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Abstract: Western Europe is the region with the highest density of published speleothem δ18O (δ18Ospel)
records worldwide. Here, we review these records in light of the recent publication of the Speleothem
Isotopes Synthesis and AnaLysis (SISAL) database. We investigate how representative the spatial and
temporal distribution of the available records is for climate in Western Europe and review potential
sites and strategies for future studies. We show that spatial trends in precipitation δ18O are mirrored
in the speleothems, providing means to better constrain the factors influencing δ18Ospel at a specific
location. Coherent regional δ18Ospel trends are found over stadial-interstadial transitions of the last
glacial, especially in high altitude Alpine records, where this has been attributed to a strong temperature
control of δ18Ospel. During the Holocene, regional trends are less clearly expressed, due to lower
signal-to-noise ratios in δ18Ospel, but can potentially be extracted with the use of statistical methods.
This first assessment highlights the potential of the European region for speleothem palaeoclimate
reconstruction, while underpinning the importance of knowing local factors for a correct interpretation
of δ18Ospel.

Keywords: SISAL database; speleothem; cave; oxygen isotopes; Western Europe; palaeoclimate

1. Introduction

Speleothems (secondary cave carbonates) are a widely used archive for the reconstruction of past
terrestrial climate, and particularly for the investigation of high resolution climate variability, owing to
their often exceptional chronological control [1,2]. The first version of the Speleothem Isotopes Synthesis
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and AnaLysis (SISAL) database (SISAL_v1) contains 376 speleothem records from across the globe [3].
About a quarter of these records (92) are from Western Europe, making it the region with the highest
density of published speleothem datasets worldwide [3]. This paper reviews these records within the
wider (palaeo-)climatic context of Western Europe, with the objective to identify and promote the potential
of cave sites in the region for future palaeoclimate studies. Moreover, we test the suitability of a large
compilation of speleothem records to reveal the existence of regional trends in space and time [4].

While early studies on Western European speleothems principally focused on their availability for
temperature reconstruction using δ18O of the carbonate [5,6], it was quickly recognised that δ18Ospel is
driven by a complex interplay of regional and site-specific factors, such as moisture source and circulation
dynamics, amount of precipitation, dripwater residence time in the overlying karst, cave temperature
and ventilation dynamics, and potential kinetic effects during carbonate deposition [7,8]. Due to the
filtering effect of the soil-karst system, the δ18Ospel signal is usually strongly temporally attenuated
compared to precipitation δ18O, and affected to varying degrees by local noise [4]. This is particularly
pronounced at mid-latitude sites and over the Holocene, when ranges in δ18Ospel are typically small
(average standard deviation of Western European δ18Ospel in SISAL_v1 is 0.36h) and reflect only moderate
climate shifts, as is apparent from other palaeoclimatic evidence (e.g., [9]). Over glacial-interglacial
timescales, changes in the seasonality of precipitation and the spatial stationarity of climate patterns
need to be considered as additional external drivers for variability in δ18Ospel [10,11]. These, along
with the fact that the signal-to-noise ratio with respect to underlying climatic variations of a given
speleothem-based record depends on the local climate, geology, hydrology, and vegetation, underpins
the importance of interpreting speleothem records in their specific context. Western Europe possesses the
highest density of Global Network of Isotopes in Precipitation (GNIP; [12]) stations worldwide, which
provide information on climatic drivers of precipitation δ18O in the region. Moreover, many cave sites
are well studied, with continuous, high-resolution multiannual cave monitoring time series, and a good
understanding of local climatic conditions. Monitoring data from caves and their surface environment
provide a basis for understanding speleothem growth conditions in a specific setting (e.g., [13–17]).
These present-day observations are enormously useful to delineate and characterise processes influencing
speleothem geochemistry, and of critical importance for the calibration of recent speleothem records
against meteorological data.

Speleothems can provide precisely dated, high-resolution palaeoclimate records, and thus they are
powerful archives for examining changes in climate variability and modes, and refine the picture obtained
by other palaeoclimate archives. Focusing on Western Europe, where a large amount of palaeoclimate
records from both speleothems and other archives is available, provides an opportunity to disentangle
changes in mean climate state and variability.

Here, we provide an overview of climate in Western Europe, before describing the available data in
SISAL_v1 [3]. This study is focused at highlighting the potential of this new database for reconstructing
regional trends in δ18Ospel, as well as identifying common issues encountered with speleothem records
from this region, in particular with respect to mixed climatic controls (temperature, moisture source,
precipitation amount) that often affect Western European δ18Ospel.

2. Study Region and Climate

We define Western Europe roughly as the region between 11 and 16◦ E, and 36 and 71◦ N, based on
political borders, and subdivide it into Southern Europe (<45◦ N; Iberian Peninsula, Southern France, Italy
except the alpine region), Northern Europe (>45◦ N; Germany, Northern France, Belgium, Netherlands,
Scandinavia), Great Britain and Ireland, and the Alpine region (Austria, Switzerland, Italian Alps;
Figure 1; [18]). Soluble lithologies, notably carbonates and evaporites, are present throughout the region,



Quaternary 2018, 1, 30 3 of 30

with the exception of most of Scandinavia, Northern Germany, the Netherlands, and parts of the Iberian
Peninsula (Figure 1).Quaternary 2018, 1, 30 3 of 31 

 

 
Figure 1. Map showing distribution of carbonate and evaporite rocks in Western Europe, provided 
by the World Karst Aquifer Mapping project (WOKAM; [19]). Purple circles show the sites included 
in SISAL_v1, while green triangles indicate study sites in the region identified by the Speleothem 
Isotopes Synthesis and AnaLysis (SISAL) working group, but not yet included in SISAL_v1 [20]. 

The present-day climate is characterised by strong spatial heterogeneity (Figure 2), and climate 
conditions become increasingly continental moving eastward from the Atlantic Ocean, as a result of 
predominant westerly moisture transport [21–23]. A latitudinal gradient is also present between the 
temperate-humid climate of Northern Europe and the seasonally arid climate of the Mediterranean 
region. These spatial gradients are reflected in the regional patterns of precipitation δ18O, and are 
predominantly related to the continental effect, with lower δ18O due to progressive rainout and 
Rayleigh distillation with increasing distance from the Atlantic coast [4,24]. Deviations from this 
trend are found in Southern Europe, where the influence of water vapour from the Mediterranean 
Sea can lead to higher δ18O values [25], and the Alpine region, where the altitude effect lowers 
precipitation δ18O [24,26].  

The most important driver of interannual climate variability is the North Atlantic Oscillation 
(NAO), which describes surface sea-level pressure differences between the Icelandic Low and the 
Azores High [27]. Variations in the NAO strongly influence winter surface temperatures, 
precipitation patterns, and storminess in the North Atlantic realm and in Western Europe [27–29], 

Figure 1. Map showing distribution of carbonate and evaporite rocks in Western Europe, provided by the
World Karst Aquifer Mapping project (WOKAM; [19]). Purple circles show the sites included in SISAL_v1,
while green triangles indicate study sites in the region identified by the Speleothem Isotopes Synthesis and
AnaLysis (SISAL) working group, but not yet included in SISAL_v1 [20].

The present-day climate is characterised by strong spatial heterogeneity (Figure 2), and climate
conditions become increasingly continental moving eastward from the Atlantic Ocean, as a result of
predominant westerly moisture transport [21–23]. A latitudinal gradient is also present between the
temperate-humid climate of Northern Europe and the seasonally arid climate of the Mediterranean region.
These spatial gradients are reflected in the regional patterns of precipitation δ18O, and are predominantly



Quaternary 2018, 1, 30 4 of 30

related to the continental effect, with lower δ18O due to progressive rainout and Rayleigh distillation with
increasing distance from the Atlantic coast [4,24]. Deviations from this trend are found in Southern Europe,
where the influence of water vapour from the Mediterranean Sea can lead to higher δ18O values [25],
and the Alpine region, where the altitude effect lowers precipitation δ18O [24,26].

