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Abstract

This study investigates an early warning indicator for liquidity shortages
in the short-term interbank market. To identify structural breaks and their
persistence, an autoregressive two-state regime switching model is presented.
The variability in the LIBOR-OIS spread along with thresholds, which de-
limit four intensities, reveal regime changes consistent with liquidity crashes.
The transition between the states is state dependent, and the posterior es-
timates for the crisis and non-crisis states are estimated using the Gibbs
sampler. We forecast our early warning indicator up to December 2011 and
show that the estimates are superior to a random walk with drift. Therefore,
the model is an effective early warning indicator of an imminent liquidity
shortage impacting the interbank market.

Keywords: Early warning indicator, Interbank market, Liquidity crises,
Regime switching, Bayesian
JEL classification: C11, F37, G01

1. Introduction

The financial crisis of 2007-08 is recognised to be the worst crisis since the
Great Depression of the 1930s and as a result, liquidity risk in the interbank
market has gained increased attention. There is widespread agreement that
the two main causes of the 2007-08 credit crisis were inadequate liquidity
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buffers held by banks and lax regulation in the financial system. However,
there is a view that the trigger point was a decade earlier, when the US Trea-
sury lowered interest rates to a previously unseen level and kept them there
for a prolonged period of time (Economist, 2013). From a monetary policy
perspective, the focus was on maintaining low consumer price inflation while
ignoring the widespread development of asset price inflation. Consequently,
excess liquidity built up in the financial system. This coupled with lack of
prudent liquidity measures and prompt reactions led to financial instability.

The Global Financial Crisis was a black swan event, as neither the aca-
demic finance community nor finance industry anticipated it. In light of
the 2007-08 liquidity crisis, our study investigates whether there was an
early warning signal before the crisis erupted. More precisely, the analy-
sis is concerned with revealing whether the short-term interbank spread (US
LIBOR-OIS) can predict crises, and consequently what are the implications
for liquidity risk management. Financial crises are characterised by depth
and have their own accelerating moments. To avoid contraction of market
activity, sound liquidity management should be in place and thus in times
of financial distress pivotal actions can be taken. Measuring liquidity risk is
a prerequisite and consequently early warning indicators should be part of
sound liquidity management strategies. Triggers, perceived as risk indicators,
are explicit early warning signs for each phase (determined by an arbitrary
threshold) in a liquidity crisis.

To address the above issues, a regime switching model is proposed which
provides the probability of being in a liquidity crisis state at any given in-
stance.3 The model is assessed using the daily US LIBOR-OIS spread for a
period of 10 years. Responding to the first signs of financial distress is criti-
cal in preserving financial stability. The thresholds set in our models signal
liquidity deterioration and trace how liquidity risk intensifies into a financial
crisis. More precisely, by using four thresholds of different intensities, the
depth of financial crises is established.

The US LIBOR-OIS spread can be used to evaluate the health of banks,
as it mirrors the risk linked with lending to other banks. As Alan Greenspan
argues, the LIBOR-OIS spread remains a barometer of alarm for bank in-
solvency, and increased spread levels point to difficulties in the banking in-

3Such models are successfully used in business cycle models, however they have not as
yet been applied in the liquidity risk and financial crises literature.
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dustry (Thornton, 2009). Greenspan goes further to claim that variations
in the LIBOR-OIS spread reveal changes in risk premiums rather than in
liquidity premiums, which in turn mirrors banks’ need for liquidity. Con-
trarily, Hui et al. (2011) argue that the LIBOR-OIS spread mainly reflects
funding liquidity risk in the interbank market and is used for measuring fund-
ing liquidity conditions. The spread includes counterparty-risk premia which
originate from the market’s perception of a counterparty’s ability to repay an
interbank loan. Moreover, the spread contains a significant and time-varying
funding liquidity element (McAndrews et al., 2008).

Most empirical studies are linear in nature and are not able to capture
non-linearities which are particular to circumstances surrounding financial
crises (Baba et al., 2008; Schwarz, 2014; Mistrulli, 2011; Upper, 2011; Gor-
ton and Metrick, 2012). Therefore, our study contributes to the empirical
literature in several ways. The literature that investigates regime changes
in financial markets is very limited and no theory exists for financial crises.
Thus, the present study presents a two-state regime-switching Markov chain
model which has a predictive quality and is able to identify several crises
in the money market spread. The set thresholds can warn of liquidity risk
escalation within the interbank market, suggesting that the early warning
indicator presented in this study can contribute to a sound liquidity manage-
ment strategy. Also, the literature does not discuss models which are able
to forecast financial crises ex-ante. Moreover, the literature which investi-
gates financial crises initiated by liquidity risk looks at short time intervals,
whereas our study covers the period January 2002 to December 2011 in order
to reveal several crises and at the same time assessing their dynamics. The
models presented in this paper successfully identify liquidity crashes with
various intensities, while our out-of-sample forecasts provide superior esti-
mates compared to the estimates of a random walk model. To the best of
our knowledge, there is no such study found in the financial crisis or interbank
market literature.

