on 580 

all other fields of ε for each scan. 581 

     Figure 5 displays the PDFs of ε(Λ𝑠) using the combined data from all RHIs. It shows that the 582 

distribution of ε is largely insensitive to Λ𝑠, though there is a small increase in the likelihood of low 583 

values of ε (less than 0.01 m2 s−3) with decreased Λ𝑠. When calculating shear over a smaller Λ𝑠, the 584 

shear magnitude, and therefore 𝜎𝑠
2, is likely to be higher. This means we remove more of 𝜎𝑣

2 due to 585 

shear, and subsequently derive a lower ε, with the converse true if Λ𝑠 is large. As the change in PDFs 586 

of ε is small in Figure 5, we can make rough estimations of Ʌ0 (and therefore Ʌ𝑠) in the absence of 587 

direction measurements, without incurring large errors in ε. 588 

 589 

6     Dissipation rate statistics in DYMECS observations 590 

6.1   DYMECS case studies 591 
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     By applying the methods detailed in Section 2 – 5 across many radar scans, we have performed a 592 

statistical assessment of ε in convective storms. We use two contrasting DYMECS days in 2012 as 593 

case studies; 20 April (hereafter the “shower” case) and 25 August (hereafter “deep convection” 594 

case). In the shower case, low pressure was situated on the east coast of the UK. Convective showers 595 

initiated over southern England in the late morning hours, and drifted north-eastwards through the 596 

day. In the deep convection case, low pressure was situated over the Irish Sea. Convective storms 597 

were more intense and widespread across southern England, with thunderstorms widely reported in 598 

the afternoon (Hanley et al., 2015). Radar observations were collected using CAMRa in both cases, 599 

using a scanning algorithm that prioritised more active convective cells, guided in real time by Met 600 

Office network radar observations (Stein et al., 2014). As this scanning strategy involved sequential 601 

scans of the same cells, a subset of these observations has been taken to include only independent 602 

convective storm RHI observations for analysis. This subset consists of 33 RHIs in the shower case, 603 

and 44 RHIs for deep convection, however, owing to the 200-km range of CAMRa, multiple 604 

convective storms were often present in single RHI scans. In the shower case, these observations 605 

show that convection grew to 6 km in height, with updraft vertical velocities 𝑤, typically ranging 606 

from 1 – 4 m s−1. In the deep convection case, convection grew to 10 km with typical 𝑤 ranging 607 

from 2 – 8 m s−1 (Nicol et al., 2015). 608 

 609 

6.2   Example ε retrievals for convective showers and deep convection 610 

     Figures 6 and 7 display examples of retrieved ε for individual convective clouds on the shower 611 

and deep convection case days, respectively. These examples have been selected to reflect the typical 612 

convective storms observed on each day. Figure 6 depicts a convective shower of 6 km height, with 613 

a diffuse updraft region where 𝑤 is 1 – 3 m s−1 (Figure 6c), with a region of strong divergence 614 

present in the Doppler velocity above the updraft (Figure 6b). As shown in Figure 6f, ε typically 615 

ranges from 0.01 – 0.08 m2 s−3 with the largest values found within the vicinity of the main updraft.  616 
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     The example of deep convection displayed in Figure 7 has a depth of 10 km, and shows multi-cell 617 

characteristics with numerous updraft-downdraft circulations present in Figure 7c. The dominant 618 

updraft (~ 34 km from the radar) is narrower and much stronger than for the shower case, with 𝑤 619 

ranging from 8 – 12 m s−1. Divergence is again apparent in the Doppler velocity towards the upper 620 

levels of the cloud (Figure 7b). Figure 7f indicates that turbulence is more intense and widespread 621 

than for the shower case, with values of ε typically ranging from 0.03 – 0.3 m2 s−3. These values are 622 

again associated with the main updraft, with the most intense turbulence (ε > 0.3 m2 s−3) found 623 

towards the top of the cloud, above the updraft. 624 

     In many of the cloud cases that were examined to derive the statistics of ε presented later in this 625 

section, values of 𝜎𝑠
2 were small compared to 𝜎t

2 and largely remained below 𝜎neg
2 . The retrievals 626 

presented in Figures 6 and 7 provide examples of this; values of 𝜎𝑠
2 > 𝜎neg

2  were absent in the shower 627 

cloud and were restricted to a small cluster of 36 pulse volumes in the deep cloud case. This region 628 

is evident in Figure 7e, located from 7.5 – 8 km in height at an approximate range of 33 – 34 km. 629 

