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Abstract

Background One of the principles underpinning our understanding of ageing is that DNA damage induces a stress response
that shifts cellular resources from growth towards maintenance. A contrasting and seemingly irreconcilable view is that
prompting growth of, for example, skeletal muscle confers systemic benefit.

Methods To investigate the robustness of these axioms, we induced muscle growth in a murine progeroid model through
the use of activin receptor IIB ligand trap that dampens myostatin/activin signalling. Progeric mice were then investigated
for neurological and muscle function as well as cellular profiling of the muscle, kidney, liver, and bone.

Results We show that muscle of Erccz®/~ progeroid mice undergoes severe wasting (decreases in hind limb muscle mass of
40-60% compared with normal mass), which is largely protected by attenuating myostatin/activin signalling using soluble
activin receptor type 1B (sActRIIB) (increase of 30—62% compared with untreated progeric). sActRIIB-treated progeroid mice
maintained muscle activity (distance travel per hour: 5.6 m in untreated mice vs. 13.7 m in treated) and increased specific
force (19.3 mN/mg in untreated vs. 24.0 mN/mg in treated). sActRIlb treatment of progeroid mice also improved satellite cell
function especially their ability to proliferate on their native substrate (2.5 cells per fibre in untreated progeroids vs. 5.4 in
sActRIIB-treated progeroids after 72 h in culture). Besides direct protective effects on muscle, we show systemic improve-
ments to other organs including the structure and function of the kidneys; there was a major decrease in the protein content
in urine (albumin/creatinine of 4.9 sActRIIB treated vs. 15.7 in untreated), which is likely to be a result in the normalization of
podocyte foot processes, which constitute the filtration apparatus (glomerular basement membrane thickness reduced from
224 to 177 nm following sActRIIB treatment). Treatment of the progeric mice with the activin ligand trap protected against the
development of liver abnormalities including polyploidy (18.3% untreated vs. 8.1% treated) and osteoporosis (trabecular bone
volume; 0.30 mm? in treated progeroid mice vs. 0.14 mm? in untreated mice, cortical bone volume; 0.30 mm? in treated
progeroid mice vs. 0.22 mm? in untreated mice). The onset of neurological abnormalities was delayed (by ~5 weeks) and their
severity reduced, overall sustaining health without affecting lifespan.

Conclusions This study questions the notion that tissue growth and maintaining tissue function during ageing are incompat-
ible mechanisms. It highlights the need for future investigations to assess the potential of therapies based on myostatin/activin
blockade to compress morbidity and promote healthy ageing.
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Introduction

Ageing can be defined as the time-dependent decline in mo-
lecular, cellular, tissue, and organismal function increasing
risk for morbidity and mortality. It is the major risk factor
for numerous diseases including neurodegeneration, cardio-
vascular disease, and cancer.® Progress into understanding
the mechanisms underlying the ageing process offers the
prospect of slowing its progression and maintaining biological
systems enabling a healthier life in old age.

Current models of ageing imply interplay between stochas-
tic and genetic components.>® Random damage in DNA
represents a stochastic element. Accumulation of DNA
damage-induced mutations is considered a significant media-
tor of cancer whereas DNA damage-induced cellular func-
tional decline, senescence, and death contribute to ageing.®
The case for a genetic component comes from numerous
studies that have defined the growth hormone/insulin-like
growth factor-1 (GH/IGF-1) as a central genetic axis that con-
trols ageing. A spectrum of mutations that attenuate compo-
nents of the GH/IGF-1 signalling cascade results in extended
lifespan.® The apparently disparate stochastic and genetic
components have been reconciled into a unified model of
ageing by proposing that accumulation of DNA damage, and
thereafter failure of DNA to properly replicate or be tran-
scribed, leads to activation of a survival response programme
that attenuates the GH/IGF-1 activity. The ultimate
purpose of dampening GH/IGF-1 signalling is the prioritization
of maintenance mechanisms over those that promote
growth.>3®

Ageing results in the progressive decline of the function of
essentially all organ systems. One of the most apparent signs
of ageing in humans is sarcopenia, the involuntary loss of
skeletal muscle mass and function over time.” It becomes ev-
ident at middle age in humans with a loss of 0.5-1% of mass
per year, which increases in the seventh decade.® Age-related
muscle loss leads to a disproportionate decrease in strength
(1.5-5%/year) relative to the change in its mass, implying a
reduction in both the quality and quantity of the tissue.’
Sarcopenia invariably leads to a reduced quality of life by
impacting on mobility and stability, which leads to increase
incidence of fall-related injury. More importantly, sarcopenia
predisposes individuals to adverse disease outcomes (cardio-
vascular and metabolic diseases) and mortality.*>**

Skeletal muscle is a highly adaptable tissue and can be in-
duced to undergo changes in mass as well as composition
through numerous interventions including exercise and
diet.*?> Numerous non-genetic molecular interventions that
increase muscle mass have also been designed.*>** One of
the most potent reagents is the soluble activin receptor type
1IB (sActRIIB) molecule, which acts to neutralize the muscle
growth inhibitory properties of myostatin and activin. It in-
duces significant increases in body mass in less than 4 weeks
in wild-type and muscle disease model mice.*®

A number of investigations using rodents models suggest
that maintaining muscle mass and function not only guards
against sarcopenia but also promotes longevity, implying that
the entire multi-organ ageing process can be attenuated by
such intervention.'® However, a mechanism that promotes
muscle hypertrophy as an anti-ageing regime would seemingly
conflict with the intended outcome of the adaptive changes
mediated through decreased GH/IGF-1 signalling that focus a
body’s reserves on tissue maintenance at the expense of
growth. Although studies in humans have shown an associa-
tion between maintaining muscle mass/function and attenuat-
ing the impact of sarcopenia (e.g. Duetz et al.'”) and evidence
that mass is a predictor for longevity,° there is, to our knowl-
edge, no direct evidence that it directly extends lifespan.

Here, we challenge the notion that tissue growth, specifi-
cally in muscle, is incompatible with the systemic maintenance
of tissue structure and function during ageing. We have used
the progeroid Ercc2’/~ mutant mouse line as an experimental
platform for our studies. It harbours attenuated excision re-
pair cross-complementation 1 activity, a key component of
several DNA repair pathways including nucleotide excision re-
pair.® The stochastic increased accumulation of various types
of DNA adducts, which normally are repaired by these path-
ways, explains why ERCC1 mutations in humans cause a com-
plex of clinical features called xeroderma pigmentosum type
F-ERCC1 (XFE) syndrome? combining symptoms of Cockayne
Syndrome, a progeroid condition®® associated with a tran-
scription-replication conflicts (TCR) defect as well as Fanconi’s
anaemia, a cross-link repair disorder. Ercc1?/~ hypomorphic
mutant mice progressively show signs of ageing in all organs
from about 8 weeks of age, which are much more severe than
in geriatric wild-type mice?>?* (and see Vermeij et al. for over-
view??). Ercc7’~ mutant mice die at 4-6 months of age.?%?3

Based on the concept that DNA damage induces a survival
response that promotes maintenance programmes at the
expense of growth, one would predict that augmenting mus-
cle growth would in the long run exacerbate the pathologi-
cal features in a progeroid model. What we find is
something quite different; sActRIIB treatment prior to the
onset of progeria can support the growth of skeletal muscle,
notwithstanding nucleotide excision repair defects. Impor-
tantly, the muscle is free of the numerous ultrastructural ab-
normalities found in untreated Erccz?¥/~ littermates, nor
does it build up elevated levels of reactive oxygen species
(ROS). We show that these qualitative changes in the muscle
are underpinned by an active autophagic programme. At the
organismal level, sActRIIB protects Ercc2?~ mice from age-
related decline in muscle strength and locomotor activity.
It also protects kidney function from developing proteinuria,
the liver from nuclear abnormalities and metabolic shift, and
the skeletal system from osteoporosis and delays the devel-
opment and severity of neurological abnormalities like
tremors. However, lifespan was not increased. We believe
that this work highlights the need for future investigations
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focusing on assessing the therapeutic potential of antago-
nism of the myostatin/activin signalling cascade in sustaining
health and quality of life until old age.

Methods
Ethical approval

‘The authors certify that they comply with the ethical guide-
lines for publishing in the Journal of Cachexia, Sarcopenia
and Muscle: update 2017’.%* The experiments were performed
under a project licence from the United Kingdom Home Office
in agreement with the Animals (Scientific Procedures) Act
1986. The University of Reading Animal Care and Ethical Re-
view Committee approved all procedures. Animals were hu-
manely sacrificed via Schedule 1 killing. The Erasmus MC
study was in strict accordance with the Guide for the Care
and Use of Laboratory Animals of the National Institutes of
Health and was approved by the Dutch Ethical Committee
(permit # 139-12-13), in full accordance with European
legislation.

Animal maintenance

Control (ErccZ*/*) and transgenic (ErccZ/~) mice were bred as
previously described®®?° and maintained in accordance to the
Animals (Scientific Procedures) Act 1986 (UK) and approved
by the Biological Resource Unit of Reading University or the
Dutch Ethical Committee at Erasmus MC. Mice were housed
in individual ventilated cages under specific pathogen-free
conditions (20-22°C, 12-12 hr light—dark cycle) and provided
food and water ad libitum. Because the ErccZ/~ mice were
smaller, food was administered within the cages, and water
bottles with long nozzles were used from around 2 weeks of
age. Animals were bred and maintained (for the lifespan co-
hort) on AIN93G synthetic pellets (Research Diet Services B.
V.; gross energy content 4.9 kcal/g dry mass, digestible energy
3.97 kcal/g). Post-natal myostatin/activin block was induced
in 7-week-old male mice, through intraperitoneal (IP) injec-
tion with 10 mg/kg of sActRIIB-Fc every week, two times till
week 16.%° Each experimental group consisted of a minimum
of five male mice. The University of Reading experiments
were performed on 12 controls, 9 ErccZ®/~, and 14 sActRIIB-
treated ErccZ™ ™ mice (all male mice). Lifespan experiments
were performed on both genders, with five male and five fe-
male ErccI®~ mice per treatment condition and four males
and four female littermate wild-type controls. End-of-life
Erccz™~ animals, both sActRIIB and mock treated, were
post-mortem investigated and scored negative for visible tu-
mours, signs of internal bleedings, enlarged spleen size, or ab-
normally coloured heart or enlarged heart size.

Phenotype scoring

The mice were weighed and visually inspected at least weekly
and were scored in a blinded manner by experienced re-
search technicians for the onset of various phenotypical pa-
rameters. The onset of body weight was counted as the
first week. A decline in body weight was noted after their
maximal body weight was reached. Whole-body tremor was
scored if mice were trembling for a combined total of at least
10 s when put on a flat surface for 20 s. Impaired balance was
determined by observing the mice walking on a flat surface
for 20 s. Mice that had difficulties in maintaining an upright
orientation during this period were scored as having imbal-
ance. If mice showed a partial loss of function of the hind
limbs, they were scored as having paresis.

Open-field activity cages monitoring system

Open-field cages (Linton Instrumentation AM548) with an ar-
ray of invisible infrared light beams and multiple photocell re-
ceptors were used. Beams scan activity at two levels from
front to back and left to right was performed to determine
movement with data captured using AMON software, run-
ning on Windows PCs. The lower grid measured normal X, Y
movement, whilst the upper grid measured rearing move-
ment. Mice (14 weeks of age) were acclimatized for 30 min
before recording. Data were measured on three occasions
at 1 day intervals.

