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Abstract:  

This study examined linear viscoelasticity (LVE) of stereo-regular poly(1-butene) (PB) and 

its random copolymer with polyethylene (PBE), with number fraction of ethylene 

comonomer ≤ 10%, using a conventional shear rheometer combined with a quartz resonator. 

This combination resulted in the detection of LVE in a broad frequency range from Rouse 

region to terminal relaxation. LVE thus determined was fit to the double reptation model 

through utilizing inputting molecular weights determined by gel permeation chromatography 

equipped with refractive index and two-angle laser light scattering monitors, and the 

segmental time and entanglement molecular weight as the two fitting parameters. 

Quantitative prediction was finally achieved when the two fitting parameters changed 

systematically by the increase of ethylene content; a decrease of segmental time quantified a 

plasticizing effect and a decrease of entanglement molecular weight reflected enhanced chain 

flexibility. The entanglement molecular weight of the PB samples was found to be lower than 

those reported for stereo-irregular PB, suggesting the important effect of stereo-regularity on 

chain flexibility.   
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1. Introduction 

Stereo-regular isotactic poly(1-butene) (PB) and its copolymers with ethylene (PBE) are 

widely used as feed pipe, owing to tolerance against wide temperature shifts, high yield stress, 

and strong chemical resistance. Commercially available PB and PBE are usually synthesized 

with the Ziegler-Natta catalysts. The crystallization temperature is usually much higher than 

that of glass transition when the ethylene content is less than 10%, which results in a narrow 

temperature window for measuring melt rheology. [1-3]  

To address this problem, one pathway would reduce the stereo-regularity in order to 

suppress crystallization. For example, Graessley and coworkers synthesized atactic PB and 

PE copolymers by hydrogenating the monodispersed polybutadiene samples synthesized 

through anionic polymerization, thereby varying PB content from 0% to 100% by tuning a 

ratio between the 1,4 and 3,4 additions. They then examined the linear viscoelasticity (LVE) 

of these atactic samples with varied PE content from 1% to 85% [4-6] to determine the 

plateau moduli Ge and, accordingly, the entanglement molecular weight (Me) of these 

samples from  

   Me
= rRT G

e
 ,      (1) 

where Me was evaluated to be 13,500g/mol for pure PB and decreased systematically with the 

increase of PE fraction, owing to the enhancement of chain flexibility. In addition, Graessley 

and coworkers noted an important plasticizing effect of the ethylene comonomers. [4-6] 

Namely, Tg reduced with increased ethylene content. Nevertheless, it remains unclear how Me 

and Tg change with stereo-regularity.   

To gain more insight into this question, an alternative pathway involves extending the 

window of time scales of the LVE measurements. Toward this end, Friedrich and coworkers 
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recently demonstrated that the use of a conventional shear rheometer (detecting a frequency 

range of ~ 10-2-102rad/s), a piezoelectric rotary vibrator (PRV, detecting a frequency range of 

~ 1-104rad/s), and a quartz resonator (QR, detecting a frequency range of ~ 108rad/s) enables 

the detection of LVE from the Rouse regime to terminal relaxation for semi-crystalline PE 

and poly (vinyl acetate) (PVAc) copolymers. [7] This protocol is particularly useful when the 

ethylene content is above 60%, the point at which crystallization of PE disturbs conventional 

LVE measurements at low T, in turn, enabling QR to effectively extend LVE measurements 

to the glassy-to-rubbery transition region. 

The present study will examine linear viscoelasticity for stereo-regular PB and PBE 

samples by combining conventional rheology and QR. [4-6; 8] Although this experimental 

approach is arguably very similar to that of Friedrich and coworkers, their work is extended 

herein by the addition of a new data analysis protocol.  We utilized molecular weight (MW) 

and its distribution directly obtained from gel permeation chromatography equipped with 

refractive index and light scattering monitors as inputting parameters, leaving only 

entanglement molecular weight (Me) and segmental time (0) as the fitting parameters. This 

approach enables quantitative prediction of LVE. Comparison of the entanglement molecular 

weight Me of stereo-regular PB in this study and that of stereo-irregular PB studied by 

Graessley and coworkers suggests the important role of stereo-regularity in determining the 

chain flexibility. [9] 

 

2. Experimental 

2.1 Samples 
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All PB and PBE samples were produced by LyondellBasell Industries with the brand name 

listed in Table 1. For simplicity, we renamed the samples based on the molecular weights and 

fraction of ethylene monomers, as also shown in Table 1; for example, PB0800 is renamed as 

PB121, meaning that this PB sample has Mw = 121kg/mol, and PB8510 is renamed as 

PBE203-9.9%, meaning that this PBE copolymer sample has Mw = 203kg/mol and a molar 

fraction of ethylene monomers fPE = 9.9%. Most commercially available PBE samples 

contain high content of stereo-regular PB owing to their application values. 

Tacticity of the three PB samples was characterized via 13C nuclear magnetic resonance. 

Meso and racemic placements consisted of two adjacent monomers oriented in the same and 

opposite directions, respectively. 13C enables characterization of fractions of isotactic (mm), 

heterotactic (mr or rm), and syndiotactic (rr) triads, with [mm] + [mr] + [rm] + [rr] = 1. 