The most important driver of interannual climate variability is the North Atlantic Oscillation
(NAO), which describes surface sea-level pressure differences between the Icelandic Low and the Azores
High [27]. Variations in the NAO strongly influence winter surface temperatures, precipitation patterns,
and storminess in the North Atlantic realm and in Western Europe [27–29], and modulate precipitation
δ18O [30–35]. On top of shifts in NAO polarity, changes in the location and geographical extension of
the NAO’s centres of action can occur, in particular related to the influence of other modes of climate
variability in the North Atlantic region (e.g., the East Atlantic and Scandinavian patterns [36–38]). In the
Mediterranean region, precipitation is largely controlled by the Western Mediterranean Oscillation
(WeMO), understood as an East-West dipole of sea-level pressures between the Azores High and the
Ligurian Low [39].
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Figure 2. Map of the study region depicting mean annual surface air temperatures (MAT) (A) and total
annual precipitation (TAP) (B) for the period 1958–2013, using the CRU-TS4.01 dataset [40]. The time period
used was selected to match with the data extracted from the Global Network of Isotopes in Precipitation
(GNIP; [12]) network and the SISAL_v1 records (see Figure 4).

Reconstructing regional and temporal variability in climate conditions through palaeoclimate records
is challenging, as they are unevenly distributed in time and space and the accuracy of their chronologies
varies widely across records. Thus, the potential of a large database of speleothem records lies in the
possibility of extracting regional climate patterns from local responses at individual cave sites.

3. Western European Records in SISAL_v1

3.1. Spatio-Temporal Coverage and Regional Potential

In total, 146 published speleothem isotope records have been identified in Western Europe. Almost
a hundred of these records (80 stalagmites, seven flowstones, and five composites) from 41 caves are
currently included in SISAL_v1 [3], with 11 records from Great Britain and Ireland, 24 from Southern
Europe, 22 from Northern Europe, and 35 from the Alpine region (Figure 1, Table 1).

Regional distribution of records with respect to the occurrence of soluble lithologies (carbonate
and evaporite rocks) is patchy, in particular in central France and Germany, eastern central Spain,
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and central-Southern Italy, where few records are published. While soluble lithologies do not necessarily
contain caves and speleothems, as speleogenesis also depends on other factors, these regions are
potential targets for future speleothem-based palaeoclimate investigations. However, many sites in
the region are protected, either due to the rich speleothem decorations or the presence of archaeological
and/or palaeontological remains, requiring minimal sampling impact and close collaboration with other
researchers and local caving communities.

Temporal coverage of the Western European records in SISAL_v1 reaches back to ~400 ka,
with stalagmite CC-1 from Antro del Corchia in Italy providing the longest record (~265 kyrs, i.e., kilo-years,
including growth stops; [41]; Figure 3). Note that, in this study, ka BP is defined as thousand years before
present, with the present referring to 1950 CE. The majority of the records however only cover the Holocene,
with eight speleothems deposited during the last millennium (Figure 3B). Temporal coverage of speleothem
records beyond the Holocene steadily decreases with increasing age, with 17% of all records starting to
grow during the Last Glacial period (~12–80 ka), 15% during Marine Isotope Stage 5 (MIS 5; ~80–135 ka),
and 10% before MIS 5. The average length of the records is ~16 kyrs, including growth interruptions (min:
~50 years; max: ~265 kyrs; median: ~6.7 kyrs). Many records (33%), especially the longest ones, contain at
least one hiatus (Figure 3). The longest uninterrupted record, stalagmite CC-5 from Antro del Corchia,
Italy, covers ~80 kyrs [42]. The average chronological resolution over all records is 17 years, gradually
decreasing with record length/antiquity (Figure 2). The vast majority of records deposited since the end of
the Last Glacial Maximum (LGM; 21 ka) have annual to multi-decadal resolution over most of their length
(Figure 3B). Some records have seasonal (e.g., Gib04a from St. Michaels Cave, Gibraltar; [43]) or annual
resolution (e.g., ER76 from Ernesto Cave, Italy; [44]), but others only provide multi-decadal and centennial
information (e.g., CC-1 from Antro del Corchia, Italy; [41]). A tendency towards more speleothem growth
during interstadials and interglacials is apparent, especially at high latitudes (Figure 3A), highlighting the
dominance of temperature control on hydroclimate and vegetation/soil dynamics in this region.

Records not yet included in the SISAL database, due to difficulties in retrieving the original data [20],
will improve the temporal coverage of the region. For example, records from Scandinavia covering past
interglacials [45–47] will shed light on the temperature control of speleothem growth at high latitudes
(Figure 2). Nevertheless, a bias towards more recent post-LGM reconstructions is apparent in our
assessment of SISAL_v1, mainly because speleothems suffer from natural attrition [48]: recent deposits are
usually more numerous as they are less likely to be lost and/or destroyed by processes such as floods,
underground collapses, in-cave sedimentation covering the speleothems. Recent deposits also tend to be
more suitable for geochemical analyses (e.g., less weathered and chemically altered) than older material.
Additionally, there has been a strong interest of the community for very recent reconstructions that allow
calibration with instrumental records, as this could pave the way toward quantitative reconstructions
of past climatic variations (precipitation amount, temperature, etc.). Given the ability of speleothems to
provide high resolution and very precisely dated records of past terrestrial climate, speleothem records
from this region spanning further back in time have enormous potential, e.g., to better constrain conditions
during past interglacials where climatic conditions were similar or warmer than today’s [49]. This would be
particularly useful for time periods beyond the range of radiocarbon dating (~50 ka), where chronological
control in other archives becomes increasingly tenuous.
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Figure 3. Temporal coverage of the Western Europe records included in SISAL_v1. (A) Records covering
pre-Holocene time intervals. If a record extends into the Holocene, that part is shown in the next panel.
(B) Records covering the last 22 ka. Marine Isotope Stage (MIS) and glacial terminations (T) timings
according to Lisiecki and Raymo [50]. Hiatuses in individual records are shown by blank spaces. Records
are sorted by latitude, with the northernmost site at the top.
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Table 1. Summary of all records currently included in SISAL_v1 for Western Europe and records identified but not yet included (i.e., all records that do not have a
SISAL entity_id). Information on records not included in SISAL_v1 was derived from the original publications. * no interpolated ages available.

site_name site_id Country Latitude (N) Longitude (E) entity_name entity_id Min. Year (BP) Max. Year (BP) Reference

Antro del Corchia 145 Italy 43.98 10.22 CC-1_2004 313 125,432.63 393,407.69 [41]
Antro del Corchia 145 Italy 43.98 10.22 CC-5_2005 314 88,347 170,549.44 [42]
Antro del Corchia 145 Italy 43.98 10.22 CC-28 315 95,191.16 117,497.82 [51]
Antro del Corchia 145 Italy 43.98 10.22 CC-1_2009 316 127,997 148,970 [52]
Antro del Corchia 145 Italy 43.98 10.22 CC-5_2009 317 117,965 156,957 [52]
Antro del Corchia 145 Italy 43.98 10.22 CC-7 318 121,333 126,805 [52]
Antro del Corchia 145 Italy 43.98 10.22 COR-1 [53]
Antro del Corchia 145 Italy 43.98 10.22 CC-26 750 11,260 [54]

Atta Germany 50.80 7.44 STAL-AH-1 1763 2723 [55]
Atta Germany 50.80 7.44 AH-1 860 8430 [56]
B7 Germany 51.37 7.65 STAL-B7-1 6196 12,405 [57]
B7 Germany 51.37 7.65 STAL-B7-5 5850 8810 [57]
B7 Germany 51.37 7.65 STAL-B7-7 540 17,230 [57]

