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ABSTRACT 

 

Atmospheric aerosols play an essential role in the climate. They are essential to the 

atmosphere as they help to form clouds and participate in the radiative balance and 

regulation of terrestrial surface temperature. Organic aerosols originate from natural and 

man-made sources. Meat cooking is considered an important contributor of a variety of 

organic compounds in the atmosphere, such as fatty acids. Oleic, linoleic and 

palmitoleic acids are the most commonly found long-chain unsaturated fatty acids in 

urban environments. These fatty acids contribute considerably to the aerosol fraction 

due to the reactions that they undergo, such as ozonolysis, which yields aerosols that 

have a notable impact on climate and health. It is known that the presence of water in 

variable relative humidity environments may affect the reaction of ozonolysis of 

unsaturated fatty acids since both, the carboxylic acid and the products formed may 

retain water at the surface, increasing the residence time of dissolved ozone at the 

surface and affecting the reactive uptake coefficient of ozone. The chemistry involved 

in the reactions of atmospheric aerosols still remains poorly understood.   

 

In this study, Raman acoustic levitation was used to assess the effect of ozone 

concentration, relative humidity, droplet size and the presence of surfactants, on the 

ozonolysis of fatty acids. 

 

It was found that droplet size affected the uptake coefficient, whereas relative humidity 

had a variable effect in the uptake coefficient depending on additional factors, such as 

ozone concentration and droplet diameter. The presence of surfactants such as sodium 
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oleate decreased the uptake coefficient of ozone and induced a phase transformation of 

the levitated droplets, even under high relative humidity. Palmitoleic and linoleic acids 

showed more reactivity compared to oleic acid.  

 

Products were analysed by headspace solid-phase micro-extraction (SPME) coupled to 

gas chromatography mass spectrometry (GC–MS). A mechanism of ozonolysis of 

palmitoleic acids was proposed, and some products were verified to be formed from the 

reactions. Products of ozonolysis of fatty acids were identified.  
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INTRODUCTION  

 

Over the past few decades, the interest and concern regarding to the pollution and 

climate change has increased. The atmosphere that allows life on Earth is a mixture of 

different components of natural and anthropogenic origin. Nitrogen and oxygen 

comprise the most abundant gases in the atmosphere, but not only gases are present. 

Atmospheric aerosols are microscopic solid and liquid particles that are disseminated 

throughout the atmosphere (Boucher, 2015; Seinfeld and Pandis, 2006) and their 

reactions have caught attention since it was discovered these aerosols have an effect on 

health and life on the Earth. Aerosols also play a very important role in the global 

climate as they can scatter, absorb or emit radiation, having an effect on the radiative 

balance, affecting the surface temperature. They can also have an impact on 

precipitation as they serve as the initial nuclei upon which water condenses to form the 

droplets of clouds, so-called cloud condensation nuclei (CCN) (Rudich et al, 2007). 

Aerosols can be organic or inorganic. It is estimated that the organic fraction may 

comprise between 20 and 90% of fine particulate matter mass found in the troposphere 

(Kanakidou et al, 2005; Kroll and Seinfeld, 2008; Vesna et al 2008); these organic 

aerosols are released into the atmosphere as primary organic aerosols (POA), but gas-

phase precursors are also converted into secondary organic aerosols (SOA) by means of 

oxidative atmospheric processes (Finlayson-Pitts and Pitts, 2000). The SOA fraction is 

prevalent among organic aerosols and comprises roughly 66% of the organic aerosol 

mass in urban areas, whereas in rural areas this amount may be greater than 90% 

(Hallquist et al, 2009, Song et al, 2007). The organic aerosols fraction consists of a 

complex mixture that includes saturated and unsaturated hydrocarbons, terpenes, 
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aromatic compounds, carbonyl compounds and carboxylic acids. It is believed that 

approximately 10 % of the organic aerosol fraction corresponds to carboxylic acids 

(Gallimore et al, 2011), characterised by the presence of one or more carbon -carbon 

double bonds, one or more carboxylic group, and either short or long carbon chains. 

Examples of fatty acids found in the aerosol fraction are maleic, palmitic, stearic, 

linoleic, palmitoleic and oleic acids, and the source of these species may be both 

anthropogenic and biogenic, marine, forest, car exhaust and cooking emissions being 

some examples (Kawamura, et al, 2003; Moise and Rudich, 2000; Petters et al, 2006). 

Many studies have aimed to investigate the conversion of the emitted aerosol to 

form activated particles. Meat cooking is considered one of the most important source 

of organic aerosol in urban environments, contributing roughly 20% of the particulate 

matter in big cities such as Los Angeles, Hong Kong, and Beijing (He et al, 2010). 

Oleic acid, linoleic acid and palmitoleic acid are the main long-chained unsaturated 

fatty acids (UFA) found in the emissions from meat cooking in rural and urban regions 

in China, with a total of 6.46 ng/m3 of UFA measured during autumn 2009, 

corresponding to 71.5% OA, 26.9 % LA and 1.6 % PA (Zhao et al, 2014). To a great 

extent, the reaction of ozonolysis of oleic acid has been the model system to study the 

heterogeneous oxidation of organic atmospheric compounds, following a mechanism 

that involves the formation of Criegee intermediates, to produce azelaic acid, nonanoic 

acid, 9-oxononanoic acid and nonanal (Zahardis and Petrucci, 2007). 

Studies using linoleic acid suggest an additional mechanism at atmospheric relevant 

ozone concentrations (20 to 40 ppb in rural regions and 200 to 400 in urban sites), 

observing an autoxidation induced by ozone, with the formation of products different 

than carboxylic acids and carbonyl compounds (Lee and Chan, 2007a). Although the 

general mechanisms of ozonolysis of linoleic acid has been reported and it is believed 
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that it involves the formation of radicals and diene structures, the full mechanism is still 

not completely understood. With respect to palmitoleic acid, it is expected that 

ozonolysis of this fatty acid follows the same mechanism as oleic acid, with the 

formation of species including carbonyl and carboxylic groups in the structure (Spencer 

and Kleiman, 1978), also this fatty acid has shown faster reactivity compared to oleic 

acid (Huff Hartz et al, 2007; Weitkamp, 2008); however there is not sufficient 

information that confirms the products and mechanism of ozonolysis of palmitoleic 

acid.  

Atmospheric reactions involve several chemical and physical processes that take 

place either in solution or gas phase, starting with the diffusion of gas particles to the 

droplet surface, followed by the transport of the gas across the air-water interface; then 

the solvated gas is diffused into the bulk phase of the droplet, to complete the process 

when the species either in the aqueous phase or on the interface undergo chemical 

reactions (Finlayson-Pitts and Pitts, 2000). Factors such as ozone concentration, particle 

size and relative humidity may have an effect on these processes, by affecting the 

composition of aerosols and therefore the rate of reactions. Raman spectroscopy is one 

of the techniques that has been reported to measure hygroscopic properties, and also to 

elucidate the impact of phase transformation of levitated aerosols droplets and 

investigate both physical and chemical changes in aerosols (Lee et al, 2008).  

As the main sources of carboxylic acids could be direct emission as well as 

oxidative reactions of their precursors in the atmosphere, the study of reactions that 

involve their formation and decomposition has generated interest, because a deeper 

knowledge of physical and chemical processes involved in oxidative ageing of aerosol 

is necessary in order to understand atmospheric phenomena related to cloud 

condensation nuclei, precipitation and therefore, climate. 
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The aims of this thesis are: Despite the appreciable amount of research related to 

ozonolysis of organic aerosol, the understanding of oxidative ageing processes of many 

atmospheric aerosols is still considered insufficient (Zahardis and Petrucci, 2007). 

Therefore, this study attempts to understand the chemical and physical processes 

involved in ozonolysis of unsaturated fatty acids. 

● To carry out the reactions of ozonolysis of unsaturated fatty acids by means of 

acoustic levitation linked to Raman microscopy. 

● To understand the effect of different ozone concentrations, size of droplet and 

the role of the relative humidity on the oxidative processes.  

● To propound the most plausible mechanisms of ozonolysis of fatty acids with 

the help of analysis of the products formed in the reactions.  

● To understand the different processes occurring in both gas and liquid/aqueous 

phases during the ozonolysis of organic aerosols. 

● To establish the atmospheric implications of the obtained results. 

This thesis is outlined as follows: 

CHAPTER 1: Overview of the chemistry of the atmosphere. 

It includes basic concepts regarding to the atmosphere and aerosols, such as: 

atmospheric aerosols, chemical composition of atmospheric aerosols and reactions, 

atmospheric ozone, cloud condensation nuclei, organic aerosols and ozonolysis of fatty 

acids. 

CHAPTER 2: Methodology. 
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This chapter explains the fundamentals of various techniques that have been used to 

achieve the aims of this research: acoustic levitation and its applications; Raman 

spectroscopy and instrumentation; Gas chromatography and mass spectrometry. Then, a 

detailed description of the experimental set-up used to do this research is provided in 

the last section of the chapter. 

CHAPTER 3: Ozonolysis of individual fatty acids. 