Although 𝜎𝑠
2 was significant in this region, values remained less than 15% of 𝜎t

2 suggesting that 𝜎𝑠
2 630 

could have been neglected in these two cloud examples without significantly over-estimating ε.  631 

     Shear corrections are, however, not negligible for all cloud cases considered, especially for those 632 

located further from the radar. According to (17) and (18), variances from azimuthal and elevation 633 

shear components increase with range squared. Figure 8 presents the ratio of 𝜎𝑠
2 to 𝜎t

2 in an example 634 

cloud observed between 90 – 115 km from the radar on 20 April 2012. Within the region of 𝜎𝑠
2 >635 

𝜎neg
2  (black contour) values of 𝜎𝑠

2 vary between 30% – 70% of 𝜎t
2. Neglecting 𝜎𝑠

2 in this region would 636 

result in the over-estimation of mean ε by 52%. Given that clouds were commonly observed 100 km 637 

(or further) from the radar, Figure 8 provides an example of the requirement to remove 𝜎𝑠
2 in our data 638 

to ensure accurate retrievals of ε. 639 

     By inspecting many retrievals of ε in convective clouds across two contrasting days of convection, 640 

the rest of this section is focused on relating ε to convective storm characteristics in a statistical sense.  641 
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 642 

6.3   Vertical distribution of ε in convective clouds 643 

     Statistics have been collected for ε in vertical layers of 1-km depth from the subsets of RHI 644 

observations described in Section 6.1. Using this approach, we can assess the vertical distribution of 645 

ε in convective clouds (where 𝑍 >  −20 dBZ), and see how this differs for showers and deep 646 

convection.  647 

     Figure 9 shows how the median, and 25th, 75th and 95th percentiles of ε change with height in the 648 

cloud; 0 – 6 km for showers, 0 – 10 km for deep convection. For showers and deep convection, the 649 

95th percentiles of ε (hereafter ε95) from 0 – 1 km are approximately the same, at ~ 0.025 m2 s−3. 650 

For the shower case, this remains approximately constant with height, varying between 0.02 – 0.03 651 

m2 s−3 and peaking at a height of 5 km. For deep convection, ε95 increases significantly with height, 652 

becoming twice as large as for the shower case at 6 km height (0.05 m2 s−3), and increasing to 0.1 653 

m2 s−3 at 10 km height. The median ε is an approximately constant 0.01  m2 s−3 throughout the 6-654 

km depth of the shower cases. For the same depth of deep convective cloud, the median is almost 655 

identical to the shower case, and then increases from 0.01 – 0.03  m2 s−3 from 6 – 10 km.       656 

     The 25th and 75th percentiles of ε follow a very similar pattern to this, indicating that from 0 – 6 657 

km the average intensity of turbulence is very similar for both cases. The reason for this is highlighted 658 

by Figure 6f and 7f; turbulence is locally intense, but a large proportion of the cloud area is only 659 

weakly turbulent in both cases (ε ≤  0.01 m2 s−3). This was often the case throughout observations 660 

on both days which serves to explain why the bulk of ε values are so similar. Where the cloud is 661 

turbulent however, values of ε are much larger in deep convection with much stronger circulations, 662 

which is reflected in the notable difference in ε95 between the two cases. 663 

 664 

6.4   ε in convective updraft regions 665 
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     As we are most interested in the turbulent regions of individual convective clouds, and turbulence 666 

in observations tends to be associated with convective updrafts (see Figures 6 and 7), we refine this 667 

investigation to ε located only in convective updraft regions.  668 

     The following method has been selected in part to ensure it can be applied identically to numerical 669 

model data in future investigations. To detect coherent updraft regions, a flood-fill algorithm is 670 

applied to vertical cross-sections of 𝑤 (T. Stein, personal communication), to automatically detect 671 

contiguous regions with 𝑤 above specified thresholds, and record their co-ordinates. By taking the 672 

four spatial extremes of these co-ordinates, a box is drawn around an updraft – defined as an updraft 673 

