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The challenges of using satellite datasets to assess historical land use change and 1 

associated greenhouse gas emissions - a case study of three Indonesian provinces 2 

Advances in satellite remote sensing and the wealth of earth observation (EO) 3 

data now available have improved efforts towards determining and quantifying 4 

historical land use and land cover (LULC) change. Satellite imagery can 5 

overcome the absence of accurate records of historical land use, however the 6 

variability observed in the case study regions demonstrates a number of current 7 

challenges. 8 

Differences in spatial coverage, resolution and land cover classification can lead 9 

to challenges in analysing historical LULC datasets to estimate LULC change 10 

and associated greenhouse gas (GHG) emissions. This paper demonstrates the 11 

calculation of LULC change from three existing, open source LULC datasets to 12 

show how this can lead to significant variation in estimates of GHG emissions 13 

related to differences in land classification methodologies, Earth Observation 14 

(EO) input data and period of investigation. We focus on selected regions of 15 

Indonesia, where quantifying land use change is important for GHG assessments 16 

of agricultural commodities and for evidencing progress against corporate and 17 

government deforestation commitments. 18 

Given the significance of GHG emissions arising from LULC change and the 19 

increasing need for emissions monitoring, this research highlights a need for 20 

consensus building to develop consistency in historic and future LULC change 21 

estimates. This paper concludes with a set of recommendations for improvements 22 

to ensure consistent LULC mapping. 23 

Keywords: land use/ land cover change, GHG emissions, remote sensing, palm 24 

oil, sustainability,  25 

Introduction 26 

Advances in satellite remote sensing (RS) and the wealth of earth observation (EO) data 27 

now available have improved efforts towards accurately mapping  Land Use and Land 28 

Cover (LULC) and quantifying change [1]. This reduces reliance on e.g. ground-level 29 



monitoring and improves the resolution of assessments that are currently based on 30 

country-level statistics.  However, challenges remain, and factors such as the type of 31 

data (e.g. optical or radar) and spatial and temporal resolution of satellite data may 32 

significantly influence the classification of land use and land cover [1,2]. Several 33 

organisations have produced and made openly available LULC datasets based upon the 34 

interpretation of optical EO satellite data. These are derived from different satellites, 35 

based on different sensors, with variations in return time and LULC classification 36 

methodology. In this paper, we analyse uncertainty in greenhouse gas (GHG) emission 37 

estimates by calculating LULC change with three historic LULC datasets, with a focus 38 

on selected regions of Indonesia where the development of the Palm Oil (PO) industry 39 

has been a significant driver of LULC change in recent decades [2].  40 

LULC mapping 41 

Mapping of LULC is one of the key applications of RS technologies and has been 42 

carried out for at least 40 years [3]. However, there is little agreement on best practice 43 

for LULC mapping. A recent overview of different LULC mapping methodologies is 44 

provided by Joshi et al., (2016) [1]. The process of remote sensing image classification 45 

is complex and involves many steps, including the determination of a land cover 46 

classification system, collection of data sources and selection of a classification 47 

algorithm [4]. One of the most important considerations in LULC mapping is the 48 

definition of LULC classes. This can be done with a focus on Land Use (purpose for 49 

which humans use land) or Land Cover (physical properties of a land surface) [1]. 50 

LULC class definitions can be either broad (e.g. Forest, Agriculture, Grassland etc.) or 51 

specific (e.g. subdividing agricultural land into Oil Palm, Corn, Banana, etc.). Optimal 52 

class definition depends on the specific needs of the user, but, in general, broad classes 53 

are better suited for large-scale (continental) LULC mapping. Whilst higher specificity 54 



in land classes is preferable for regional or national-scale land mapping studies [1], it 55 

has been shown that using a large number of highly specific classes can lead to 56 

misclassification, as differences between classes become small [5,6].  57 

Another major consideration when developing a LULC classification scheme is the 58 

selection of optimal RS input data. Low resolution (LR) optical sensors (e.g. MODIS, 59 

MERIS) have been useful for vegetation mapping at global or continental scale, while 60 

medium resolution (MR) satellites (e.g. Landsat TM) are most frequently used for 61 

regional LULC mapping [4]. High resolution (HR) satellite data (e.g. DigitalGlobe, 62 

SPOT) require greater resource in terms of processing capacity and can be costly when 63 

large area coverage needs to be acquired. Therefore, HR data is more likely to be used 64 

for validation of smaller areas [4]. Quality of RS imagery can be hampered by persistent 65 

cloud cover in tropical regions [2]. Integrated use of Synthetic Aperture Radar (SAR) 66 

satellite data, which has high resolution capability and is unaffected by cloud cover, has 67 

shown to be improving LULC mapping significantly [1] and is becoming more 68 

commonly used in tropical LULC mapping [7].  69 

The classification methodology used for LULC mapping is a third major consideration. 70 

There is a plethora of image classification algorithms and methodologies available [1]. 71 

Common methodologies or algorithms range from statistical methods (e.g. Maximum 72 