Tacticity is defined as [m] = [mm] + 0.5([mr]+[rm]). Details of these parameters are 

summarized in Table 2.  

 

Table 1. Important parameters of PB and PBE samples 

Name Code fPE Mn(g/mol) Mw(g/mol) Mw/Mn  Tg
b(°C) Tg

c(°C) 

PB0800 PB121 0% 47,000 121,000 2.6 -26 -29 

PB0400 PB238 0% 96,000 238,000 2.5 -25 -28 

PB0110 PB742 0% 227,000 742,000 3.3 -22 -27 

PB8640 PBE552-1.5% 1.5%a 160,000 552,000 3.5 -27 -31 

PB8220 PBE414-4.3% 4.3%a 151,000 414,000 2.7 -32 -34.5 

PB8510 PBE203-9.9% 9.9%a 77,000 203,000 2.6 -35 -35.5 

a: Reported in Ref  [10; 11] 

b: Obtained from the WLF analysis 
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c: Obtained from the DSC measurements of crystallized samples 

 

Table 2: Tacticity of the PB samples 

Name Code [mm] [mr]+[rm] [rr] [m] 

(tacticity) 

PB0800 PB121 0.960 0.020 0.020 0.970 

PB0400 PB238 0.915  0.054  0.0311 0.942  

PB0110 PB742 0.954 0.032 0.014 0.970 

 

2.2 Gel Permeation chromatography (GPC) 

Molecular weight distribution of PB and PBE samples was characterized by high-temperature 

gel permeation chromatography (HT-GPC) analysis with PL-GPC 220 (Agilent), and the 

instrument was equipped with a two-angle (15° and 90°) laser light scattering (TALLS) 

detector, a viscometer, and a differential refractive index (DRI) detector. Three PLgel 10 µm 

MIXED-B LS columns (300x7.5mm) were used for the separation.  

The TALLS and the DRI detectors were calibrated with standard polystyrene (PS) samples. 

1,2,4-trichlorobenzene stabilized with 5x10-4g/mL 2,6-di-tert-butyl-4-methylphenol (BHT) 

was used as the eluent. All measurements were performed at 150°C with an eluent flow rate 

of 1.0 mL/min. Polymer solution at a concentration of about 1.0 mg/mL was injected into the 

multi-detector GPC system via an autosampler with an injection volume of 200 μL. The 

refractive index increment dn/dc of all studied PB and PBE samples was determined to be 

(0.097±0.001) mL/g. 

Cirrus software was used for data acquisition and analysis. For each elution fraction i, the 

molecular weight Mi, radius of gyration Rg,i, intrinsic viscosity []i, and concentration Ci 
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were obtained. Then the weight average and number average molecular weights, Mw and Mn, 

of the samples could be calculated with established absolute calibration curves, and results 

are summarized in Table 1. 

 

2.3 DSC measurement 

Thermal properties of the samples were measured with both conventional differential 

scanning (DSC) calorimeter (TA Instruments Q20) and Flash DSC. For conventional DSC 

measurements, specimens weighing 5-8mg, as cut from granules, were sealed in aluminum 

pans. The DSC equipment was calibrated using indium and tin. All experiments were 

performed under the protection of nitrogen atmosphere flowing at a rate of 50 mL/min. 

To determine the glass transition of the crystallized sample, the samples were first annealed 

in the DSC instrument at 180°C for 10min (>> equilibrium crystallization point of 146°C of 

PB [29]) to remove thermal and flow histories, followed by cooling down to different 

temperature Tc and annealing there for 25min for isothermal crystallization (Tc = 90°C for all 

PB samples, 70°C for PBE414-4.3% and PBE203-9.9%, and 40°C for PBE203-9.9%, at 

which the isothermal crystallization was finished within 25min). After isothermal 

crystallization, the samples were cooled down at a rate of 20°C/min to -80°C and then heated 

up to 20°C at a rate of 15°C/min. Glass transition Tg was determined by the DSC traces 

during the heating processes.  

To understand the crystallization kinetics, all samples were subjected to fast scanning 

calorimetry (FSC) with Flash DSC (Mettler-Toledo Flash DSC 1) under the protection of 

nitrogen. The FSC sensor was conditioned and temperature-corrected according to the 

operating manual. The samples were microtomed into films, and the films were loaded on the 
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sensor and melted therein to ensure good contact with the sensor. During the measurements, 

the samples were first annealed at 180°C to remove the thermal and flow history, cooled 

down at different rates, and then heated up at a fixed rate of 1000°C/s, during which the 

crystals, if formed during the first cooling process, would melt, allowing calculation of the 

degree of crystallization by the resulting enthalpy (area integrated on the melting peak). This 

protocol was repeated by increasing the cooling rate until the sample could be effectively 

quenched and no melting peak could be detected in the heating process.  

  

2.4 Conventional rheometry 

Linear viscoelasticity (LVE) measurements were conducted on the MCR-302 (Anton Paar) 

and ARES-G2 (TA Instrument) with 25mm parallel plates. The samples were loaded at 

180°C and annealed for 10min to remove thermal history. After that, frequency sweep 

measurements were conducted every 10-20°C from 180°C to lower T until the sample started 

to crystallize and G' increased with time at given T. During the frequency sweep 

measurements, strain amplitude was kept small (≤10%) to ensure that the storage and loss 

moduli, G' and G", were obtained within the linear regime as confirmed with the strain sweep 

measurements.  