This chapter introduces the results of ozonolysis of the fatty acids analysed in the 

research: oleic acid, linoleic acid and palmitoleic acid. Here, two different approaches 

were followed: the influence of ozone concentration, and the influence of relative 

humidity. Raman spectra and plots of the ratios of Gaussian area of two peaks 

(corresponding to C=C stretching and CH2 bending) obtained from the spectra are 

shown in this section.  

In the second part of this chapter kinetic parameters are calculated, analysed and 

compared, using the same two approaches (influence of O3 concentration and relative 

humidity). The products of the reactions are analysed using GC/MS, then the most 

probable mechanisms of the reactions are suggest. 

CHAPTER 4: Ozonolysis of self-assembled mixtures of fatty acids. 

The results of ozonolysis of the mixtures of the fatty acid, sodium oleate and sodium 

chloride solution in defined proportions as a surrogate of the sea spray in the 

atmosphere are reported in this chapter. These findings are compared to those reported 

in Chapters 3 and 4, as well as previous work.  

CHAPTER 5 Conclusions and future work. 
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CHAPTER 1 

OVERVIEW OF THE CHEMISTRY OF THE ATMOSPHERE 

 

1.1 EARTH’S ATMOSPHERE 

 

The atmosphere that surrounds the Earth as a protective layer is a mixture of several 

gases; nitrogen (78.0%) and oxygen (20.9%) are the most abundant gases of the 

atmosphere, argon comprises 0.9%, and also some trace gases are present in fractions 

less than 10-6, 1 part per million (ppm) by volume, including carbon dioxide, helium, 

hydrogen, neon, krypton, methane, xenon and nitrous oxide, among others 

Brimblecombe, 1996; Seinfeld and Pandis 2006). The atmosphere also contains a 

variety of other gaseous components, such as sulfur-containing compounds, nitrogen-

containing compounds, carbon-containing compounds, halogen-containing compounds, 

atmospheric ozone and particulate matter which consists on particles resulting from 

natural or anthropogenic sources, technically named aerosols. They represent an 

important role in the Earth’s radiative balance and in the chemical properties of the 

atmosphere. Moreover, it has been possible to identify the presence of other 

atmospheric trace species and also to determine that the composition of the atmosphere 

is changing over the world. Global concentrations of gases such as carbon dioxide, 

methane, nitrous oxide and halogen-containing compounds have increased in an 

alarming way. Those gases, known as “greenhouse gases”, act as atmospheric thermal 

insulators (Seinfeld and Pandis, 2006). 
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Figure 1.1 Layers of Earth’s atmosphere. Given values of the altitudes (in km) and 

temperatures are approximated (Based on Seinfield and Pandis, 2012). 
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The atmosphere is divided into several layers, as shown in Figure 1.1. Starting at the 

Earth’s surface, the closest layer is the troposphere, it reaches a maximum altitude of 15 

km up to the tropopause, which is a thin boundary zone between the troposphere and the 

next layer, the stratosphere. In the upper stratosphere lies the ozone layer, a protective 

gas layer that absorbs dangerous UV radiation, thus it protects life on Earth. The 

stratosphere is located between the tropopause and the stratopause (from ~45 to 55 km). 

The upper regions of the atmosphere are mesosphere, thermosphere and exosphere. 

(Seinfeld and Pandis, 2006). 

 

 

1.2 ATMOSPHERIC AEROSOLS 

An aerosol can be defined in technical terms as a colloidal suspension of fine solid or 

liquid particles in a gas. This definition can be extended to atmospheric aerosols as 

microscopic solid particles or liquid droplets dispersed in the atmosphere, to the 

exception of cloud particles, snowflakes, ice crystals, among other type of hydrometeors 

(Boucher, 2015), that normally have sizes ranging to 1 nm to 100 μm. Depending on the 

chemical composition or source, atmospheric aerosols can be classified in different 

categories, as shown in the schematic in Figure 1.2. A considerable amount of aerosol 

present in the troposphere comes from human activities, such as car exhaust, industrial 

emissions, biomass burning, food cooking, etc. Tropospheric aerosols also include 

sulfate, ammonium, nitrate, sodium, chloride, trace metals, and water vapour (Seinfeld 

and Pandis, 2006). In addition, the most common inorganic particles found in the 

troposphere are crustal elements such as oxygen, silicon, aluminium, iron, magnesium, 

calcium, sodium, potassium, and titanium (Finlayson-Pitts and Pitts, 2000). Natural 

sources such as windborne dust, sea spray and volcanoes, and also anthropogenic 

activities such as incomplete combustion of fossil fuels and biomass burning are 



9 

 

sourced atmospheric aerosols.  

With respect to organic aerosols, a vast number of organic compounds are present in 

both urban and remote areas (Hallquist et al, 2009). The organic fraction in the 

atmosphere is a complex mixture of hundreds of organic compounds that includes n-

alkanes, n-alkanoic acids, n-alkanals, aliphatic dicarboxylic acids, terpenes, terpenoids, 

aromatic polycarboxylic acids, polycyclic aromatic hydrocarbons, steroids, N-

containing compounds, etc. (Seinfeld and Pandis, 2006). Part of the organic aerosols is 

emitted into the atmosphere as Primary Organic Aerosols (POA), that can undergo 

chemical reactions either in particle or in gas phase. Conversely, Secondary Organic 

Aerosols (SOA) are formed in the atmosphere as a result of the gas-to particle 

conversion of volatile organic compounds (VOCs) and some inorganic species (Rudich 

et al, 2007). The schematic in Figure 1.3 shows the different sources of POA and SOA 

and their conversion processes in the atmosphere. POA are directly emitted into the 

atmosphere as liquids or solids from anthropogenic and biogenic sources.  Secondary 

particles are formed in the atmosphere via gas-to-particle conversions when windborne 

particles are transformed by means of chemical processes, such as homogeneous gas 

phase, homogeneous aqueous phase, and heterogeneous reactions, or physical processes 

such as changes in particle size or coagulation (Hobbs, 2000; Pöschl, 2005; Rudich et 

al, 2007; Seinfeld and Pandis, 2006).  

Aerosols are important because they play a role in the absorption and scattering of solar 

and terrestrial radiation, contributing to the regulation of the Earth’s temperature. They 

have life-times in the atmosphere ranging from hours to weeks (Pöschl 2005), they are 

also related to the formation of clouds particles, determining visibility and 

precipitations. Therefore, changing the amount of aerosol may impact the climate.  
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Figure 1.2. Classification of atmospheric aerosols according to origin, source 

and chemical nature. 

 

 

 

 

 

 

 

 

Figure 1.3 Sources of Primary Organic Aerosols and Secondary Organic Aerosol 

(Rudich et al, 2007) 



11 

 

1.2.1 CHEMICAL COMPOSITION OF AEROSOLS IN THE ATMOSPHERE 

 

Aerosols could be present in both stratosphere and troposphere, therefore the chemical 

composition varies depending on the place they could remain.  

● Stratospheric aerosols: the main components of stratospheric aerosol fraction are 

sulfur-containing compounds, such as SO2, CS2 and H2SO4. This aerosol is 

composed mainly of an aqueous sulfuric acid solution in the range of 60-80% 

(Hobbs, 2000; Seinfeld and Pandis, 2006). 

● Tropospheric aerosols: aerosols present in troposphere are mainly of 

anthropogenic origin, however the composition of these aerosols is more 

complex than stratospheric aerosols. They contain both inorganic and organic 

species, such as sulfate, ammonium, nitrate, sodium, chloride, trace metals, 

carbonaceous material, crustal elements, and water (Seinfeld and Pandis, 2006). 

Further information about organic aerosols in the troposphere will be provided 

in section 1.5. 

 

1.2.2 TRANSFORMATIONS OF TROPOSPHERIC AEROSOLS 

 

a. The gas-to-particle conversion of aerosols involves three main species: sulfur, 

nitrogen, and organic carbonaceous materials. The major processes involved in gas-to-

particle conversion are growth of an existing aerosol and nucleation of a new aerosol.  

● Growth aerosols are formed by condensation onto existing particles, thus an 

increase in the mass of aerosols (not the number) is achieved (Hobbs, 2000). 
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● Nucleation occurs when low-vapour-pressure species are condensed to form a 

new particle. When there are two different gas-phase compounds such as 

sulfuric acid and water, the formation of particles is known as binary 

homogeneous nucleation (Finlayson-Pitts and Pitts 2000).  

 

b. If secondary aerosol is formed by the scavenging of the low-vapour-pressure products 

onto pre-existing particles, the process is called heterogeneous condensation 

(Finlayson-Pitts and Pitts, 2000). 

c. Small aerosol particles (<1 μm in diameter) moving randomly due to collisions with 

gas molecules and, due to their rapid Brownian motion, collide efficiently with each 

other causing coagulation (Hobbs, 2000). 