region. Updrafts are often irregular in shape in observations, so this approach includes some data 674 

surrounding the updraft in the defined region. As a result, we benefit from including some 675 

information about turbulence associated with an updraft, without it having to be co-located with 676 

specific values of 𝑤.  677 

     Once updraft regions are defined, they are filtered by width and depth to avoid the inclusion of 678 

very small, insignificant updrafts that are detected by the algorithm. For the shower case, we used a 679 

minimum threshold 𝑤 of 1 m s−1, and a minimum depth of 2 km. For the deep convection case, we 680 

used a minimum threshold 𝑤 of 1.5 m s−1, and a minimum depth of 3 km. In both cases, a minimum 681 

updraft region width of 1.5 km was imposed. The lower thresholds for 𝑤 and depth used in the shower 682 

case were chosen due to the weaker, shallower updrafts observed on that day. Using this approach, 683 

77 updraft regions were detected in the shower case, and 101 regions for deep convection. The co-684 

ordinates of each region can then be super-imposed on fields of ε for analysis. 685 

     Figure 10 displays scatter plots relating ε95 for each updraft region to its (a) 95th percentile of 𝑤 686 

(hereafter 𝑤95), (b) 95th percentile of the magnitude of the horizontal gradient in 𝑤, |
𝑑𝑤

𝑑𝑥
|

95
, (c) updraft 687 

width, and (d) updraft depth. In Figure 10a, we see that ε95 has a significant (p <  10−3) positive 688 

correlation with 𝑤95 for both showers (r =  0.425) and deep convection (r =  0.594). Correlations 689 

with |
𝑑𝑤

𝑑𝑥
|

95
 (Figure 10b) are marginally stronger than with 𝑤95 (r =  0.517 for showers, r =  0.671 690 
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for deep convection). This suggests that strong gradients in 𝑤 are more important in generating 691 

turbulence than 𝑤 alone. Weaker positive correlations exist between ε95 and the width and depth of 692 

updrafts for both showers (r =  0.295 for width, and r =  0.314 for depth), and deep convection 693 

(r =  0.309 for width, and r =  0.390 for depth). This indicates that the intensity of turbulence is 694 

not highly sensitive to the dimensions of the updraft. The consistency of correlations between the 695 

two cases, albeit with a smaller range in variable values for the shower case, suggests that these 696 

relationships may not be restricted to individual cases, or days of observation. 697 

     To produce Figure 11, all ε values in an updraft region are added to a distribution based on 𝑤95. 698 

By doing this, we can assess how the full distribution of ε changes with 𝑤95 in the two cloud types, 699 

instead of just the largest values. These distributions are displayed in the form of cumulative density 700 

functions (CDFs) for every 2 m s−1 interval in 𝑤95.  In both the showers and deep convection, a trend 701 

towards a lower probability of small ε, and a higher probability of large ε is seen with 𝑤95. In both 702 

cases, small values of ε (less than 0.01 m2 s−3) are approximately twice as likely to appear in updrafts 703 

with 𝑤95 < 4 m s−1, than for those 𝑤95 > 4 m s−1. In the shower case, ε larger than 0.05 m2 s−3 704 

has a probability of less than 0.01 in all updraft regions (𝑤95 < 6 m s−1); whereas for the same 𝑤95 705 

intervals of deep convection the probability is as large as 0.12. This indicates that stronger turbulence 706 

is more likely to be found in deep convective clouds than for showers of the same updraft strength. 707 

However, we see only a snapshot of information for each convective cloud; turbulent energy will 708 

take time to reach dissipation scales, in which time updrafts could have weakened considerably. The 709 

probability of large values of ε (more than 0.1 m2 s−3) is 0 for the shower case, but as high as 0.05 710 

for deep convection. When 𝑤95 is 2 – 4 m s−1, the CDFs of ε are very similar for both cases, further 711 

indicating that ε may be a function of storm characteristics independent of case, or day of observation. 712 

 713 

7    Summary and Conclusions 714 
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     A comprehensive analysis of processes contributing to the width of the Doppler velocity spectrum 715 

has been performed, with the objective of developing a rigorous algorithm to estimate turbulence 716 

intensity expressed as a dissipation rate. 717 

     New equations to quantify the spectral broadening effect due to a distribution of hydrometeor fall 718 

speeds (𝜎TV
2 ) have been presented for ice aggregates, raindrops and hail. We conclude that 𝜎TVagg