 

2.5 Quartz resonator 

Our homemade quartz resonator is equipped with an AT-cut quartz crystal (14 mm in 

diameter, Hangzhou Longqin Advanced Materials Sci & Tech Co., Ltd., Hangzhou, China) 
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with gold electrodes (5 mm in diameter) on both sides, for which the basic frequency is 6 

MHz, and could be extended to 3rd, 5th and 7th overtones.  

Before measuring the sample, the bare quartz crystal was loaded on a homemade holder, and 

the holder was placed into an oven (V0 200, Memmert GmbH). After a two-hour 

equilibration at each testing T (= 115.3, 126.7, 150.5 and 160.0°C) in the oven, the resonance 

curve of bare quartz crystal was measured by using a quartz crystal microbalance based on 

admittance analysis (QCM-A DBY-17, Hangzhou Longqin Advanced Materials Sci & Tech 

Co., Ltd., Hangzhou, China) with a control program, “QCM-DBY”. By fitting the quartz 

crystal resonance curves, the resonance frequency  and width at half-height D0 of the 

resonance peak were determined at each basic frequency and overtone at each T. After that, a 

sample membrane with predetermined diameter (~ 5mm) and thickness (0.3mm), prepared 

with a homemade compressor, was loaded on the gold electrode at one side of the quartz 

crystal. The sample and the quartz crystal were placed back into the oven and heated to 

160.0°C in vacuum. This process ensured that sample and quartz crystal would maintain 

good contact.   

Next, the quartz crystal coated with sample was heated at each testing T in the oven for a 

two-hour equilibration. The resonance curve of the sample-coated quartz crystal was then 

measured again to give the resonance angular frequency  and width at half-height D of the 

resonance peak at each basic frequency and overtone. Moduli were determined from shift of 

angular frequency  =  – 0 and change of peak width, as D = D – D0 (both in unit of 

rad/s), in the following equations: 

G' = k(D2/4 2)       (2a) 

G" = kD       (2b).
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Here, k = (dqrq)2/rp is a prefactor (Note that k is different by a factor of 42 from that 

reported in Ref [7] due to different units of frequency, i.e. rad/s here and Hz in Ref [7].), dq 

and rq are the thickness and density of quartz, respectively, and rp is the density of the 

probing sample. From Eq. 2(a) and (b), we see that tan  = G"/G' = D/(D2/4 2) is 

directly related to D and .  

In the QR measurement, G' and G" do not depend on membrane thickness as long as this 

membrane is sufficiently thick and fully covers one of the two gold electrodes. The 

penetration depth of acoustic shear wave generated by the quartz resonator in a viscoelastic 

liquid p is given as p = (2/r=G/r, where r is the density of the viscoelastic 

liquid, and  and G are viscosity and shear modulus of the viscoelastic liquid, 

respectively. [12] The largest penetration depth p of the shear wave can then be estimated to 

be about 37.5 m by taking r of 1.0 g/cm3 and G of 1GPa as the fundamental frequency of 

the quartz resonator at 6 MHz, which is far smaller than the thickness of sample, i.e., ~0.3mm. 

For higher 3rd, 5th and 7th overtones, the penetration depths are even smaller. In such cases, 

the quartz resonator senses the only a thin layer of the bulk sample in melt state.  

 

3. Theory 

The modulus is expressed as a sum of the Rouse part, GR, and reptation part, Grep, as 

G t  = GRouse t  +Grep t        (3). 

The Rouse part can be written as 
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(4). 

Here, GRouse contains two types of relaxation modes. The first term in the brace corresponds 

to low-order motional modes of length scales larger than the entanglement length, and the 

second term corresponds to the high-order motional modes corresponding to length scales 

smaller than the entanglement length. For the first term, a prefactor of 1/5 is added, as 

derived by Likhtman and McLeish. [13] 

The reptation part of modulus, on the other hand, can be expressed in the double reptation 

model  [14-17] as 

Grep t  = Ge  N F t, N 
N





2

,      (5) 

where a power 2 reasonably accounts for the constraint release mechanism. F(t,N) is 

expressed in a form by   

   2
2 2

odd 

8 1
exp


 =  

q

F t q U t
q

 ,     (6a) 

with   e

rep rep e

+

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 

=  
  

t M tM
U t g

M M
and g x  =

1 exp m2x 
m2

m=1

¥

   (6b) 

 

4. Results and discussion  

4.1 Molecular weight distribution 
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The static light scattering detector monitors the Rayleigh ratio Ri of the i-th fraction, which 

is related to the fraction concentration Ci as 

  2,
, w,

1
2 ...i

i i
i ii

KC
A C

R P M 
= + +       (7) 

 
where the second and higher-order terms of Ci can be ignored for dilute concentration 

employed in the GPC measurements. Rayleigh ratios at two angles of the TALLS detector, 

= and = enable calculation of their ratio Zi = R,i/R,i = P()i/P()i. 