Baschg 15 Austria 47.25 9.67 BA-1b 70 75,492.44 80,896.94 [58]
Baschg 15 Austria 47.25 9.67 BA-1 71 80,982.06 89,489 [58]
Baschg 15 Austria 47.25 9.67 BA-2 72 88,609.98 89,723.31 [58]
Beatus Switzerland 46.38 7.49 EXC-3 100,940 110,000 [58]
Beatus Switzerland 46.38 7.49 EXC-4 77,450 107,080 [58]

Bourgeois Delaunay 73 France 45.67 0.51 BDinf 162 121,339 128,151 [59]
Brown’s Folly mine 96 England 51.38 −2.37 Boss 192 −47 32 [60,61]
Brown’s Folly mine 96 England 51.38 −2.37 BFM-9 193 −47 21 [60,61]
Brown’s Folly mine 96 England 51.38 −2.37 F2 194 −46 13 [60,61]
Buca della Renella 133 Italy 44.08 10.21 RL4_2006 282 1215.56 6928.36 [62]
Buca della Renella 133 Italy 44.08 10.21 RL4_2016 283 1150.37 7262 [63]
Buca della Renella 133 Italy 44.08 10.21 RL4_2018 381 1024.11 7277.24 [64]

Bue Marino 97 Italy 40.25 9.62 BMS1 195 110,207 112,881 [65]
Bunker 117 Germany 51.37 7.66 Bu1 240 137 6644.9 [66]
Bunker 117 Germany 51.37 7.66 Bu2 241 7497.6 10,723.5 [66]
Bunker 117 Germany 51.37 7.66 Bu4 242 −57.3 8162.8 [66]
Bunker 117 Germany 51.37 7.66 Bu6 243 8749 10,258.2 [66]
Bunker 117 Germany 51.37 7.66 BuStack 244 −57.4 10,723.5 [66]

Chauvet 77 France 44.23 4.26 Chau-stm6 166 11,415 34,183 [67]
Clamouse 108 France 43.71 3.55 Cla4 211 74,460 187,405 [68]
Clamouse 108 France 43.71 3.55 CL26 212 142.33 11,178.79 [69]
Clamouse 108 France 43.71 3.55 Cla-stm5 432,000 611,000 [70]

Cova da Arcoia 143 Spain 42.61 −7.09 ESP03 310 340 9440 [71]
Cova de Cala Falco Spain 39.5 3.3 CCF-03-03-01 48,000 112,000 [72]

Crag 98 Ireland 52.25 −9.43 CC3 196 −47 10,132 [69,73]
Cueva de Asiul 119 Spain 43.32 −3.59 ASR 248 488.61 12,160.96 [74]
Cueva de Asiul 119 Spain 43.32 −3.59 ASM 249 −62 7776.64 [74]

Cueva del Cobre Spain 42.98 −4.37 C11 77 2614 [75]
Cueva Mayor Spain 42.37 −3.51 SLX1 62 1513 [75]
Cueva Rosa Spain 43.43 −5.13 Romeo 5294 8097 [76]

Ejulve 120 Spain 40.45 −0.35 ARTEMISA 251 218,975.67 257,426.49 [11]
Ejulve 120 Spain 40.45 −0.35 HOR 250 2708.44 6071.82 [77]

Entrische Kirche 121 Austria 47.16 13.15 TKS 252 113,389.5 126,889.04 [78]
Entrische Kirche 121 Austria 47.16 13.15 ENT-10 114,000 127,000 [78]

Excentrica 40 Portugal 37.10 −7.77 GEX-SPA 116 5329.36 6565.22 [79]
Gitana Spain 37.44 −2.02 GC-01-05-02 58,000 274,000 [72]

Grotta di Carburangeli 129 Italy 38.17 13.16 CR1 277 947.73 8373.72 [80,81]
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Table 1. Cont.

site_name site_id Country Latitude (N) Longitude (E) entity_name entity_id Min. Year (BP) Max. Year (BP) Reference

Grotta di Ernesto 131 Italy 45.97 11.65 ER76 279 2511.48 7969.05 [44]
Grotta Savi Italy 45.61 13.88 SV-1 1325 16,799 [82]
Hamarnes Norway 66.42 14.02 Ham-85.2 4510 123,000 [45]

Han-sur-Lesse 16 Belgium 50.12 5.19 Han-stm1 73 4778 10,949 [83]
Han-sur-Lesse 16 Belgium 50.12 5.19 Han-stm5b 74 −44 16 [84]
Han-sur-Lesse 16 Belgium 50.12 5.19 Han-9 75 106,499.65 125,343.05 [85]
Han-sur-Lesse 16 Belgium 50.12 5.19 Proserpine −51 471 [86]

Hölloch im Mahdtal 115 Austria 47.38 10.15 HOL-7 230 40,105 48,664 [87]
Hölloch im Mahdtal 115 Austria 47.38 10.15 HOL-16 231 36,701 63,546 [87]
Hölloch im Mahdtal 115 Austria 47.38 10.15 HOL-17 232 35,832 64,934 [87]
Hölloch im Mahdtal 115 Austria 47.38 10.15 HOL-18 233 52,509 57,283 [87]
Hölloch im Mahdtal 115 Austria 47.38 10.15 HOL-16-17 234 35,705 37,578 [87]
Hölloch im Mahdtal 115 Austria 47.38 10.15 HOL-comp 235 49,063 64,498 [87]
Hölloch im Mahdtal 115 Austria 47.38 10.15 HOL-10 236 110,844 131,765 [88]
Hölloch im Mahdtal 115 Austria 47.38 10.15 Stal-Hoel-1 1380 12,690 [89]

Hötting Breccia Austria 47.28 11.39 HOT-1 73,900 98,700 [90]
Hötting Breccia Austria 47.28 11.39 HOT-2 70,300 73,800 [90]

Hotton Belgium 50.25 5.45 2750 11,150 [91]
Kaite Spain 42.94 −3.57 comp. 394 9569 [92]
Kaite Spain 42.94 −3.57 LV5 393 3885 [75]

Katerloch 100 Austria 47.08 15.55 K3 200 7786.62 10,027.08 [93]
Katerloch 100 Austria 47.08 15.55 K-2 [94]
Katerloch 100 Austria 47.08 15.55 K-4 [94]
Katerloch 100 Austria 47.08 15.55 K-5 [94]
Katerloch 100 Austria 47.08 15.55 K-7 [94]
Katerloch 100 Austria 47.08 15.55 K-8 [94]
Katerloch 100 Austria 47.08 15.55 K-RZ6-072007 [53]
Katerloch 100 Austria 47.08 15.55 K-Top3-Cl [53]
Katerloch 100 Austria 47.08 15.55 K1 199 7079.5 10,324 [93]
Katerloch 100 Austria 47.08 15.55 K-6 [94]

Klapferloch 101 Austria 46.95 10.55 PFU6 201 −47 2943.04 [95]
Klapferloch 101 Austria 46.95 10.55 PFU-7 [95]
Klapferloch 101 Austria 46.95 10.55 PFU-8 [95]
Klapferloch 101 Austria 46.95 10.55 PFU-9 [95]

Klaus-Cramer Austria 47.26 9.52 KC-1 54,560 71,940 [58]
Kleegruben 132 Austria 47.08 11.67 SPA_126 280 47,396 55,966 [96]
Kleegruben 132 Austria 47.08 11.67 SPA_49 281 47,816 58,266 [96]

Korallgrottan 102 Sweden 64.88 14.00 K11 202 −55 3791.88 [97]
Korallgrottan 102 Sweden 64.88 14.15 K1 6070 8629 [98]

La Faurie France 45.13 1.18 Fra-stm-6 [53]
La Garma Spain 43.43 −3.66 GAR-01 10,142 13,757 [99]
La Garma Spain 43.43 −3.66 GAR-02 [100]