Likelihood Classification (MLC), Principle Component Analysis (PCA)) [8,9], machine 73 

learning algorithms (Support Vector Machine (SVM), Random Forest (RF)) [10–12], 74 

knowledge-based/decision trees methods [6,13] to visual/manual interpretation of 75 

satellite data [12]. Changes in LULC class definitions, RS data input and classification 76 

methods over time can lead to issues of consistency and variability in estimates of 77 

historical LULC change [2]. 78 



GHG emissions attributable to LULC change 79 

Carbon dioxide emissions from fossil fuel use are relatively well quantified, but GHG 80 

emissions from LULC change remain highly uncertain and yet are one of the largest 81 

anthropogenic sources of GHG emissions [14]. Land-use changes can cause emissions 82 

due to carbon losses in both biomass and soils [15]. Rapid expansion of agriculture for 83 

large scale commodity crops can lead to large changes in carbon stocks [16].  84 

Understanding emissions from LULC change is key to quantifying life cycle emissions 85 

of large scale agricultural commodities, such as PO. Growth in PO production in South-86 

East Asia, led primarily by Indonesia and Malaysia, has been a key component of meeting 87 

growing global demand for bio-based oil in recent decades. Indonesia and Malaysia 88 

currently meet more than 85% of global PO demand, 51% and 34% respectively [17]. In 89 

these countries, plantations cover an estimated area of 140,000 km2 on both mineral and 90 

organic (peat) soils, which has led to large-scale LULC change in the region [2].  91 

A historical record of 20-25 years is necessary for LUC emissions to be included in Life 92 

Cycle Assessments (LCA). Openly-available satellite data with global coverage, and of 93 

sufficient quality, does not widely exist prior to 2000 and, therefore, this period is rarely 94 

covered by LULC datasets.  95 

Significance of peat soils 96 

Soils in wetland ecosystems (e.g. peat swamp forests) contain large amounts of organic 97 

material, and therefore have high below-ground carbon stocks with carbon densities that 98 

may exceed those of the aboveground vegetation [18]. When organic soils are disturbed, 99 

and particularly when drained, removing water from the soil pores; oxygen can enter the 100 

soil surface and oxidize the soil organic material through biological and chemical 101 

processes. Oxidation of soil organic matter leads to a carbon flux to the atmosphere, 102 



mostly as CO2 [19]. 103 

GHG emissions after drainage are not constant; they will vary as water tables and peat 104 

characteristics change [20]. In typical PO plantation developments on peat soils in 105 

Southeast Asia, the initial peatland drainage usually involves a rapid lowering of the 106 

water table to depths of around or below 1 m to over 3 m. In the first few months or 107 

years after drainage, the peat surface will change rapidly through a combination of peat 108 

oxidation and soil compression. In this transition phase, carbon emissions are higher 109 

than during the subsequent, more stable phase i.e. following palm planting, when water 110 

levels will generally be maintained at depths of around 0.80 m. From that point 111 

onwards, oxidation will proceed at a more or less stable rate until the peat surface is at 112 

or close to the local drainage level; dependent upon the peat depth, this may take several 113 

decades [20].  114 

Any holistic assessment of the carbon emissions arising from LULC change must 115 

include both changes in above- and below-ground carbon stocks. The relative 116 

proportion of PO plantations on organic soils in Southeast Asia has increased over the 117 

last 20 years; these now occupy some 31,000 km2, or approximately 23% of the total 118 

area under PO plantations [21]. It has been shown that this process has been responsible 119 

for generating substantial carbon losses and associated GHG emissions from peat 120 

decomposition [19]. 121 

Aim of this paper 122 

The aim of this paper is to evaluate and compare existing LULC datasets, derived from 123 

EO data, to assess historical LULC change and associated GHG emissions. To achieve 124 

this, we focus on three Indonesian provinces where large-scale LULC change has been 125 

observed in recent decades, much of which is attributable to the development of 126 



plantations. 127 

Materials and methods 128 

Study area 129 

We focus on three areas of interest (AOIs), namely the Indonesian provinces of 130 

Northern Sumatra, Riau on the island of Sumatra, and Central Kalimantan on the island 131 

of Borneo, Figure 1. These three AOIs, covering approximately one sixth of the total 132 

area of Indonesia, lie within an area that is the focus of much attention surrounding land 133 

use change emissions [22–24]. All AOIs include areas with peat soils, according to the 134 

peat soil map distributed by the Centre for Remote Imaging, Sensing and Processing 135 

(CRISP) in Singapore [19]. Additionally, in all three AOIs PO production occurs on 136 

both mineral and peat soils, according to PO concession data obtained from Global 137 

Forest Watch [25], (Table 1).  138 

LULC data sources 139 

Three open-source, satellite-derived LULC datasets were identified as thematically and 140 

spatially relevant for the AOIs, as detailed in Table 2. 141 

The Climate Change Initiative (CCI) LULC dataset was developed by the European 142 

Space Agency (ESA) CCI Land Cover Initiative, currently available with updates for 143 

the period 1992-2015. CCI is a global LULC dataset, with a class definition based on 144 

the Land Cover Classification System (LCCS) developed by the United Nations (UN) 145 