Accordingly, the radius of gyration Rgi  and the particle scattering function P()i of the i-th 

fraction can be obtained from the ratio Zi by the built-in Cirrus software with the random coil 

assumption for the particle scattering function. Then, the molecular weight Mi of the fraction 

is calculated with the known concentration from the DRI detector. [18; 19] 

Figure 1 shows plots of M as functions of the elution volume V for all PB and PBE samples 

in this study. The difference among samples is trivial based on the similarity of their 

chemical structures. Scattering of data points is noted at both ends of the chromatograms 

since Mw,i is, in principle, calculated from a ratio of the LS and RI signals that are 

proportional to CiMw,i and Ci, respectively, and, thus, errors would appear when either of the 

signals approaches zero. To solve this data scattering problem, we use linear fit of the logM  

V plots at medium V where the scattering is sufficiently small (R2 value ≥ 0.997) and 

extrapolate the line to the high and low ends of elution volumes. This linear assumption of 

the calibration curves should hold for the samples in this study because the employed PLgel 

10µm MIXED-B LS GPC columns have a linear molecular weight range of 500-10,000,000 

g/mol. 
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Figure 1: Molecular weight M as a function of elution volume V for all PB and PBE samples 

obtained by the multi-detector GPC. 

With the absolute calibration curve of each sample established, the molecular weight 

distributions of the PB and PBE samples can be obtained, and the results are shown in Figure 

2. The overall trend is a broadening of the molecular weight distribution with increasing 

molecular weight, as demonstrated in the plots and the Mw/Mn values listed in Table 1, which 

should be related to the detailed synthesis procedure that is unknown to us. 

 

Figure 2: Molecular weight distributions of PB and PBE samples.  
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4.2 Linear viscoelasticity 

Figure 3 shows the storage and loss moduli, G' and G", measured as functions of angular 

frequency  for all PB and PBE samples reduced at a reference Tr = 120°C. The moduli are 

multiplied by an intensity factor, bT = Tr/T, and shifted horizontally to construct the master 

curves. In principle, the modulus having entropic origin should be proportional to rT, and a 

normalization factor should be rrTr/rT. Nevertheless, a change of r is usually much weaker 

than T itself; therefore, we ignore the change of r in our analysis. Time-temperature 

superposition can be achieved very well for the low  bTG' and bTG" data measured from 

conventional rheometry, for which the uncertainty of each data point is usually less than ± 

5%, corresponding to ± 0.02 in the logarithmic scale, i.e., the size of symbols. In comparison, 

a similar quality of data cannot be achieved for the high  bTG' and bTG" data detected in QR, 

which shows the scattering data quite clearly. For these data, it is difficult to shift the QR data 

precisely up to ~ 0.02 in logarithmic scale along the horizontal axis. Therefore, we shifted the 

data under the guidance of low LVE data by conventional rheometry. That is, we shifted 

the QR data detected at 115.3, 126.7, 150.5 and 160.0°C by interpolating points of the plots 

of aT against T of conventional rheometry, assuming that high and low  data exhibit the 

same temperature dependence. Since the temperature range of QR measurements is well 

within that of conventional rheological measurements, this protocol should be acceptable. 

The shift factors of LVE data by conventional rheometry and the interpolation points of QR 

are summarized in Figure 4 (a). The master curves thus constructed are further shifted by a 

vertical factor A, as indicated (larger A is chosen for higher M sample), to avoid overlapping. 
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The solid curves in Figure 3 are predicted on the basis of the double reptation model by 

utilizing density r = 0.813g/cm3, as reported by Graessley. [20] The temperature for this 

reported density is 140C, very close to Tr = 120C in this study. The fitting parameters are 

summarized in Table 3, including a fixed shape parameter  (fixed to be  = 9, identical to  

= 9 reported for poly(vinyl ethylene) [21] and close to  = 8.7 reported for polystyrene [15]), 

entanglement molecular weight Me and Rouse time per Kuhn segment 0. We first determined 

this factor  through fitting LVE of pure PB and utilized the same factor for all the samples. 

Since a fixed  enables us to achieve good predictions, we did not intend to introduce one 

additional adjustable parameter. The molecular weight per Kuhn segment is MK = 133g/mol 

for PB, which is assumed to be the same for the PBE samples. This assumption is innocuous 

here since (1) a fraction of PE is low (fPE < 10%) and (2) all LVE studied here are below GK 

= rRT/MK = 2×107Pa. Thus, while the choice of MK would affect 0, it would not affect 

predictive quality. In the model calculation, a power region G' = GK(0)1/2 can be used to 

guide the choice of 0. The molecular weight distribution (N) with N = M/M0 in Eq. 5 was 

shown earlier in Figure 2. By utilizing Me as a fitting paraemeter, we can calculate 

entanglement time e = 0(Me/M0)2 and reptation time rep = e(M/Me)3 in Eqs. 3-6. These 

parameters enable quantitative prediction of LVE in the frequency range of our 

measurements based on the double reptation model.  