The paper is organised as follows. Section 2 surveys the literature, while
the methodology and data are discussed in Section 3. Section 4 contains
the empirical analysis while section 5 presents the conclusions.

2. Literature Review

Broadly, there are three major strands of empirical literature analysing
liquidity crises. One refers to the market microstructure of interbank mar-
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kets, while looking at trading behaviour of high frequency data, such as
Hartmann et al. (2001), Dańıelsson and Saltoğlu (2003), Frank et al. (2008)
and Baba et al. (2008). Another focusses on measuring and assessing liq-
uidity risk, such as Brunnermeier (2009), Schwarz (2014), Brunnermeier and
Oehmke (2012), Gorton and Metrick (2012), Mistrulli (2011), Zhou and He
(2012), Min and Hwang (2012) and Carpenter et al. (2016), while a lim-
ited number of studies adopt regime change and Markov models, such as
Dahlquist and Gray (2000), Ang and Timmermann (2011) and Guo et al.
(2011). The literature investigating the financial crisis of 2007-08 focuses
primarily on the analysis of liquidity and credit risk indicators, and decom-
position of spreads into credit and liquidity components, revealing which
component had a larger influence on widening of the short-term interest
rate spreads. Yet, for the period that follows the financial crisis of 2007-08,
the majority of studies focus on decomposing spreads into risk components
prevalent in bringing down institutions and financial markets.

The early warning literature which focuses on predicting currency and
banking crises before the year of 2000 employs a leading indicator approach
(Kaminsky et al., 1998; Kaminsky and Reinhart, 1999; Goldstein et al., 2000),
whereas the post millennium literature uses predominantly a logit/probit
based estimation. The identified crises in these studies are matched against
World Bank and IMF bank crisis databases (Caprio et al., 2012; Laeven
and Valencia, 2012). Some studies correct for post-crisis bias by proposing
discrete-dependent-variable methods with the aim of reducing false crisis
warnings as well as revealing ignored crisis periods; such are Demirgüç-Kunt
and Detragiache (1998) who drop crisis and post-crisis observations (besides,
the literature follows the method of dropping significant observations), while
Bussiere and Fratzscher (2006) use a three-state multinomial approach on
restricted time intervals to assess the power of economic fundamentals in
predicting pre-crisis, crisis and end-of-crisis periods.

Bauer et al. (2007) study the forecasting power of past early warning sys-
tems (EWS) considering the high occurrences of Type I and Type II errors.
Considering that causes and effects are exclusive for each type of crisis, the
predictive power of EWS’s can be enhanced if debt-currency crises (namely
“twin crises”) are classified as a separate crisis category. Barrell et al. (2010)
use capital adequacy and liquidity ratios, house prices along with standard
indicators used in previous studies (Demirgüç-Kunt and Detragiache, 2005;
Berg et al., 2005) to detect banking crises and argue that banks with high cap-
ital adequacy and liquidity ratios reduce crisis occurrences, while increased
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house prices contribute to sub-prime episodes. Using the data of Kaminsky
and Reinhart (1999) and Demirgüç-Kunt and Detragiache (2005), Davis and
Karim (2008) assess the performance of EWSs for banking crises and argue
that multivariate logit models are better for designing global EWSs, whereas
signal extraction approaches work better for country-specific EWSs. Lang
and Schmidt (2016) review leading indicators of banking crises by combining
an event study approach with a fan chart and find that accounting for the
interaction between broad liquidity ratio and demand deposits improves out
of sample forecasts.

An issue with studies based on indicator variable approach is that the
binary signal, which crosses an arbitrarily chosen critical threshold, greatly
influences the documentation of false crisis occurrences. On the other hand,
logit models lack significant components which have the power of describing
the severity, persistence and subtleties of time-varying parameter estimates.
Moreover, most of the above studies argue that crises are self-fulfilling, how-
ever none attempt to identify the endogenous factors that contribute to the
self-fulfilling process.

3. Methodology

Our model builds on an approach implemented by Mart́ınez-Beneito et al.
(2008) who develop a two-state regime-switching Markov model to detect in-
fluenza epidemics at the moment of their onset. Our model explores the
probability of a financial liquidity crisis developing in the short-term inter-
bank money market. The structure of the model allows for discrete shifts
in the mean and for autoregressive dynamics to better illustrate liquidity
crashes. In this way, the model is representative of a real world set-up which
describes economic and financial time series in turbulent times. As opposed
to Mart́ınez-Beneito et al. (2008) who use first differences of the series, the
analysis presented in this paper uses the raw data (as stationarity is not a re-
quirement for Bayesian empirical analysis) and thus it maintains the unique
characteristics of the short-term interbank spread.