Rotarod

Rotarod machine (Panlab Harvard Apparatus LE8500; or Ugo
Basile for Erasmus MC cohort) was used for motor activity
and fatigue characterization. Mice were held manually by
the tail and placed on the central rod that rotated at the min-
imum speed for acclimatization for 1 min. Thereafter, the ro-
tation rate of the central rod was increased to a maximum of
40 rpm. The rotation rate and time mice stayed on the central
rod was recorded.

Grip strength

In vivo assessment of forelimb muscle maximum force was
performed using a force transducer (Chatillon DFM-2,
Ontario, Canada). Mice were held by the tail base, lowered
towards the bar, and allowed to grip. The mouse was pulled
backwards, and the force applied to the bar just before loss
of grip was recorded.
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Muscle tension measurements

Dissection of the hind limb was carried out under oxygenated
Krebs solution (95% O, and 5% CO,). Under circulating oxy-
genated Krebs solution, one end of a silk suture was attached
to the distal tendon of the extensor digitorum longus (EDL)
and the other to a force transducer (FT03). The proximal ten-
don remained attached to the tibial bone. The leg was se-
cured in the experimental chamber. Silver electrodes were
positioned on either side of the EDL. A constant voltage stim-
ulator was used to directly stimulate the EDL, which was
stretched to attain the optimal muscle length to produce
maximum twitch tension (P;). Tetanic contractions were in-
voked by stimulus trains of 500 ms duration at 20, 50, 100,
and 200 Hz. The maximum tetanic tension (P,) was deter-
mined from the plateau of the frequency—tension curve.

Protein synthesis measure

The relative rate of protein synthesis was measured using the
surface sensing of translation method (SUNnSET).?” Briefly,
mice were injected exactly 30 min before tissue collection
with 0.04 pmol/g body mass puromycin into the peritoneal
cavity and then returned to their cages. After tissue collec-
tion, muscles were solubilized as for western blotting and
then pulled through a slot blotting chamber facilitating the
transfer of protein onto a nylon membrane. Thereafter, the
membrane was processed identically to a western blot.

Histological analysis and immunohistochemistry

Following dissection, the muscle was immediately frozen in
liquid nitrogen-cooled isopentane and mounted in optimal
cutting temperature compound (TAAB 0023) cooled by dry
ice/ethanol. Immunohistochemistry was performed on
10 pum cryosections that were air-dried at room temperature
(RT) for 30 min before the application of block wash buffer
[PBS with 5% foetal calf serum (v/v), 0.05% Triton X-100]. An-
tibodies were diluted in wash buffer 30 min before using.
Fluorescence-based secondary antibodies were used to detect
all primary antibodies except for CD-31 where the Vectastain
ABC-HRP kit was deployed (Vector PK-6100) with an
avidin/biotin-based peroxidase system and DAB peroxidase
(HRP) substrate (Vector SK-4100). Morphometric analysis of
muscle fibre size was performed as previously described.?® De-
tails of primary and secondary antibodies are given in Table 1.

Dihydroethidium staining

Sectioned slides were dried for 30 min at RT. The sections
were rehydrated with PBS then incubated with
dihydroethidium (DHE) (50 pmol/L in PBS Sigma D7008) for

30 min at 37°C in the dark. Counterstain for nuclei was
DAPI-containing fluorescent mounting medium.

Haematoxylin and eosin

Muscle and liver sections were dewaxed in xylene and rehy-
dration in ethanol prior to incubation with Harris’
haematoxylin solution (Sigma HHS16) for 30 s and thereafter
in eosin solution (Sigma-Aldrich 318906) for 2 min.

Succinate dehydrogenase staining

Muscle cyro-sections were incubated for 3 min at RT in a so-
dium phosphate buffer containing 75 mM sodium succinate,
1.1 mM Nitroblue Tetrazolium (Sigma-Aldrich), and 1.03 mM
Phenazine Methosulphate (Sigma-Aldrich). Samples were then
fixed in 10% formal-calcium, dehydrated and cleared in xylene
prior to mounting with DPX mounting medium (Fisher).

Transmission electron microscopy

Biceps muscle and the kidney were briefly fixed with 4% para-
formaldehyde and 2.5% glutaraldehyde in 0.1 M cacodylate
buffer pH 7.4 in situ at RT then dissected, removed, and cut
into pieces of 1 mm? and fixed for 48 h in same solution at
4°C. Tissue blocks were contrasted using 0.5% 0sO, (Roth,
Germany; RT, 1.5 hr) and 1% uranyl acetate (Polysciences,
Germany) in 70% ethanol (RT, 1 hr). After dehydration, tissue
blocks were embedded in epoxy resin (Durcopan, Roth,
Germany), and ultrathin sections of 40 nm thickness were
cut using a Leica UC6 ultramicrotome (Leica, Wetzlar,
Germany). Sections were imaged using a Zeiss 906 TEM
(Zeiss, Oberkochen, Germany) and analysed using ITEM soft-
ware (Olympus, Germany).?®

Blood glucose, growth hormone, insulin, and
insulin-like growth factor-1 levels

Glucose levels were measured using a freestyle mini blood
glucose metre. GH, insulin, and IGF-1 levels were measured
in serum using a rat/mouse growth hormone ELISA (Merck
Millipore), ultrasensitive mouse insulin ELISA (Mercodia), or
mouse IGF-1 ELISA (Abcam), respectively.

Micro-computed tomography imaging

Computed tomography imaging was performed using a
high-speed in vivo micro-computed tomography (nCT)
scanner (Quantum FX, PerkinElmer, Hopkinton, MA, USA).
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Table 1. Primer and antibody details

Primary antibodies

Antigen Species Dilution Supplier

Pax7 Mouse 1:1 DSHB

MyoD Rabbit 1:200 Santa Cruz Biot # sc-760
Myogenin Rabbit 1:200 Santa Cruz sc576

MYHCI Mouse 1:1 DSHB A4.840

MYHCIIA Mouse 1:1 DSHB A4.74

MYHCIIB Mouse 1:1 DSHB BF.F3

CD31 Rat 1:150 AbD serotec MCA2388

Dystrophin Rabbit 1:200 Abcam 15277

Collagen IV Rabbit 1:500 Abcam ab6586

Histone H3 Rabbit 1:100 Abcam ab8898

Histone H4 Rabbit 1:200 Abcam ab9052

pSmad2/Smad3 Rabbit 1:200 Cell signalling Technology # 8828
SMA Mouse 1:300 Sigma A2547

Caspase-3 Rabbit 1:200 Cell signalling Technology #9664S
Phospho-S6 Ribosomal Protein (Ser235/236) Rabbit 1:1000 Cell signalling Technology #4857
Phospho-Akt (Ser473) Rabbit 1:1000 Cell signalling Technology #4060
LC3 Rabbit 1:1000 Cell signalling Technology #2775
Phospho-4E-BP1 (Thr37/46) Rabbit 1:1000 Cell signalling Technology #2855
Phospho-4E-BP1 (Ser65) Rabbit 1:1000 Cell signalling Technology #9451
Anti-p62/SQSTM1 Rabbit 1:1000 Sigma P0067

Phospho-FoxO1 (Ser256) Rabbit 1:1000 Cell signalling Technology #9461
Anti-Smad3 (phospho S423 + S425) Rabbit 1:200 Abcam (ab52903)

Nephrin Goat 1:500 R&D Systems (AF3159)

PFoxO3a (Ser253) Rabbit 1:1000 Cell signalling Technology #9466
Anti-gamma H2A.X (phospho S139) Rabbit 1:1000 Abcam 11174

Secondary antibodies

Antibody Species Dilution Supplier

Alexa fluor 633 anti-mouse 1:200 Life Technologies # A20146
Alexa fluor 488 anti-mouse 1:200 Life Technologies # A11029
Alexa fluor 488 anti-rabbit 1:200 Life Technologies # A11034
Alexa fluor 594 anti-rabbit 1:200 Life Technologies # A11037
Immunoglobulins/HRP anti-Rat 1:200 Dako P0450

PCR primers sequence

Oligo name Sequence

MuRF1.F ACCTGCTGGTGGAAAACATC
MuRF1.R CTTCGTGTTCCTTGCACATC
Atrogin.1F GCAAACACTGCCACATTCTCTC
Atrogin.1R CTTGAGGGGAAAGTGAGACG
R_mVEGFA189.F TGCAGGCTGCTGTAACGATG
R_mVEGFA189.R CTCCAGGATTTAAACCGGGAT T
R_mFGF1.F GAAGCATGCGGAGAAGAACTG
R_mFGF1.R CGAGGACCGCGCTTACAG
R_mVEGFB.F TGCCATGGATAGACGTTTATG C
R_mVEGFB.R TGCTCAGAGGCACCACCAC

m Ndufb5.F CTTCGAACTTCCTGCTCCTT

m Ndufb6.R GGCCCTGAAAAGAACTACG

m Sdha.F GGAACACTCCAAAAACAGACCT
m Sdha.R CCACCACTGGGTATTGAGTAGAA
m Sdhc.F GCTGCGTTCTTGCTGAGACA

m Sdhc.R ATCTCCTCCTTAGCTGTGGTT

m Cox5b.F AAGTGCATCTGCTTGTCTCG

m Cox5b.R GTCTTCCTTGGTGCCTGAAG

m Atp5b.F GGTTCATCCTGCCAGAGACTA

m Atp5b.R AATCCCTCATCGAACTGGACG

m Mdh2.F TTGGGCAACCCCTTTCACTC

m Mdh3.R GCCTTTCACATTTGCTCTGGTC

m Idh2.F GGAGAAGCCGGTAGTGGAGAT
m Idh3.R GGTCTGGTCACGGTTTGGAA

m Idh3a.F CCCATCCCAGTTTGATGTTC

(Continues)
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Table 1 (continued)

PCR primers sequence

Oligo name Sequence

m Idh3a.R ACCGATTCAAAGATGGCAAC
R.mPGC1A.F AACCACACCCACAGGATCAGA
R.mPGCTA.R TCTTCGCTTTATTGCTCCATGA

m Mvk. F GGGACGATGTCTTCCTTGAA

m Mvk.R GAACTTGGTCAGCCTGCTTC

m Srebf1.F GATCAAAGAGGAGCCAGTGC

m Srebf1.R TAGATGGTGGCTGCTGAGTG

m Srebf2.F GGATCCTCCCAAAGAAGGAG

m Srebf2.R TTCCTCAGAACGCCAGACTT
R_mCD36.F AGATGACGTGGCAAAGAACAG
R_mCD36.R CCTTGGCTAGATAACGAACTCTG
R_mSlc25a20.F CAACCACCAAGTTTGTCTGGA
R_mSlc25a20.R CCCTCTCTCATAAGAGTCTTCCG
R_mACADL.F TGCCCTATATTGCGAATTACGG
R_mACADL.R CTATGGCACCGATACACTTGC
R_mFabp3.F ACCTGGAAGCTAGTGGACAG
R_mFabp3.R TGATGGTAGTAGGCTTGGTCAT
R_mDmd.F ACTCAGCCACCCAAAGACTG(20)
R_mDmd.R TGTCTGGATAAGTGGTAGCAACA
R_mCol4a1.F GGCCCCAAAGGTGTTGATG(19)
R_mCol4a1.R CAGGTAAGCCGTTAAATCCAGG
m Hsp10.F CTGACAGGTTCAATCTCTCCAC
m Hsp10.R AGGTGGCATTATGCTTCCAG

m Clpp.F CACACCAAGCAGAGCCTACA

m Clpp.R TCCAAGATGCCAAACTCTTG

m IL6.F GGTGACAACCACGGCCTTCCC

m IL6.R AAGCCTCCGACTTGTGAAGTGGT
m IL18.F GTGAACCCCAGACCAGACTG

m IL18.R CCTGGAACACGTTTCTGAAAGA
m Phb.F TCGGGAAGGAGTTCACAGAG

m Phb.R CAGCCTTTTCCACCACAAAT

m Phb2.F CAAGGACTTCAGCCTCATCC

The X-ray source was set to a current of 160 pA and a volt-
age of 90 kVp. The field of view was 30 mm x 30 mm for
muscle with a voxel size of 60 um and 20 mm x 20 mm,
and voxel size was 40 pum, for bone. The animals received
isoflurane anaesthesia (2.5%) to immobilize them during
scanning. Following scanning, image segmentation was
performed semi-automatically using the Volume Edit tools
within the analysis software package (AnalyzeDirect,
Overland Park, KS, USA). Briefly, segmentation masks (object
maps) were created using a combination of semi-automatic
and manual techniques (object extraction, region growing,
and thresholding tools). These segmentation results were
then manually modified if necessary and quantified using
the ROI tools.