Food and Agriculture Organization (FAO) [26]. Class definitions are broad, with no 146 

specific LULC classes for tree plantations. Quality assessment of the CCI dataset 147 

(included in [26]) was based on referencing using higher resolution satellite data or 148 

derived products (Landsat, Google Earth, SPOT-Vegetation (SPOT-VGT)) for specific 149 



reference areas, which were chosen to cover all global climatic zones, with subsamples 150 

chosen randomly from these areas. The overall accuracy between the CCI 2010 dataset 151 

and a reference dataset for 2009 was 74.4%. 152 

The CRISP LULC dataset was developed by the Centre for Remote Imaging, Sensing 153 

and Processing in Singapore and covers Southeast Asia, with updates for 2000, 2010 154 

and 2015. The mapping methodology is well documented [21,27]. The 2015 LULC data 155 

update has been developed using a methodology which differs significantly from that 156 

used for the 2000 and 2010 updates; CRISP have therefore advised users to avoid 157 

comparisons of the 2015 data with older updates for LULC change analysis [21]. The 158 

class definition is specific, with two classes for plantations (“Large scale palm 159 

plantations” and “Plantation/regrowth”). Quality assessment of the CRISP dataset was 160 

carried out by comparing the LULC maps with a total of 1000 random sample plots 161 

from very-high resolution satellite data [21]. The total accuracy for the 2015 CRISP 162 

dataset was 81.6%. 163 

The MoF LULC dataset was developed at the Indonesian Ministry of Forestry, and 164 

currently provides irregular updates between 1990 and 2015. In total ten updates are 165 

available, of which eight are between 2000 and 2015. There is no accompanying 166 

documentation detailing the image classification methodology used for the LULC 167 

mapping. However, according to [23], it is primarily based on visual interpretation of 168 

Landsat 30x30 m satellite data. There is no indication of whether any quality assurance 169 

checks have been carried out. When considering forest cover in Indonesia, comparison  170 

between MoF and Global Forest Watch forest cover data [28] indicated agreement in 171 

90.2% of the area considered [29]. The MoF LULC classes are specific, identifying two 172 

plantation types (general plantation and timber plantation), as well as undisturbed and 173 

disturbed forests. 174 



Data pre-processing 175 

Figure 2 presents an overview of the processing and analysis workflow. After collection 176 

of the LULC, AOI boundary and peat soil extent data, the data is pre-processed using 177 

the following steps: 178 

 Conversion of LULC data to raster. The MoF data is delivered in vector format, 179 

in order to make the dataset comparable in terms of resolution, it was converted 180 

to raster with a 100 x 100 m spatial resolution. 181 

 Subsetting of LULC and peat soil data per AOI. 182 

 Split of LULC data between peat soil and non-peat soil areas. 183 

 Reprojection of data to the same Universal Transvers Mercator (UTM) zone 184 

projection, UTM 47N for North Sumatra and Riau AOI data, UTM 49N for 185 

Central Kalimantan. 186 

 Class aggregation of specific LULC classes into broad classes for the cross-187 

comparison of LULC data, detailed below. 188 

Cross-comparison LULC data 189 

Pairwise comparison of the three LULC datasets was carried out using the Mapcurves 190 

analysis [30]. Mapcurves analysis provides a method to compare two categorised maps 191 

by cross-referencing, to quantify the similarity between the classifications. This analysis 192 

provides insight by calculating the proportion of overlap between each LULC class 193 

from one dataset (Map A) and the best overlapping LULC class from another dataset 194 

(Map B). The best overlaps for all classes from Map A with classes from Map B are 195 

calculated, and the overlap fractions are summed to derive the total agreement between 196 

Map A and Map B. This total is named the Goodness of Fit (GoF); a GoF of 1.0 means 197 

a perfect fit, a GoF of 0.0 no fit at all. This analysis can be run both ways, i.e. using map 198 



A as the original and using Map B as the reference, or vice versa.  The GoF is expressed 199 

as a percentage and can therefore be compared across categories and maps. 200 

It should be noted that the GoF does not give information about the total area of 201 

agreement, as each LULC class has equal influence on the GoF, regardless of its area of 202 

presence in the original map. Nor does this analysis provide insight into relative quality 203 

of datasets, but gives an indication of the proportion of overlap.  204 

To make the three LULC datasets as comparable as possible, LULC classes were 205 

aggregated into nine broad classes, based on a general class aggregation utilised for the 206 

CCI data [26]: Agriculture, Forest, Grassland, Shrubland, Sparse Vegetation, Wetland, 207 

Settlement, Bare and Water. 208 

The cross-comparison analysis was run for dates pertaining to two specific years in 209 

which all three LULC datasets have an update, 2000 and 2015 (Figure 3a-f).  210 

LULC change analysis 211 

To calculate LULC change for each LULC dataset, changes between each initial update 212 