3.1. Data

The data used in this analysis is the daily closing US LIBOR-OIS spread
obtained from Bloomberg. The time series contains 2609 observations span-
ning the interval 1st of January 2002 to 30th of December 2011.
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The London Interbank Offer Rate (LIBOR) is used as a reference rate
in financial contracts all over the world and is the rate at which banks and
institutions of similar size agree to lend to each other. The rate is paid
on unsecured interbank loans of various short-term maturities. Fundamen-
tally, a bank with surplus cash credits a bank in need for an agreed time
period. Increases/decreases in LIBOR rates are caused by banks calling
for greater/lesser compensation in case of default risk on their loans. The
Overnight Interest Swap (OIS) rate is the rate of the derivative contract on
the federal funds rate, and in usual market circumstances is generally several
basis points below the LIBOR rate. In the OIS contract, the interest rate
swap’s floating leg, which is the federal funds rate, is exchanged for a fixed
interest rate. The cash-flow consists of the difference between the two rates
exchanged at maturity, and therefore the contract is riskless, as there is no
principal involved in the exchange. The present value of the floating rate is
calculated generally by taking the geometric average over the length of the
contract. The federal funds rate is seen as a good indicator of the health of
the short term interbank markets, since it bears no risk compared to tradi-
tional interest rate spreads. Moreover, in turbulent market conditions, the
LIBOR-OIS spread is a good indicator of risk premiums as a result of credit
risk and funding liquidity risk.

During the financial crisis of 2007-08, the spread varied persistently around
record high levels until the announcement of Lehman Brothers’ collapse.
Since then, for the period of investigation, the spread level continued to fluc-
tuate, however it did not stabilise relative to its pre-2007 level. Our results
reveal that the US LIBOR-OIS spread is a good indicator of financial insta-
bility. For the interval January 2010 to January 2012, the European Central
Bank bailed out Ireland once and Greece twice. Interestingly, all these three
events were reflected in the US LIBOR-OIS spread movements over that time
period.

3.2. Model specification

Constructing a regime switching model with state dependent probabilities
results in a parsimonious model with very few assumptions. The structure is
characterised by a hidden two-state Markov chain of order 1, meaning that
the future state (or regime) will only depend on the present state. Essentially,
the data is modelled as partly observed as the states are latent and the
LIBOR-OIS spread and the final output is observable, which is conditional
on the state variable and time.
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The following equation describes the LIBOR-OIS spread and also sum-
marizes the assumed data generating process. Yt corresponds to a stochastic
process and the model contains an autoregressive component, as follows:

Yt = ρ Yt−1 It + εt (1)

where t = 1, 2, . . . , T represents the number of observations in the series, in
this case 2609, and ρ is the autoregressive coefficient.4 Furthermore, it is
assumed that:

Yt ∼ N(µt, τt) (2)

where the time and state dependent τ is the precision parameter and corre-
sponds to τ = 1/σ2.

The It is the binary (dummy) indicator which can take the following
values:

It =

{
1, if there is crisis in the short term money market;
0, if there is no crisis in the short term money market.

(3)

Furthermore, it is also assumed that the LIBOR-OIS spread is directly
observable and its dynamics change in line with the value of the crisis vari-
able, that is with It. Fundamentally, the change from one state to another
will be a function of the LIBOR-OIS spread and its lag, as indicators. The
state variable (It) is latent and is supposed to progress corresponding to a
first-order Markov chain with transition probabilities controlled by a set of
covariance-stationary exogenous variables (Gelman et al., 2013).5

There are two error terms in the system of equations, one corresponding
to the non-crisis and the other to the crisis equation. The error terms must
satisfy the following:

ε0t ∼iid N(0, σ2
0,t) (4)

4The rationale of using an autoregressive model for estimation comes from the work of
Akaike (1969).

5The exogenous variable can take the form of an external shock such as a new macroe-
conomic policy rule or an announcement made by a leading investment bank, for example.
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ε1t ∼iid N(0, σ2
1,t − σ2

0,t) (5)

with

σ2
1,t − σ2

0,t > 0 (6)

This last assumption is due to the fact of random variations in the data
(Mart́ınez-Beneito et al., 2008), and not due to the effect of a financial crisis,
for example. Also, it is assumed that the two error terms are not correlated.

The model presented in Equation 1 makes posterior inference about
the ‘true’ crisis time θ. Theta is paired with a set of explanatory variables
X1, X2, . . . XT (in this case µ, τ , λ1, λ2 and I) with the aim of stating the link
function and the ultimate structure of the model (Kim and Nelson, 1999).
The model estimates the posterior parameter values that enclose both priors
for all the parameters of the model and observed data information.6

The system consists of the state space, the combined parameter vector,
the regime matrix describing the probabilities of individual transitions and
an initial state. The aim is to infer the posterior distribution given the fluc-
tuation in the LIBOR-OIS time series. It is assumed that the initial state of
the system is a non-crisis one. As t → ∞, the unconditional distribution of
X t+1 converges to an exclusive stationary distribution. The marginal distri-
butions, parameters and two regimes (crisis and normal times) are estimated
using the Gibbs sampler, which is a randomised system where iterations
are being run and are continuously revised.7 The rationale of adopting the
Gibbs sampler is the appealing fact that convergence is achieved accurately
and quickly, regardless of the dimension of the coefficient vector which is
estimated. Following the specification of an arbitrary set of starting values
- which is not compulsory - and running a fairly large number of iterations,
marginal distributions are estimated by convergence to the true joint density
value.