Protein expression by immunoblotting

Frozen muscles were pulverized with pestle and mortar and
solubilized in 50 mM Tris, pH 7.5, 150 mM NaCl, 5 mM
MgCl,, 1 mM DTT, 10% glycerol, 1% SDS, 1% Triton X-
100, 1X Roche Complete Protease Inhibitor Cocktail, and

1X Sigma-Aldrich Phosphatase Inhibitor Cocktails 1 and 3.
Proteins were denatured in Laemmli buffer and resolved
on 10% SDS-PAGEs prior to immunoblotting and probing
with antibodies and the SuperSignal West Pico Chemilumi-
nescent substrate (Pierce). Details of antibodies are given
in Table 1.

Quantitative polymerase chain reaction

Fifty to 100 mg of tissue was solubilized in TRIzol (Fisher)
using a tissue homogenizer. Total RNA was prepared using
the RNeasy Mini Kit (Qiagen, Manchester, UK). Five micro-
grams of RNA were reverse-transcribed to cDNA with Super-
Script Il Reverse Transcriptase (Invitrogen) and analysed by
guantitative real-time RT-PCR on a StepOne Plus cycler, using
the Applied Biosystems SYBR-Green PCR Master Mix. Primers
were designed using the software Primer Express 3.0 (Applied
Biosystems). Relative expression was calculated using the
AACt method and normalized to cyclophilin-B and
hypoxanthine-guanine phosphoribosyltransferase. Primer se-
guences are given in Table 1.
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Satellite cell culture

Single fibres from EDL were isolated using 0.2% collagenase |
in Dulbecco’s modified Eagle’s medium and either fixed in 2%
paraformaldehyde or cultured for 24, 48, and 72 hr as previ-
ously described.?®

Bone scanning

Tibial samples were scanned and analysed by uCT; 180° scans
were performed on a Skyscan 1172F pCT scanner (Skyscan,
Kontich, Belgium); the X-ray source was operated at 50 kV
and 200 uA, a 0.5 aluminium filter was used with a 1650 ms
exposure time and a pixel size of 5 um. Projection images
were reconstructed into tomograms using NRecon (Skyscan,
Kontich, Belgium), and regions of interest were analysed
using CTAn (Skyscan, Kontich, Belgium).

Trabecular analysis

The reconstructed datasets were re-oriented in Dataviewer
(Skyscan, Kontich, Belgium) so that the long axis of the
bone ran along the Y-axis, which allowed the tibial length
to be measured in CTAn. The reference point for trabecular
analysis was the disappearance of primary spongiosa bone
and the appearance of the secondary trabecular bone in
the centre and subjacent to the epiphyseal growth plate.
The volume of interest for trabecular analysis was set as
5% of the tibial length from this reference point down
the diaphysis. This volume of trabecular bone was selected
using CTAn and then analysed using CTAn BatMan
software.

Cortical analysis

The reference point for cortical analysis was set as the mid-
point of the diaphysis, and then a volume of interest was
selected 0.25 mm in either side of this point, ensuring to re-
move any trabecular bone within the tomograms. Cortical
regions were selected using CTAn and then analysed using
CTAn BatMan software.

Statistical analysis

Data are presented as mean * SE. Data normal distribution
were checked by the D’Agostino-Pearson omnibus test. Sig-
nificant differences between two groups were performed by
the Student’s t-test for independent variables. Differences
among groups were analysed by one-way analysis of vari-
ance followed by Bonferroni’s multiple comparison tests or
the non-parametric Kruskal-Wallis test followed by the
Dunn’s multiple comparisons as appropriate. Statistical anal-
ysis was performed on GraphPad Prism 5 (La Jolla, USA).
Lifespan, onset of neurological phenotypes, and body
weight decline were statistically analysed with the survival
curve analysis using the product limit method of Kaplan

and Meier with Log-rank Mantel-Cox test in GraphPad
Prism. Differences were considered statistically significant
at P < 0.05.

Results

Characterization of skeletal muscle in the Ercc1?/~
progeroid mouse

We first characterized the muscle phenotype of Ercc1?/~
progeroid mice. It is important to mention that a number of
studies have established that the initial development of
Ercc2’~ mice in a uniform FVB/C57BI6 F1 hybrid genetic
background is normal.?® After birth, mice are progressively af-
fected leading to accelerated appearance of numerous fea-
tures of ageing.”> Therefore, we decided to investigate
muscle from ErccZ’/~ male mice at the age of 16 weeks,
when mice show numerous signs of ageing, but before the
onset of premature mortality.?® At this time, all muscles ex-
amined from Erccz?’/~ mice were significantly smaller com-
pared with control animals (ranging from 40% to 60% of
normal mass; Supporting Information Figure S1A). Surpris-
ingly, even though the muscle mass was decreased, the num-
ber of fibres was increased in Erccz”/~ EDL (significantly) and
soleus muscles (not-significant) (Figure S1B). The muscle from
the progeric mice had significantly more fibres with centrally
located nuclei than controls (Figure S1C). Fibre size analysis
showed decreases in the cross-sectional area across most my-
osin heavy chain (MHC) isoforms in muscles with differing
contraction properties [EDL, soleus and tibialis anterior (TA)]
of Ercc7/~ mutants (Figure S1D-S1G). There was no evident
trend for changes in size in relation to the MHC isoform. Ev-
ery muscle examined displayed a decrease in the number of
fibres expressing the slower forms of MHC and a concomitant
increase in the fast fibre population, except for MHClla and
MHCIIb in the superficial portion of the TA (Figure SIH-S1J).
We examined the whole muscle for its metabolic status by
profiling the proportion of fibres displaying high levels of suc-
cinate dehydrogenase (SDH) activity, an indicator of oxidative
phosphorylation. These experiments revealed that Ercc1?/~
EDL and soleus muscles contained a lower proportion of oxi-
dative fibres compared with controls (Figure S1K).

We next examined features of individual fibres. The number
of satellite cells (SC) on EDL fibres from Ercc’/~ animals was
reduced to 50% or less of the normal value (Figure S1L). Fur-
thermore, Ercc7”/~ SC were unable to follow the normal pro-
liferation and differentiation programmes and displayed a
deficit in the proportion of myogenin-positive cells and an in-
crease in the number of cells expressing Pax7 (Figure S1M).
These results show that both the muscle fibre and satellites
cells show quantitative and qualitative features associated
with extreme ageing.
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Figure 1 sActRIIB treatment mitigates body, whole animal activity, grip strength, losses, and specific force loss in Ercc1”™ mice. (A) Relative changes in
body mass over time. Intraperitoneal injection of Erccr’”™ with sActRIIB started at week 7 and tissues collected at the end of week 15. Organismal
activity measurements through activity cages. Measurements in (B—E) made at the end of week 14. (F) Rotarod activity. (G) Muscle contraction mea-
surement through assessment of grip strength. (H) Ex vivo assessment of EDL-specific force. (1) Half relaxation time for the EDL. Levels of (J) growth
hormone, (K) glucose, (L) insulin, and (M) insulin-like growth factor-1 at beginning of week 15. (N) Food intake and (O) relative food intake at the
end of week 15. n = 6 control male mice, n = 5 Ercc’’”™ untreated male mice, and n =5 Ercc’”™ treated male mice. All analysis performed using
non-parametric Kruskal-Wallis test followed by the Dunn’s multiple comparisons except (J) where one-way analysis of variance followed by
Bonferroni’s multiple comparison tests was used. ¥*P < 0.05, **P < 0.01, ***P < 0.001. EDL, extensor digitorum longus; IGF-1, insulin-like growth fac-

tor-1; sActRIIB, soluble activin receptor type IIB.
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The activin ligand trap increases body organismal
activity and strength

We determined whether the age-related reduced muscle
mass in Ercc/~ mutants could be prevented by the sActRIIB
protein, which we have shown to antagonize signalling medi-
ated by myostatin and related proteins.?® To that end, male
Ercc2’/~ mice were IP injected twice a week with sActRIIB
from 7 weeks of age till week 16. Mock-treated Ercc/~ mu-
tants showed no overall body mass gain in 8 weeks, whereas
both control and Erccz’/~ animals treated with SActRIIB
displayed weight increases of 37% and 18%, respectively
(Figures 1A, S2A, and S2B).

Using activity cages, we found that sActRIIB-treated
Ercc’/~ mice were more active than both their mock-treated
counterparts and control mice (Figure 1B and Movie S1).
Treatment of ErccZ/~ mice with SActRIIB increased the dis-
tance travelled compared not only with untreated mice but
also with control animals (Figure 1C and Movie S1). Total

rearing counts and rearing time, measures of locomotor ac-
tivity as well as exploration and anxiety, were highest in con-
trol mice and significantly reduced in Ercc2?/~ mice. sACtRIIB
treatment increased these values compared with Ercc1?”/~
but not to normal levels (Figure 1D—1E). Motor coordination,
measured using the Rotarod, showed that Ercc?”~ mice at
the age of 16 weeks have significant deficit in this skill, which
was improved, albeit not to normal levels, by sActRIIB (Figure
1F). Muscle function, as assessed using a grip metre, revealed
that progeric mice had reduced strength compared with con-
trol mice. This parameter was significantly improved in
Ercc7’/~ mutants by sActRIIB (Figure 1G). Ex vivo measure
of specific force revealed a significant deficit in this parameter
in ErccZ’~ mutants that was significantly increased by
SActRIIB treatment (Figure 1H). Half-relaxation time was in-
creased in ErccZ’~ mutants compared with controls but re-
duced by sActRIIB treatment (Figure 11).