 

1.3 CLOUD CONDENSATION NUCLEI (CCN) 

 

Aerosols affect the climate system via several physical mechanisms. Firstly, they scatter 

and absorb solar radiation, and they also scatter, absorb and emit thermal radiation. In 

addition, aerosols are essential to the atmosphere as they help to form clouds by acting 

as cloud condensation nuclei. Cloud condensation nuclei are aerosols that act as the 

initial sites where water vapour is condensed into cloud droplets or cloud ice particles 

(Lohmann and Feichter 2005). To form a CCN the aerosols have to be activated thus, as 

the CCN tend to attract the water vapour present in the atmosphere, they can act as the 

initial sites for condensation of water vapour into cloud droplets. The formation of a 

liquid from water vapour starts when a small group of water molecules condensate to 
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form a cluster over which other gaseous molecules can condense. Given this cluster is 

very small and the vapour pressure over the cluster is too large, it would instantaneously 

evaporate at the normal atmosphere supersaturation (about 2%). Therefore, unless there 

was a particle on which the water can start condensation, clouds and fogs could not be 

formed (Finlayson-Pitts and Pitts, 2000). Some aerosols have an indirect effect on the 

formation of clouds from particles which can start such as gaseous water molecules 

condensation, acting as CCN, which is defined by Kerminen et al (2012) as particles 

that can activate the growth of a particle due to condensation of water vapor at constant 

supersaturation. Andreae and Rosenfeld 2008 called these clusters “embryos“, they 

mentioned the influence that some chemical compounds have on the formation of cloud 

droplets, for example, soluble gases, mainly HNO3, NH3, and HCl, can facilitate droplet 

formation by dissolving in incipient droplets and adding to the solute amount in the 

droplet. Additionally, organic compounds in aerosols can influence CCN activity via 

several mechanisms: contribution of soluble matter, reduction of surface tension, and 

formation of hydrophobic surface films. 

 

1.4 ATMOSPHERIC OZONE 

 

Ozone is a gas present in the Earth’s atmosphere in trace amounts; it is produced 

naturally as a result of the photochemical reaction: 

   O2 + hν → O• + O•   Equation 1.1 

Ozone is present in both the stratosphere and troposphere. About 90% of the Earth’s 

atmospheric ozone is present in the stratosphere, where it plays a key role in absorbing 
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damaging ultraviolet radiation from the Sun. Tropospheric ozone is only about 10% of 

the total mass of the atmospheric ozone (Seinfeld and Pandis, 2006). Given that the 

troposphere is the closest layer to the terrestrial surface, tropospheric ozone is 

considered a potent pollutant which causes respiratory problems in humans (Seinfeld 

and Pandis, 2006). Tropospheric ozone is also involved in the formation of hydroxyl 

radicals (OH) and hydrogen peroxide (H2O2) by means of photochemical reactions. 

These species are powerful oxidants that reacts rapidly with many atmospheric 

pollutants, for example, H2O2 dissolves in cloud water, where it can oxidize SO2 into 

H2SO4, while OH radicals have been named the “atmosphere’s detergent” because they 

transform a vast number of tropospheric gases, many of them considered major 

pollutants (Hobbs, 2000). 

Ozone reacts in the atmosphere with unsaturated compounds, such as terpenes and 

carboxylic acids, by means of a mechanism that involves the formation of Criegee 

intermediates. The general mechanism of this reaction is shown in Figure 1.4 (Criegee, 

1975; Wade, 2013; Zahardis and Petrucci, 2007). The reaction initiates with the 1,3-

dipolar cycloaddition of ozone to the double bond to form the molozonide 1,2,3-

trioxolane; this primary species reacts to give an aldehyde or ketone and the 

intermediate energy-rich biradical specie called Criegee intermediate, which can be 

stabilized by collision or can undergo unimolecular decomposition (Horie and 

Moortgat, 1991). As the double bond involves two carbons, the reaction yields four 

initial products. However, given the conditions and nature of the compounds that react 

with ozone, the unsaturated compound yield a mixture of many different products of 

varying reactivity, according to the general mechanism shown here (Lee and Chan, 

2007a; Lee and Chan, 2007b; Vesna et al, 2009).  
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Figure 1.4. Formation of Criegee intermediates by ozonolysis of alkene compound. 

  

The ozonolysis also yield several products derived from the intermediate species. The  

primary ozonide (molozonide) is an unstable species that is decomposed to form two 

products, a carbonyl compound, and a Criegee intermediate (carbonyl oxide). The 

carbonyl oxide is a species positively and negatively charged, similar to a zwitterion 

that is highly energetic, therefore it is stabilised by resonance, leading to the next step, 

the stabilization by any of these reactions: 1) dimerization; 2) rearrangements to 

produce carboxylic acids (Horie and Moortgat, 1991); 3) reaction with aldehydes or 

ketones to form ozonides, or 4) reaction with proton-active compounds. The overall 

reaction pathway is illustrated in Figure 1.5, based on the mechanism of ozonolysis 

published by Criegee (Criegee, 1975).   
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Figure 1.5 Reaction pathways for stabilization of the carbonyl oxide formed during the 

ozonolysis of an unsaturated compound (based on Criegee, 1975) 

 

1.5 ORGANIC COMPOUNDS IN THE TROPOSPHERE 

 

The atmosphere in different cities around the world has been monitored to establish its 

composition (Fei et al, 2015; Guo et al, 2012; Limbeck and Puxbaum, 1999; Wang et al, 

2006; Zhao et al, 2014).  Hydrocarbons such as methane, ethane, propene, acetylene and 

aromatic species such as benzene and toluene, have been found in the atmosphere 
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together with many other organic species, for example alcohols (methanol and ethanol), 

aldehydes (formaldehyde and acetaldehyde), ketones (acetone), organic acids (oxalic, 

formic, acetic, maleic, tartaric, malic, succinic, palmitic, stearic and oleic acid), 

peroxides (methylhidroperoxide), and biogenic compounds (terpenes) (Kuo et al, 2011;  

Limbeck and Puxbaum, 1999; Mochida et al, 2003; Rogge et al, 1991; Zhao et al, 

2007a). Some of them are the result of natural sources for example vegetation releases 

organic compounds into the atmosphere, specifically pine trees emit terpenes such as α- 

and β-pinene. Additionally human activities can also contribute, either directly or 

indirectly, to increase the amount of organic species released to the atmosphere. Given 

that the most of emitted organic compounds released into the atmosphere are in gas-

phase, the term Volatile Organic Compounds (VOCs) is mainly used to denote the vast 

majority of gas-phase organic compounds present in the atmosphere. A detailed review 

and discussion of biogenic volatile organic compounds and their gas-phase reactions in 

troposphere is presented by Atkinson and Arey (2003).  

It is estimated that meat cooking is one of the most important source of organic aerosol 

in urban environments, providing 20% of the primary organic matter found in organic 

aerosol fraction in Los Angeles (Schauer et al, 1996) and 10% from Chinese cooking in 

China (Zhao et al, 2007a). Many studies have been carried out in order to monitor the 

amount of emissions from this source but also to investigate the conversion of the 

emitted aerosols into activated particles. The emissions of organic aerosols from 

Chinese cooking and western-style cooking were compared by Zhao et al (2007b) 

showing that the released particle organic matter (POM) fraction is a vast set of organic 

compounds, including carboxylic acids, with oleic acid as the main long-chain 

unsaturated fatty acid present in the emissions, followed by linoleic acid and palmitoleic 

acid. By using aerosol mass spectrometer analysis, Mohr et al (2012) identified and 
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quantified the organic aerosols from meat cooking in Barcelona during the winter, 

concluding that 17% of POM originated from cooking activities. Other human activities 

such as biomass burning, vehicle fuel combustion, and trash burning also contribute to 

the primary organic aerosol load (Mohr et al, 2009; Robinson et al, 2006). 

 

1.6 OZONOLYSIS OF UNSATURATED FATTY ACIDS 

 

It is known that ozone-alkene reactions in gas-phase yields a set of products, principally 

ketones, carboxylic acids and aldehydes, following the Criegee intermediate mechanism 

previously mentioned in section 1.4. Long-chain unsaturated fatty acids present in oils 

are released into the troposphere from cooking activities, and they may undergo 

ozonolysis to form secondary organic aerosols. Significant amounts of oleic and linoleic 

acid have been found in emissions from food cooking, and also palmitoleic acid is 

present in these emissions in traceable quantities. Some other unsaturated fatty acids 

present in food, such as linolenic and arachidonic acids were not found in significant 

quantities in the atmosphere (Zhao et al, 2007a; Zhao et al, 2007b).  