(t0) to the next update (t1) were calculated from the pre-processed data. This was done 213 

by comparing each pixel location from the t0 raster data with each corresponding pixel 214 

from the t1 data. If a change in LULC class was observed, the pixel was reclassed as a 215 

pixel with a unique value combining the t0 and t1 class code. If no change was 216 

observed, the pixel was reclassed as no value, see Figure SM1. From this analysis, 217 

LULC change maps and tables were produced. Table SM1 provides the time periods 218 

used to assess LULC change. For CCI and MoF, these time periods coincide with the 219 

updates of the MoF dataset, for CRISP only one period has been used, 2000 to 2010, as 220 

the update of CRISP for 2015 cannot be compared for LULC change analysis [21]. The 221 



LULC change is expressed in hectares per year, to correct for varying time intervals 222 

between updates. 223 

Carbon emission modelling 224 

To convert LULC change into carbon emission estimates, values for Aboveground 225 

Biomass (AGB) and Organic Soil Degradation (OSD) emissions factors were obtained 226 

for all the LULC classes of the three datasets. This was done by conducting a review of 227 

published literature related to LULC change in Southeast Asia (primarily based on 228 

[15,20,31–33]). From this review, average values for AGB and OSD for each LULC 229 

class were calculated (Table SM2 and Table SM3). AGB emission factors are expressed 230 

in Mg C ha-1, the OSD emissions are given in Mg C ha-1 yr-1, as these continue for an 231 

indefinite period after a LULC change from natural to man-made state [19]. The LULC 232 

change data from the selected areas and the AGB and OSD emission values were 233 

combined to estimate GHG emissions.  The model, Equation 1, is a simplified version 234 

of the model in [34], not taking into account the GHG emissions related to peat fire due 235 

to additional uncertainty. 236 

boaa ESEE   (1) 

where E is the emission estimate, Ea is emission from AGB due to LUC, Sa 237 

sequestration of CO2 from the atmosphere into crop biomass between succeeding land 238 

uses and Ebo is emission from OSD. A graphical example of the model is provided in 239 

Figure SM2. For example, if 1 ha changes from Primary Forest (average AGB 233 Mg 240 

C ha-1) to Shrubland (average AGB 31 Mg C ha-1) then, for AGB, a total of 233-31 = 241 

202 Mg C will be emitted. If subsequently this 1 ha of Shrubland becomes Plantation 242 

(average AGB 37 Mg C ha-1) then the net carbon emissions will be 31-37 = -6 Mg C, 243 



which indicates carbon sequestration.  244 

The latest insights with respect to emissions from drained peatlands are reported by 245 

IPCC [20,35]. The OSD emission factor values used in this paper relate to ongoing 246 

oxidation of peat. We exclude additional emissions occurring during the first 5 years 247 

after drainage for plantation establishment [20,36], relating to fires [37], and the 248 

potential emissions from organic carbon flushed into aquatic ecosystems (e.g. as 249 

dissolved organic carbon (DOC), and associated emissions of CO2 and CH4 [38]).  250 

These emissions are highly uncertain and would, therefore, obscure the uncertainty in 251 

GHG estimates from different LULC datasets. Thus, in our calculations, if Peatswamp 252 

Forest on organic soil changes to PO Plantation, the OSD emission related to land 253 

conversion is 11 Mg C ha-1 yr-1.  254 

On the basis of [31], who reported that, for mineral soils, the net temporal trend in the 255 

soil carbon stock (in the top 30 cm of soil) was not significantly different from zero in 256 

both forest- and non-forest-derived plantations, we assume soil carbon stock neutrality 257 

on mineral soils used for oil palm cultivation.   258 

Results and discussion 259 

Cross-comparison LULC data (Mapcurves) 260 

The Mapcurve plots with the highest consistencies for each area and date are visualised 261 

in Figure 3. The highest GoF values are observed for either a combination of CCI as 262 

Original and CRISP as Reference map or the combination of MoF as Original and 263 

CRISP as Reference map. The highest GoF observed is 0.575 for North Sumatra in 264 

2015, by combining MoF and CRISP, which means there is 57.5% class agreement 265 

between these maps. All other combinations lead to lower GoF values (see Tables SM4 266 



and Table SM5). The two data types most dissimilar are the MoF and CCI datasets 267 

(generally less than 40% class agreement). 268 

The Mapcurve analysis shows large inconsistencies between LULC datasets, even after 269 

aggregation of specific LULC classes, to make the datasets more comparable. Other 270 

comparative studies of LULC datasets have also observed this [39–41], either by means 271 

of the Mapcurves analysis, or by analysing spatial overlap of similar classes on a pixel-272 

by-pixel basis.  Of these studies, the maximum observed Mapcurve value was 0.53 [41], 273 

while in a pixel-by-pixel based analysis the highest agreement was found to be 62% 274 