We determined the circulatory levels of molecules known
to regulate organismal growth and found elevated levels of
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Figure 2 Quantitative and qualitative improvements to Ercc’”” skeletal muscle through sActRIIB treatment. (A) Muscle weight at end of week 15. (B)
Muscle mass normalized to tibial length. (C) Micro-computed tomography scan of hind limb to visualize the increase in muscle upon sActRIIB treatment
in Erccz”/~ mice. (D—G) Cross-sectional fibre areas assigned to specific myosin heavy chain isoforms. (H) Fibre number increased in EDL and soleus of
Ercc?’”™ mice and further increased following treatment. (1) Incidence of damaged fibres following single fibre isolation. (J) Example of micro-tear (ar-
rows) in an Erccr’”~ EDL fibre. (K) Fibres containing caspase 3 epitope as a percentage of all EDL and soleus fibres. (L) Percentage of fibres with cen-
trally located nuclei in the EDL and soleus. (M) Quantification of hyper-stained SDH fibres. (N) SDH in control muscle and (O) Ercc?’”™ muscle showing
hyper-stained fibres (arrows). (P) Quantification of DHE fluorescence in TA muscle fibres. (Q) Control TA fibres with little DHE fluorescence in the body
of control fibres. (R) Ercc’”™ TA fibres with elevated DHE fluorescence in the body of control fibres. (S) Treated Ercc’™ TA fibres with little DHE fluo-
rescence in the body of fibres. n =9 control male mice, n =8 Ercc’”” untreated male mice, andn=8 Erccr’”” treated male mice. Scale for single fibre
50 pum, SDH 100 um and DHE 20 pm. One-way analysis of variance followed by Bonferroni’s multiple comparison tests. *P < 0.05, **P < 0.01,
***¥Pp < 0.001. DHE, dihydroethidium; EDL, extensor digitorum longus; sActRIIB, soluble activin receptor type 1IB; SDH, succinate dehydrogenase;
TA, tibialis anterior.
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GH in both untreated and sActRIIB treated ErccZ?/~ mutants glucose, serum insulin, and IGF-1 were decreased in Ercc”
(Figure 1)), likely as previously noted feedback mechanism in ~ ~ mutants as compared with controls, and none of these fac-
response to prolonged low IGF-1.2 Indeed, levels of blood tors were changed in response to sActRIIB treatment (Figure
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Figure 3 sActRIIB induces fast and glycolytic transformation of Ercc’’” ™ muscle. (A) MHC profile of EDL muscle. (B—D) EDL MHCIIA/IIB fibre distribution
in the three cohorts, controls, ErchA/f, and Ercc1”~ treated with sActRIIB. (E) SDH-positive and -negative fibre profile of EDL muscle. (F-H) SDH stain
in the three cohorts. (I) Quantification of EDL capillary density. (J-L) Identification of EDL capillaries with CD-31 in the three cohorts. Quantitative PCR
profiling of (M) angiogenic genes, (N) PGCla, (O) mitochondrial genes, and (P) regulators of fat metabolism. n = 8 for all cohorts. Scale for SDH 100 um
and CD31 50 um. One-way analysis of variance followed by Bonferroni’s multiple comparison tests used in all data sets except (E) where non-paramet-
ric Kruskal-Wallis test followed by the Dunn’s multiple comparison was used. *P < 0.05, **P < 0.01, ***P < 0.001. EDL, extensor digitorum longus;
MHC, myosin heavy chain; SDH, succinate dehydrogenase; sActRIIB, soluble activin receptor type IIB.
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1K—1M). Food intake of Ercc2’~ mutants, relative to body
weight, was higher than control mice, but unaffected by
sActRIIB treatment, excluding indirect effects of diet

restriction for which Ercc2””/~ mice are very sensitive (Figure
1N-10).%® Water intake was not affected by the treatment
(data not shown).
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Quantitative and qualitative improvements to
skeletal muscle through soluble activin receptor
type IIB treatment

Previous work has shown that sActRIIB treatment increases
muscle mass. The increased body weight and grip strength
of Ercc2?/~ mice subjected to sActRIIB prompted us to fur-
ther examine individual muscles. Treated ErccZ?/~ mice re-
vealed that all five groups showed significant greater mass
compared with those from mock-treated Ercc2?/~ animals
with a range of 30-62% (TA and plantaris, respectively; Figure
2A-2C). Activation of signalling pathways initiated through
ActRIIB and relevant to this study was found to be elevated
in the muscle of Ercc7/~ mice and decreased by sActRIIB
treatment (Figure S3A). Importantly, the abundance of DNA
breaks was not changed by sActRIIB treatment (Figure S3B).
Furthermore, sActRIIB failed to increase the mass of any
other organ examined including the heart, kidney, and liver
(Figure S2C and S2D). We explored the mechanisms underly-
ing the increase in muscle mass following sActRIIB treatment
of Ercc2’/~ mice. Introduction of sActRIIB induced fibre hy-
pertrophy irrespective of MHC expression (Figure 2D-2G).
Of particular note was the finding that some types of fibres
in the sActRIIB-treated ErccZ’/~ muscles were significantly
larger than even in controls (see MHCI and IIA in soleus;
Figure 2E). The total fibre number in EDL was elevated in
Ercc2’/~ mutants and maintained by SACtRIIB (Figure 2H). A
similar trend was found in the soleus (Figure 2H). Of particu-
lar note was the observation of a large proportion of fibres
with micro-lesions (including tears to the membrane) isolated
from the EDL muscle from Erccz?/~ animals, which appeared
largely normalized by sActRIIB (Figure 2| and 2J). Caspase-3
activity as a gauge of apoptosis was significantly elevated in
muscle of ErccZ/~ mice and largely normalized by treatment
with sActRIIB (Figures 2K and S3C). The number of fibres
displaying centrally located nuclei was elevated in both the
EDL and soleus muscles from ErccZ’’/~ mice compared with
controls and became even more abundant following sActRIIB
treatment (Figures 2L and S3D). The fibres showing supra-
normal levels of SDH activity, indicative of abnormal mito-
chondrial activity that leads to apoptosis,® were significantly
more frequent in both the EDL and soleus of Ercc2?~ mice
compared with treated mutants (Figure 2M-20). Assessment
of ROS activity through DHE intensity showed elevated levels
of superoxide in muscle of Ercc1?/~ animals, which was
lowered by sActRIIB treatment although it did not reach the
level of control mice (Figure 2P-25).3%32

Myosin heavy chain, oxidative fibre profiling,
vascular organization, and molecular metabolic
analysis of skeletal muscle

Myosin heavy chain analysis revealed that the progeric mus-
cle displayed a faster profile compared with control muscles

(Figure S1H-S1)). Treatment of progeric animals with sActRIIB
resulted in a shift towards an even faster MHC profile. This
was particularly pronounced in the EDL, with an increase in
the proportion of type IIB fibres at the expense of both types
IIA and 11X (Figure 3A-3D).

To examine the metabolic status of the sActRIIB-treated
muscle, we determined the SDH activity. In both the EDL
and the soleus, the number of SDH-positive fibres was de-
creased in the progeric mice compared with controls (Figures
3E-3H and S3E). Introduction of sActRIIB treatment further
decreased the number of SDH* fibres and, at the same time,
increased the number of SDH™ entities in the EDL (Figure 3E—
3H). Similar changes were also recorded in the soleus (Figure
S3E). Therefore, the sActRIIB treatment further reduces the
status of the already diminished oxidative character of
Ercc2’~ muscles. Subsequently, we investigated whether
changes in the muscle metabolic profile wrought by sActRIIB
also induced a remodelling of the vasculature. The capillary
density profile indeed showed that the number of blood ves-
sels serving each fibre was lower in Ercc2?”~ mice (albeit non-
significantly) and further decreased following sActRIIB treat-
ment (Figure 31-3L). These changes were underpinned by de-
creases in the expression of three genes examined that
control the development of blood vessels (Figure 3M). Ex-
pression of PGCIa, a key regulator of oxidative properties in
muscle, was slightly lower in muscle from Ercc2?/~ mice com-
pared with controls and was even more suppressed following
SActRIIB treatment (Figure 3N). The changes in genes
supporting the development of blood vessels were mirrored
by mitochondrial transcript levels. gPCR analysis of eight
genes important for the mitochondrial metabolism revealed
that seven had decreased expression in Ercc2’~ muscles in-
duced by sActRIIB treatment (Figure 30). We also investi-
gated genes that control fat metabolism. All seven genes
examined were significantly reduced in expression by
SActRIIB (Figure 3P).

Therefore, the attenuation of signalling through sActRIIB
results in the patterning of muscle towards a fast contracting
status, which has a paucity of oxidative fibres and supporting
blood vessels underpinned by changes in the expression of
genes that control capillary development and sustain aerobic
metabolism.

Ultrastructure and mitochondrial characterization
in muscle

The ultrastructure of skeletal muscle in the three cohorts was
examined using transmission electron microscopy. Numerous
abnormalities were evident in the muscle from Ercc/~ mice
including heterogeneous Z-line lengths, missing Z-lines,
misaligned Z-lines, split sarcomeres, and large inter-
sarcomeric spaces compared with controls (Figure 4A, 4B,
4D, 4E, 4G, and 4H). These abnormalities were largely absent
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Figure 4 sActRIIB prevents Ercc?’”™ muscle ultrastructural abnormalities
and supports normal levels of expression of key stress indicators. All Elec-
tron microscopy (EM) longitudinal image and quantitative measurements
are from the bicep muscle. (A) Low-power image of control muscle. (B)
Low-power image of Erccr’”™ muscle. Note large spaces (black arrow-
heads), non-uniform sarcomere width (red arrows), dilated sarcomeric
mitochondria (red arrowheads), split sarcomere (black arrow), and
disrupted M-Line (blue arrow). (C) Low-power image of sActRIIB-treated
Ercc?’”™ muscle. (D) Higher magnification of sarcomeric region of control
muscle showing uniformly sized mitochondria (black arrows). (E) Enlarged
mitochondria in sarcomeric region of Ercc?’”™ muscle (blue arrowhead)
and absent (blue arrow) or faint Z-line (black arrow). (F) Higher magnifi-
cation of sarcomeric region of treated Ercc’”” mice showing smaller sar-
comeric mitochondria (black arrows). (G) Sarcolemma region of control
muscle showing compact mitochondria (red arrowhead). (H) Dilated (blue
arrowhead) and aberrant mitochondria (blue arrow) in sub-sarcolemma
region of Erccr’”™ muscle. (I) Sarcolemma region of treated Erccr”~
mice showing compact mitochondria (red arrowhead). (J, K) Sarcomeric
(intrafusal) and sub-membrane mitochondrial density measurements.
(L, M) Sub-membrane and sarcomeric (intrafusal) mitochondrial size mea-
surements. (N) Expression of mitochondria unfolded protein response
gene in gastrocnemius muscle. (O) Expression of inflammatory genes in
gastrocnemius muscle. (P) Expression of prohibitin genes in gastrocne-
mius muscle. (Q) Quantification of EDL fibres expressing H3K9me3 and
(R) H4K20me3. EM studies n = 6-7 for all cohorts. All other measures
n = 8-9 for all cohorts. Non-parametric Kruskal-Wallis test followed by
the Dunn’s multiple comparisons used in (N, O) and the rest with one-
way analysis of variance followed by Bonferroni’s multiple comparison
tests. ¥*P < 0.05, **P < 0.01. EDL, extensor digitorum longus; sActRIIB,
soluble activin receptor type IIB.
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in muscle from ErccZ’/~ mice treated with sActRIIB (Figure
4C, 4F, and 4l). Quantification of mitochondria density re-
vealed a decrease in this parameter both within the fibre (sar-
comeric region) and directly under the sarcolemma (Figure 4)
and 4K). Of special note was the alteration (swelling) of mito-
chondria both within the fibre and immediately under the
sarcolemma (Figure 4H). Quantification of mitochondrial size
showed enlargement in the muscle from Ercc2’/~ mutants,
which was reduced by the treatment with sActRIIB (Figure
4L and 4M). Mitochondrial hypertrophy has been shown to
be a protective response to a decrease in mitochondrial func-
tion or number or an indicative excessive fusion.>*7* It is
thought to promote mitochondrial survival by up-regulating
a stress response programme. Indeed, we found that there
was an increase in the expression of key genes involved in
the mitochondrial unfolded protein response (UPRMT) path-
way in the muscle from Ercc1?’~ mice (Figure 4N). We also
examined the levels of inflammatory and prohibitin genes,
which support mitochondrial function of ensuring correct
folding of the cristae.®® Expression of IL6 and ILZ8 as well as
two key prohibitin genes (Phb and Phb2) appeared slightly el-
evated in the muscle of ErccZ’~ mice (Figure 40 and 4P).
Treatment of ErccZ’/~ mice with SsActRIIB generally
prevented these changes (Figure 4A—4P). Lastly, we examined
whether muscle harboured epigenetic modifications involved
in the maintenance of heterochromatin that change with
age.3”® The ageing process causes a decrease in the level
of H3K9me3 but an increase in H4K20me3.3° H3K9me3 was
decreased, and H4K20me3 increased in Ercc7”~ animals in
keeping with an age-related change (Figure 4Q and 4R). Both
features were normalized following sActRIIB treatment
(Figure 4Q and 4R).