 

1.6.1 OLEIC ACID  

 

Vegetable oils such as olive oil contain unsaturated fatty acids (UFA), but this fatty acid 

is also present in some seeds and animal fats (Czamara et al., 2014). According to 

Zahardis et al (2006), the prevalent UFA in olive oil is oleic acid (57%) followed by 
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linoleic acid (15.1%), palmitoleic acid (3.2%) and linolenic acid (1.8%). The use of 

vegetable oils has been related to presence of oleic acid and methyl oleate in the 

atmosphere. Carboxylic acids are present in the atmosphere as part of secondary organic 

aerosol. Recent studies have found that some aerosols could be covered in or contain 

amphiphilic organic compounds (Davies et al, 2012; Ellison et al, 1999; Latif and 

Brimblecombe, 2004 Nájera, 2007; Pfrang et al, 2017; Tabazadeh, 2005) and this layer 

may the affect residence time of particulate matter and its ability to act as CCN, this 

affects the formation of clouds and thereby precipitations, resulting in variation of the 

water cycle (Hearn et al. 2005). Methyl oleate is the methyl ester of oleic acid, present 

in atmosphere due to meat cooking processes. Monolayers of this ester may be present 

at the air-water interface of droplets acting as a surfactant that reduces the droplet’s 

surface tension, helping the formation of clouds and ultimately precipitation. In their 

study, Pfrang et al, (2014) determined that ozonolysis removes methyl oleate from the 

air-water surface faster than its parent oleic acid. As a consequence of this, cloud 

nucleation properties of water droplets are affected. This is explained by ozone cleavage 

of carbon-carbon double bond of methyl oleate, such that it loses its ability to remain as 

surfactant at the air/water interface. 

Cis-9-octadecenoic acid, best known as oleic acid (OA), is the most abundant long-

chain unsaturated fatty acid found in the POM (Zhao et al, 2014). The reaction of this 

acid with ozone yields initial products by following the mechanism explained in section 

1.4, with the formation of two Criegee intermediates (CI), that finally decompose to 

form two products, in total, this reaction leads to obtain mainly nonanal, 9-oxononanoic 

acid, nonanoic acid (from CI II) and azelaic acid (from the CI I), as shown in Figure 1.6 

(Zahardis and Petrucci, 2007). This reaction has been extensively benchmarked as a 

model system to study the heterogeneous oxidation of organic atmospheric compounds.  
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Figure 1.6. Mechanism of ozonolysis of oleic acid (adapted from Zahardis and Petrucci, 

2007). 

 

1.6.2 LINOLEIC ACID 

 

Cis-9,cis-12-Octadecadienoic acid, also called linoleic acid (LA), is a long-chain 

polyunsaturated fatty acid (PUFA), it is the second most prevalent UFA in the 

atmosphere (Zhao et al, 2014), present in fruits, vegetable, vegetable oils and animal 

tissue (Czamara et al., 2014; Galliard et al, 1976; Spiteller et al, 2001; Zahardis, 2006). 

The reaction of ozonolysis of this carboxylic acid may differ from the Criegee 

intermediate ozonolysis of oleic acid due to the second double bond present in its 

structure. This compound has shown to follow a mechanism of autoxidation in presence 

of oxygen, and the evidence from the Raman spectra suggested that the reaction leads to 
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the formation of dienes and peroxy radicals, to produce a variety of compounds (Lee 

and Chan, 2007a; Frankel, 1998). Zeng et al (2013) proposed that when ozone is 

present, the mechanism of ozonolysis is based on Criegee intermediate that produces α-

acyloxyalkyl hydroperoxide from carbonyl group.  

 

1.6.3 PALMITOLEIC ACID 

 

The third most abundant unsaturated fatty acid found in the POM from meat cooking is 

called cis-9-hexadecenoic acid, also known as palmitoleic acid (PA). It is a component 

in many vegetable oils such as olive oil (Zahardis et al, 2006), also in macadamia nuts 

(80% of fat weight, Hiraoka-Yamamoto et al 2004), and is also present in blood plasma 

and some tissues, mainly the liver (Czamara et al., 2014). Its abundance in atmosphere 

is around to 1.7% from the total of UFA (Zhao et al, 2014). Similar to oleic acid, PA is 

an monounsaturated fatty acid (MUFA), but the carbon chain is shorter by two less 

carbon atoms. The position of the C=C in PA is exactly the same position as oleic acid, 

C9-C10.  

In the study by Weitkamp et al (2008), the ozonolysis of PA was compared to the 

ozonolysis of OA, suggesting that palmitoleic acid reacts roughly 20-30% faster than 

oleic acid depending on the conditions Nevertheless the evidence in the literature for 

this reaction is limited. Spencer and Kleimman (1978) reported that the analysis of 

chromatography for the reaction of ozonolysis of palmitoleic acid suggested the 

presence of a seven-carbon aldehyde (maybe heptanal) and a nine-carbon aldehyde-

ester, while Weitkamp et al (2008) found that azelaic acid is probably formed during 

this reaction.  
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1.6.4 SURFACTANTS 

 

Some authors have reported that there are some aerosol particles covered in amphiphilic 

organic compounds (film-forming compounds, FFCs), also called surfactants, which 

consist of two differentiated parts, a polar head group which is joined to a non-polar 

chain. When water is mixed with solid surfactants, such as fatty acid salts, the surfactant 

can: 1) be insoluble, 2) form an aqueous micellar solution as part of the surfactant is 

dissolved, or 3) form a lyotropic liquid crystal with more dissolved surfactant to obtain 

an aqueous micellar solution (Tiddy, 1980). Surfactants affect the evaporation of water 

from droplets, inhibit the transport of some particles or molecules from gas-phase into 

droplet and reduce the effectiveness in aerosol scavenging particles by clouds and rain 

(Feingold and Chuang 2002; Finlayson-Pitts and Pitts, 2000; Lohmann and Feichter, 

2005).  

 

The physical and chemical properties of aerosol can be influenced by the presence of 

the surfactants in the atmosphere. It is known that surfactants can form organic 

aggregates in aqueous solutions but also they can cover the surface of aerosols 

producing films at the air /water interface, affecting the transportability of water across 

that interface (Nájera, 2007).  Fatty acids such as stearic and palmitic acids have been 

found in marine environments, as products of the biodegradation of organic matter 

(Tabazadeh, 2005). It is also believed that aerosols can be covered by organic films, and 

chemical models to explain the behaviour of long-chain fatty acids as organic films 

have been proposed; for instance, Ellison et al, (1999) suggested the formation of an 

inverted micelle of stearate ions covering the surface of marine aerosols. This type of 

micelle assumes that the organic molecule is not water soluble and it can surround the 
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inorganic marine particle, with the polar heads in contact with the sea-salt solution in 

the centre of the micelle whereas the hydrophobic tails are spread out of that centre 

(Tabazadeh, 2005). The Figure 1.7 depicts the model of a marine aerosol as an inverted 

micelle which core is composed by salt/water brine covered by a layer of fatty acids 

settled on the surface of the aerosol (Ellison et al., 1999, Tabazadeh, 2005). In a recent 

study, Pfrang et al (2017) demonstrated that droplets of mixture of oleic acid, sodium 

oleate and NaCl solution form 3-D self-assembled phases, with complex nanostructures 

and arrangements that affect physical and chemical properties of the droplets.   

 

 

 

 

 

 

 

 

 

Figure 1.7 Illustration of a model of a marine aerosol as an inverted micelle. The polar 

heads of the carboxylic acids (light blue) are oriented towards the brine core, whereas 

the hydrophobic tails (black) are spread out to the micelle.  

 

 

Long-chain fatty acids, such as oleic and stearic acid act as surface active agents 

forming a film at the air-aerosol interface in presence of inorganic salt solutions, they 

can depress the surface tension of aqueous solution depending on the pH, organic 
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concentration and salt concentration (Schwier, 2012). The oxidation of the organic film 

may also affect the hygrosocpicity and CCN ability of aerosols (Schwier, 2011).  
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CHAPTER 2 

METHODOLOGY 

 

This chapter will describe all the techniques, instruments and experimental setup that 

were utilized in the study, starting with the fundamentals of each technique, and then 

introducing the general methodology and experimental setup. 

 

2. 1 ACOUSTIC LEVITATION 

2.1.1 SOUND WAVES 

 

Sound can propagate through gases, liquids and solids. It propagates through the air as 

longitudinal waves. Sound waves have characteristics, such as amplitude, frequency, 

wavelength, and velocity. Sound waves have properties, such as refraction, diffraction, 

and reflection (Priego-Capote, and de Castro, 2006). The sound reflection is produced 

when the incident waves hit a surface and bounce in opposite direction, with the angle 

of incidence being the same as the angle of reflection. These reflected waves interfere 

with the incident waves, forming patterns of constructive and destructive interference, 

leading to standing waves that are formed when the reflected waves add to the incident 

waves. Figure 2.1 depicts the parts of a standing wave. During the oscillation the 

standing wave has sites that are both, the highest and the lowest; the former are called 

crests and the latter troughs. The points where crests and troughs collide and cancel 

each other are the nodes (red dots), these remain immobile along the resultant wave and 

there is no oscillation in those sites, whereas the points of maximum vibration 

amplitude are the antinodes (blue dots).  
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2.1.2 FUNDAMENTALS OF ACOUSTIC LEVITATION 

 

Acoustic levitation is achieved by the creation of standing waves that have the antinodes 

and nodes at equidistant positions each other, by using the adequate frequency to 

produce waves from a piezoelectric transducer of a ultrasonic radiator that are reflected 

by the reflector, as shown in Figure 2.2. These waves travel through a fluid, normally a 

gas (for example, air), and thus equalize the gravity force. Ideally, in an environment 

subject to microgravity, any particle with the right size, density, and surface tension can 

be levitated exactly over the pressure nodes (hollow dots), where both acoustic pressure 

and levitation force are cancelled to zero, but the acoustic velocity is maximal 

(Vandaele et al, 2005). However, under terrestrial conditions levitation forces depend on 

the direction of the closest pressure node (See Figure 2.3), thus levitated particles are 

situated and stabilized below the pressure node, as a result of anti-symmetric acoustic 

pressure caused by gravity. Standing ultrasonic waves are not perfectly plane, they are 

rather divergent, and this generates a symmetrical radial force that helps the particle to 

be centred on the standing wave axis (Ultrasonic Levitator Manual, Tec5). 
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Figure 2.1 Schematic of the parts of a standing wave. 