6The interested reader can find information on how the prior distributions of the vari-
ables, likelihood function, sampling, posterior distribution and state probabilities are cal-
culated in Appendix A and Appendix B.

7The Gibbs sampler introduced by Geman and Geman (1984), is an updating process
of an iteration with values that have been drawn from a system. The individual full
conditional distribution is governed solely by some “neighbourhood subset of variables”.
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We run four models (see Table 1) to determine which one provides with
superior estimates. The ultimate aim is to reveal the dynamics of the US
LIBOR-OIS spread and show if it can act as an early warning indicator inside
a liquidity management strategy to predict and mitigate liquidity crashes.
The equation of Model 1 does not contain a constant, and for all models the
regime changes occur in the mean. The autoregressive coefficient ρ and the
constant is allowed to vary within set intervals, as shown below. In Model 4,
changes in the constant are attributed to changes in the variance.

Table 1: Model characteristics for Model 1, 2, 3 and 4.

Model M1 M2 M3 M4

constant in the equation no yes yes yes

regime switch mean mean mean mean

variations in the constant no no no yes

ρ [0, 1.2] [ 0, 1.2] [0, 1.5] [ 0, 1.5]

constant - [ -40, 40] [-400, 400] [-400, 400]

3.3. Model validation and selection

In a Bayesian setting, one is expected to centre a comparative scale on
the posterior distribution of the deviance, or to use Bayes factors, namely
the Bayesian Information Criteria (BIC).

The Deviance Information Criteria (DIC) (Spiegelhalter et al., 2002) is a
test of absolute fit, and is consequently used to validate and select the best
model out of the four presented later.

Essentially, the DIC is a generalisation of the AIC and is calculated by
the following expression:

DIC(m) = 2D(θm,m)−D(θm,m) = D(θm,m) + 2pm (7)

where D(θm,m) is the deviance measure (as a function of θ) given by:

D(θm) = −2 log p(Y |θ) (8)
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θm is the posterior mean of the coefficients of the model m and p represents
the number of efficient parameters in the model, given by:

pm = D(θm,m)−D(θm,m) (9)

The use of the DIC is fairly simple. For the reason that all four models are
autoregressive, one does not have to perform stepwise elimination of variables
from the regression equations. After running 10,000 iterations, estimated
posterior distributions of parameters are reported and the DIC is obtained.
A low DIC is preferred over a high value.

3.4. Forecasting the short-term interbank spread

Forecasting crises in the LIBOR-OIS spread is undeniably valuable to fi-
nancial institutions and policy makers; it enables to identify difficulties and
risks in the money market and make adjustments to avoid or mitigate chal-
lenges and threats caused by amplified volatility and persistent uncertainty,
which can destabilise the financial system and eventually cripple the wider
economy. The aim is to show that the US LIBOR-OIS spread possesses the
features of an early warning indicator.

Let Y represent the LIBOR-OIS time series of T sample realisations of
a random process for the period t = 1, 2, . . . , 1399; Y = [y1 y2 . . . y1399]ᵀ.
Therefore, the first 1399 observations of the LIBOR-OIS spread series are
used to forecast the subsequent period, which includes the financial crisis of
2007-08 and the Eurozone crisis that followed. The last observation of t (on
the timescale 1, 2, . . . , 1399) corresponds to 11th of May 2007, when there
were no apparent signs (such as official announcements) of a liquidity crash
in the short-term interbank market in the US nor in the Eurozone market.
Now let Y p represent a vector of future observations of the LIBOR-OIS time
series; Y p = [yT+1 yT+2 . . . yT+q]

ᵀ.

p(Y p|Y ) =

∫
Θ

p(Y p, θ|Y ) dθ =

∫
Θ

p(Y p|θ,Y ) p(θ|Y ) dθ (10)

Essentially, the predictive probability distribution of Y p is conditional on
the 1399 observations. The model forecasts the next 1210 observations using
the Gibbs sampler.

The model estimates are compared to estimates of the random walk model
with drift which is a special case of the AR(1) model. The main question we
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ask: does our model have a superior predictive power in forecasting financial
crises compared to that of a random walk model?

The random walk model is defined as follows:

Yt = α + βYt−1 + ut (11)

where Yt is a non-stationary process with the coefficient β = 1, α is the drift
component and ut is a white noise process.

To assess the accuracy of the estimates, the estimated standard errors of
the two models are compared. In Bayesian estimation, the standard deviation
of the mean and the Monte Carlo standard errors are used to gauge the
precision of a model. These two criteria depend on the number of simulations
executed as well on the number of observations used. By measuring the
variance of the asymptotic distribution within a valid confidence interval,
one can actually estimate the Monte Carlo standard error, which in turn
evaluates the precision of the point estimate (Flegal et al., 2008).