2  is 719 

always negligibly small, and 𝜎TVrain

2  and 𝜎TVhail

2  are negligible when observing at elevations lower 720 

than 13.9° and 11.5°, respectively. We find that 𝜎TV
2  can be larger than 8 m2 s−2 if scanning vertically 721 

through heavy rain or hail, and recommend avoiding high-elevation scanning when attempting to 722 

retrieve turbulence from the spectrum width. 723 

     Methods have been presented to remove contributions to 𝜎𝑣
2 from shear over scales larger than 724 

those sampled by the radar. This was achieved by evaluating shear over a constant spatial scale (Ʌ𝑠), 725 

using linear velocity surface fitting techniques as employed in past studies. Resulting values of ε 726 

have been found to be insensitive to Ʌ𝑠. To permit the estimation of ε from 𝜎t
2, it is of key importance 727 

that the largest dimension of 𝑉6 is lower than Ʌ0. 728 

     To account for spectrum width contributions from shear in the azimuthal direction, we have 729 

derived a new equation for the median azimuthal shear as a function of radial shear alone. This can 730 

be used to account for 3-D shear broadening in 2-D radar scans, and can be used simply to further 731 

improve the accuracy of retrieved ε. After noting incorrect equations for the calculation of 𝜎𝑠
2 in the 732 

literature, we conclude the correct equations are those derived in Appendix S1. 733 

     By applying the retrieval method across many observations on two contrasting DYMECS case 734 

days, we have produced statistics of ε in convective clouds. Turbulence is generally much stronger 735 

in deep convective cloud (0.03 – 0.3 m2 s−3) than in shower cloud (0.01 – 0.08 m2 s−3). In both 736 

cases, the majority of cloud is generally weakly turbulent, with significant turbulence co-located 737 

with, but not limited to, areas of shear and buoyancy. Strong turbulence is more widespread towards 738 

the top of deep convective cloud, while vertical profiles of turbulence are approximately constant in 739 
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shower cloud. In updraft regions, turbulence is strongly correlated with updraft strength, and there is 740 

evidence that gradients in the vertical velocity are more important in generating strong turbulence 741 

than the updraft velocity alone. Turbulence is only weakly correlated with the spatial dimensions of 742 

updrafts. 743 

     Our method has sourced, developed, and added to many decades of turbulence retrieval research 744 

to form the most comprehensive approach to date. Though we have ultimately applied the method to 745 

a specific radar and observational dataset, the considerations made in Sections 2 – 5 are suitably 746 

general, forming a reliable framework for turbulence retrieval with other high-resolution radars 747 

capable of sampling inertial sub-range turbulence. 748 

     Following directly from this research, we have collected new observations of convective clouds 749 

with CAMRa, under an improved scanning strategy better suited to turbulence retrieval. By 750 

performing multiple RHI scans separated by small azimuthal distances across clouds, we aim to 751 

investigate the 3-D structures of turbulence in convective storms.  752 

     We have also used the results of this investigation to evaluate the performance of the 753 

Smagorinsky-Lilly sub-grid scheme through direct comparisons with ε in high-resolution NWP 754 

simulations of the observed cases. The degree to which our observations can be used more generally 755 

to evaluate turbulence characteristics in CPMs (without the need to simulate the observed cases) is 756 

not clear. However, at the very least, our observations can provide guidance for the typical 757 

characteristics of ε in clouds for comparison with other high-resolution CPM simulations, given that 758 

ε can be found as a diagnostic output from the turbulence parametrisation. To ultimately improve the 759 

versatility of our results, we aim to extend our observations to more diverse cloud cases to assess the 760 

degree to which our statistics are case-dependent. 761 
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 850 

 851 

Figure Captions 852 

 853 

Figure 1.   (a) Change in 𝜎TV𝑗

2  for rain, ice aggregates and hail, with radar reflectivity 𝑍𝑗, and elevation 854 

angle, 𝜃el. Black lines refer to observations made at vertical incidence; grey lines at 𝜃el = 15°. (b) 855 

The impact on 𝜎TVhail

2  of using different 𝑉hail(𝐷) relationships in the derivation of (13); (1) 𝑝 =856 