 

 

An ultrasonic levitator generally generates between 4 and 5 pressure nodes to 

accommodate levitated particles, however, not all nodes are sufficiently stable to 

levitate particles, as the two outer nodes are destabilized by reflections from transducer 

and reflector. Additionally, stable standing waves are produced at a certain distance 

between the transducer and the reflector, equivalent to the multiple of half the 

wavelength, i.e. n x (λ/2), where n is a whole number (Ultrasonic Levitator Manual, 

Tec5). In this research, the frequency, particle size, and distance between transducer and 

reflector could be controlled, as they can influence the stability of levitated droplets. 

This will be explained in section 2.4.2.  
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Figure 2.2 Schematic of the acoustic levitation in an environment subject to 

microgravity (adapted from Ultrasonic Levitator Manual, Tec5) 
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Figure 2.3. Levitation of a sphere in an acoustic standing ultrasonic wave (Adapted 

from V. Vandaele et al, 2005). 

 

 

2.1.3 APPLICATIONS OF ACOUSTIC LEVITATION 

 

Acoustic levitation has many applications in the manufacturing of materials with very 

small sizes to be shaped and used in electronic devices, avoiding the use of very 

complex and expensive methods (Priego-Capote and de Castro, 2006). It is also useful 

when the materials are susceptible to corrosion and contamination during reactions, 

avoiding the contact of the material with contaminants from the walls of containers. In 

pharmaceutical preparations, acoustic levitation helps to avoid the crystallization of the 

solution without solidification, contributing to improve and develop more functional 
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medicines. (Priego-Capote and de Castro, 2006).  More applications such as reaction 

kinetics of liquid-liquid and liquid-gas-systems, study of deformation and disintegration 

of drops, and chemical trace analysis of concentrated droplets are mentioned by Lierke, 

(1996).  

 

2.1.4 OTHER LEVITATION TECHNIQUES 

 

Levitation of single droplets or particles can be achieved by a range of methods as 

briefly summarised below. 

 

● Magnetic levitation: magnetic fields from magnets have been used to levitate 

objects; this type of levitation is the principle of the high-speed magnetic 

levitation trains (Schultz et al, 2005). Electromagnetic levitation is mainly used 

in levitation of materials with high electrical conductivity and superconductivity. 

It is very useful technique for specific materials with specific characteristics 

(Priego-Capote and de Castro, 2006). 

 

● Electric levitation: this type of levitation has two different categories: 

electrostatic and electrodynamic. The former uses static electric fields to 

suspend small particles, whereas the later makes stable floating charged particles 

by using both, static (DC) and oscillating (AC) electric fields (Vandaele 2005). 

The applications of electric levitation are limited to work with specific materials, 

such as semiconductive, conductive and dielectric. Studies of atmospheric 

aerosols have used an electrodynamic balance (EDB) to assess the ozonolysis of 

proxies of fatty acids (Lee et al, 2008; Lee et al, 2012; Lee and Chan, 2007a; 
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Pope et al, 2010). 

 

● Optical levitation: lasers are applied to levitate small particles, by using the 

forces of radiation produced from visible laser light. Particles are trapped 

between laser beams either vertical or horizontal positioned (Brandt, 1989). This 

technique is limited to very small particles (Priego-Capote) and some 

restrictions are the transparency of both the particle and its surrounding medium. 

Studies of aerosol droplets have used optical tweezer to levitate droplets of fatty 

acids reacting with ozone (Cai et al, 2015; Dennis-Smither, 2012; King et al, 

2004). 

 

● Aerodynamic levitation: in this type of levitation, a vertical stream of a liquid or 

a gas (air) is used to get a spherical particle floating, based on the Bernoulli’s 

principle. In addition to this, the friction of the fluid at the spherical particle 

surface produces the rotation of the object, which is now under the Magnus 

force, being responsible for its stability (Brandt, 1989). This levitation technique 

has been applied to study high temperature reactions (Winborne et al, 2010, 

Pack et al 2010). However, this method is unsuitable for relevant atmospheric 

particles. 
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2.2 RAMAN SPECTROSCOPY 

 

2.2.1 HISTORY 

 

Although the phenomenon of inelastic scattering of light was theoretically predicted 

earlier by Smekal (1923), C.V. Raman and K.S. Krishnan (1928) published the 

observed results of the first reported experiments carried out by using very rudimentary 

instrumentation. They used a telescope objective to converge a sunlight beam through 

two lenses; the samples were either purified liquids or dust-free vapour, and light-filters 

were used to detect the presence of what they called “modified scattered radiation”. 

They observed and reported that the track of the light travelling through the sample 

varied by changing the position of the different filters, showing for the first time the 

existence of a new type of light scattering. For this contribution, Sir Raman won the 

Nobel Prize in Physics in 1930. Many challenges were faced in those times due to the 

lack of more sophisticated resources, such as a good light source and detector, and also 

the inherent interferences of the phenomenon. The technique caught the interest during 

the 1960’s with the invention of laser, and since then more instrumentation 

improvements have been made, leading Raman spectroscopy to be a more feasible 

technique with many applications in different fields.  

 

 

2.2.2 FUNDAMENTALS OF RAMAN SCATTERING 

 

When the light interacts with molecules, it can be either reflected, absorbed, transmitted, 
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or scattered. Scattering occurs when the light collides with a particle, and the incident 

energy is absorbed by the molecule and re-emitted, dispersing that energy in all 

directions.  Figure 2.4 depicts the light scattering, this schematic shows how the photons 

of the incident light having certain frequency (Ei), are dispersed either of this two ways:  

 

● The energy interacts with the molecule, this interaction causes the electrons in 

the molecule be moved to the virtual state from the ground state, and then come 

back to the initial state. If the scattered energy (Es) remains invariable after the 

interaction of light with particles, the scattering is elastic, and this is called 

Rayleigh scattering (a). The colour of the sky is due to the Rayleigh dispersion, 

which is the elastic scattering of sunlight by air molecules (mostly nitrogen and 

oxygen), and some different colours on the sky at different times of the day are 

attributed to the presence of different atmospheric particles dispersed in the 

atmosphere. 

 

● In contrast, inelastic scattering of light occurs when the molecule is capable to 

change the frequency of the incident radiation by increasing or decreasing the 

energy, which corresponds to the energy levels in the particle. This phenomenon 

is known as Raman scattering, and occurs less frequently than Rayleigh 

scattering. As shown in Figure 2.4, the molecule can either gain or lose energy 

from the incident photon. In the first case, the scattered photon has decreased its 

energy: 0 -   (b), this is designated as Stokes; on the contrary, when 

incident photon receives energy from the molecule, the scattered photon has 

increased its energy: 0 +   (c), which is named anti-Stokes. 
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2.2.3 INSTRUMENTATION FOR RAMAN SPECTROSCOPY 

 

It is estimated that in a sample of scattered light only 1 part in 10 million corresponds to 

Raman shifted light, thus the analysis of that light requires highly sensitive 

instrumentation.  Raman instruments use single coloured light sources, i.e. lasers of 

different wavelengths, as excitation sources, and also they use a set of lenses to focus 

the light towards the sample, as well as filters to collect and purify the scattered light. 

Also they have gratings or a prism to split the light into the component wavelengths; to 

detect this scattered light the instrument has a light-sensitive device (charge-coupled 

device, CCD). The system is controlled by a computer that stores and analyses data to 

finally display the Raman spectra. The instrument can also incorporate a microscope to 

help focusing the laser beam to a small spot in the sample; this feature allows high 

spatial resolution of the instrument. 

 

 

 

 

 

 

 

 

Figure 2.4. Schematic of light scattering: a) in the elastic scattering, energy is 

unchanged (Rayleigh); however, a minimal fraction of energy has been lost (Stokes) (b) 

or gained (Anti-stokes) (c) by the incident light (Adapted from Wire 4 Training 

Modules Compilation). 
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Modern Raman instruments have a number of features: 

 

● Light sources: different types of lasers are used as sources of light for Raman 

microscopy, with a variety of wavelength, from UV through the visible to near 

IR. Ar and Kr ion lasers emit in the blue and green region of the visible 

spectrum (488 or 514 nm for Ar ion and 530.9 or 647.1 nm for Kr). The short-

wavelengths lasers have some disadvantages, for example, they cause 

fluorescence and also decomposition of the sample. On the contrary, the use of 

longer wavelengths lasers (Diode at 785 or 830 nm, and Nd-YAG at 1064 nm) 

minimises the fluorescence and the photodecomposition of the sample  (Skoog 

et al, 2007, p. 477-8). 