4. Results

Figure 1 shows the behaviour of the LIBOR-OIS spread over the pe-
riod January 2002 - December 2011. As opposed to simple Markov chains
where the states are observable, in this analysis the crisis and tranquil states
are latent. By implementing a two-state Markov regime switching method,
the models presented below segment the LIBOR-OIS spread into crisis and
non-crisis intervals. To make our results more informative, we use thresh-
olds to reveal four intensities in the LIBOR-OIS spread fluctuations. Let
Y = {Yt; t= 1, . . . , 2609} represent the time series running from 1st January
2002 to 30th December 2011. In the next subsections four models are pre-
sented (see Table 1 for a summary of the models). As a prerequisite for
latent Markov chain models, the starting state must be determined from the
outset. Therefore, for all four cases, it is assumed that at t = 1 the system
is in a non-crisis state. To forecast the crisis and non-crisis periods, a binary
state indicator variable It is included in the regression equations. For all
the models, the first 1,000 iterations (corresponding to the burn-in period)
are discarded, then a further 10,000 samples are run. The resulting pro-
jected densities are plotted and visually inspected. Interestingly, after only
2000 samples, the desired marginal distributions converged to their expected
stationary values.
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Figure 1: Behaviour of the daily US LIBOR-OIS spread for the period 1st January 2002
to 30th December 2011.

4.1. Model 1 (M1)

The model below assumes that the regime switch occurs only in the mean.
As explained earlier, the innovations follow a Gaussian normal distribution
with zero mean and variance σ2

0,t and σ2
1,t, respectively. The explanatory

variable is the observed autoregressive component which is state and time
dependent. There is no constant included in the equation. The state pa-
rameter follows a categorical distribution and can take the values 0 and
1. The transition parameters follow the Beta distribution, whereas the re-
maining parameters follow a univariate probability distribution. For values
t = 2, . . . , 2609, the expected mean is determined as follows:

E(Yt) = ρ Yt−1 It,2 + εt (12)

where εt is a white noise error. Considering that the process in a crisis period
is assumed explosive, the autoregressive coefficient ρ is arbitrarily set to take
any value between [0,1.2]. τ is the precision parameter satisfying τ = 1

σ2 ;
thus, τ is the inverse of the variance. The minimum value of the spread is
at 1.91 and the maximum is at 364.43 (see Figure 1). The values of the
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hyper-parameters a and b in Equations B.6 to B.11 (see Appendix 2) are
fixed at 0 and 370 respectively.

4.2. Model 2 (M2)

A constant (intercept) is included in the equation; this ensures that the
residuals are mean reverting. The interval of the autocorrelation coefficient
ρ is limited to vary between [0,1.2] and the constant is allowed to vary in the
interval arbitrarily set at [-40,40].

E(Yt) = α + ρ Yt−1 It,2 + εt (13)

4.3. Model 3 (M3)

The difference between Model 2 and Model 3 is that the autoregressive
coefficient and the constant are allowed to vary in the interval [0,1.5] and
[-400,400] respectively. It is expected that larger intervals for the autoregres-
sive coefficient and constant would better support the model in identifying
crises more accurately over the 10 year period of analysis.

4.4. Model 4 (M4)

In this model, variations in the level are attributed to changes in the
variance, while the mean changes regimes, as follows:

E(Yt) = α τt + ρ Yt−1 It,2 + εt (14)

Both the time dependent constant and noise terms for the two regimes follow
a univariate distribution. Similarly to Model 3, the autoregressive coefficient
and the constant can vary in the interval [0,1.5] and [-400,400] respectively.

Table 2 presents the posterior parameter estimates and their 95% credible
interval for the four models described above. A single chain of simulations
with 10,000 iterations was run, as this proved sufficient for the posterior
parameters to converge to their true value. Figure 2 graphs the “crisis”
parameter with the two periods for the four distinct models. The simplest
model, represented by Model 1, identifies eight crises. As it can be seen in
Figure 4, where Model 1’s crisis output is mapped, the regime estimates are
close to or equal to 1 - in the case of a tranquil phase -, and they are close to
or equal to 2 - indicating a crisis phase. All values equal to or above 1.5 are
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considered to correspond to a crisis state. It appears that different types of
crises are mirrored in liquidity crises observed in the interbank market. Such
is the Tech Market Crash of 2000 and the Stock market crash of 2002. The
high unemployment rate perceived in the US in 2002-2003 and the Iraq War
also affected the money market. The Global Financial Crisis was instigated
by liquidity crisis, whereas the European debt crisis was a direct consequence
of the credit crunch (as acknowledged by academics and the industry).

If a constant is added to the equation as is for Model 2 and 3 (see Figure
2), there is a short period from end of 2003 to the beginning of 2004 where
the models perceive some disturbance in the money market, however it did
not materialise in a crisis. If changes in the level are allowed to be affected by
the variance while the mean is changing regimes, such as in Model 4, for the
period ranging from 1st January 2002 to 30th December 2011, 12 crises are
identified. Unquestionably, most of these are false crisis occurrences pointing
to an over-reacting model.
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Figure 2: State prediction for Model 1, Model 2, Model 3 and Model 4 versus time for the
period 1st January 2002 to 30th December 2011.

The estimated parameters efficiently characterise the dynamics of the two
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Table 2: Estimated parameter values, regime change probabilities and DIC values.