[40]. This shows that, even after aggregation of specific LULC classes into broader 275 

classes, high levels of agreement between LULC maps of similar age cannot be 276 

assumed.  277 

Differences between LULC maps can be caused by a number of factors [42], including 278 

data quality, spatial and temporal resolution, LULC classification approaches, 279 

algorithms and aggregation. Data quality can be limited in tropical regions, due to 280 

persistent cloud cover and therefore a limited number of useful satellite acquisitions. If 281 

sufficient temporal resolution is available, there is better chance that high quality 282 

imagery can be obtained in a certain period.  283 

Spatial resolution dictates the smallest mapping unit. In general, if a pixel is sufficiently 284 

small, more specific LULC can be distinguished. Lower spatial resolution pixels often 285 

cover more than one specific LULC class, and therefore the LULC class definition must 286 

be more generic, as for CCI. Spectral resolution influences how well LULC classes can 287 

be technically distinguished. MODIS data, which underlies the CRISP dataset, operates 288 

in 34 spectral bands [43], whereas Landsat-8 operates in 11 bands [44]. This means that 289 

even though MODIS has a spatially lower resolution than Landsat, through its superior 290 



spectral resolution, MODIS might be able to detect more subtle variations in LULC 291 

than Landsat. 292 

As noted above, a several classification algorithms were used to develop the LULC 293 

datasets, which have an effect on differences in mapping results. In general, pixel-based 294 

classifiers tend to lead to high heterogeneity in the resulting LULC map, as each pixel is 295 

individually classified. Therefore, it is currently more common to include a clustering 296 

step in the classification process, as this has been found to positively influence the map 297 

accuracy [45,46]. The MoF dataset is based on visual interpretation of satellite data, 298 

which depends on the interpretation skills of each person working on the LULC maps, 299 

which can be subjective [47]. LULC class definition can impact how readily LULC 300 

datasets can be compared. Aggregation of specific LULC classes into broad classes can 301 

overcome this problem to a large extent, although it is not always clear to which broad 302 

class a specific class might belong. 303 

LULC change 304 

For each LULC dataset, LULC change has been calculated for each period between 305 

updates (shown in Table SM3). The LULC change observed in each area is presented 306 

for North Sumatra (Figure 4), Riau (Figure 5) and Central Kalimantan (Figure 6), The 307 

LULC change is averaged to give LULC change in hectares per year, to make the 308 

differing periods between updates directly comparable.  309 

According to the MoF dataset, for each AOI, one ‘peak change period’ with an extreme 310 

LULC change is recorded. In North Sumatra this is 2006-2009, 2012-2013 in Riau, and 311 

2013-2015 in Central Kalimantan. From the data (Table SM6), the North Sumatra peak 312 

change period is 4.7 times larger than the average for 2000-2015, 2.5 times larger than 313 

average for the Riau peak change period and 3.8 times larger than the average in Central 314 



Kalimantan. It is questionable whether these changes, visible in the RS data, are related 315 

to ‘actual observed’ LULC change in the AOI, which we define as change that can be 316 

seen at ground level (corroborated by field observations), or have other causes. Table 3 317 

shows the largest contributors to these peak change periods, according to the MoF 318 

datasets. Analysis shows that for each occurrence the MoF class ‘Dry Rice Land Mixed 319 

with Scrub’ was involved, either by transition from this class to ‘Dry Rice Land’ (in 320 

North Sumatra) or transition into it from ‘Scrubland’ (both Riau and Central 321 

Kalimantan). The class ‘Dry Rice Land Mixed with Scrub’ can be interpreted as a 322 

transition class between Rice Land and Scrubland, or an ecotone. Defining class 323 

boundaries for ecotones is often difficult when making observations in the field; it is 324 

even more challenging when interpreting RS data [48]. Due to the magnitude of these 325 

peak change periods, it is unlikely that they are related to actual changes in LULC, but 326 

more likely related to different interpretation of RS data or methodological shift 327 

between MoF updates. However, the influence of this mapping effect on the LULC 328 

change observed in Central Kalimantan in 2013-2015 is relatively small, and the 329 

majority of LULC change estimated for this period can be attributed to ‘actual 330 

observed’ LULC change at ground level. 331 

The CRISP maps consistently give higher estimates for land use change than either the 332 

CCI or MoF maps. The annual LULC change estimated by CRISP is between 6.1 and 333 

12.8 times larger than the LULC change from CCI for the AOIs. For CRISP to MoF, the 334 

difference ratios for LULC change lie between 2.2 and 3.8.  335 

Temporal correlations between MoF and CCI data are plotted in Figure 7. As CRISP 336 

only provides one update (between 2000 and 2010) this dataset has not been included. 337 

The MoF LULC change values have been corrected for the peak change periods 338 

described above, to get a better comparison of actual observed LULC change between 339 



CCI and MoF datasets. The strongest temporal correlation is shown in North Sumatra, 340 

with an R2-value of 0.7978, while those for Riau and Central Kalimantan are much 341 

lower. 342 

The LULC change analysis shows little agreement between LULC datasets in the AOIs. 343 

Whilst some inconsistency can be attributed to methodological factors, not all can be 344 

explained directly. 345 

GHG Emissions 346 

Large variability in GHG emissions can be observed for estimates made using the 347 

different LULC datasets, Table 4 and Table 5 (see also Figure SM3, Figure SM4 and 348 