 

● Fibre-optic probe: As Raman is based on visible and near-IR radiation, the light 

can be redirected through optical fibres, to reach samples at longer distances. 

This accessory is very useful when sampling or experimental work is in remote 

areas or needs to be interfaced with other bulky instruments (Skoog et al, 2007 

p. 477-8)). 

 

● Confocal Raman microscopy: in the wide-field microscopy, the reflection of 

scattered light in all directions caused the blurriness of the image as the entire 

sample was exposed to the light source. To solve this, a pinhole aperture was 

added in front of the laser, in order to direct the light to a single point of the 

sample. Some instruments have an additional pinhole aperture located between 

the objective and the image, its function is to filter the scattered rays coming 

from those points out of the focal point on the sample. Thus, the quality of the 
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image was substantially improved for instruments using pinhole apertures 

(“Confocal Raman Microscopy”, n.d. para 2,3,4). 

 

2.2.4 RAMAN SPECTRA 

 

A Raman spectrum is the graphical result of the obtained intensities of scattered light 

(y-axis) for different measurements of frequency of light (i.e. the shift in energy) (x-

axis). This frequency is usually measured as wavenumber in cm-1. The information 

provided in a Raman spectrum allows the identification of Raman-active functional 

groups, by means of the analysis of intensity and position of Raman bands.  

 

The frequencies of vibration are related to atomic masses and also strength to the bonds 

they form. In a spectrum, the bands that are shifted to higher values correspond to light 

atoms with strong bonds between them, whereas heavy atoms involved in weak bonds 

are shown at low Raman frequencies (Renishaw. (2017). Raman spectroscopy 

explained. [Brochure]). In organic molecules a carbon atom can be present as any of 

these three hybridization types: sp3, sp2 and sp. In a single bond C-C the carbon atom is 

sp3 hybridized, while in multiple bonds the hybridization of carbon atom is sp2 and sp 

for double (C=C) and triple (C≡C) bonds respectively. The contribution of atomic 

orbitals s and p to the hybrid orbitals formed determine the length and strength of the 

bond. Thus, the higher s character of hybrid orbitals in double and triple bonds reduces 

the length of bonds and increases their strength The effect of the atomic mass and 

strength of bonds can be seen in the Raman shift for the common functional groups:     

C-C (≈600-1300 cm-1), C=C (≈1600 cm-1), C≡C (≈ 2100-2300 cm-1) and C-H (≈ 2700-

3100 cm-1). The interaction of the incident light with the molecular vibrations produces 
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change in energy of photons of the laser light. This information about vibrational modes 

is obtained and used in the determination of the different types of bonds of a molecule 

and therefore in the identification of compounds (Skoog et al, 2007; Wade, 2013).   

 

Noise is an inherent problem in any measurement, and Raman spectroscopy is not the 

exception. Figure 2.5 shows the Raman spectrum of glyoxal, highlighting the three main 

types of noise that are normally found in a Raman spectrum due to experimental 

conditions, and light and sample nature. Fluorescence is seen as a slight curve in the 

baseline and is caused when the molecules interact with the photons of the light source. 

Shot noise is associated with the effect of incident photons on the detector (Bowie et al., 

2002). Cosmic rays cause very sharp and intense peaks; these peaks are visible because 

cosmic rays are high energy radiation that are detected by the CCD. Data processing 

allows to improve the signal-to-noise ratio and also remove the unwanted peaks from 

the Raman spectra. Details of these procedures will be explained in section 2.4.4 of this 

chapter. 
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Figure 2.5. Raman spectrum of glyoxal showing the main types of noise. This Raman 

spectrum was collected using the Raman microscope located at CAF, Department of 

Chemistry, University of Reading.  

 

 

2.3 GAS CHROMATOGRAPHY 

2.3.1 FUNDAMENTALS 

 

One of the most relevant separation techniques to analyse the composition of a mixture 

is gas chromatography.  The mobile phase should be a chemically inert gas, usually He, 

however some other gases such as N2 or Ar are also used. The gas carries the molecules 

of the sample through the heated column placed inside a thermally regulated oven. This 
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column contains the stationary phase, which is a packed thin layer of an inert liquid 

contained in an inert solid support; the length of the column determines the extent of 

separation, the longer the column the better the separation of the components. 

 

A conventional gas chromatograph is made up of several parts, starting with the 

injection port where the sample is injected, the column enclosed in the oven, a gas 

carrier controller system, the detector and a computer that controls the whole system 

(Skoog et al, 2007, Kitson et al, 1996). 

 

The process starts with the injection of the liquid sample, it is vaporized into the gas 

phase and then enters onto the column by joining to an inert gas stream. The affinity of 

compounds present in the mixture to both, mobile and stationary phases determines the 

retention times, which are the times that every compound spends before leaving the 

column and reaching the detector.  

 

2.3.2 MASS SPECTROMETRY DETECTORS 

 

There are many types of detectors for gas chromatographs with different applicability 

depending on sensitivity and nature of analysed compounds. The most common 

detectors are flame ionization detector (FID), useful to detect organic compounds, 

especially hydrocarbons; also thermal conductivity detector (TCD), considered a 

universal detector. Nevertheless, the mass spectrometer detectors (MS) are the most 

prominent type as they are suitable for any sample.  The combination of Gas 

Chromatography with Mass Spectrometry (GC/MS) allows the separation and 

identification of components in reaction mixtures and environmental sample 
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monitoring, among other applications. Figure 2.6 depicts the schematic of a Gas 

Chromatograph – Mass Spectrometer interface (Kitson et al, 1996; Wade, 2013)  

 

Once the mixed sample is separated into its components by passing through the column 

on the gas chromatograph, the separated components leave the column at different times 

and enter to the ion source of the mass spectrometer, here the molecules are ionised and 

also fragmented. Most of the GC/MS instruments use a quadrupole ion-trap filter, a 

system that is normally formed by four rods with varying voltages to provide a 

sufficiently high electric field to separate the incoming ions by mass-selective isolation 

after the previous ionisation. The voltages produced by ions under the effect of the rods 

are scanned, measured and then converted into an electrical signal after passing through 

the detector. Finally, a computer produces the chromatogram and the mass spectra for 

each GC peak of interest.  

 

 

 

 

 

 

 

 

 

 

Figure 2.6. Diagram of a gas chromatograph-mass spectrometer.  
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2.3.3 SOLID PHASE MICROEXTRACTION (SPME) 

 

Solid phase microextraction is a novel, multipurpose, and solvent free sample 

preparation technique that was developed in the late 80’s by Pawliszyn’s research group 

(Arthur and Pawliszyn, 1990), in order to improve its preceding technique, Solid Phase 

Extraction (SPE).  

 

In SPE, a modified solid support is used to absorb the analyte from the sample, and then 

the analyte is desorbed by using temperature or solvents. With this technique, the costs 

are reduced as consumption and disposal of high-purity solvents is reduced. However, 

SPE method had disadvantages: it required the gas chromatograph injector to be altered; 

additionally the extractions have blank values, and also the presence of plastic in the 

cartridges cause interference in the results. 

 

Unlike SPE, the SPME technique does not require use of solvents; also it reduces the 

blanks and needs less analysis time. This innovative technology consists of a film of a 

solid sorbent or a liquid coating a fused silica rod fibre (see schematic in Figure 2.7) this 

fibre is exposed to the sample to extract its components. Then the fibre is injected into 

the GC and, due to the temperature and the carrier gas, the analyte is desorbed from the 

fibre and compounds are identified. SPME has been applied e.g. in the identification of 

polyromantic hydrocarbons in highly polluted cities by combination with other 

techniques such as Tandem mass spectrometry (Fei et al, 2015). The applications of 

SPME are diverse, from forensics and toxicology, to environment, food and pharmacy, 

due to the development of improved fibre coatings selective for specific classes of target 

molecules (Spitelun et al, 2010) 
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Figure 2.7 Diagram of the SPME device. The retractable fibre is enclosed in the needle, 

and the type of fibre used depends on the compounds to analyse.  
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2.4 EXPERIMENTAL SETUP 

 

2.4.1 INTRODUCTION: GENERAL DESCRIPTION OF THE EXPERIMENTAL  

 

In this work, droplets of different diameter ranging from 70 to 350 μm of three 

unsaturated carboxylic acids (palmitoleic acid: Sigma-Aldrich, analytical standard, ≥ 

98.5% (GC), Linoleic acid: Sigma-Aldrich, ≥ 99%, Oleic acid: Sigma-Aldrich, ≥ 99% 

(GC)) were oxidised by ozone in a flow-through custom-built environmental chamber. 

Additionally, a solution containing 3% of oleic acid sodium oleate (1:1) and 97% NaCl 

was prepared by mixing OA with brine and adding SO (Sigma-Aldrich, ≥ 99%). A NaCl 

solution (analytical reagent grade, Fischer Scientific) was prepared dissolving the salt in 

deionised water to obtain a solution with a ratio of 10g/L. 