142.6, 𝑞 = 0.5, (2) 𝑝 = 162.0, 𝑞 = 0.5, (3) 𝑝 = 359.0, 𝑞 = 0.8. Results are displayed for 𝜎TVhail

2  857 

sampled at vertical incidence (𝜃el = 90°). (c) The change in 𝜎𝑠𝜃
2 , 𝜎𝑠𝜑

2  and 𝜎𝑠𝑟
2  (Eq. (17) – (19)) with 858 

shear magnitude, |𝑆|. Variances 𝜎𝑠𝜃
2 , and 𝜎𝑠𝜑

2  are displayed for ranges 30 km and 150 km, which are 859 

roughly the minimum and maximum ranges of radar observations in the DYMECS data. Shears larger 860 

than 0.02 s−1 were uncommon in our observations. In each panel, the threshold for negligibility 𝜎neg
2 , 861 

is plotted for reference as a dashed line at 0.5 m2s−2. 862 

 863 
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Figure 2.   Independent distributions of 1 × 10⁶ values of 𝑆𝜑 and 𝑆𝑟 sourced from 31 PPI scans 864 

performed on 20 April 2012.  865 

 866 

Figure 3.   Change in the PDFs of observed |𝑆𝜑| for three selected intervals of |𝑆𝑟| (solid lines). 867 

Distributions of |𝑆𝜑| are well approximated by Gamma PDFs (22) (dashed lines). The width of each 868 

|𝑆𝑟| interval is 1 × 10−4 s−1, and the interval of |𝑆𝑟| for each distribution is displayed in the figure 869 

titles. 870 

 871 

Figure 4.   The change in the median, 25th and 75th percentile values of |𝑆𝜑| with |𝑆𝑟|. 872 

 873 

Figure 5.   The insensitivity of distributions of ε to the scale Λ𝑠, over which shear is calculated for 874 

𝜎𝑠
2. 875 

 876 

Figure 6.   Example ε retrieval for an RHI scan of a convective storm performed on the 20 April 877 

2012 (showers). Included is (a) radar reflectivity, (b) Doppler velocity, (c) vertical velocity, (d) total 878 

Doppler variance, (e) Doppler variance due to shear, and (f) eddy dissipation rate displayed in log10 879 

units. The grey contour outlines reflectivity returns of -20 dBZ. 880 

 881 

Figure 7.   Equivalent to Figure 6, an example retrieval of ε for an RHI scan of a convective storm 882 

performed on the 25 August 2012 (deep convection).  883 

 884 

Figure 8.   The ratio of shear (𝜎𝑠
2) and turbulent (𝜎t

2) contributions to Doppler variance in an example 885 

shower cloud observed on 20 April 2012. The location of values of 𝜎𝑠
2 that exceed 𝜎neg

2  is indicated 886 

by the black contour. In this example, neglecting 𝜎𝑠
2 in the contoured region results in the 887 

considerable over-estimation of mean ε by 52%. 888 
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 889 

Figure 9.   Comparison of the vertical distribution of various percentiles of ε in convective clouds 890 

(𝑍 >  −20 dBZ) on 20 April (showers) and 25 August (deep convection), 2012. Percentiles for each 891 

1 km layer are plotted at the midpoint of that layer. 892 

 893 

Figure 10.   Scatter plots comparing the 95th percentile of ε for each updraft region ε95, on 20 April 894 

(showers) and 25 August (deep convection), 2012, to the following corresponding statistics: (a) the 895 

95th percentile of vertical velocity 𝑤95, (b) the 95th percentile of the magnitude of the horizontal 896 

gradient in vertical velocity |
𝑑𝑤

𝑑𝑥
|

95
, (c) the updraft width, and (d) the updraft depth. 897 

 898 

Figure 11.   The change in the cumulative density function (CDF) of ε in updraft regions with 899 

different 95th percentile values of 𝑤 (𝑤95) for 20 April 2012 shower updrafts (black lines) and 25 900 

August 2012 deep updrafts (grey lines). Values of 𝑤95 did not exceed 6 m s−1 in any shower updraft 901 

region. Values of 𝑤95 smaller than 2 m s−1 were not found in any deep updraft region. 902 
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