Labyrintgrottan 46 Sweden 66.06 14.68 L4 122 7347.5 9565.1 [98]
Lancaster Hole 8 England 54.22 −2.52 LH-70s-1 50 3456.22 12,717.56 [101]
Lancaster Hole 8 England 54.22 −2.52 LH-70s-2 51 261.86 9735.67 [102]
Lancaster Hole 8 England 54.22 −2.52 LH-70s-3 52 945.79 8462.88 [102]

Laphullet Norway 66.31 14.18 PL-6 380,000 502,000 [47]
Larshullet 47 Norway 66.00 14.00 L03 123 130 3920.52 [103]
Milchbach 123 Switzerland 46.62 8.08 MB-2 255 3248.65 6830 [104]
Milchbach 123 Switzerland 46.62 8.08 MB-3 256 1986.95 9025.84 [104]
Milchbach 123 Switzerland 46.62 8.08 MB-6 258 * * [104]
Milchbach 123 Switzerland 46.62 8.08 MB-5 257 3889.71 7245.91 [104]
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Table 1. Cont.

site_name site_id Country Latitude (N) Longitude (E) entity_name entity_id Min. Year (BP) Max. Year (BP) Reference

Molinos 109 Spain 40.79 −0.45 MO-7 217 3253 6812 [77,105]
Molinos 109 Spain 40.79 −0.45 MO-1 216 4727 11,334.76 [77]

New St Michael’s 89 Gibraltar 36.13 −5.35 Gib04a 182 −53.6 2 [43,106]
Okshola 26 Norway 67.00 15.00 FM3 95 −47 7515.2 [107]
Okshola 26 Norway 67.00 15.00 Oks82 96 5006 10,327.64 [107]

Pere Noel Belgium 50.13 5.16 PN-stm-95-5 1800 12,900 [91,108]
Pindal 87 Spain 43.40 −4.53 Candela 180 11,640.32 29,339.98 [109,110]

Pippikin Pot 53 England 54.21 −2.51 YD01 129 4205.58 9478.94 [101,111]
Schafsloch 125 Switzerland 47.23 9.38 MF-3 260 130,050 137,390 [112]

Schneckenloch 105 Austria 47.43 9.87 SCH-5 206 115,340 134,085 [88]
Schneckenloch 105 Austria 47.43 9.87 SCH-7 207 111,588.73 118,314.57 [58]

Seso 106 Spain 42.46 0.04 SE09-6 208 11,616 12,995 [113]
Sieben Hengste 55 Switzerland 46.75 7.81 7H 133 14,620 29,873 [114]
Sieben Hengste 55 Switzerland 46.75 7.81 7H-3 135 14,639.45 23,536.89 [114]
Sieben Hengste 55 Switzerland 46.75 7.81 7H-2 134 17,137.17 29,940.32 [114]

Soylegrotta 57 Norway 66.00 14.00 SG95 137 −43 4141.22 [45]
Soylegrotta 57 Norway 66.00 14.00 SG92-4 4500 8000 [115]
Soylegrotta 57 Norway 66.00 14.00 SG-92-2 320,000 630,000 [46]
Soylegrotta 57 Norway 66.00 14.00 SG93 253 10,409 [6]
Spannagel 58 Austria 47.08 11.67 SPA12 138 60 5043 [116]
Spannagel 58 Austria 47.08 11.67 SPA70 139 4549 9894 [116]
Spannagel 58 Austria 47.08 11.67 SPA128 140 2520 6140 [116]
Spannagel 58 Austria 47.08 11.67 SPA127 141 2737 8449 [116]
Spannagel 58 Austria 47.08 11.67 COMNISPA II 142 −13 9930.6 [116]
Spannagel 58 Austria 47.08 11.67 SPA133 154 9636.5 10,796.1 [116]
Spannagel 58 Austria 47.08 11.67 SPA121 261 187,290 242,070 [117]
Spannagel 58 Austria 47.08 11.67 SPA-4 265,700 353,900 [118,119]
Spannagel 58 Austria 47.08 11.67 SPA-59 52,900 261,400 [120]
Spannagel 58 Austria 47.08 11.67 SPA-12 15 2040 [121]
Spannagel 58 Austria 47.08 11.67 SPA-119 220,500 226,900 [119]
Spannagel 58 Austria 47.08 11.67 SPA-52 91,100 204,100 [122]
Spannagel 58 Austria 47.08 11.67 SPA-11 117,000 202,800 [122]

Uamh an Tartair 21 Scotland 58.14 −4.93 SU967 85 −35 892 [123]
Uamh an Tartair 21 Scotland 58.14 −4.93 SU032 86 −53 271 [124]

Villars 4 France 45.43 0.78 Vil-stm6 27 −43 8657 [125]
Villars 4 France 45.43 0.78 Vil-stm9 28 31,437.91 82,854.5 [126,127]
Villars 4 France 45.43 0.78 Vil-stm11 29 5361 15,875 [67]
Villars 4 France 45.43 0.78 Vil-stm14 30 28,892.68 52,156.42 [127,128]
Villars 4 France 45.43 0.78 Vil-stm27 31 31,340.9 49,663.24 [126]
Villars 4 France 45.43 0.78 Vil-car1 32 1055 178,002 [129]
Villars 4 France 45.43 0.78 Vil#10B [53]
Villars 4 France 45.43 0.78 Vil#1A [53]
Villars 4 France 45.43 0.78 VilGal#1B [53]
Villars 4 France 45.43 0.78 VilPlq-8 [53]
Villars 4 France 45.43 0.78 Vil-stm1 33 −38 2333 [130]
Villars 4 France 45.43 0.78 Vil-stm24 102,800 113,600 [70]

White Scar 66 England 54.17 −2.44 WSC-97-10-5 150 7347.87 11,190.74 [101,111]
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3.2. Dating Methods and Chronologies

Any palaeoclimatic interpretation hinges on the accuracy and precision of the dating method and
age modelling technique applied. Speleothems are known for their precise U-Th chronologies, but other
dating methods (e.g., layer counting, radiocarbon) are applied as well, and methodologies are often
combined. SISAL_v1 contains 1189 ages from Western European speleothems, 96% of which were
obtained with the U-Th method. U-Th ratios were measured by Multi Collector-Inductively Coupled
Plasma-Mass Spectrometry (MC-ICP-MS; 62% of the total) or Thermal Ionisation Mass Spectrometry
(TIMS; 34% of the total). For the calculation of corrected ages, the most recent publications use the U-Th
decay constants published in [131,132], while older datasets mostly refer to [133]. This is because decay
constants have been updated over time as a result of increasing analytical precision and methodological
developments. Although not having crucial implications on the final ages, it highlights the efforts for a
better understanding of the U-Th systematics. Other dating approaches such as 14C analyses (e.g., [43,130]),
layer counting (e.g., [44,134]) or approaches combining multiple methods each represent ≤2% of the total.
The median two sigma (2σ) uncertainty related to single ages is 1.2% (with respect to the final corrected
ages), ranging between 0% and 131%; uncertainties of 0% refer only to the top of actively growing
speleothems. The dating uncertainties vary according to the method used (Figure 4), with MC-ICP-MS
dates being the most precise (median 0.9%; min 0.2%; max 131%), followed by TIMS (1.5%; 0.3%; 67%),
layer counting (2%; 0%; 13%), combination of multiple approaches (4%; 1%; 7%) and 14C (17%; 4%; 42%).
It should be noted that U-Th uncertainty increases in younger samples (i.e., last millennia), reflecting
the difficulties in measuring the low radiogenic 230Th content for recent speleothems [135] (Figure 4).
For these young speleothems, other dating methods such as 14C and layer counting might be more suitable
and result in less overall uncertainty, as demonstrated by Mattey et al. [43], who used a combination
of 14C measurements and counting of minima in seasonal stable carbon isotope ratio (δ13C) cycles to
derive a precise chronology for a 53-year old stalagmite (Gib04a) from Gibraltar. For laminae counting,
uncertainties are usually attributed after a series of independent counts (e.g., [61]), and offsets between
band-counted and radiometric ages might occur if annual layers are missing (undercounting) and/or if
intra-annual lamination is present (overcounting; [136,137]).