Figure SM5). GHG emissions estimates from CRISP data (2000-2010 only) are 349 

considerably higher than those from both CCI and MoF data, while those from MoF for 350 

the period 2011-2015 are generally much higher than the estimates from CCI (Table 5). 351 

For Riau and Central Kalimantan, this is partly due to the MoF data inconsistency 352 

related to the classification of ‘Scrubland’ and ‘Dry Rice Land Mixed with Scrub’. The 353 

peak change periods are also visible, with a peak in emissions in Riau in 2012-2013 354 

(Figure SM4) and in Central Kalimantan in 2013-2015 (Figure SM5). 355 

These results, which illustrate considerable variability in GHG emission estimates from 356 

the different LULC datasets, are supported by other studies, e.g. Agus et al. (2010) [34], 357 

estimated that carbon emissions from LULC change studies related to the PO industry 358 

in Kalimantan differed by a factor of 4.7. 359 

GHG emission maps 360 

The GHG emission estimates per dataset, area and time period can also be displayed 361 

geographically in maps of GHG emissions (Figure 8). The highest modelled GHG 362 



emissions occur in areas with peat soils, primarily in Riau and Central Kalimantan. 363 

However, there are also regions where net carbon sequestration occurs, likely related to 364 

conversion of low biomass LULC (bare areas, shrub), to higher biomass LULC 365 

(plantations). Bare and shrubland areas may be the result of previous deforestation, 366 

which highlights the need for sufficient historic data to understand and account for 367 

emissions from LULC change over a longer period, especially in peat soil areas. Several 368 

methods exist to attribute these emissions to a product, depending on the data available 369 

[49]. For LCA, the impact of land use change should include all direct land use change 370 

occurring 20 years (or one full harvest, whichever is longer) prior to the assessment. 371 

The total GHG emissions (or removals) arising from LULC change over this period 372 

would be allocated equally to each year of the period [50]. 373 

Carbon emission factors 374 

The values for emissions from AGB and OSD, derived from literature, are key to the 375 

GHG emissions calculations in this study. For plantations, the AGB value used in this 376 

study is 37 Mg C/ha, based on a time-averaged value for AGB [15]. However, AGB 377 

values of 57.5 Mg C/ha have been reported for plantations at full maturity [51]. To 378 

understand this sensitivity, results were calculated using this value (Table SM7). In all 379 

but one instance, annual emissions are reduced by 1%- 33% when using the higher 380 

carbon stock value for plantation classes. In one case emissions increase (MoF, 2011-381 

2015 for North Sumatra) because a large area of plantation was converted to a LULC 382 

with lower carbon stock. 383 

Temporal interval  384 

The results are also sensitive to the interval period used between LULC map updates. 385 

This has an impact on GHG emissions related to OSD. It has been shown that emissions 386 



from OSD can continue for an indefinite time period after conversion from a natural to 387 

man-made state [20]. This process is sketched in Figure SM2, where emissions related to 388 

soil degradation from the first stage of LUC continue into the second stage of LUC.  It 389 

has been observed that when OSD emissions from a previous period are not included, 390 

GHG emissions can vary significantly. This has been analysed with CCI data for Central 391 

Kalimantan, where GHG estimates derived for 5-yearly intervals (2000-2005 and 2005-392 

2010) were found to be approximately 1 million Mg C/yr higher than emissions summed 393 

at intervals of 1 year, over the same 10-year period. This shows the GHG emission model 394 

should incorporate LULC changes on organic soils predating the period of interest 395 

wherever possible. 396 

Limitations in estimating GHG emissions  397 

The GHG emission estimates were calculated based on published carbon stock and 398 

emission factors for different LULC classes. Variability and uncertainty in carbon stocks 399 

can be observed in the range of literature values (Table SM2 and Table SM3) arising from 400 

influences including of soil type and climate, or where different studies include different 401 

elements of carbon pools [15]. Furthermore, peat soils may vary in depth and volume and 402 

therefore influence carbon stocks [52]. Since the purpose of this study was to establish 403 

uncertainty in GHG estimates resulting from the use of different LULC products, 404 

variability and uncertainty in carbon stock values for different LULC classes were not 405 

considered further.  406 

Further work could be done to integrate variabilities in carbon stock accounting with the 407 

variabilities in estimated LULC changes estimated in this study. Key considerations 408 

would include spatial heterogeneity (edge effects) in above and belowground carbon 409 

stocks within land cover classes [50, 51]; variability in water table depth and carbon loss 410 

rates for OSD [20] and; uncertainties in emissions from land clearance fires on peat soils 411 



[19]. Emissions from degraded peat soils are known to continue a long period, often 412 

longer than a typical LCA analysis period of 20-25 years [52]. Therefore, wherever 413 

possible, it is advised to incorporate any known historic LULC changes on peat soils for 414 

a period as long as possible. 415 

The finding that LULC maps based on RS data interpretation differ is not new [40,41], 416 

and some attempts have been made to improve comparability between LULC maps 417 

[39]. A LULC dataset is always a trade-off between the input data quality and 418 

accessibility, requirements of end-users and the technological and financial means 419 

available for development. Each of these datasets represents a valuable source of 420 

spatially explicit information for calculating GHG emissions related to LULC change. 421 