Parameters M1 M2 M3 M4

θinf 1.69 1.665 1.923 0.802

95% interv. [0.1316,2.707] [0.1281,2.783] [0.1382,2.98] [0.05109,2.223]

θmed1 4.015 3.897 4.323 1.828

95% interv. [2.694,7.192] [2.454,7.014] [2.622,7.218] [0.9262,3.621]

θmed2 6.462 6.382 7.046 2.985

95% interv. [3.378,8.562] [3.342,8.534] [3.427,8.61] [1.407,4.685]

θsup 75.79 72.43 73.25 63.08

95% interv. [8.674,330.6] [8.594,325.3] [8.6,327.1] [3.924,320.5]

ρ 0.4291 0.9049 0.9048 0.9959

P0,0 0.9948.5 0.9948 0.9951 0.9821

P0,1 0.00515 0.005186 0.004942 0.0179

P1,0 0.00838 0.008771 0.008257 0.006261

P1,1 0.9916 0.9912 0.9917 0.9937

DIC 1798 1716 1767 1881

states, and for Models 1, 2 and 3 the estimated intervals correspond accu-
rately to the dating of identified crisis and non-crisis periods. Liquidity crises
identified by the models centred on the dynamics of the LIBOR-OIS spread
perfectly match crises observed from 2002 to the beginning of 2012 (see Fig-
ure 4). This suggests that the LIBOR-OIS spread not only evaluates the
health of banks and financial stability, but that of the entire economy.

By defining the transition probabilities and thresholds θinf , θmid1, θmid2

and θsup, the model also explains the likely mean values of spreads being
in an inferior-, lower-mid-, upper-mid- and superior phase (see Figure 3).
The thresholds are not fixed, and therefore the models define crises in the
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Figure 3: The estimated mean for the US LIBOR-OIS spread with the superior crisis
threshold in red (θsup) at value 72.43 and the upper medium crisis threshold in orange
(θmed2) at value 6.382 denoting the depth of crises for Model 2.

LIBOR-OIS spread with two different intensities; for example, as seen in
Table 2, the 95% credible interval for θmid2 corresponds to a low intensity
crisis, whereas θsup corresponds to a high intensity crisis period and liquid-
ity risk contagion within the financial market is likely to occur, eventually
leading to financial crisis. With a 95% confidence level, the posterior mean
representing crisis level θsup for Model 2, has a value of 72.43 and falls within
the interval [8.594, 325.3]. Thus, observations that take values within this
interval are assumed to correspond to a crisis period. On the contrary, values
in the interval θinf = [0.1281, 2.783] correspond to tranquil periods. When
the values of the LIBOR-OIS spread are around 3.897 (which is the mean
value for θmid1), precautionary measures could be taken by institutions, for
example, to mitigate liquidity risk.

The autoregressive coefficient has near unity value for Models 2,3 and 4.
The financial crisis of 2007 had an impact on the parameter estimates since it
translates into explosive jumps in the spread, and for the period August 2007
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to June 2009 the estimated mean values are continuously in the crisis state.
We argue that explosive spread rates are associated with crisis time, and low
spread values with non-crisis periods. There are clear breaks between the cri-
sis and non-crisis phases as seen in Figure 2 and these correspond to regime
switches. For all four models, the transition parameter estimates show that
there is a high probability to be in a non-crisis state if the previous state was
also a non-crisis one (see the P0,0 values, for example in Table 2), exhibit-
ing 99% probability for the first three models, and 98% probability for the
fourth model. Similarly, a crisis state is more likely to be followed by a crisis
state, as picked up by the transition estimates P1,1, for example with 99%
probability for all four models. This is consistent with the volatility cluster-
ing phenomenon seen in time-series during turbulent times. The transition
estimates for P0,1 and P1,0 indicate the probability of regimes switching from
tranquil to crisis and from crisis to tranquil periods, correspondingly. As
expected, these take very low values (less than 0.1%), conveying that during
tranquil periods, the probability of an intensified liquidity crisis emerging
within the money market is extremely low; similarly, if the money market
is in the mids of financial distress , the probability of swift calming is very
low. It takes rather a prolonged period of time for markets to stabilise after
a financial crisis.

The DIC is lowest for Model 2 with a value of 1716. Model 1, 3 and 4
had values of 1798, 1767 and 1881, respectively. Thus, it can be concluded
that Model 2 performed best. Visual inspection of Figure 2 corroborates the
findings and shows that Model 2 identifies the crises periods more accurately
than the other three models.

4.5. Out-of-sample forecasting to detect liquidity crises

We use Model 2 to predict the mean values for the period May 2007
- December 2011. To ensure convergence when estimating the forecasted
values of the US LIBOR-OIS spread, the first 1000 iterations are discarded
and further 10,000 number of iterations are run; the decision on how many
iterations are needed is based on the Gelman-Rubin diagnostics (Gelman and
Rubin, 1992). The standard deviation of the mean (also known as standard
errors) and Monte Carlo errors were obtained.