A variety of methods and algorithms are available to convert single dates to an age-depth model
and, in most cases, calculate the propagation of age uncertainties through time. For Western European
speleothems in SISAL_v1, the modelling procedures used are: StalAge (25%; [138]), linear interpolation
(19%), Bayesian (not including OxCal, Bacon, BChron, and COPRA; 11%), polynomial fit (10%), OxCal
(3%; [139]) and others or a combination of methods (30%). Here, “combination of methods” usually stems
from the use of different dating techniques, e.g., 14C and laminae counting in Gib04a from Gibraltar [43] or
U-Th analysis and laminae counting in speleothems in Uamh an Tartair [134] and Larshullet Cave [103].
In our dataset, 13% of all ages were excluded from the final age-depth models in the original publications,
mostly because they were not in the correct stratigraphic order and were thus considered unreliable. In
radiometric dating, out-of-sequence anomalous ages can occur due to diagenetic phenomena affecting the
carbonate fabric, and/or sources of error during sample preparation and analysis (e.g., cross-contamination,
environmental contamination, spike calibration problems; [65,140–143]).

All age modelling protocols have their advantages and shortcomings [144], and emphasise different
aspects of chronology development. In many cases, the age model for a single speleothem needs to take
into account specific properties of the sample, e.g., petrographic and geochemical anomalies, and is thus
to a certain extent subjective to the decisions of the user. This is important to ascertain the quality of the
age-depth model for an individual speleothem but might introduce biases. An updated age modelling
technique intercomparison study appears timely with the publication of SISAL_v1 and would be helpful
to determine common strengths and weaknesses in the models.
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Figure 4. Dating methods, ages and age uncertainties. Shown are results in SISAL_v1 for Multi
Collector-Inductively Coupled Plasma-Mass Spectrometry (MC-ICP-MS) and Thermal Ionisation Mass
Spectrometry (TIMS) U-Th dating, 14C dating, laminae counting, and combinations of these methods
(mostly U-Th or 14C combined with laminae counting). Note that, for simplicity, ages with 0% uncertainty
(i.e., top of actively growing speleothems) were excluded.

3.3. Availability of Environmental and Monitoring Data

Local climate and cave monitoring data are useful for the characterisation of the karst system and the
processes acting on geochemical signatures recorded in speleothems. With sufficiently long time series of
outside and in-cave temperature, and isotopic composition of precipitation and drip water, it is possible to
estimate the extent to which δ18Ospel records are representative of present-day external environmental
signals, i.e., temperature and precipitation δ18O. This is important, as fluid transfer through the karst
system results in lagging, attenuation, or modification of the original precipitation signature. It must be
noted, however, that this modern information needs to be carefully evaluated in the context of past climate,
as the processes driving them might be temporally non-stationary and responding to climatic changes
themselves (e.g., vegetation and soil cover, precipitation seasonality, changes in the temperature gradient
between cave and exterior) or influenced by anthropogenic activities (e.g., land use changes, cave tourism,
alteration of cave passages).

In Western Europe, temperature and precipitation data is widely available from meteorological
stations for at least a few decades. Moreover, Europe has some of the longest meteorological records
in the world, which go back to the 18th century (e.g., [145–147]). Gridded reanalysis or observational
datasets provide continuous spatial coverage at high resolution since the late 19th century [40] and over
250 GNIP sites [12] provide monthly or event-based measurements of isotopes in precipitation, including
the station with the longest record worldwide (Vienna-Hohe Warte, period covered: 1960–2016). Roughly
37% of these GNIP sites have been active for at least 10 years, and 63% for at least 5 years, providing an
invaluable source of data to understand variability in precipitation and speleothem δ18O (e.g., [148,149]).
In-cave monitoring data, in contrast, is usually acquired within the context of specific speleothem studies
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(e.g., [16,17,150]), and is thus often limited by short-term, project-based funding or limited accessibility
to the cave. Of the 41 Western European cave systems included in the SISAL_v1 database, 22 have been
monitored over at least one season (53% of all caves in SISAL_v1 of the region), as caves are often easily
accessible, and more research funding is available than in some other regions.

3.4. Climate Controls on Speleothem Growth

In Western Europe, the response of speleothems to climate can generally be considered hierarchical,
with growth presence/absence being the response to large climatic variations (glacial-interglacial changes),
while millennial to seasonal variations are often recorded more specifically through geochemical variations.
Speleothem growth is promoted during the warmer and more humid interglacials and interstadial
periods (Figure 3A), aided by higher soil pCO2 and the availability of infiltrating water. At high
latitude/altitude locations, the most straightforward climatic influence on speleothem growth is the
presence of ice or permafrost above the cave, which prevent fluid percolation through the soil-karst
system. Presence/absence of growth and growth rate can thus both be powerful proxies for palaeoclimate
conditions (e.g., [134,151,152]), with growth cessation and/or slow growth rates indicative of drier/colder
stages, such as glacials and stadials (Figure 3A). This is observed at the Scandinavian cave sites,
where speleothem growth is limited to interglacial time periods [47,107]. Conversely, evidence from
high Alpine caves has shown that “subglacial” speleothem growth is possible if carbonate dissolution is
promoted by sulphide oxidation, for instance seen in stalagmites from Milchbach and Sieben Hengste
Caves, Switzerland [104,114] and Spannagel Cave, Austria [119].

Changing soil and vegetation activity is another mechanism influencing speleothem growth, as
soil pCO2 drives carbonate dissolution in the karst. Examples for such sites sensitive to changes in soil
pCO2 are Villars Cave in France, where cold phases during the last glacial are reflected by hiatuses in
stalagmite Vil-stm9 [126], and Han-sur-Lesse Cave in Belgium, where stalagmite Han-9 stops growing
after a period of drastic vegetation changes (shift to a more grass-dominated vegetation) and aridification
synchronous with Greenland stadial 26 [85]. Milder stadial/glacial climate conditions at lower latitudes
(e.g., Southern Italy and Southern Spain) appear to have allowed speleothem deposition at some sites [153],
but so far these regions are poorly represented in the literature on interglacial-glacial transitions (Figure 1).
Given the range of processes that can cause speleothem growth cessation, a climatic interpretation of
growth presence/absence and growth rates hinges on an assessment of potential site-specific controls,
e.g., drip pathway changes, tectonic activity, or anthropogenic influences. Growth presence/absence as a
response to climatic change therefore needs to be ideally verified through replication with a number of
samples from the same cave.

3.5. Controls on δ18Ospel

A multitude of factors can influence δ18Ospel, from local effects such as cave temperature and karst
infiltration dynamics, to processes driving precipitation δ18O (air temperature, precipitation amount and
seasonality, moisture source and circulation dynamics). This is especially pronounced at the mid-latitude
sites of Western Europe, where competing influences from several of these processes and a generally
weaker climate control (especially during the Holocene) require detailed evaluation of the drivers of
δ18Ospel.