The current variability between LULC maps suggests that estimates should be used to 422 

provide a range rather than a single value for GHG emissions. 423 

Conclusions & recommendations 424 

The need to quantify GHG emissions associated with LULC change is important for life 425 

cycle assessments (LCA) of agricultural commodities and for providing evidence of 426 

GHG reductions associated with zero net deforestation commitments. Without RS data, 427 

such calculations would require detailed historical land records, and therefore these 428 

datasets are valuable to estimate regional trends in LULC change and associated GHG 429 

emissions. However, this study has shown the potential variability in estimates that can 430 

be obtained through use of three open source RS datasets. These variabilities arise from 431 

differences in EO input data, land classification methodologies, data resolution and 432 

period of investigation. It is therefore advisable to compare different LULC datasets in 433 

parallel and use the variability between GHG emission estimates as a confidence 434 

interval, rather than a single value. Users should be aware of the potential for variability 435 



in LULC estimates.  436 

GHG emission maps, such as Figure 8, are useful visualisation tools that are not 437 

commonly available and can provide spatial insight into LULC change and related 438 

carbon emissions or sequestration. Current web-based platforms may show forest loss 439 

or LULC for a given period, but, to our knowledge, do not yet provide maps showing 440 

associated GHG emissions. Given the inconsistencies highlighted in this paper, there is 441 

a need for further work to ensure the maps provide robust estimates of LULC change 442 

and associated emissions.  443 

The method described in this paper can be used to provide spatially-improved estimates 444 

of LULC change and GHG emissions, particularly where the change occurs between 445 

LULC types with significantly different carbon stock values, such as between primary 446 

forest and plantation. For this to be most effective, there is a need for consensus 447 

building and harmonisation on how to develop a consistent and robust approach to 448 

assessing historic LULC change, to provide evidence for zero net deforestation 449 

commitments, and refine GHG assessments.  450 

We propose the following recommendations to improve LULC mapping for GHG 451 

emission estimates for agricultural commodities: 452 

Firstly, the LULC class definition should focus on LULC classes closely associated 453 

with the main drivers of LULC change in the AOI. This should include at least the 454 

following classes: primary & secondary forest, several types of plantation (where 455 

applicable), bare land and cropland. Global LULC datasets often use class definitions 456 

that are too broad or lack specific class distinctions important for GHG modelling. 457 

Additionally, class definitions of different LULC data sets should be more comparable. 458 

The FAO LCCS definitions are developed to be globally relevant and flexible enough to 459 



suit most environments [55]. The CCI classes are based on LCCS, it could be useful for 460 

other organisations involved in land cover mapping to adopt this system as well. 461 

Secondly and ideally, maps should be updated at least every 2-3 years, and annual 462 

updates would be preferable, to capture rapid changes, such as deforestation (fire or 463 

logging), bare land, and plantation development. 464 

Thirdly, to enable LULC change analysis over time, mapping methodology should 465 

remain unchanged (a period of 20-25 years is required for LCA). If, for example, better 466 

mapping algorithms are developed, such that the methodology can be improved 467 

significantly, it would be preferable to reprocess the historic data to the new 468 

methodology to maintain consistency. 469 

Fourthly, optimal spatial resolution is dependent on the requirements of the user; 470 

research on a provincial level can be done at lower spatial resolution than at smaller 471 

scale, for example at plantation level. For studies related to a specific agri-food industry 472 

it is often sufficient to focus on datasets with a spatial coverage of the main producing 473 

areas.  474 

Finally, metadata including quality and methodological information should be published 475 

with the datasets. 476 

When the three LULC datasets are compared against these recommendations, it is clear 477 

there is currently room for improvement. Signs of improvements are visible, as the 478 

recent reprocessing of the European Space Agency’s CCI Land Cover initiative has 479 

shown. As RS capabilities are advancing quickly and the importance of LULC change 480 

analysis is becoming better recognised, this is an excellent time to address these 481 

recommendations to make LULC data an even more valuable resource for 482 



environmental monitoring.  483 
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Tables 650 

Table 1 – Geographical extent and area of peat soil cover [19] and PO concessions [25] 651 

of the study areas 652 

Province 

Total area 

(ha) 

Peat soil 

area (ha) 

Peat 

(% of 

total 

area) 

PO 

concession 

area (ha) 

PO 

concession 

(% of 

total area) 

PO on 

peat soil 

(ha) 

PO on 

peat (% of 

total 

concession 

area) 

North 

Sumatra 7,243,839 347,925 4.8 132,538 1.8 61,203 46.2 

Riau 8,995,724 4,004,336 44.5 2,117,307 23.5 819,769 38.7 

Central 

Kalimantan 15,354,930 3,005,097 19.6 3,199,420 20.8 464,079 14.5 

  653 



Table 2 – Overview of LULC datasets used in this research 654 

Organisation 

Acrony

m 

Spatial 

resolution 

(m) 