These results demonstrate subcellular defects in the
Ercc2’~ muscle and the expression of genes indicative of on-
going stress. sActRIIB treatment prevented the development
of many of these abnormal features.

Connective tissue profiling

Skeletal muscle force transmission relies on proteins that link
the contractile apparatus to the extra cellular matrix (ECM).
We examined two of its components and determined how
they were modified by the Ercc1?/~ genotype and thereafter
by sActRIIB treatment. First, we examined the expression of
dystrophin, a key intercellular component that links the cyto-
skeleton to the ECM. Its RNA expression was decreased in the
Ercc2”~ muscle, which was subsequently increased to levels
greater than controls by sActRIIB (Figure 5A). We measured
the amount of dystrophin specifically located between fibres
using quantitative immuno-fluorescence and confirmed its
reduction specifically at this site in the Ercc7’/~ muscle
compared with controls and was significantly increased by
SActRIIB (Figure 5B and 5D). Thereafter, we examined
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Figure 5 Normalization of Ercc1’”™ extracellular components by sActRIIB
and differentiation and self-renewal of its satellite cells. (A) Dystrophin
gene expression measured by quantitative PCR (qPCR). (B) Measure of
dystrophin in fibre-type-specific manner using quantitative immunofluo-
rescence. (C) Measure of collagen IV expression profiling by gPCR. (D) Im-
munofluorescence image for dystrophin expression in EDL muscle. (E)
Immunofluorescence image for collagen IV expression in EDL muscle.
n =7 for all cohorts. (F) EDL myonuclei count. (G) Quantification of satel-
lite cells on freshly isolated EDL fibres. (H) Quantification of cells on EDL
fibres after 72 h culture. (I) Control, mock-treated Ercc1” , and
SACtRIIB-treated Erccz”~ fibre examined at 72 h for expression of
Myogenin (red) and Pax7 (green). Arrows indicated satellite cell progeny.
(J) Quantification of EDL differentiated (Pax7 /Myogenin®) vs. stem cell
(Pax7*/Myogenin~) after 72 h in culture. Fibres collected from three mice
from each cohort and minimum of 25 fibres examined. Scale 50 um. Non-
parametric Kruskal-Wallis test followed by the Dunn’s multiple compari-
sons used for (A—C). Rest of data was analysed using one-way analysis of
variance followed by Bonferroni’s multiple comparison tests. *P < 0.05,
**p < 0.01, ***P < 0.001. EDL, extensor digitorum longus; sActRIIB, sol-
uble activin receptor type IIB.
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expression of collagen IV as basement membrane component
important for force transmission. Its expression was slightly
decreased albeit not reaching statistical significance in
Ercc?”~ muscle (Figure 5C). However, sActRIIB caused its
level to increase over both untreated ErccZ’/~ and control
levels (Figure 5C). Collagen IV gene expression levels
were reflected at the protein level at the myofibre surface
(Figure 5E).

Mechanisms underlying fibre size changes

To explore mechanisms regulating muscle mass, we investi-
gated changes in anabolic and catabolic programmes. Surpris-
ingly, levels of phosphorylated Akt (an inducer of anabolism)
appeared elevated in the muscle from 16-week-old mock-
treated ErccZ’~ mice (Figure S4A). Next, we examined
downstream targets of pAkt and found that there was a slight
decrease in the phosphorylation of 4EBP1 at Thr37/46 but
none at Ser65 (Figure S4B). However, there was an elevated
level of phosphorylation at another pAkt target, S6 (Figure
S4C). The effect of sActRIIB on the anabolic programme of
Ercc2’~ muscle showed a general increase in the level of
pAkt, as well as its two downstream targets, 4EBP1 and S6,
relative to both mock-treated Erccz/~ and control groups
(Figure SAA-SAC). Thereafter, we probed the catabolic pro-
gramme and found that activity of FoxO1l and FoxO3a, key
regulators of both ubiquitin-mediated protein breakdown
(FoxO1 significantly, FoxO3a not so), was generally decreased
in the muscle from ErccZ’’/~ mice (Figure S4D and S4E), even
to a level exceeding controls. Expression of both MuRF1 and
Atrogin-1 downstream targets of FoxO1 and FoxO3a were el-
evated at the RNA level in the muscle of ErccZ?/~ mice (Fig-
ure S4l and S4J). The LC3 autophagy activity was suppressed
compared with controls (Figure S4F). Treatment with sActRIIB
caused an elevation in the levels of inactive FoxOl and
FoxO3a (Figure S4D and S4E) and a decrease in the expres-
sion of MuRFI1 but, surprisingly, not Atrogin-1 (Figure S4l
and S4lJ). Expression of MulZ, a key regulator of mitophagy,*°
did not differ in the three groups (Figure S4K). Significantly,
we found an increase in the level of autophagy gauged by
the LC3II/I ratio and levels of p62 following sActRIIB treat-
ment (Figure S4F and S4G). We quantified the presence of
p62 puncta, which has been used as an indicator of autopha-
gic flux, with an increase in the numbers of p62 puncta imply-
ing a decrease in autophagic activity.** The number of p62
puncta per given area were higher in Ercc2’~ EDL muscle
compared with controls, and their levels were reduced by
SActRIIB treatment (Figure S4L and S4M). Treatment of
Ercc2’~ mice with sActRIIB resulted in a non-significant in-
crease in the amount of active elF2a, a key regulator of the
endoplasmic reticulum UPR (UPRER) programme (Figure
S4H). At the organismal level, we found that the rate of pro-
tein synthesis was elevated (but not to significant levels) in
Ercc2’~ mice and further elevated by sActRIIB treatment
(Figure S4N). The abundance of ubiquitinated proteins was el-
evated in the muscle of ErccZ’/~ mice but reduced by
SActRIIB treatment (Figure S40).

These results reveal novel characteristics considering the
changes in muscle mass in the progeric mice. The muscle of
Ercc2’~ mice activates both its protein synthesis pathway
and has elevated gene expression of molecules that control
protein breakdown. However, autophagy is blunted. Treat-
ment of ErccZ?/~ with SACtRIIB results in an increase in the
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activity of molecules controlling protein synthesis as well as
overall rate of protein synthesis, a decrease in the abundance
of ubiquitinated proteins E3 as well as an increase in key reg-
ulators of autophagy.

Myonuclei and satellite cell profiling
We examined features of individual myofibres to determine

the effect of sActRIIB treatment. The number of myonuclei
in the fibres from the EDL or the number of SC on them

from either PBS- or sActRIIB-treated ErccZ’/~ mutants was
significantly lower than the number in control mice (Figure
5F and 5G). We then investigated the proliferative capacity
of the SC from the three cohorts and found that, after 72 h
of culture, the population from control fibres had under-
gone a three-fold increase compared with initial numbers.
In sharp contrast, the SC from PBS-treated Ercc2?~ mice
failed to undergo any significant proliferation. Importantly,
SACtRIIB treatment of ErccZ’/~ mice resulted in SC being
able to undergo a 2.3-fold increase in number (Figure
5H). Finally, we found that the attenuated differentiation

Figure 6 The prevention of kidney function abnormalities through the maintenance of the filtration barriers by sActRIIB treatment of Ercc?’”™ mice.
(A) Urine protein measurements at the end of week 14. (B-D) Low and (F—H) high magnification of electron microscopy images of podocytes from
control, mock-treated ErchA/f, and sActRIIB-treated ErccZ” ™ mice. Pod indicates the podocyte. (C) Ercc1’™~ tissue contains autophagosomes (yellow
arrow) and enlarged mitochondria (yellow arrowhead). (D) sActRIIB-treated Ercc7”’~ mice show some foot process effacement (red arrowheads) but
significant number of mature foot processes (red arrow). (E) Quantification of foot process width. (F) Numerous mature foot processes in control
sample (red arrows). (G) Very few foot processes in Ercc1”~ sample but thickened glomerular basement membrane (red arrowheads). (H) Treated
Ercc1~ sample showing numerous mature foot processes (red arrows). (I) Quantification of glomerular basement membrane thickness. (J) Nuclear
size measurements in Nephrin-positive domain. (K) pSmad2/3 profile in control mice (red) in relation to podocytes, identified through Nephrin
expression. (L) Abundant levels of pSmad2/3 (red arrows) in Erccr”~ podocytes. (M) Few pSmad2/3 puncta in sActRIIB-treated Ercc”~ podocytes
(red arrow). n = 8 mice examined for each cohort for (A) and n = 5 mice examined for each cohort for (EM). Analysis performed using non-parametric
Kruskal-Wallis test followed by the Dunn’s multiple comparisons. *P < 0.05, **P < 0.01. sActRIIB, soluble activin receptor type IIB.
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programme of SC from Ercc2’~ mice was normalized by
SActRIIB treatment (Figure 51-5J).

Therefore, sActRIIB treatment mitigates abnormalities in
SC proliferation, differentiation and self-renewal programmes
in Ercc7?’~ animals. However, it did not normalize the low SC
number found in mock-treated ErccZ?/~ mice.