The δ18Ospel at sites included in SISAL_v1 is interpreted as dominantly reflecting air temperature
(17 sites), precipitation amount (six sites), moisture source (one site), or a mixed signal of temperature and
amount/moisture source (nine sites). The interpretation of δ18Ospel remains unclear for eight sites, as the
original publications had a different focus.
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A dominant temperature signal is found principally at high-altitude sites in the Alps (Baschg [58],
Entrische Kirche [78], Grotta di Ernesto [44], Hölloch im Mahdtal [87], Katerloch [93], Kleegruben [96],
Schafsloch [112], Schneckenloch [58,88], Sieben Hengste [114]). At these sites, δ18Ospel is understood to
closely reflect precipitation δ18O, which is highly correlated to changes in air temperature during moisture
condensation, with higher (lower) δ18O reflecting warmer (colder) conditions (e.g., [87]). The authors of
the original studies however emphasise that factors such as rainfall seasonality [58,78,93,112] or moisture
source changes [87,88,117] play an additional role in the modulation of δ18Ospel, preventing a quantitative
reconstruction of surface air temperatures. Interestingly, an opposite δ18O-temperature relationship
(higher δ18Ospel corresponding to lower temperature) has been reported for some alpine sites, most
prominently for the Holocene portion of the Spannagel Cave record, where δ18Ospel has been interpreted
in terms of variable dripwater sources (snowmelt water vs. rainfall), with more negative δ18O values
reflecting a larger contribution of melt waters and less negative δ18O explained by a stronger share of
meteoric waters due to glacier retreat during interglacials [120,122]. The high-latitude Scandinavian caves
(Søylegrotta [45], Okshola [107], Labyrintgrottan [98], Korallgrottan [97] and Larshullet [103]) show the
same reversed δ18O-temperature relationship, corroborated by temperature calibration studies [6,45],
and are also explained by seasonally selective infiltration during snowmelt [98,107]. Only three sites at
lower altitudes report a dominant temperature effect on δ18Ospel (Han-sur-Lesse [85], Clamouse [68,69],
and Crag [69]).

Sites with a dominant influence of precipitation amount on δ18Ospel are widely spread throughout the
region (Antro del Corchia [41,42,51,52], Buca della Renella [62,63], Bue Marino [65], Burgeois-Delaunay [59],
Cueva de Asiul [74], Klapferloch [95]). In all these cases, higher (lower) δ18Ospel is interpreted to reflect
lower (higher) rainfall amount, as a consequence of isotopic depletion of precipitation during large
storms [154]. Correlating speleothem δ18O and carbon isotope ratios (δ13C) often helps discerning whether
δ18Ospel is driven by precipitation amount, as enhanced rainfall intensifies soil activity and increase the
drip rate, resulting in lower speleothem δ13C (e.g., [59,65]).

Several sites (Bunker [66], Cova da Arcoia [71], El Pindal [109], Grotta di Carburangeli [80],
Molinos [77], Uamh an Tartair [123,124], Villars [67,126–129]) show a mixed signal of temperature and
precipitation amount controls, which complicates their interpretation.

Moisture source is the third main driver for δ18Ospel in Western Europe, as precipitation in some
areas (mainly southern Europe) can originate from either the Atlantic or the Mediterranean, with the latter
exhibiting higher δ18O values [25,155,156] and wide range of total δ18O variability. The differences in
salinity and temperature between the two bodies of water determine the δ18O of the moisture throughout
the cloud trajectory, although other effects such as continentality, rainout effect or altitude also contribute to
the final δ18O signal. Moreover, changes in atmospheric circulation patterns can lead to shifts in moisture
trajectories and seasonality of precipitation at a site (e.g., [157]). These effects have been recognised as
partially influencing many of the records in SISAL_v1, mostly as second-order controls (e.g., Baschg [58],
Ejulve [11,77], Grotta di Ernesto [44], Schafsloch [112], Schneckenloch [58,88], Seso [113]). The LGM
portion of the composite record from Sieben Hengste (7H) Cave, is the only instance where δ18Ospel
was interpreted as principally reflecting changes between northerly and southerly moisture transport,
informing on shifts in the meridional position of the North Atlantic storm track [114].

Due to these different factors potentially influencing δ18Ospel in Western Europe, other climate proxies
are often used to better constrain the palaeoclimatic interpretation of the records (e.g., δ13C or trace element
ratios) and their use should be promoted in the future. One possibility to quantitatively reconstruct the
isotopic signature of the “parent” precipitation δ18O is through fluid inclusion stable isotope analysis in
speleothems [128,130]. Fluid inclusions provide a more direct record of precipitation δ18O than speleothem
calcite and allow the reconstruction of palaeo-temperatures when used in combination with carbonate
δ18O, if this has precipitated at isotopic equilibrium [158]. To date, however, very few paleoclimate records
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based on speleothem fluid inclusions exist (e.g., [129,130,159]) mostly because of the considerably larger
effort required for their analysis and interpretation compared to carbonate δ18O. Much larger sample
sizes are typically needed (~100 mg carbonate, compared to few tens of micrograms for carbonate δ18O),
depending on the stalagmite growth rate and water content. Moreover, the analytical uncertainty is
much higher than for carbonate (0.5h for δ18O and 2h for δD, compared to 0.05–0.1h for carbonate
δ18O; e.g., [160,161]). Thus, fluid inclusion isotope records remain less available for available for very
high-resolution (up to subannual) studies that compose one of the main strengths of speleothems.

4. Regional Patterns in δ18Ospel Records Through Time

4.1. Spatial Trends and Comparison to Observations

We use the SISAL database to detect whether present-day regional trends in δ18Ospel values exist,
and how they compare to trends in precipitation δ18O, taking advantage of the dense network of GNIP
stations with long-term measurement records (up to 50 years). All analyses were referenced to the period
1958–2015. The average δ18Ospel over this time period was calculated from the SISAL_v1 database (n = 18),
while GNIP data was averaged over the entire year, after tests showed that averaging for winter months
only gave the same result (n = 211; Figure 5). For a more direct comparison of SISAL_v1 δ18Ospel and local
precipitation data, we used the gridded interpolated precipitation data that is based on the GNIP network
(background maps in Figure 5; [162,163]).Quaternary 2018, 2, x FOR PEER REVIEW  16 of 31 
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Figure 5. Comparison between: (A) GNIP station data, (B) average SISAL δ18O values for the period
1958–2015 with interpolated GNIP data (background map: mean annual weighted δ18O data from
waterisotopes.org [163]). GNIP station data reflects calculated long-term annual means from stations with at
least 10 months of data per year and five or more years of data (n = 211) and is shown as h VSMOW. SISAL
records (filled circles; n = 18) are averages over the period 1958–2013 and shown as h VPDB. The SISAL
records were not filtered to have a minimum number of data points, but only calcitic and aragonitic samples
converted to calcite were included to avoid bias from mineralogy. Cave sites are numbered according
to latitude: 1—Okshola [107], 2—Soylegrotta [45], 3—Korallgrottan [97], 4—Uamh an Tartair [123,124],
5—Crag [69,73], 6—Brown’s Folly Mine [60,61], 7—Bunker [66], 8—Han-sur-Lesse [84], 9—Spannagel [116],
10—Klapferloch [95], 11—Villars [130], 12—Cueva de Asiul [74], 13—New St. Michael’s [43,106].
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Our comparison between SISAL sites and the GNIP interpolated precipitation data reveals moderate
correlation (r2 = 0.48, 18 sites, under the assumption of full independence between sites).

It is apparent from this comparison that high latitude SISAL sites are strongly offset from their
corresponding precipitation δ18O values (Figure 5B). The present-day spatial trends in δ18Ospel reflect the
dominant climatic processes reflected in precipitation δ18O and provide the opportunity to establish “base
lines” of δ18Ospel, to which high-frequency changes can be compared, as well as to check whether single
isotope records might be anomalous within their regional climatic context [4]. On the whole, the spatial
trend in δ18O is very similar for precipitation and speleothems (Figure 5), and reflects increasing rainout
away from the Atlantic (continental effect, [24]). Smaller-scale trends, such as the high δ18O values found
in the circum-Mediterranean region, and the altitude effect apparent in the Alpine region, are mirrored by
the SISAL data.