In Appendix B, we fit LVE based on the hierarchical model by Wang et al. by utilizing the 

same M distribution and 0, as shown in Figure 3, and Me as the fitting parameters. [22] Good 

agreement could also be achieved between the experimental results and the theoretical 

prediction (cf. Figure B1).  
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Since the calculations, as expressed in Eqs. 3-6, consider only the rubbery part of modulus, 

the predicted glassy-to-rubbery transition is characterized by G' = G" ~ 1/2 that ends at high 

 where G' (= GK) becomes higher than G" In contrast to this expectation, it is clear that G" 

is higher than G' at the high  end. This feature indicates that the glassy part of G" starts to 

play a role at the high frequency end of the glassy-to-rubbery transition region, as observed 

extensively in the rheo-optical measurements performed by Inoue and coworkers. [23; 24] To 

address the contribution of glassy modulus,  [23-25] we added Gglassy" = glassyto the 

rubbery part of G", where glassy = 0.045Pa.s chosen to be the same for all the samples. This 

step leads to G" > G' at high frequency (see the dashed curves), which agrees with the 

experimental results. We should note that the glass modulus can be represented in more 

precise ways. For example, Marin and coworkers have suggested that the complex Gglassy* 

can be represented as Gglassy() = Ginf – Ginf/(1+iglassy)1/2, or in time domain as GHF(t) = 

Ginf(1erf(t/glassy)1/2). [26; 27] An alternative representation is the Kohlrausch-William-Watts 

(KWW) equation Gglassy(t) = Ginfexp(t/glassy)). [28-30] Since both the models above would 

give Gglassy" = glassy and Gglassy" > Gglassy' in the glassy-to-rubbery transition region of 

current interest, we may safely use Gglassy" = glassyhere as an approximation.  
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Figure 3: Comparison of LVE master curves (symbols) of storage and loss modulus, G' and 

G", measured as a function of angular frequency  and reduced at reference temperature Tr = 

120°C for the PB and PBE samples and prediction (curves) of the double reptation model. 

The LVE data are shifted along the vertical axis by a factor of A as indicated, where larger A 

was chosen for higher M sample. 

 

Table 3. Inputting parameters for model calculation at reference Tr = 120°C 

Brand Name Code Me(g/mol) 0(ns) 
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PB0800 PB121 7,500 0.66 9 

PB0400 PB238 7,000 0.93 9 

PB0110 PB742 7,500 1.0 9 

PB8640 PBE552-1.5% 7,500 0.63 9 

PB8220 PBE414-4.3% 6,700 0.59 9 

PB8510 PBE203-9.9% 6,300 0.43 9 

 

 

4.3 Effective glass transition temperature and segmental time 

The shift factors aT of the PB and PBE samples are plotted against T in Figure 4 (a). The 

temperature dependencies do not agree well, suggesting that Tg is different for these samples. 

Graessley and coworkers analyzed the viscoelastic shift factors of random PBE samples 

obtained through hydrogenating monodispersed polybutadiene samples of different ratios of 

1,4 and 3,4 additions. They found that an empirical Williams–Landel–Ferry (WLF) equation 

holds for all PBE samples having various PB and PE ratios  [4-6], as   

  
 
 T

6.35 77
log

146 77

  
=

+  
g

g

T T
a

T T
     (8). 

By choosing an iso-frictional temperature Tiso  = Tg + 77, as the reference temperature, we 

can rewrite Eq. 8 as log aT =  6.35(TTiso)/(146+TTiso), as shown in curve in Figure 4(b). 

By taking Tiso as an adjustable parameter, we check the consistency between the plots of log 

aiso = logaT(Tr) 6.35(TrTiso)/(146+TrTiso) against T – Tiso (symbols in Figure 4(b)) and the 

prediction by Eq. 8 (curve in Figure 4(b)) until the best agreement can be achieved. The 

scattering of data points is effectively reduced compared with those in Figure 4(a). From the 
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fitting parameter Tiso thus determined, we can further calculate the effective Tg as Tg  = Tiso  

77, which is summarized in Table 1 and will be compared with the DSC Tg later in Figure 5.  
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Figure 4: Comparison of (a) viscoelastic shift factor aT against T for the PB and PBE samples, 

with reference temperature  Tr = 120°C, (b) viscoelastic shift factor aiso reduced to an iso-

frictional temperature (T – Tg 77)°C when aiso shows the same temperature dependence and 

can be fit by WLF Eq. 8, and (c) segmental time 0 reduced to (T – Tg 77)°C. 

Since the samples are reduced at an iso-frictional state at ( T – Tg – 77) °C (Figure 4(b)), it 

can be expected that the segmental time can be properly normalized at (T – Tg – 77) °C. This 

expectation is tested in Figure 4 (c), showing that the segmental time 0 extracted from the 

analysis of LVE at Tr (in Figure 3) is extended to another T through the viscoelastic shift 

factor aT and plotted against (T – Tg – 77)°C (i.e., T – Tiso). It is remarkable that the plots of 0 

against (T – Tg – 77)°C agree for all PB and PBE samples. The solid curve is defined by [4]
  

 g

0
g

6.35 77
log 7.07

146 77


 
=  

+  

T T

T T
     (9) 

which is a reasonable representation of 0 obtained for all the PB and PBE samples in this 

study, as log 0 = 7.07 at T = (Tg + 77)°C.  