Inhibition of glomerular anomalies in Ercc7?/~ mice
by soluble activin receptor type 1B

Kidney pathology due to mutations in ERCCZ has been re-
ported in both human and mice.>?° Here, we investigated
the impact of sActRIIB on kidney function and structure. Pro-
teinuria analysis showed a 12-fold elevation in the
albumin/creatinine ratio in urine from Ercc2’”~ mutants
compared with controls at 16 weeks of age. This measure
was reduced to an elevation of 3.7-fold in the urine of
sActRIIB-treated ErccZ”/~ mice (Figure 6A). We investigated
the mechanism underlying the proteinuria in Ercc2?~ mice
and how it is influenced by sActRIIB by examining the ultra-
structure of the kidney filtration apparatus. Transmission
electron microscopy showed the Ercc1?~ podocytes hyper-
trophic, but additionally, they contained numerous abnormal-
ities, including enlarged mitochondria as well as accumulation
of autophagosomes (Figure 6B, 6C, 6F, and 6G,
autophagosomes shown in detail in Figure S5A). The most
prominent feature was the degree of foot process efface-
ment in the Erccz?/~ sample, which contrasted the regular
structures found in control samples (Figure 6E-6G). When
foot processes were present, they are significantly broader
in Erccz’/~ animals compared with controls (Figure 6E—6G).
Glomerular basement membrane was also significantly
thicker in Ercc?/~ kidneys compared with controls (Figure
6F, 6G, and 16). All these features were to a greater degree
normalized following the treatment with sActRIIB (Figure
6B-6l). At the ultrastructural level, enlarged mitochondria
area and accumulation of autophagosomes were completely
prevented (Figure 6D and 6H). Foot processes were evident
(Figure 6H). It should be noted that in some regions, they ap-
peared normal, whereas in other regions, they are still
broader compared with controls (Figure 6D and 6H). The
thickness of the glomerular basement membrane was signifi-
cantly reduced by sActRIIB treatment compared with mock-
treated progeroid mice but not to normal levels (Figure 6l).
Nuclear size that was enlarged in the glomeruli of Ercc1?/~
specimens was maintained at normal dimensions by sActRIIB
(Figure 6J). Finally, we examined whether the impact of
SsActRIIB  could be through direct antagonism of
myostatin/activin signalling by investigating the distribution
of pSmad2/3 in podocytes. There was very little pSmad2/3
in control glomeruli (Figure 6K). In contrast, abundant
pSmad2/3 was found in nuclei of Ercc1?/~ podocytes (Figure
6L). Following sActRIIB treatment, the abundance of

pSmad2/3 in Ercc1?/~ podocytes was reduced compared with
untreated progeroid mice (Figure 6M). However, it was still
more prominent than controls.

These results show that foot process effacement is an un-
derlying cause of proteinuria in Ercc]"/kidneys. sActRIIB
treatment not only improved the ultrastructure of the filtra-
tion barrier but significantly also reduced proteinuria.

Impact of soluble activin receptor type IIB on
ageing-related liver Ercc7?/~ abnormalities

The liver undergoes age-related changes both in humans and
rodent models.>**>* The nuclei in the livers of Ercc?/~ mice
undergo progressive ageing-related changes including en-
largement, invaginations, and polyploidy. These features have
been interpreted to indicate incomplete cytokinesis.** We
found that both liver nuclear size and the number of liver
multi-nucleated cells were increased in tissue from Erccz?/~
mice compared with control tissue (Figure 7A and 7B). Treat-
ment of Ercc’/~ mice with SACtRIIB significantly decreased
both measures (Figure 7A and 7B). Having shown that age-
associated changes in the liver nuclei of Ercc2?/~ mice were
reduced following treatment with sActRIIB, we examined
whether this was reflected by changes in epigenetic modifica-
tion involved in the maintenance of heterochromatin.®”®
Previous work has shown that levels of H3K9me3 are down-
regulated during ageing,®® and here too, we found such a
relationship (Figure 7C). In contrast, ageing results in an in-
crease in H4K20me3 marks. Here, we saw extensive levels
of H4K20me3 in the liver of ErccZ’/~ and surprisingly of con-
trol mice (Figure 7D and 7G). Strikingly, the H4K20me3 marks
were essentially absent in livers of Ercc2?/~ mice treated with
SActRIIB (Figure 7D and 7G). Oxidative stress is one of the key
drivers that induce age-related changes in the liver.** Again,
we deployed the DHE dye to gauge the level of superox-
ide.3%3? Superoxide levels were elevated in the liver samples
of both Erccz/~ and control mice, compared with treated
Ercc2?/~ mice (Figure 7E and 7H). Next, we profiled the met-
abolic activity of the liver as it is known to undergo a de-
crease in the level of oxidative phosphorylation with
ageing.”>*® In agreement with the work by Gregg et al. on
Ercc1?/~ livers, we found a decrease in four of the six genes
linked to oxidative phosphorylation (Figure 7F).>* Expression
of five genes was significantly increased by sActRIIB treat-
ment relative to their levels in mock ErccZ’/~ animals (Figure
7F). Lastly, we determined whether the effects of sActRIIB on
the livers of Ercc’/~ mice were mediated by direct antago-
nism of myostatin/activin signalling. Profiling of pSmad2/3
showed that there was no activity in the parenchyma of the
livers of the three cohorts (Figure S5B). Only a few
pSmad2/3-expressing cells were found adjacent to smooth
muscle in all three cohorts (Figure S5B).
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Figure 7 sActRIIB prevents the development age-related liver abnormalities and osteoporotic phenotype in Ercc1”~. (A) Measure of liver nuclear size.
(B) Profile frequency of multinucleated liver cells. (C) Frequency of H3K9me3-positive liver cells. (D) Frequency of H4K20me3-positive liver cells. (E)
Quantification of DHE fluorescence to gauge superoxide levels. (F) Quantitative PCR profiling of mitochondrial gene expression. (G) Immunofluores-
cence images for H4K20me3 distribution in the three cohorts. (H) DHE intensity levels in the three cohorts. (I) Trabecular bone volume measurements.
(J) Trabecular tissue volume measurements. (K) Trabecular bone to tissue volume ratios. (L) Trabecular separation indices. (M) Enumeration of
trabeculae. (N) Degrees of trabecular anisotrophy. (O) Trabecular pattern factor as a quantification of bone architecture. (P) Structure model index.
(Q) Measure of cortical bone volume. (R) Cortical tissue volume measure. Trabecular bone volume measurements. n = 8 for all animals in (A-H)
and n = 6 control male mice, five Ercc’” " -untreated male mice, and six Ercc1’”~-treated male mice in other experiments. One-way analysis of variance
followed by Bonferroni’s multiple comparison tests used for (A—F) and non-parametric Kruskal-Wallis test followed by the Dunn’s multiple comparisons
for (I-R). *P < 0.05, **P < 0.01, ***P < 0.001. DHE, dihydroethidium; sActRIIB, soluble activin receptor type IIB.
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These results show that antagonism of myostatin/activin
signalling leads to profound normalization of Ercc1?~ liver
cell nuclear structure, selective epigenetic modification of
DNA and changes in gene expression indicative of increased
oxidative phosphorylation and a reduction in superoxide
levels.

Prevention of the osteoporotic phenotype in
Ercc1?/~ mice by soluble activin receptor type II1B

Micro-CT analyses revealed that Ercc’~ mice exhibit a pre-
mature ageing-related osteoporotic phenotype with extreme
differences in trabecular and cortical bone mass and architec-
ture compared with control mice. In the trabecular compart-
ment, there was a significant reduction in bone volume,
tissue volume, bone volume/tissue volume, trabecular sepa-
ration, trabecular number, and degree of anisotropy, a mea-
sure of how highly oriented substructures are within a
volume (Figure 71-7N). Significantly higher trabecular pattern
factor indicating trabecular connectivity and structure model

index a measure of surface convex curvature and an impor-
tant parameter in  measuring the transition of
osteoporotic trabecular bone from a plate-like to rod-like ar-
chitecture were also observed in ErccZ?’/~ mice compared
with controls animals (Figure 70). Cortical bone volume and
tissue volume were significantly lower, further demonstrating
that Ercc’~ mice have an osteoporotic bone phenotype
(Figure 7Q and 7R).

Analysis of trabecular bone revealed significant increase in
bone and tissue volume, bone/tissue volume, and trabecular
number in ErccZ’/~ sActRIIB-treated mice compared with
mock-treated animals, indicating treatment prevents a de-
crease in the size of the trabecular compartment and the
amount of bone present (Figure 71-7K). In addition, trabecu-
lar pattern factor was significantly lower in the treated group
compared with mock-treated with levels close to the control
group, showing trabecular connectivity improved upon treat-
ment (Figure 70). Furthermore, the structure model index
was significantly lower in the treated group, again with
results close to the control group (Figure 7P). Cortical bone
volume and tissue volume were significantly lower in

Figure 8 sActRIIB delays neurological abnormalities in Erccz”” mice without affecting lifespan. (A, B) Body weight changes of treated (sActRIIB or
mock control) Ercc’”™ mice at a second test site (P = 0.07). Intraperitoneal injection started at week 7. (C) Average grip strength of the forelimbs
and all limbs of 4-month-old ErccZ’”~ mice under mock and sActRIIB conditions. (D) Average time spent on an accelerating rotarod of Ercc7’”™ mice
on different treatments weekly monitored. (E-G) Onset of neurological abnormalities (F) tremors (P = 0.28), (F) severe tremors (P = 0.0014), and (G)
imbalance (P = 0.021) with age. (H) Survival of sActRIIB-treated and mock-treated Ercc’”™ mice (P =0.27). n = 10 animals per group. Error bars indicate
mean * SE. Log-rank Mantel-Cox test. *P < 0.05, **P < 0.01, ***P < 0.001. sActRIIB, soluble activin receptor type IIB.
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Tabl;.d 2. sActRIIB administration attenuates progeroid phenotypes of
Ercc.

~ mice
Age at onset (weeks) # of Ercc1?/~
Change mice
of onset (Mock,
Symptoms Mock SActRIIB  (weeks)  sActRIIB)
Clasping 5.00 4.80 -0.20 (10, 10)
Tremors 11.40 12.10 0.70 (10, 10)
Severe tremors 11.60 16.11 4.51 (10, 9)
Body weight decline 11.80 13.60 1.80 (10, 10)
Kyphosis 17.75 18.15 0.40 (10, 10)
Imbalance 18.95 18.33 -0.62 (10, 3)
Paresis 20.50 18.80 -1.67 (6, 3)

The average age at onset of characteristic progeroid phenotypes in
treated Ercc7”’™ mice and the difference between the group aver-
ages is shown. The last column indicates the total number of mice
out of 10 per group that displays the phenotype before end of life.
Phenotypes delayed more than 0.5 weeks on average or absent in
mice treated with sActRIIB compared with mock treated Ercc? %/~
mice are indicated in bold. sActRIIB, soluble activin receptor type
IIB.

Ercc2?~ mice compared with the control groups, with
treatment significantly lessened the tissue volume and bone
volume decline (Figure 7Q and 7R).

Together, these analyses reveal that sActRIIB treatment
produces tibial architecture changes and prevents a decrease
in trabecular and cortical bone mass in Erccz?/~ mice, miti-
gating the premature ageing-related osteoporotic phenotype
observed in this and previous studies.

Long-term effects of soluble activin receptor type
1IB administration to Ercc1’/~ mice

To confirm the previous results and monitor phenotypical
age-related changes beyond the age investigated so far, we
initiated a second cohort of ErccZ/~ mice at another loca-
tion. Treatment regime, regarding timing, dosage, and fre-
quency, was kept identical. Similarly, Ercc2’/~ mice reached
a higher body weight upon IP injection of sActRIIB as com-
pared with PBS-injected mutant mice (Figure 8A). No
gender-specific response was found in terms of body weight
changes due to sActRIIB treatment of Ercc2?”~ mice (Figure
S6B). As a consequence of the ageing-associated deteriora-
tion, they all gradually declined with age after reaching their
maximal body weight, which was delayed by sActRIIB admin-
istration (Figure 8B). Simultaneously, in vivo imaging showed
a substantial increase in both muscle and bone volume
(Figure S6A) confirming the robustness of sActRIIB treatment.