Despite this good spatial agreement over Western Europe, discrepancies are apparent at some sites.
Local conditions are known to affect speleothem geochemistry and need to be taken into account when
developing transfer functions for climate reconstruction. The isotopically effective recharge [8], related to
the dominant infiltration season and the degree of mixing in the karst aquifer, can substantially affect the
correlation between δ18Ospel and precipitation δ18O [149,164]. Small-scale variability in mountain climate
that is not captured by the interpolation approach used for the GNIP data is likely the reason for the offset
between SISAL sites and the GNIP data in the Alpine region and northern Scandinavia (Figure 5; [32]).

4.2. Last Glacial Period

The SISAL_v1 database contains 24 records that cover the last glacial time period, i.e., the period
between ~11.7 and ~115 ka (Figure 6). Many records from high altitude alpine cave sites show a very clear
response to millennial-scale forcing from the North Atlantic (e.g., 7H, SPA 49, SPA 126, HOL-7, HOL-10,
HOL-16-17, HOL-comp, BA-1, BA-1b, BA-2; Figure 6B). This strong synchronicity and similarity in the
climatic response of the northern Alpine region and Greenland suggests a tight coupling between the two
regions, which is likely related to the strong temperature control in these high altitude speleothems [87],
and supported by data from other archives (e.g., [165]).

Speleothems from other cave sites in the region show a much less consistent pattern over the last
glacial period, probably as a result of the complex interplay of processes affecting δ18Ospel at mid-latitudes
(Figure 6C). In some of these cases, the original authors used other geochemical proxies, such as δ13C, for the
palaeoclimate interpretation. Stalagmites from Villars and Chauvet caves in France, for example, suggest a
complex combination of temperature, precipitation amount and source changes affecting and muting their
δ18Ospel, whereas δ13C appears to be more sensitive to stadial-interstadial forcing. The authors interpret
these rapid shifts in δ13C as reflecting changes in soil CO2 production, which is linked to temperature and
humidity [67,126,127].
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Figure 6. Examples of Western European records covering the last glacial period in SISAL_v1. To ease
intercomparison of δ18Ospel, all records were normalised as z-scores. The onset of Greenland Interstadials
(GIs) is indicated by the grey triangles [166,167]. (A) North Greenland Ice Core Project (NGRIP) ice core
δ18O on the layer-counted GICC05modelext time scale for the last 60 kyrs, and extended further back on
the ss09sea06bm time scale [167–169]. (B) Records from the Alpine region (colour coded): 7H—Composite
record from Sieben Hengste Cave, Switzerland [114], SPA—Stalagmites SPA 49 and SPA 126, Kleegruben
Cave, Austria [96], HOL—Stalagmites HOL-7 and HOL-10, composite records HOL-16-17 and HOL-comp
from Hölloch Cave, Austria [87,88], BA—Stalagmites BA-1, BA-1b, and BA-2 from Baschg Cave, Austria [58],
SCH—Stalagmites SCH-5 and SCH-7 from Schneckenloch Cave, Austria [58,88], TKS—Flowstone TKS from
Entrische Kirche Cave, Austria [78]. Note that TKS is shown on a different y-axis to ease visual comparison.
(C) Records from other parts of Western Europe (colour coded): SESO—Stalagmite SE09-6 from Seso
Cave, Spain [113], PIN—Stalagmite Candela from El Pindal Cave, Spain [109,110], CHAU—Stalagmite
Chau-stm6 from Chauvet Cave, France [67], VIL—Stalagmites Vil-stm9 and Vil-stm27 from Villars Cave,
France [126,127], HAN—Stalagmite Han-9 from Han-sur-Lesse Cave, Belgium [85], BMS—Stalagmite BMS1
from Bue Marino Cave, Italy [65]. (D) Chronological uncertainty of the records: Speleothem U-Th ages
are shown in colour coded dots. If available, the uncertainty of the age model is shown instead, as a more
accurate measure of the time series uncertainty (lines). The black line indicates the maximum counting
error of the layer-counted part of the ice core chronology [169].

4.3. Holocene Climate Variability

In our first assessment, we find no consistent regional trends in δ18Ospel in SISAL_v1 records from
Western Europe spanning the entire Holocene period. This is partly due to age modelling uncertainties
and low temporal resolution in some records, which prevents the detection of climatic shifts in δ18Ospel
during periods with low signal-to-noise ratios. Although Holocene climate conditions are more stable
than during the last glacial period, recent evidence suggests significant variability, challenging the notion
of a “very stable Holocene” [170]. The 8.2 ka event, a significant North Atlantic focused temperature
event, can be used as a benchmark to test the sensitivity of our records for millennial-scale climate change.
In SISAL_v1, 21 records from Western Europe cover the time period around 8.2 ka, and nine of them were
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interpreted by the original authors as recording evidence for a climatic perturbation at that time (Figure 7).
Another four show changes in their growth and petrography (i.e., hiatuses, erosional surfaces, changes
in calcite fabrics) that can tentatively be related to climate change around 8.2 ka. For most of the records,
however, chronological uncertainty and/or temporal resolution remain an issue, and the detailed structure
and timing of the 8.2 ka event often cannot be resolved (Figure 7). As a result of the paucity of available
datasets it is also not possible at this stage to assess any regional trends in the expression of the 8.2 ka event
in stalagmites from Western Europe. Recent advances in analytical and sampling methods provide an
opportunity for future studies to obtain more detailed insights into this event, both in previously sampled
records and at new sites. Such investigations might also help in disentangling the 8.2 ka event in Western
Europe from underlying low-frequency climatic events at that time [171].
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Figure 7. Examples of Western European records in SISAL showing evidence for a climatic perturbation
over the 8.2 ka event. To facilitate intercomparison of δ18Ospel, all records were normalised as z-scores.
The duration of the 8.2 ka event is shown with the grey bar [166]. K1, K3—Stalagmites from Katerloch
Cave, Austria [93], CR1—Stalagmite from Grotta di Carburangeli, Italy [80], BuStack—Composite record
from Bunker Cave, Germany [66], WSC-97-10-5—Stalagmite from White Scar Cave, England [111], YD01—



Quaternary 2018, 1, 30 18 of 30

Stalagmite from Pippikin Pot Cave, England [111]. Ages with respective 2σ uncertainties are shown below
each record. For WSC-97-10-5 and YD01, the uncertainties of the age model are also shown (shaded error
bars underlying the time series). Note that the uncertainty of the Bunker Cave composite record is likely
smaller than suggested by the single U-Th ages, due to overlap of single stalagmite records, but this
information was not available in SISAL_v1 [66]. Stalagmites with petrographic or growth rate evidence
for a climatic event are shown in grey bars at the top: A glacier advance is suggested by petrographic
changes in stalagmites from Milchbach Cave, Switzerland [104], growth cessation/start around the event is
recorded by stalagmites ASR and ASM from Cueva de Asiul, Spain [74], and an erosional surface is found
in stalagmite ESP03 from Cova da Arcoia, Spain [71].

4.4. The Last Two Millennia

We evaluated the regional coherency of δ18Ospel over the last two millennia using the data in SISAL_v1
by stacking all records covering at least 1/3 of the interval (−50–2000 yr BP) at reasonable resolution
(≥10 data points), and for which an age model is available. Eighteen records fulfil these requirements:
Stalagmites Vil-stm1 and Vil-stm6 from Villars Cave, France [130]; stalagmites LH-70s-2 and LH-70s-3
from Lancaster Hole, England [102]; stalagmite SU967 from Uamh an Tartair Cave, Scotland [123];
stalagmite FM3 from Okshola Cave, Norway [107]; stalagmite L03 from Larshullet Cave, Norway [103];
stalagmite SG05 from Soylegrotta Cave, Norway [45]; stalagmite K11 from Korallgrottan Cave, Sweden [97];
the composite record from the Austrian Alps COMNISPAII [116], stalagmite CC3 from Crag Cave,
Ireland [69]; flowstone PFU6 from Klapferloch Cave, Austria [95]; stalagmite CL26 from Clamouse
Cave, France [69]; the composite record from Bunker Cave, Germany [66]; stalagmites ASR and ASM from
Cueva de Asiul, Spain [74]; flowstone RL4 from Buca della Renella, Italy [63]; and stalagmite ESP03 from
Cova da Arcoia, Spain [71]. After a Gaussian smoothing on a 100-year timescale was performed for all
records, they were interpolated to 5-year timescales. For the stack, the unweighted average of all records
was used, and no weighting based on location, correlation strength, or uncertainty was performed.