Figure 5 compares Tg plotted against the fraction of PE from our WLF analysis (filled 

diamonds) and that by Graessley and coworkers (filled spheres), both representing Tg of the 

samples in melt, [4] and Tg measured directly from DSC by us (unfilled diamonds) and by De 

Rosa et al. (unfilled squares), both representing Tg of the semi-crystallized samples. [31] It is 

worth mentioning that the samples studied by De Rosa et al. are stereo-regular samples 

synthesized with the zirconocene catalyst. Difference is revealed from comparing Tg from the 

WLF analysis (filled diamonds) and that from the DSC measurements (unfilled diamonds) in 

this study, which is not surprising because the former is given on the melt samples while the 

latter is on the amorphous phase of the semi-crystallized samples. This difference becomes 
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smaller for the PBE203-9.9% sample possibly because it has the lowest degree of 

crystallization owing to the highest content of PE. Although the difference exists, the overall 

trend is similar in that Tg decreases with increasing fraction of ethylene (fPE) comonomers.  

The dashed curve corresponds to the prediction of the empirical Fox equation: [32] 

             
PE PE

g,PE g,PB

1
= +g

f f
T

T T
        (10) 

which underestimates the plasticizing effect of PE. In comparison, the empirical DiMarzio 

equation with one additional fitting parameter, r = 0.81, can give better prediction: [33]  

 
 

PE g,PE PE g,PB

PE PE

1

1

+ 
=

+ g

f T r f T
T

f r f
      (11). 

 

Figure 5: Comparison of effective glass transition temperature Tg against a number fraction of 

ethylene monomers. The filled spherical symbols are data reported by Graessley and 

coworkers, and the unfilled square symbols are data of De Rosa et al, and filled and unfilled 

diamond symbols are data in this study. The solid and dashed curves correspond to 

predictions using the DiMarzio and Fox equations, respectively.    
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4.4 Entanglement molecular weight 

Figure 6 compares the entanglement molecular weights (Me) of PB and PBE samples 

obtained from fitting the data to the double reptation model (square symbols) and the 

hierarchical model of Larson and coworkers (diamond symbols, cf. Appendix B for details), 

as well as that calculated from Ge reported by Graessley and coworkers (spherical 

symbols). [4] The overall trend is a decrease of Me with increasing fraction of PE, reflecting 

higher chain flexibility for samples with higher fPE. The entanglement spacing of isotactic PB 

in this study is smaller than that of the atactic PB sample studied by Graessley and coworkers, 

as discussed below. [4]  

One of the simplest rules that correlates the molecular weight per backbone and Me is the 

“backbone equivalence” model. In this model, the size of a coil is assumed to be determined 

by the backbone PE so as to give the packing length p ~ mb. Since the entanglement length is 

proportional to the packing length as a = Pep, with Pe ~ 20 appearing to be a constant, the 

volume per entanglement segment becomes Me/r = a2p = Pe
2p3 ~ mb

3. A difference of the 

density r of different polyolefins could be ignored to give [8; 34] 

Me = Me,PE(mb/mb,PE)3        (12) 

where Me,PE = 1,000g/mol and mb,PE = 14g/mol are the molecular weights per entanglement 

and per backbone of PE, respectively. This equation was derived earlier by Fetters, Lohse and 

coworkers (c.f. Eq. 13d of ref  [34]). The backbone equivalence assumption can be 

interpreted as a constant ratio between trans/gauche conformational isomers (conformers). 

However, it is well known that this ratio changes according to the length and arrangements of 
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the side chains, i.e., monomer type and the tacticity. Taking these factors into consideration, 

the simplest adaptation would use the power in Eq. 12 as a fitting parameter to give 

Me = Me,PE(mb/mb,PE)        (13) 

where  reflects the roles of monomer chemistry and tacticity. Figure 6 compares Me 

obtained for the heterotactic PB and PBE copolymers studied by Graessley and coworkers 

(blue spheres) and Me obtained through fitting with the double reptation model (black squares) 

and hierarchical model (green diamonds). The solid and dashed lines correspond to the 

predictions of Eq. 13 with  = 3.3 and 4.2, respectively. The different  values suggest the 

important role played by tacticity.  

Fetters, Lohse and coworkers compared a prediction of Eq. 13 with experimental results of 

more than ten different types of polyolefins and concluded that the plateau modulus GN ~ mb
-

3.49 for mb = 14-28g/mol and GN ~ mb
-1.58 for mb = 35-56g/mol, corresponding to Me ~ mb

3.49 

(for mb = 14-28g/mol) and Me ~ mb
1.58 (for mb = 35-56g/mol) if the difference of r is 

negligible. [34] Meanwhile, they observed <R2>/M ~ mb
-1.43 at 298K and <R2>/M ~ mb

-1.30 at 

373/463K for mb = 14-28g/mol, both stronger than <R2>/M ~ mb
-1 expected from the 

backbone equivalence model, which they attributed to an enhanced ratio of gauche 

conformers with mb by the presence of branching groups. The higher Me ~ mb
3.49 compared to 

Me ~ mb
3, as predicted by the backbone equivalence model, should somehow be related to this 

enhancement. The solid and dashed curves in Figure 6 represent the prediction of Eq. 13 with 

 = 3.3 and 4.1, respectively, where the former value is close to 3.49 reported by Fetters, 

Lohse and coworkers.  