 

Droplets were levitated in a glass reaction stainless steel chamber interfaced with an 

ultrasonic levitator based on a commercial instrument (Ultrasonic Levitator Manual, 

Tec5). Several inlet and outlet ports on the chamber allowed the entrance of reactants 

and carrier gases (sample injection, oxygen and ozone inlet ports) and removal of 

residual gases (outlet bag port). Once the sample was injected in the chamber, the 

droplets were levitated by the ultrasonic levitator. The chamber was placed onto an x-y-

z moving stage that allows to watch a live video by focusing with help of a height 

control (up and down) and two micrometer screws (back-forward and left-right). The 

chamber included a flat glass window placed in front of the optical fibre probe to 

monitor by video all the process, and also to generate the Raman spectra when the laser 

beam is shot towards the sample through this window. All the experimental parameters 



44 

 

such as ozone concentration, reaction time, size of droplet, and relative humidity were 

controlled constantly during every experiment. A schematic of this experimental set up 

is displayed in Figure 2.8. 

 

 

 

 

 

 

 

 

 

Figure 2.8. Schematic of the experimental setup. 

 

2.4.2 ACOUSTIC LEVITATION OF DROPLETS 

 

The acoustic levitator consists of a source of voltage that uses a frequency of 100 kHz 

and a wavelength that forms standing waves. The instrument user guide suggests that 

this acoustic levitator can levitate droplets with diameters between 2.5 mm to 15μm. 

The voltage passes through a transducer at the bottom of the chamber, whereas a 

concave reflector attached to a micrometre screw allows to adjust the distance between 

the transducer and reflector, to levitate particles, by optimizing the sound pressure and 

distance between transducer and reflector depending on the droplet properties. 

Almabrok (2012) reported the effect of the sound pressure on the RH and temperature 

for droplets containing NaCl and ammonium sulfate, concluding that RH decreased and 
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temperature increased when sound pressure was applied, potentially changing the 

levitated liquid droplets to a solid phase state. In this study, the frequency applied to 

levitate stable droplets was in the range of 30 to 70 kHz. Droplets in the range of sizes 

ranged between 65 and 350 nm were levitated. The fatty acid was injected using a 5 µL 

syringe inserted in the inlet port set at an angle of 45 degrees, the droplet was detached 

from the syringe and then stabilised by moving the reflector with the micrometer 

adjustment screw to adjust the distance between transducer and reflector to obtain a 

standing wave with suitable pressure nodes and avoid the oscillations of the levitated 

droplets. The droplets levitated close to the reflector were not stable, because this 

levitator allows the obtaining of 4 to 5 pressure nodes, however only 2 to 3 pressure 

nodes are suitable for levitation of particles (inner nodes), while the other 2 nodes are 

deformed (outer nodes). The droplet close to the transducer was unstable and also out of 

the range of visibility of the CCD camera. The variability in the size of the droplets was 

a very difficult factor to control during this stage of the experiment, and few 

experiments were replicated using the same droplet size in order to obtain the 

uncertainty for every fatty acid at low and high RH.  

 

2.4.3 PRODUCTION OF OZONE 

 

The ozone was generated by passing a flow of oxygen from a cylinder through a pen-

ray ozoniser (UVP Ltd). A ball flow meter with a needle valve controlled the flow of 

oxygen, which was set to 0.162 L/min, whereas the mixing ratio of ozone was chosen to 

be in the range from 0.5 to 40 ppm. The exposure to ozone was started once the droplet 

was stable in size and RH reached the desired value. Times of O3 exposure were varied, 
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depending on the nature of the reactant, the concentration of ozone and the RH, ranging 

from 1 to 8 hours.  

To obtain the accurate O3 concentration, three calibrations of the ozoniser were carried 

out to ensure that the concentration applied in every experiment was accurate. This 

calibration followed the procedure described by Almabrok (2012).  

 

Figure 2.9 shows a schematic of the calibration set up.  A 10 cm length glass cell was 

placed onto the Varian Cary 300 UV-Visible spectrometer previously set to record the 

ozone absorbance at 254 nm. Then, the first measurement was taken (blank) with the 

empty cell that was evacuated using a manifold system and the baseline adjusted to 

obtain all the following measurements. Once this absorbance was recorded, ozone was 

produced by flowing oxygen at 0.162 L/min and displacing the ozoniser bar to different 

positions in order to generate ozone at the different desired concentrations to fill the 

cell. Then, three absorbance measurements at 254 nm were taken for each 

concentration; all the measurements were carried out in random order and the 

calibration curve was obtained using the Equation 2.1.  

 

𝑂3(𝑝𝑝𝑚) =
106𝑇

273 𝑃 𝑘 𝑙
× (𝑎𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒)   Equation 2.1 

 

where T is the temperature in Kelvin, P is the pressure in atm, k is the extinction 

coefficient of ozone, base 10, 134 cm-1 atm-1 (STP), and l is the path length in cm. 

 

In total, three calibrations were done during the experimental work, and plots of these 

calibrations, calculations and resultant O3 concentrations are shown in Figure 2.10 
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Figure 2.9 Schematic of the ozone calibration set up. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.10 Calibration curves of ozone. 
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2.4.4 ACQUISITION OF RAMAN SPECTRA 

 

The Renishaw inVia dispersive Raman Microscope located in the Chemical Analysis 

Facility consists of a research grade Leica microscope equipped with four objectives 

(x5, x20, x50 and x100), and three laser sources with wavelengths of 785, 633 and 532 

nm. Additionally, this instrument includes an external fibre optic probe that works with 

the 532 nm Nd:YAG laser of 300 mW, attached to the CCD camera that is placed in 

front of the reaction chamber for the study levitated droplet, as shown in the picture of 

Figure 2.11. Raman spectroscopy requires high sensitivity detectors, therefore the 

Renishaw InVia Raman Microscope used here has a UV near infrared CCD array 

detector allowing resolutions over 1 cm-1 (Chemical Analysis Facility, University of 

Reading (n.d.)) This microscope allows confocal measurements, the confocality is set 

by default, however it is possible to choose a higher confocality, but for all experiments 

in this study the set up was using the standard confocality.  

 

 

 

 

 

 

 

 

 

Figure 2.11. Picture of the fibre optic probe, x-y-z stage, and the stainless steel reaction 

chamber 
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Reference calibration of the laser was carried out by using a Si reference located inside 

the Leica microscope. Once this was done, the laser is guided to the fibre optic probe. 

Then the droplet was levitated and stabilised, a first spectrum was taken before starting 

the reaction. When the reaction started, time was controlled by using a stopwatch and 

one spectrum was taken approximately every five minutes. The scan conditions were: 

 

● The chosen scan grating type was extended, with a range of spectrum set 

between 100 and 3200 cm-1 in some experiments, but the majority of 

experiments were carried out in a range of 100 to 4000 cm-1.  

● During the acquisition the detector is exposed to a Raman signal, this feature is 

called exposure time and it was set to 1s for most of the experiments. 

● The accumulations are the number of times a scan is repeated. By using many 

accumulations of a short scan the signal-to-noise ratio is improved; this is highly 

recommended when the sample has high fluorescence background (Renishaw. 

Wire 4 Training Modules Compilation [Brochure]). However, as the acquisition 

time increased when the accumulation is high, this parameter was set to 1 in the 

experiments, and spectra with sufficient resolution, signal-to-noise ratio, and no 

fluorescence noise were obtained. 

● The percentage of laser power depends on the sample and the laser used in the 

analysis. The signal-to-noise ratio is improved when laser power is high, but 

some samples might be damaged. However, given that the samples were 

levitated droplets of liquids of certain viscosity, and solids dissolved in water or 

brine, the laser power was set to be 100%, as no damage was detected. This 

percentage allowed obtaining high resolution for the majority of the spectra.  
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● The 532 nm laser had to be used for all experiments since the other lasers could 

not be coupled to the fibre optic probe. The grating was set to 2400 l/mm. 

● Although the user manual recommends to use cosmic ray removal to eliminate 

automatically these peaks, as the instrument spend long time in taking three 

spectra to obtain the average of them, in this study these feature was not 

selected, but all the cosmic ray peaks that were visible in the spectra were 

removed manually when data processing was performed, the procedure is 

explained below. 

 

Processing data: cosmic ray removal and curve fit. 

 

When cosmic rays appear in the spectrum (see Figure 2.12 (a)), they are removed using 

the tool zap; then the spectrum can be smoothed if required, as the shot noise can 

interfere with the data analysis.  

 

Once the spectrum is ready to analyse (Figure 2.12 (b)), the selected peak is zoomed, 

and the Gaussian area under the curve is calculated using the tool curve fit. To adjust 

the curve to Gaussian, the band is deconvoluted into several sub-bands (Figure 2.13), 

they are set to be in the same place to follow the same procedure for all spectra, and 

thus the number of sub-bands will be constant.  
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Figure 2.12 (a) Raman spectrum of a levitated droplet of linoleic acid, showing the 

characteristic cosmic ray peak. This peak is removed using the tool zap of the Wire 

software. (b) Raman spectrum of a levitated droplet of linoleic acid after removing 

cosmic ray peak and shot noise. The peak in a circle is used in Figure 2.13. 
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Figure 2.13 Gaussian deconvoluted Raman spectrum taken from a levitated droplet of 

LA. The peak corresponds to C=C. 