Figure 5 maps our Forecasting model predictions, the random walk with
drift estimates and the LIBOR-OIS time series and shows that the forecasts
are closer to the values of the LIBOR-OIS spread than the random walk
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Figure 4: Timeline with the crises identified by Model 1.
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versus the LIBOR-OIS spread.
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model estimates. To determine the reliability of predicted values, the stan-
dard errors are examined. At 95% confidence interval, the posterior standard
error of the mean estimate for our model is 0.011, whereas the point estimate
of the standard error for the random walk model is 0.0356. Based on both
the mean estimates and standard error values, we argue that our forecasting
model performs better than the random walk model, as it improves on the
forecast that the US LIBOR-OIS spread will be the same tomorrow as it is
today.

5. Conclusions

This study traces liquidity crises in the daily US LIBOR-OIS spread em-
ploying an autoregressive Markov regime switching model and determines
the length of such turbulent periods. The above regime switching model
has only a mean specification and assesses the period of 1st January 2002
to 30th December 2011. Gibbs sampling, the algorithm behind the Markov
chain Monte Carlo method, is used to estimate posterior mean probabilities
of regime changes. The posterior distribution is the foundation for statistical
interpretation and decision-making. After every single draw, the conditionals
of the parameters (β|Y, for example) were updated. 10,000 identically and
independently distributed samples were obtained. Figure 2 provides evidence
of the properties of probabilistic inference of posterior parameters by clearly
depicting crisis and non-crisis phases in the time series. By using thresholds
(θlinf , θmed1, θmed2 and θsup) the model can clearly delimit the two states
in the time series. Detecting financial crises while they develop is essential,
as contagion rapidly propagates liquidity shocks across interconnected finan-
cial markets. The consequences of such phenomena are manifested by the
2007-08 financial crisis, which had a devastating effect on several economies,
triggering a prolonged and painful recession.

The model can predict the moment a liquidity crisis is about to strike with
a high probability, and it is able to measure the persistence of crisis and non-
crisis periods. The results fully support the fact that the interbank money
market was in financial distress at least eight times for the analysed period
including the financial crisis and the Eurozone crisis that followed. Compared
to the approach of Kaminsky and Reinhart (2000) for example, who use
the three standard deviations above the mean to classify the observations
into crisis and non-crisis periods, this analysis uses a much more realistic
approach to gauge the turbulent times for the analysed period. The mean
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and its standard deviation can only be representative of the data if it is
normally distributed. However, as it has been demonstrated many times in
the literature, asset prices and economic and financial rates are characterised
by extreme lows and highs in times of financial or economic distress and
therefore in such circumstances one cannot use standard econometric models
to investigate market fundamentals. Our forecasting model yields superior
posterior estimates compared to the estimates of the random walk model.
Thus, the presented model is a first step and has the potential to benefit
policy makers and institutional players alike. Bayesian inference proves to
be very effective in estimating crisis and non-crisis regimes in short-term
financial series. The main significance of the findings is that they can be
used as a basis to develop an early warning system to detect liquidity shocks
within the interbank market.

Appendix A. Probability distribution and Bayesian learning in the
crisis/non-crisis scenario

Assume a normally distributed stochastic process with Θ being the set of
parameters to be inferred, as follows:

Y ∼ N(Θ) (A.1)

and

Θ = h(θ,X1, X2, . . . , XT ) (A.2)

where X1, X2, . . . , XT are iterations of the coefficients to be inferred.
Let θ be the event that the times series of interest is in a state of financial

crisis. Values of θ fall between 0 and 1. The likelihood function comprises
all the information fed by the sample and is determined by the equation

p(Y |θ) = θY (1− θ)n−Y (A.3)

with Y = 0, 1, . . . , n. The evidence is determined by:
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p(Y ) =

∫
p(Y |θ) p(θ|Y ) dθ (A.4)

Therefore, the posterior distribution can be written as follows:

p(θ|Y ) =
p(Y |θ) p(θ)

p(Y )
(A.5)

In other words, it now follows from Bayes’ theorem that:

p(crisis|data) =
p(data|crisis) p(crisis)

p(data)
(A.6)

The probabilities related to various state changes are determined by:

Pk,l = P (It+1 = l|It = k) (A.7)

where k, l ∈ 0, 1, t = 0, 1, . . . , T . The equation tells us that the probability
that the state variable I, for example, is in crisis in period t + 1 given that
I was equal to k in the previous period. Consequently, the model has four
transition probabilities, which can be written in a matrix form, as follows:

P =

(
P00 P01

P10 P11

)
(A.8)

The conditional probability distribution of the data given crisis and non-crisis
intervals, that is, the probability distribution of the data when the indicator
variable is known to take the value of 0 or 1, are defined as follows:

Yt|It = 0 ∼ N(0, σ2
0,t) (A.9)

Yt|It = 1 ∼ N(ρYt−1, σ
2
1,t) (A.10)
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The full conditional distribution is the distribution of the coefficients depen-
dent on the known information and all the other coefficients (Lunn et al.,
2013). In the non-crisis state (I = 0) the dependent variable follows a stan-
dard normal distribution with constant variance, whereas in the crisis state
(I = 1) the variance changes persistently and increases with time. Further-
more, it is assumed that in crisis time, the dependent variable follows an
autoregressive process of order 1 with first-order autoregressive coefficient ρ.