The solid curve with  = 3.3 gives Me = 8,000 for fPE = 0, much smaller than Me = 13,500, as 

determined from Ge reported by Graessley and coworkers. We suspect that this difference 
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results from a difference in stereo-regularity. For the isotactic PB and PBE samples in this 

study, a ratio between trans and gauche conformers should be more similar to that of PE, 

giving a value of  = 3.3 close to a factor of 3 (that assumes this ratio to be unchanged). In 

contrast, for the heterotactic PB and PBE studied by Graessley and coworkers, the deviation 

of  becomes more prominent with increasing fraction of PB where  = 4.1 (dashed curve) is 

required to predict the behavior of the pure PB sample, possibly related to a lack of tacticity 

that leads to a change of the trans/gauche ratio.  

 

Figure 6: Comparison of Me plotted against a number fraction of ethylene monomers of the 

PB and PBE samples. An error bar of ±1000 is estimated for Me from data fitting. The 

spherical symbols are calculated from Ge reported by Graessley and coworkers, and the 

square and diamond symbols are obtained through fitting with the double reptation and 

hierarchical models, respectively. The solid and dash curves correspond to the prediction of 

Eq. 13 with  = 3.3 and 4.1, respectively.  

 

5. Conclusion 
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This study explored the possibility of measuring the linear viscoelasticity of isotatic PB and 

PBE by using conventional rheometry in combination with the quartz resonator. The protocol 

of experiment and data analysis should be applicable to all semicrystalline polyolefins in melt. 

The linear viscoelasticity from the Rouse to terminal relaxation could be detected above the 

crystallization temperature, which was further analyzed with the double reptation model. 

Such analysis enabled us to determine glass transition temperature Tg and entanglement 

molecular weight (Me) of these samples.  

Comparison of Tg and Me with those parameters for atactic PB and PBE, studied by Graessley 

and coworkers, revealed the effects of stereo-regularity. The dependence of Tg on PE content 

seems to be consistent between isotactic and atactic samples. However, Me is considerably 

larger for the atactic sample than the isotactic sample, suggesting the important role that 

stereo-regularity plays in chain flexibility.   

 

 

Appendix A: Thermal analysis 

Thermal measurements were conducted with both conventional DSC equipment Q20 (TA 

Instruments) and Flash DSC (METTLER TOLEDO Flash DSC 1). Conventional DSC 

equipment was used to characterize the glass transition temperature Tg of the semi-

crystallized samples, to be compared with that reported by De Rosa et al. on isotactic PBE 

copolymers synthesized with the zirconocene catalyst, [31] while Flash DSC was employed 

to understand the minimum cooling rate required to effectively quench the samples without 

crystallization. Understanding this criterion helps in evaluating if the LVE of these samples 
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can be characterized through quenching the amorphous sample to a testing temperature 

without crystallization, a method that has been suggested by Kapnistos and Vlassopoulos. [35]  

For the conventional DSC measurements, the samples were first annealed at 180°C for 10min 

to remove the thermal and flow histories and then subjected to isothermal crystallization. 

After that, the samples were cooled down at a rate of 20°C/min to -80°C and then heated to 

20°C at a rate of 15°C/min, during which the DSC traces were recorded and shown in Figure 

A1.  The DSC traces of PB238, PB742, PBE552-1.5%, PBE414-4.3%, and PBE203-9.9% 

were reported in our previous study, while the DCS trace of PB121 was only reported in this 

study. [36]   

In Figure A1, the glass transition region becomes more prominent with increasing PE content 

because the introduction of ethylene reduces stereo-regularity and suppresses crystallization, 

leading to larger fraction of the amorphous phase that activates the stronger glass transition 

process. The glass transition temperature is chosen as the mid-point of the glass transition 

process, which increases slightly with increasing molecular weight owing to the well-known 

high free volume contribution of the chain ends, but decreases with increasing PE content, 

owing to the plasticizing effect of PE, which is similar to the trend reported in literature.  [4; 

37] 
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Figure A1: DSC traces of PB and PBE samples obtained after isothermal crystallization at 

different Tc. 

Figure A2 shows the fast scanning calorimetry (FSC) traces detected at a heating rate of 

1000°C/s after cooling down at different rates, as indicated. It can be seen that the threshold 

quenching rate to prevent crystallization is very high for the pure PB samples (top panels), 

i.e., 30°C/s for the PB121 and PB238 samples and 100°C/s for the PB742 sample. The 

threshold quenching rate gradually decreases for samples with higher content of ethylene 

comonomers by the suppression of crystallization kinetics after reducing stereo-regularity. 

From the bottom panels of Figure A2, we see that the threshold rates are 5°C/s for the 

PBE552-1.5% sample and 0.5°C/s (30°C/min) for the PBE414-4.3% and PBE203-9.9% 

samples. The latter value is close to the limited quenching rate of conventional rheometers. In 

addition, the quenching efficiency could be lower for the rheometers compared with the Flash 

DSC on the thinner sample membrane; therefore, we did not attempt to measure LVE of the 

effectively quenched samples.  
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Figure A2: FSC traces recorded during heating at a rate of 1000°C/s after quenching the PB 

and PBE samples at different rates, as indicated. 