Spatial 

extent  

Updates 

URL data 

repository 

European Space 

Agency (ESA) 

Climate Change 

Initiative Land 

Cover  

CCI 300 x 300  Global 

Annual 

between 

1992-2015 

http://maps.elie.ucl.

ac.be/CCI/viewer/ 

Centre for Remote 

Imaging, Sensing 

and Processing, 

Singapore 

CRISP 250 x 250 

Southeast 

Asia 

2000, 2010, 

2015 

https://ormt-

crisp.nus.edu.sg/or

mt/Home/Disclaim

er 

Indonesia Ministry 

of Forestry  

MoF 

30x30 (100 

x 100 used 

for this 

research) 

Indonesia 

1990, 1996, 

2000, 2003, 

2006, 2009, 

2011, 2012, 

2013, 2015 

http://www.greenp

eace.org/seasia/id/

Global/seasia/Indo

nesia/Code/Forest-

Map/en/index.html 
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Table 3 – Main contributors to LULC change for largest observed MoF LULC changes 656 

for all AOIs. 657 

AOI Period 

Total 

LULC 

change/yr 

(ha) 

Largest 

LULC 

change/yr 

(ha)  

From LULC class (t0) 

--> to LULC class (t1) 

% of 

total 

North 

Sumatra  

2006-2009 638,860 407,018 Dry Rice Land Mixed 

w/Scrub --> Dry Rice 

Land 

63.7 

Riau 2012-2013 1,118,233 726,066 Scrubland --> Dry Rice 

Land Mixed w/Scrub 

64.9 

Central 

Kalimantan 

2013-2015 1,237,019 274,672 Scrubland --> Dry Rice 

Land Mixed w/Scrub 

22.2 

 658 
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Table 4 – GHG emissions for three AOIs for 2000 - 2010/11, with % of emissions from 660 

mineral/peat 661 

Emissions per year (Mg C yr-1) and percent of total 

North Sumatra (4.8 % peat) 

  CCI (2000-2010) CRISP (2000-2010) MoF (2000-2011) 

Mineral 1,332,803 34.5 4,943,071 58.7 1,127,552 38.4 

Peat 2,526,168 65.5 3,473,117 41.3 1,807,528 61.6 

Total 3,858,971   8,416,188   2,935,080   

  

Riau (44.5 % peat) 

  CCI (2000-2010) CRISP (2000-2010) MoF (2000-2011) 

Mineral 9,533,167 33.2 11,784,303 28.7 4,812,749 17.2 

Peat 19,174,983 66.8 29,246,758 71.3 23,105,593 82.8 

Total 28,708,150   41,031,060   27,918,343    

  

Central Kalimantan (19.6 % peat) 

  CCI (2000-2010) CRISP (2000-2010) MoF (2000-2011) 

Mineral 6,699,626 62.3 14,791,021 55.9 8,275,277 61.7 

Peat 4,055,275 37.7 11,693,997 44.2 5,142,602 38.3 

Total 10,754,901   26,485,018   13,417,880   
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Table 5 – GHG emissions for three AOIs for 2010/11 - 2015, with % of emissions from 663 

mineral/peat 664 

Emissions per year (Mg C yr-1) and percent of 

total 

North Sumatra (4.8 % peat) 

  CCI (2010-2015) MoF (2011-2015) 

Mineral 491,500 47.8 3,450,122 80.3 

Peat 536,465 52.2 845,314 19.7 

Total 1,027,966   4,295,435  

   

Riau (44.5 % peat) 

  CCI (2010-2015) MoF (2011-2015) 

Mineral 4,055,092 32.12 6,200,630 27.1 

Peat 8,571,629 67.88 16,672,805 72.9 

Total 12,626,721   22,873,435   

  

Central Kalimantan (19.6 % peat) 

  CCI (2010-2015) MoF (2011-2015) 

Mineral 2,814,481 58.5 10,357,934 48.6 

Peat 1,994,610 41.5 10,941,092 51.4 

Total 4,809,091   21,299,027   
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Figure captions 683 

Figure 1 - The AOIs in Indonesia, with PO plantation concessions and peat soil areas 684 

indicated. 685 

Figure 2 - Data analysis workflow diagram  686 

Figure 3 – Best fitting mapcurve plots for North Sumatra (3a and 3d), Riau (3b and 3e) 687 

and Central Kalimantan (3c and 3f) for 2000 and 2015, respectively  688 

Figure 4 - LULC change in North Sumatra between 2000 and 2015 689 

Figure 5 - LULC change in Riau between 2000 and 2015 690 

Figure 6 - LULC change in Central Kalimantan between 2000 and 2015 691 

Figure 7 – Scatter plot LULC change estimates in all three AOIs in the period 2000-692 

2015 from CCI and MoF 693 

Figure 8 - GHG emission map of AOIs, based on MoF data for the period 2000-2015 694 