All animals from the sActRIIB group had a more vigorous
and lively appearance and showed an improved grip strength
for both the forelimbs and all limbs (Figure 8C). Additionally,
locomotor function, as measured by Rotarod performance,
was significantly improved by sActRIIB over the entire

lifespan, but still declined with age parallel to the mock-
treated mice (Figure 8D).

A prominent ageing feature of these mice is related to neu-
rodegeneration and the onset of several neuro-muscular phe-
notypic changes.?? Longitudinal examination of behavioural
abnormalities showed that the onset of tremors was not de-
layed following sActRIIB treatment but was reduced in sever-
ity (Figures 8E, 8F, and S6C and Table 2). The onset of
imbalance was greatly postponed and frequently absent as
well as the onset of paresis of the hind legs (Figure 8G and
Table 2). Nevertheless, sActRIIB treatment of Ercc2?~ mice
did not extend survival of the animals (Figures 8H and S6D).
These results show that attenuating myostatin/activin signal-
ling prolongs health span rather than delaying death.

Discussion

The key findings of this study are, first, that the sarcopenic
programme in the Ercc1?/~ progeroid mouse model not only
shows many parallels with naturally aged rodent muscle but
also reaches more severe stages and displays several distinc-
tive features. Second, we demonstrate that sarcopenia was
attenuated through the antagonism of myostatin/activin sig-
nalling despite persistent defective DNA repair. Third, we re-
veal that inhibition of myostatin/activin signalling induces
multi-systemic physiological improvements; mice increased
locomotor activity; increased specific force and kidney func-
tion; improved key features of liver biology; mitigated the os-

teoporotic phenotype; and delayed parameters of
neurodegeneration.
Ercc2’”~ muscle parallels with natural muscle ageing and

pathological muscle diseases.

We first defined the characteristics of muscle in the
Ercc1?~ progeroid model in light of previous work and dis-
covered many unexpected features related to muscle compo-
sition rather than in its overall mass. At the quantitative level,
all muscle groups from Ercc2?/~ mice were much lighter than
control mice, which concords with findings in aged humans
and mouse models.*”*® In addition, our studies revealed nu-
merous qualitative differences between progeroid muscle
and muscle of aged wild-type mice. All MHC fibre types were
smaller in Erccz?/~ muscle, and most had undergone a slow
to fast fibre profile shift. These features differ from wild-type
mouse muscle where MHCIIB preferentially undergo aged-
related atrophy,*® and fibres in both humans and rodents un-
dergo a shift from fast to slow.>® We also discovered that the
number of fibres in both EDL and soleus muscles were higher
than controls, which seems counter-intuitive given the overall
loss in muscle mass in ErccZ/~ mice. Parallels are invited be-
tween the ostensible hyperplasia in our sarcopenic condition
and the increased fibre numbers seen in myo-pathological
conditions, such as Duchenne muscular dystrophy.>* We sug-
gest that the increased fibre number is due to the abundance
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of split fibres, a notion supported by our results showing that
muscle from ErccZ”/~ mutants contains a large proportion of
damaged fibres. Additional findings including the high level of
caspase activity and the decrease in dystrophin and collagen
lead us to propose that the muscle fibres from Ercc2?’/~ mice
have elevated levels of contraction-induced damage which
leads to cellular lesions (splitting) and ultimately results in
fibre death. Fibre apoptosis and necrosis are a common
feature of age-related muscle wasting but not of disuse
atrophy. Indeed, we found that the proportion of dying
fibres was far greater in Ercc2’~ muscle than found in aged
wild-type mice.?°

The muscle of ErccZ/~ mice contains numerous abnormal
fibres (identified through central nucleation) and dying fibres,
but those that seem normal contain subcellular aberrations.
Ultrastructural examination reveals abnormalities in the
organization of the contractile apparatus and the cellular
organelles. Of note, mitochondria were quantitatively and
qualitatively affected by the ErccZ mutation in muscle. Their
density was decreased both within the fibre as well as under
the sarcolemma where they would support contraction and
membrane-related activities, respectively.>> Furthermore
Ercc’/~ muscle mitochondria at both sites were swollen in-
dicative of response to either functional deficit or altered fu-
sion.>*3% Our studies show elevated levels of ROS through
the profiling of DHE activity.>> We therefore suggest that
the ErccZ mutation in muscle leads to ultimately compro-
mised mitochondrial function, resulting in increased ROS pro-
duction, which may compromise the function of the
contractile apparatus as well as ultimately inducing fibre
death.>?

Analysis of key proteins involved in anabolic and catabolic
programmes revealed an interesting landscape. Surprisingly,
Ercc2’/~ muscle showed elevated levels of Akt activity, one
of two downstream genes (S6) and overall rate of protein
synthesis. The muscle of Ercc2?~ mice expressed high levels
of MuRF1 and Atrogin-1 and contained increased levels of
ubiquitinated proteins. Hence, the muscle of Ercc2~ animals
had initiated a programme of protein synthesis yet, at the
same time, was promoting their breakdown, which signifi-
cantly deviates from normal catabolic conditions.>* Although
unusual in the context of normal physiology, these results
agree with other studies of progeroid models that
demonstrate the activation of pathways to limit the effect
of the primary lesion.”* We suggest that in the context of
Ercc7’/~ muscle, the activation of the protein synthesis
pathway acts to decrease an extremely high rate of muscle
wasting. Nevertheless, the ultimate deregulation of protein
synthesis, proteasome and autophagy pathways in Ercc1?/~
muscle, which parallels many disease conditions, culminates
in atrophy.>>°®

We also found changes in the number and behaviour of SC
of the Erccz?’/~ muscle; not only were they fewer in number
but they also displayed an inability to divide following the

isolation of single muscle fibres as well as an attenuated abil-
ity to differentiate. Some but not all these features are
shared by SC from sarcopenic human muscle; SC from
sarcopenic human muscle were shown to be more prone to
activation but not follow through a normal degree of differ-
entiation.>” However, comparisons of outcomes from differ-
ent studies are problematic due to use of differing
experimental systems.

Effects of soluble activin receptor type IIB on
Ercc1?/~ muscle phenotype

Our study documents the profound effect of antagonizing
myostatin/activin signalling on body and muscle mass as well
as function of Ercc’’/~ mice. Age-related decreases in all
three parameters were significantly attenuated in the
Ercc2’/~ mutant by the soluble activin receptor ligand trap.
The difference in the muscle mass between treated vs. un-
treated animals ranged between 30% (TA) and 62%
(plantaris). The changes in muscle mass are extremely im-
pressive and worthy of comparison with the Mstn™~ mu-
tant. The EDL of the Mstn™/~ was 60% heavier than the
wild-type counterpart.®® Here, after only 8 weeks of sActRIIB
treatment, the EDL was 45% heavier. The differences in mus-
cle mass between treated and untreated mice are of note
when compared with outcomes that have previously de-
ployed anti-myostatin/activin, non-genetic approaches in
aged mice. One such study showed that the TA of aged mice
underwent an increase of 6%, whereas here, even though it
was the muscle that displayed the smallest increase
nevertheless was 30% heavier than that of mock-treated
Ercc?~ mice.® These results suggest that activity of
myostatin and/or activin in Ercc2?’~ mice are considerably
higher than in aged wild-type mice. Importantly, we show
that treatment with sActRIIB did not induce changes in the
circulating levels of either GH, glucose, insulin, or IGF-1.

In this study, we show that muscles of Ercc’/~ mice not
only are smaller but contain numerous subcellular and bio-
chemical abnormalities. It is well documented that contractile
force normalized per mass is preserved when muscle un-
dergoes regulated loss in weight.?° Here, we see that
Ercc7?~ mice generated only 50% of normalized grip
strength compared with controls but that this value was sig-
nificantly improved by sActRIIB treatment. Abnormal specific
force and relaxation times in the muscle of ErccZ””/~ muscle,
both features of structure alterations,®® were improved by
SActRIIB treatment. We therefore suggest that sActRIIB not
only prevents muscle from undergoing atrophy but also pre-
vents the subcellular abnormalities. This is clearly evident in
the TEM profiles of skeletal muscle, which show that every
abnormal feature of Ercc7/~ muscle (sarcomeres and mito-
chondria) was largely prevented by the action of sActRIIB.
We suggest that at least one key mechanistic driver in this
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process is the activation of the autophagic programme medi-
ated by members of the FoxO family. Thus, we propose that
abnormally low autophagic activity displayed in Ercc1?/~
muscle leads to accumulation of p62 puncta and presumably
abnormal mitochondria as well as through hyper-activation of
the UPRMT %2 elevated levels of genes encoding prohibitins
that function to restore organelle function,® change in the
histone mark profile (down-regulation of H3K9Me3 and up-
regulation of H4K20me3) as well as ROS superoxide levels.
The build-up of ROS causes protein oxidation ultimately
compromising the workings of the contractile apparatus and
leading to a deficit in specific force.®® Our interpretation of
these finding is that sActRIIB treatment of Ercc2’~ mice
leads to the activation of autophagy (LC3II/I ratio), which pre-
vents the accumulation of p62 puncta and also abnormally
functioning mitochondria, thus counteracting the need to ac-
tivate either the UPRMT or prohibitin programmes, maintains
a normal profile of histone modification as well as avoiding
the build-up of high levels of ROS, which ultimately translates
in the preservation of organ reserve capacity. We note that
the expression of Mull, a proposed mitochondrion-specific
U3 ubiquitin ligase, was not affected by the progeroid condi-
tion or following treatment with sActRIIB compared with con-
trols. However, it is worth bearing in mind that numerous
mitochondria targeting U3 ubiquitin ligases have been identi-
fied including PARKIN and that these non-investigated mole-
cules could be executing mitophagy in our experiments.*°
However, the concomitant increase in protein synthesis
and autophagy levels in Ercc2’~ mice following sActRIIB
treatment remains to be further investigated. In a normal set-
ting, the two processes are antagonistically driven in large
part by FoxO proteins (reviewed in Bonaldo & Sandri°®). Here,
we suggest that normal parameters do not operate evi-
denced by the hyper-activation of Akt in Ercc2?~ muscle. In-
deed, there is a growing body of evidence for dual activation
of Akt-mediated pathways and autophagy when the normal
landscape of regulation is altered.®* Hyper-activation leading
to initiation of novel signalling pathways and cellular out-
comes is quite a common outcome and has been extensively
studied especially in scenarios of uncontrolled cell division
that underpin the development of many cancers.®>®® Future
studies, beyond the scope of the present investigation, com-
bining gene expression and proteomic platforms are planned
to identify the pathways susceptible to hyper-activation of
Akt. Nevertheless, we propose that the role of autophagy is
in maintaining cellular homeostasis rather than anabolism.?®

Effects of soluble activin receptor type 1B
treatment on muscle stem cells and the extra
cellular matrix

Our work identifies novel features of progeroid SC, the resi-
dent stem cell population of skeletal muscle.®” We show that

the number of SC is reduced by the ErccZ mutation and it ren-
ders the cells senescent gauged by their inability to prolifer-
ate following single fibre isolation. They were able to
become activated, judged by their expression of MyoD (data
not shown), and differentiate but did not demonstrate the
normal self-renewal/terminal differentiation physiognomies
following 72 h of culture,®® features shared by counterparts
from geriatric wild-type mice.>® Our results are consistent
with the findings of Lavasani et al. who showed that Ercc1?/~
mice have attenuated muscle regeneration following
cardiotoxin injury.*® The subsequent experiments reveal fea-
tures of SC that are plastic with regard to myostatin/activin
signalling. First, we show that sActRIIB was unable to influ-
ence the number of SC in the muscle of Erccz?/~ mutants,
which remained abnormally low compared with controls. This
is not altogether surprising as the number of SC is established
approximately a month after birth in mice.*® However,
SActRIIB treatment supported SC division and normal differ-
entiation. We propose that these outcomes are unlikely to
be due to a direct attenuation of myostatin/activin signalling
in SC by sActRIIB as previous studies have shown that they
express very little, if any, ActRIIB.”° Rather, we contemplate
that sActRIIB-induces change in the Ercc1?/~ myofibre ECM
(shown here by changes in collagen IV expression as well as
dystrophin) that influences the behaviour of their SC. This is
possibly significant given that recent studies have shown that
the behaviour (ability to divide and differentiate) of SC is pro-
foundly influenced by the interaction of collagen molecules
and stem cell receptors.”*

Compression of morbidity by soluble
activin receptor type IIB treatment

In this study, we show that antagonism of myostatin/activin
signalling in ErccZ/~ mice attenuated the development of
ageing-related changes not only of muscle but rather also of
health overall. Administration of SACctRIIB to ErccZ’/~ mice
improved strength, fitness, and locomotor performance,
delayed the onset and importantly the severity of several
age-related neurological abnormalities, and reduced deterio-
ration of the bones, liver, and kidney.