The stacked record for the last 2000 years shows a long-term trend towards more positive δ18Ospel
between 2000–550 yr BP, followed by a reversal (Figure 8). The highest δ18Ospel values of the stack at
550 yr BP fall within the Little Ice Age (LIA; [175]). However there is no clear indication of systematic
changes in δ18Ospel corresponding to the Roman Warm Period (RWP; [177]), the Late Antique Little Ice
Age (LALIA; [177]), or the Medieval Climate Anomaly (MCA; [176]), periods of significant temperature
change in Europe. This failure may reflect the high uncertainties related to the degree of noise in the single
speleothem records, as well as the different climate signals recorded by the individual speleothems. It is
important to note that the stack captures the mean δ18Ospel signal in Western Europe, and not a single
climate process, e.g., temperature or precipitation amount. A screening of the records based on their
response to climate was not possible at present, since most records are not calibrated against instrumental
data. If more records that fulfil this requirement become available, a stack based on the recorded climate
process might become feasible. In addition, future improvements of this procedure should tackle a regional
assessment of the trends using a higher number of records and possibly including proxy data from
other archives, checking correlations between nearby records, incorporating age uncertainties, and the
integration of the signal’s interpretation by the original authors.
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Figure 8. Stacked record of SISAL entities covering the last 2000 years, compared to global climate forcings:
Global Volcanic Forcing (GVF; [172]), solar forcing (total solar insolation anomalies, dTSI; [173]), and CO2

concentrations from combined ice core records [174]. Important climate periods are indicated, and defined
according to the following references: Little Ice Age (LIA; [175]), Medieval Climate Anomaly (MCA; [176]),
Late Antique Little Ice Age (LALIA), and Roman Warm Period (RWP; [177]).

5. Improvements to SISAL for Western Europe

Only 60% of the known records from Western Europe are in the SISAL_v1 database and the remaining
records not yet in SISAL are widely distributed across Europe (Austria: 22, Belgium: 3, France: 7, Germany:
5, Italy: 3, Norway: 5, Spain: 9, Sweden: 1, Switzerland: 2). We have shown, for the current version
of the database, that the speleothem records from Western Europe have potential to document some
aspects of past climate change. However, it is clear that outstanding issues need to be addressed first,
which in Western Europe can be summarised as (i) improvement of temporal coverage, (ii) improvement
of spatial coverage, especially with records calibrated against modern climate conditions, and (iii) a more
comprehensive use of statistical approaches to extract underlying modes from spatially distributed records,
a key aim of the SISAL working group.

Overall, the paucity of records spanning beyond the LGM presents an opportunity for future
studies to target speleothems covering previous time periods, especially given their often more precise
U-Th chronologies at these time scales compared to ice cores and marine sediment records [11,178,179].
Climate variability over the last glacial and beyond remains poorly constrained and speleothems
could provide detailed information from vast range of different environments (coastal, continental,
high altitude/latitude, etc.).

Modern records that contribute to improving our assessment of the spatial robustness of δ18Ospel in
Western Europe need to be calibrated against modern conditions, taking advantage of the GNIP network
and climate model simulations. This is particularly important for the goals outlined by SISAL, as δ18O
is by far the most reported speleothem geochemical proxy, and the only one that has a direct parameter
equivalent in climate model simulations with isotopic tracers. Instrumental and modelling data have
recently allowed to define regions within Western Europe that are particularly suited for reconstructions
of certain (hydro-)climatic conditions, especially with respect to spatio-temporal non-stationarities of
the NAO [29,31,32]. In particular, variable sensitivities to the NAO have been implied for Central
Europe, the Iberian Peninsula, the Baltic Sea, the British Isles, and the circum-Mediterranean region [32].
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Record coverage in these areas is still patchy (Figure 1), and should be targeted by future efforts, ideally
including long-term cave microclimate monitoring to define present day surface to cave transport processes,
assessment of local hydroclimate variability (through the isotopic analysis of precipitation samples from
the cave site), and careful sampling practices.

Competing influences on δ18Ospel and low signal-to-noise ratios at mid-latitude sites still prevent a
quantitative interpretation of δ18O. As recently demonstrated by Deininger et al. [33], who used Monte
Carlo based Principal Component Analysis on several δ18Ospel records in the same region, sophisticated
statistics methods can extract a common mode of climate variability from these datasets. Our approach of
stacking different records is also useful to determine robust regional trends in a quantitative manner, but
needs to be refined by future studies. Such statistical approaches hold great promise in the context of a
large database like SISAL and could be used to better constrain spatial trends in precipitation δ18O over
time, and improve our understanding of local and regional influences on δ18Ospel.

6. Future Directions

This first assessment of the Western European data compiled in the SISAL_v1 database highlights
interesting spatial and temporal trends in stalagmite δ18O, but these will need to be validated and better
constrained by future work on the database. Specifically, we encourage:

• Inclusion of missing records, which were not available to us for SISAL_v1 as they had not been
archived in the supplementary information or on public repositories, and where no/limited contact
with the original authors could be established. This is crucial for the assessment of temporal and
spatial coverage of speleothem records in Western Europe and helps defining future target regions and
time periods for new studies. This could be a starting point for revisiting sites and speleothems that
have shown great sensitivity for climate reconstruction, but where resolution and/or chronological
precision could be improved. It could also be of interest for a better definition of short-lived events
such as the 8.2 ka event or the 4.2 ka event, and to improve chronological controls of speleothems
previously dated with TIMS.

• Addition and use of other types of data. For example, fluid inclusion δ18O measurements on
speleothems would provide important direct information on past precipitation δ18O. Similarly,
speleothem δ13C data, already included in the database, should be evaluated, as many sites highlight
its importance as (qualitative) proxy for soil activity and hydroclimate [44,61,126].

• Inclusion of more information about cave monitoring. The SISAL_v1 database only includes a
yes/no/unknown entry for cave monitoring, which is often not sufficient when evaluating the extent
of knowledge of modern cave conditions.

7. Conclusions

By assessing the speleothem data collected in the SISAL_v1 database for Western Europe, we describe
regional trends in δ18O, and evaluate the potential of this large compilation of records for palaeoclimate
studies in this region. Western Europe has the largest number of published speleothem palaeoclimate
records worldwide, many of which (>60% of the identified records) are currently included in SISAL_v1.
Moreover, climate conditions are well understood, due to the availability of a dense network of GNIP
stations, some of the longest meteorological records worldwide, and global modelling and reanalysis
datasets. This is a great advantage for the interpretation of δ18Ospel records, which at mid-latitude sites is
often difficult because of competing effects from precipitation and cave processes.

In this review of Western European data included in SISAL_v1, we find that (i) present-day spatial
trends in δ18Ospel from Western European caves generally mirror the trends in precipitation δ18O. (ii) Over
the late Quaternary, site-specific noise in δ18Ospel presents the main issue for the extraction of a regional
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climate signal, especially over the Holocene. (iii) Encouraging results can be obtained through the use of
statistical methods, which allow the extraction of regional climate modes.

The SISAL database is a valuable tool for the intercomparison of δ18Ospel records over the Western
European region. We believe this will provide an important resource of palaeoclimatic input for modelling
studies and improve our understanding of the speleothem archive at mid-latitude regions.
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