Appendix B. Priors, likelihood estimation and Gibbs sampling

The model is a typical hierarchical model (see Figure B.6). The pa-
rameters of the vector Θ follow prior distributions with the aim to handle
uncertainties attached to predictions of crisis and non-crisis states. The prior
distribution should contain all likely values of parameters which are to be es-
timated.

The latent state variable θ follows a categorical distribution, which is the
generalisation of the Bernoulli distribution, and can take two values: 1 if
there is a crisis state and 0 if there isn’t:

θ ∼ Cat(P ) (B.1)

The uniform (or noninformative or symmetric) distribution of the latent
variable ρ (which represents the autocorrelation coefficient), for example, is
found within some boundaries as a→ −∞, b→∞:8

ρ ∼ Unif(a, b) (B.2)

where a and b are the minimum and maximum values (boundaries) of the
distribution, and the condition b > a must be satisfied.

8The uninformative prior is characterised by a flat, vague and/or dispersed density, and
so statistical inference is not influenced by information which is external to the data being
analysed (Gelfand et al., 1990). Moreover, the distribution is not expected to be focused
around the real or ‘true’ value, considering that information about the latent parameters
comprised in the data will out-shadow any rational prior probability specification (Gelman
et al., 2013).
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The transition probabilities P11 and P00 are assigned the Beta distribution
with values in the range of [0, 1].

P11 ∼ Beta(0.5, 0.5) (B.3)

P00 ∼ Beta(0.5, 0.5) (B.4)

To the remaining parameters of the model a uniform prior distribution is
allocated over a range of values determined by thresholds, as follows:

The two lambdas describe the two volatility levels seen in the LIBOR-
OIS spread fluctuations and both have two levels determined by thresholds
depicted in Figure B.6.

ρ ∼ Unif(0, 1.5) (B.5)

λ1 ∼ Unif(θinf , θmed1) (B.6)

λ2 ∼ Unif(θmed2, θsup) (B.7)

The prior distributions for the four thresholds are defined as follows:

θlow ∼ Unif(a, b) (B.8)

θmed1 ∼ Unif(θlow, b) (B.9)

θmed2 ∼ Unif(θmed1, b) (B.10)

θsup ∼ Unif(θmed2, b) (B.11)

For example, the threshold parameter θlow has a prior which is uniformly
distributed with the lower and upper limit a and b as the hyperparame-
ters, whereas the threshold parameter θsup has a prior which is uniformly
distributed between θmed2 (representing the upper medium threshold) and b
(which is the upper level of the LIBOR-OIS spread observations).

Considering the crisis and non-crisis problem, the values of the hyper-
parameters a and b must be determined. a can be set to the lowest value
of all observations (the minimum and maximum values for the LIBOR-OIS
series is 1.93 and 364.43, correspondingly), however for simplicity it is set to
0, while the value of b is set to 370. The random variables are thus equally
likely to take any values between a and b. The probability of being in crisis
or tranquil state is 50%.
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Figure B.6: Hierarchical structure of the two-state Markov regime switching model pre-
dicting crisis and non-crisis states. There are four thresholds, which show the escalation
of liquidity risk within the interbank market.
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The Gibbs sampler proposed by Geman and Geman (1984) generates and
predicts an array of forecasts from the joint density which then classifies the
data into crisis and non-crisis periods. The algorithm begins with arbitrary
initial values (for the elements of the parameter vector Θ) set by the system
itself. Based on the fact that the Yt process is explosive due to varying
dynamics of the data, the crisis state is modelled as an autoregressive process.
In the model specification, the values of ρ are set to have a lower boundary
of zero and upper boundary of 1.5. The non-crisis state is described by a
Gaussian white noise process and the noise terms εt can take values between
0 and 370 (these values are the minimum and maximum values in the actual
dataset, as explained earlier).

Posterior distribution of the parameters is obtained by combining the
prior distributions with the likelihood function. The Gibbs sampler uses the
conditional distributions to estimate the joint and marginal distributions. To
obtain a sample from the posterior distribution, J number of iterations are
run. First, the state variable is sampled, such as P (θ|Y ), by implementing
state- and various threshold identifying restrictions (Mart́ınez-Beneito et al.,
2008) outlined from Equation B.8 to B.11:

1. The system defines initial values for the coefficients to be esti-
mated;

2. Sample X1
1 from f(X1|X0

1 , . . . , X
0
k);

3. Sample X1
2 from f(X2|X1

1 , X
1
1 , . . . , X

0
k);

4. Sample X1
3 from f(X3|X1

1 , X
1
2 , X

0
4 , . . . , X

0
k);

...
n. To end one iteration, draw X1

k from f(Xk|X1
1 , X

1
2 , X

0
4 , . . . , X

0
k).

The above process should be repeated J times until convergence is achieved
(Geman and Geman, 1984). Next, the transition parameters and the remain-
ing parameters which are conditional on both the state parameter and data
are sampled using the above steps.

1. Sample the remaining coefficients of the model using the steps
from 1→ n;

2. Monitor convergence by plotting the posterior estimates.
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