An issue that needs addressing is how sActRIIB delivers
multi-organ protection against ageing. One possibility is that
myostatin/activin  signalling promotes the age-related
changes independently in each organ system examined in
this study and that they are attenuated by systemic delivery
of sActRIIB. This certainly could be the case for the kidney
as we have seen that downstream activation of
myostatin/activin pathways, identified through presence of
pSmad2/3, in tissue from progeric mice were blocked by
sActRIIB. Moreover, numerous studies have shown that acti-
vation of TGF-R signalling, which can result in the Smad2/3
phosphorylation, is able to induce ‘podocyte disease
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transformation’, an atypical form of epithelial mesenchymal
transition.”> However, we were unable to detect significant
levels of pSmad2/3 in the liver (concordant with the findings
of others’®), which nevertheless showed signs of being
protected from the ageing process by sActRIIB. Therefore,
we postulate that sActRIIB may act both directly (e.g. muscle
and kidney) or indirect for other organ systems (e.g. the
liver). For the indirect actions of sActRIIB, it is possible that
the skeletal muscle plays a role promoting the maintenance
and homeostasis of other tissues through inter-organ signal-
ling. It is well known that pathology of skeletal muscle leads
to failure of other organs. For example, rhabdomyolysis in-
duces acute kidney injury in part by the release of myoglo-
bin.”* There are also examples where a malfunctioning
organ leads to myopathy, which in turn exacerbates the pri-
mary lesion. An example has been elegantly assimilated into
the ‘Muscle Hypothesis’ of Chronic Heart Failure.”> Herein,
changes in skeletal muscle structure and function, mediated
by a number of factors including tissue hypoxia and inflam-
mation, lead to hyper-responsiveness of the ergoreflex sys-
tem.”® This leads to over-activation of the sympathetic
nervous system and consequently an increased load on the
ventricles.”” We postulate that severe Erccz®~ muscle
wasting results in the release of myokines and/or intracellular
molecules, which lead to pathological changes in other or-
gans.”® Additionally, we speculate that the normalization of
aged muscle following treatment with sActRIIB may also im-
pact the ergoreflex system. By protecting the muscle against
age-related changes through the action of sActRIIB, we pro-
pose a diminution in the release of harmful factors and pos-
sibly by changes to afferent activity. Support for our notion
for the release of secreted factors comes from an elegant
study that demonstrated transplantation of healthy muscle
stem cells into a progeroid model led to the secretion of fac-
tors, which acted on numerous organs.16 Nevertheless, it is
possible that sActRIIB mediates actions that are independent
of skeletal muscle function. Indeed, it was recently reported
that the same treatment used in our work attenuated hepatic
protein synthesis and splenomegaly in a rodent cachexia
model that were independent of changes in muscle
phenotype.”®

We are nevertheless mindful that despite promising results
in rodent models, translation of therapies based on
myostatin/activin antagonists have been, to date, unsuccess-
ful in delivering intended outcomes and others have been
curtained due to safety concerns®®®! and point to the need
to develop a greater understanding of the biological
processes controlled by this signalling axis. A possible means
of alleviating some of the safety issues associated with
myostatin/activin antagonists could be through decreasing
their dose but at the same time harnessing the benefits of
other agents that promote healthy ageing. One attractive
proposition could be to wuse a combination of
myostatin/activin antagonists and the deployment of the

angiotensin 1-7 hexapeptide. The latter has been shown to
block over active renin-angiotensin signalling, which not only
drives muscle dysfunction but also leads to muscle fibro-
sis. 8283 A recent study showed that angiotensin 1-7 was able
to restore age-related muscle weakness in a rodent model.®*
Both the sActRIIB and angiotensin 1-7 are attractive therapeu-
tic molecules because they could be delivered using existing
medical devices such as osmotic mini-pumps.

In conclusion, this dataset highlights a novel mechanism
that attenuates age-related tissues changes. Previous findings
support the notion that an organism slows ageing by remod-
elling its cellular activity from growth and proliferation to
maintenance and repair.>>%° This can be achieved by attenu-
ating IGF-1 and GH activity, which controls the somatic
growth axis®®®” and by dietary restriction (DR).2¥ We have
previously shown that DR delays ageing at the organismal
level and extends lifespan and health span of Ercc1™~
mice.” These studies advocate that promoting tissue growth
in an ageing model might well be harmful to the organism.
However, we show that a mechanism that promoted growth
of skeletal muscle also promotes overall health span as evi-
denced by activity measurements and tissue structure and
function. We believe that we can reconcile these apparent
discrepancies by examining the defects that underpin the ac-
celerated ageing process in progeroid mice. We have shown
that DNA repair deficiency leads to damage that stalls tran-
scription at least in post-mitotic tissues, which cannot dilute
DNA damage by replication or repair it by replication-
associated repair pathways. As a consequence, the stochastic
nature of DNA damage leads to a preferential loss of long
transcripts.”® Furthermore, DR is able to counteract the tran-
scriptional block by reducing the DNA damage load.”* We
propose that, at least in muscle, the transcriptional landscape
is unaltered by sActRIIB but that enhanced protein synthesis
promoted by sActRIIB can compensate at least in part for
the deficit in long transcripts by increasing the number of
polypeptides from each mRNA molecule. In this model, the
levels of proteins encoded by long genes in Ercc2™~ would
be increased by either reduced arrest of gene transcription
due to diminished DNA damage induction (by mechanisms in-
duced by DR) or increased rate of protein synthesis (by
SActRIIB). Future studies again relying on gene expression
and proteomic platforms are planned to test this novel
hypothesis.

In summary, we believe that attenuating myostatin/activin
signalling protects numerous organs including the kidney,
bone, liver, and likely nervous system as well as skeletal muscle
through a combination of direct and inter-organ signalling pro-
cesses. Although delaying many aspects of ageing, overall
lifespan was not increased by administration of sActRIIB. This
implies that a model where attenuation of myostatin/activin
signalling does not affect the upper limits of lifespan but rather
compresses morbidity, sustaining health until very old
ages.89'90
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Figure S1. Muscle profiling of 16-week old male Erccz?/~
mice. (A) Muscle weights and normalized muscle weights to
tibia length. (B) EDL and soleus fibre number count. (C) Fre-
quency of centrally located nuclei in the EDL and soleus at
16 weeks. (D-G) Muscle fibre cross sectional area in EDL, so-
leus and the deep and superficial regions of the TA in relation
of MHC isoform expression. (H-J) MHC isoform profile of EDL,
deep and superficial regions of the TA. (K) Oxidative fibre
number enumeration through histological SDH activity stain-
ing of the EDL and soleus. (L) Satellite cell and progeny enu-
meration on fresh and cultured EDL for 72 h. (M)
Quantification of proportion of stem cells (Pax7*/Myogenin™)

and differentiated cells (Pax7~/Myogenin®) on EDL fibres af-
ter 72 h culture. n = 6 male mice from each cohort for data
presented in (A-L). Fibres collected from 3 mice from each co-
hort and minimum of 25 fibres examined for (M). Students t-
test, ¥ < 0.05, ** < 0.01, ***p < 0.001.

Figure S2. (A-B) Body and (C-D) organ weights from male
control, untreated and sActRIIB treated Ercc1®~ mice at
end of 15 weeks age. One-way ANOVA followed by
Bonferronis multiple comparison tests, * < 0.05, ** < 0.01,
**kp < 0.001.

Figure S3. Smad2/3 signalling, oxidative fibre number, cas-
pase 3 expression and centrally located nuclei number
changes induced by sActRIIB treatment in Ercc1?~ soleus
without impacting on DNA damage. (A) Immunohistology
of pSmad2/3 expression (green) in soleus muscle (yellow ar-
rows). (B) Immunohistology of YH2A.X expression (green) in
soleus muscle (yellow arrows). (C) Immunohistology of Cas-
pase 3 expression in EDL and soleus muscle (red arrows).
(D) H and E staining for the identification of centrally located
nuclei in EDL and soleus muscle (black arrows). Scale for H
and E 40 um. (E) SDH stain in soleus of the three cohorts.
Scale for SDH 80 um. N = 8 male mice from each cohort.
One-way ANOVA followed by Bonferronis multiple compari-
son tests, * < 0.05, ** < 0.01, ***p < 0.001.

Figure S4. Western blotting demonstrating that sActRIIB
promotes protein synthesis and autophagy but blunts pro-
teasome protein breakdown in Ercc2’/~ muscle. Immuno-
blots and densitometry quantification of (A) pAkt, (B)
p4EBPI on Thr37/46 and Ser65, (C) pS6, (D) pFoxO1, (E)
pFox03a, (F) LC3II/I, and (G) p62. (H) Densitometry quanti-
fication of elF2a. (I-K) qPCR quantification of Atrogin-1,
MUuRF1, Mull expression. (L) Quantification of p62 puncta.
(M) Immunohistology of p62 puncta in the EDL muscle
(green arrows) (N) Densitometry quantification of total pu-
romycin incorporation (protein synthesis rate). (O) Densi-
tometry quantification protein ubiquitination. n = 5 for all
western blots and n = 8 for rest. Non-parametric Kruskal-
Wallis test followed by the Dunns multiple comparisons
used for (A-H and N-O). One-way ANOVA followed by
Bonferronis multiple comparison test used for (I-K).
* < 0.05, ** < 0.01, ***p < 0.001.

Figure S5. (A) ErccZ’/~ kidney showing autophagosome (ar-
row). (B) Evidence for indirect action of sActRIIB in liver.
pSmad2/3 (green) in relation to smooth muscle actin (red)
in the three cohorts. Note that pSmad2/3 was very sparse
in the three cohorts and when present was located adja-
cent to smooth muscle (arrow).

Figure S6. (A) uCT was used to locate and visualize the in-
crease in muscle and bone volume in ErccZ’/~ mice follow-
ing SActRIIB treatment. Sex specific characterization of (B)
body weights, (C) onset of sever tremors and (D) survival
in the Dutch cohort. n = 5 for all three cohorts.

Movie S1. Representative film of control, Ercc1?~ and
SACtRIIB treated ErccZ’/~ mice at 15 weeks of age.
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