 

 

Appendix B: Prediction of Hierarchical Model  

We compared the experimental results with theoretical predictions made by using the 

Hierarchical-3.0 Model  [22]. The hierarchical model is a tube-based computational model 

originally developed by Larson (Hierarchical-1.0) [38] for predicting the linear viscoelasticity 

(LVE) of general mixtures of entangled linear and branched polymers. This model was later 

refined by Park et al. (Hierarchical-2.0) [39] and Wang et al. (Hierarchical-3.0), "which 

incorporates several refinements of the relaxation mechanisms and also shows a higher 

computational efficiency due to the use of a logarithmic time stepping method for calculating 

the time evolution of the arm-end retraction", as explained in the context of the present work 

below (Wang et al., 2010). [22] The general theoretical framework of the hierarchical model 
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is based on the Milner-McLeish theory for blends of monodisperse star and linear 

polymers [40-42]  

In the Milner-McLeish theories  [40; 41] and, hence, the hierarchical model, entangled linear 

polymers are treated as symmetric two-arm stars with the arm-free ends retracting along the 

confining tubes of the polymers owing to contour length fluctuations until reptation takes 

over. For polydisperse polymer systems, constraint release (CR) effects are addressed by the 

dynamic tube dilation (DTD) theory. [43; 44] In addition, upon a sudden drop in the volume 

fraction of unrelaxed materials ((t)) in the system such that the DTD picture fails, relaxation 

enters a CR-Rouse regime whereby arm retraction occurs in a partially dilated tube, and the 

tube itself undergoes Rouse motion inside a wider supertube  [41; 42; 45]. In the current work, 

we assume that the diameter of the partially dilated tube is determined by the unrelaxed 

volume fraction just before the onset time of the CR-Rouse regime, which is termed as the 

“thin” tube approach  [22; 46]. The diameter of the supertube is determined by a supertube 

volume fraction which decreases with time in a power law, as Φௌ்(𝑡)~ 𝑡ିଵ/ଶణ, where 𝜗 is 

the dilution exponent. The CR-Rouse regime ends when Φௌ்(𝑡)  reaches the unrelaxed 

volume fraction (t). In a highly polydisperse system, the process of entering and exiting the 

CR-Rouse regime may take place many times before the stress relaxation of the entire system 

is terminated by the reptation of the longest chains. 

The influence of different relaxation mechanisms, numerical implementation methods, and 

choice of certain model parameters on the LVE predictions of the hierarchical model and 

another tube-based computational model, the “bob” (or branch-on-branch) model  [46], has 

been discussed in detail in a previous publication  [22]. For the entangled linear polymer 

systems studied in this work, the only variable model parameter is the dilution exponent 𝜗 

which can be chosen as either 1 or 4/3. It has been shown in theoretical  [47; 48] and 
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hierarchical model [22] calculations that the use of 𝜗 =1 can provide better predictions for the 

viscoelastic properties of binary blends of linear polymers than 𝜗 = 4/3, which, however, 

works better for star-linear blends. The same trend has been found for the description of 

polydisperse linear PB and PBE melts. Therefore, all hierarchical model predictions 

presented here are generated using 𝜗  =1. 

The input system parameters for the hierarchical model calculations include the plateau 

modulus  

 𝐺ே
଴ = 𝐺௘ =

ఘோ்

ெ೐
       (B1) 

and the equilibration or entanglement time 

 𝜏௘ = 𝜏଴ ቀ
ெ೐

ெబ
ቁ

ଶ

        (B2) 

where the same density and molar weight of monomers, r = 0.813g/cm3 and M0 (= Mk) = 

133g/mol, are used for all studied samples. The reference temperature is set as T = 120C. 

Both Me and 0 for different PB and PBE samples are summarized in Table B1. The 

experimentally determined molecular weight distributions, as shown in Figure 2, are also 

used directly in the model calculations. 

In Figure B1, the hierarchical model predictions for the LVE of different PB and PBE 

samples are shown to be in reasonably good agreement with the experimental data. The 

slightly higher theoretical values in the terminal relaxation regime (lowest frequencies) can 

be attributed to the artificially extended CR-Rouse regime whereby arm retraction in the “thin” 

tube leads to a faster decay of the unrelaxed volume fraction  compared to that of supertube 

volume fraction Φௌ்  and, as such, results in an overestimation of the stress moduli  [22]. This 

problem is most severe in describing star-linear blends with very low volume fractions of star 

polymers, but relatively innocuous for the polydisperse linear polymer systems studied here, 
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though still noticeable. The overestimation problem could be partly resolved by taking into 

account the disentanglement relaxation mechanism, which effectively cuts off the artificially 

extended CR-Rouse regime.  [22; 38; 39] 

 

Table B1. Inputting parameters for hierarchical model calculation at reference temperature Tr 

= 120°C 

Brand Name Code Me(g/mol) 0(ns) 

PB0800 PB121 7,500 0.66 

PB0400 PB238 7,500 0.93 

PB0110 PB742 8,500 1.0 

PB8640 PBE552-1.5% 8,100 0.63 

PB8220 PBE414-4.3% 7,400 0.59 

PB8510 PBE203-9.9% 7,000 0.43 
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Figure B1: Comparison of LVE master curves (symbols) of storage and modulus, G' and G", 

measured as a function of angular frequency  and reduced at reference temperature Tr = 

120°C for the PB and PBE samples and prediction of the hierarchical model. The LVE data 

are shifted along the vertical axis by a factor of A, as indicated, where larger A was chosen 

for higher M sample. 
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