 

 

The ratio of the Gaussian area obtained from the Raman spectra is calculated dividing 

the area under the curve of the peak corresponding to C=C cis-C=C bond stretching 

located at ≈ 1663 cm-1 by the area under the curve of the peak corresponding to CH2 in-

plane deformation. 

 

Ratio of Gaussian area =
area under curve of peak C=C

area under curve of peak 𝐶𝐻2
    Equation 2.2 

 

 

 



53 

 

2.4.5 RELATIVE HUMIDITY SETUP  

 

Different values of relative humidity between 0 and 90% were controlled by balancing 

dry and wet flows of oxygen, and measured in close proximity to the levitated droplet 

throughout the experiment by using a humidity meter.  

 

A coupled three cylindrical Pyrex water bubbler system was used to control humidity in 

the chamber (see Figure 2.11), this system was attached to a flow meter with a needle 

valve to control the entering flow to the reaction chamber and keep the humidity at the 

desired value. RH was variable for the experiments, with values ranging from 0 to 15% 

for low RH experiments and 60 to 90% for high RH experiments. For the experiments 

involving self-assembled mixtures, the RH was always maintained over 50% as RH 

below this value led to phase transformation from liquid to a solid phase state of the 

droplets. The experiments were made at ambient temperature, ranging from 22 to 30°C. 

To monitor the relative humidity and temperature, a humidity meter (Precision Gold 

N18FR Temperature and humidity meter probe, Maplin Electronics.) was attached to a 

port at one side of the chamber (see Figure 2.11). 

 

2.4.6 ANALYSIS OF PRODUCTS BY GC/MS AND HS-SPME 

 

The analysis of gas products of various reactions of ozonolysis of oleic, palmitoleic and 

linoleic acids was carried out by means of Gas chromatography and mass-spectrometry. 

The instrument used was the ThermoFisher Scientific Trace Ultra GC coupled to a 

ThermoFisher Scientific ITQ1100 Ion trap Mass analyser at the CAF, which allowed 

injecting the sample contained in the solid phase microextraction fibre. As shown in 
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Figure 2.14, the SPME fibre was inserted in the inlet port of the chamber.Once the 

needle containing the coated fused silica fibre was close to the droplets, the plunger was 

pushed allowing the fibre to be exposed to the vapour phase products above or in the 

vicinity of the liquid sample; this technique is known as headspace SPME (HS-SPME). 

Then the fibre was inserted in the injection port of the GC, the setup of this analysis is 

explained below. 

 

● The coated fused silica of the SPME fibre was prepared before extracting the 

sample. To do this, a mixture of water/methanol 1:1 was prepared, then the fibre 

was immersed in the solution by pushing the plunger and sonicated for 30 min. 

After this, the fibre was injected in the injection port of the GC to desorb the 

solvents and any contaminant that could have been trapped in the fibre. The GC 

was set with a specific temperature programme to desorb the extracted 

compounds; the conditions of this programme are shown in Figure 2.15(a). 

● Once the fibre was ready to use, ozonolysis of the fatty acid of interest was 

initiated. The rate of reaction determined the extraction times of samples. The 

analysis of products was carried out for the three fatty acids at ozone 

concentrations of 4 and 40 ppm, at high and low RH values; The formation of 

products was detected by inspection of Raman spectra, in order to know when to 

insert the fibre in the inlet port of the chamber. Once the extraction of sample 

was initiated by introducing the fibre and pushing the plunger to expose the 

coated silica fibre to extract the gases, it was left for the required time (30 – 60 

min) to reach the equilibrium between sample and fibre. 
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Figure 2.14. Picture of the stainless steel chamber showing the inserted SPME fibre to 

adsorb the products formed during an experiment of ozonolysis of a fatty acid. 

 

● The fibre was removed from the chamber and transferred to the injection port of 

the GC-MS. The programme shown in Figure 2.15(b) was set to run the analysis 

of products of the ozonolysis of fatty acids. The high temperature in the 

injection port helped to desorb the analyte in a helium stream, transferring the 

analyte from the SPME fibre to the column to be separated in its components. 
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Figure 2.15 GC/MS methods applied to the SPME analysis of fatty acids: a) desorption 

method for cleaning of SPME fibre before the sample extraction; b) desorption method 

for separation and identification of the gas-phase products extracted from the reaction 

chamber.  

 

2.4.7 PREPARATION OF MIXTURES OF FATTY ACIDS 

 

A 1:1 mixture of oleic acid (OA) and sodium oleate (SO) was prepared and mixed with 

a seawater surrogate (NaCl); in this mixture, 3% corresponded to OA/SO and the 

remaining 97% was NaCl solution (10g/L).The procedure was previously described by 

Rastogi (2015), who used Eppendorf tubes to mix the components. A modification of 

the method has been used for the present study, by using 5 mL glass vials to prepare the 

mixture. The schematic of Figure 2.16 summarises the procedure followed here.  

 

SO with a purity of ≥ 99% was purchased from Sigma-Aldrich, and analytical reagent 

grade NaCl was bought from Fisher Scientific. The vial was previously weighted, and 
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then approximately 20 μL of OA was added, with this amount it was possible to 

calculate the volume of NaCl; this step was followed by addition of the other 

components to the OA followed by stirring of the mixture. A previously calculated 

amount of SO was added to complete the ratio of 1:1 for OA/SO, and then the mixture 

was placed in a water bath in the sonicator at 50-55°C to homogenise it. The 

homogenisation was reached when all SO was completely dissolved and no solid SO 

visible. The mixture had a milky appearance, as shown in the picture of Figure 2.16. 

The same procedure was followed to prepare a mixture of palmitoleic acid (PA) with 

SO and NaCl at same ratio PA/SO. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.16. Procedure of preparation of the mixture OA/SO/NaCl. 
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CHAPTER 3 

OZONOLYSIS OF INDIVIDUAL FATTY ACIDS 

 

3.1 RAMAN SPECTRA OF FATTY ACIDS 

 

Figure 3.1 shows the resultant Raman spectra that were obtained from single levitated 

droplets of pure unsaturated fatty acids before starting the reactions: oleic acid (OA), 

palmitoleic acid (PA) and linoleic acid (LA). Characteristic bands of the three fatty 

acids are listed in Table 3.1. 

 

By examining the Raman spectra of oleic, palmitoleic and linoleic acid, it is possible to 

distinguish the similarities and differences in the bands. The three fatty acids are long-

chain carboxylic acids having at least one double bond C=C; their structures are shown 

in Figure 3.2. Palmitoleic acid (PA) is a 16 carbon (-7) MUFA while oleic acid (OA) 

and linoleic acid (LA) are two carbon atoms longer than PA, monounsaturated (-9) 

and di-unsaturated (-6 and -9) fatty acids respectively. The structural differences of 

these three fatty acids can be distinguished in their Raman spectra, comparing the 

intensity of main three bands at  1280 cm-1 corresponding to the =C-H deformation 

mode,  1665 cm-1 due to the C=C stretching mode and  3020 cm-1 corresponding to 

=C-H stretching vibrations. These bands are more intense in the spectrum of linoleic 

acid due to a higher number of unsaturation and the length of carbon chain compared to 

oleic and palmitoleic acid. As the intensity of the band at ≈ 1455 cm-1 remains stable, 

this band is used as reference to calculate the ratio of Gaussian area under the curve in 

order to assess the kinetics of the reactions. The following sections describe the changes 

in the intensity of those peaks.  
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Figure 3.1 Raman spectra of unsaturated fatty acids: Oleic acid, palmitoleic acid, and 

linoleic acid. 

 

 

 

 

 

 

 

Figure 3.2 Structure of oleic, palmitoleic and linoleic acids 
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Table 3.1 Characteristic Raman bands found in the Raman spectra of the unsaturated 

fatty acids used in this study (Czamara et al., 2014, Socrates, 2004) 

Position (cm-1) Functional group Assignments 

800-950 O⎯O Peroxides 

1260-1275 HC=CH CH Deformation 

1312-1325 -(CH2)n- Twisting CH2 vibration 

1443-1453 -(CH2)n- CH2 scissor  

1664-1668 C=C cis-C=C bond stretching 

2860-2866  

2905-2915 

CH3 

CH3 

Asymmetric stretching  

Symmetric stretching 

3010-3025 cis-HC=CH =C-H stretching 

 

 

3.1.1 RAMAN SPECTRA OF OLEIC ACID 

 

Oleic acid (Cis-9-octadecenoic acid) is an 18 C monounsaturated Ω-9 carboxylic acid, 

widely found in vegetable and animal fats and oils. In some vegetable oils, such as olive 

oil, oleic acid comprises the main long-chain unsaturated fatty acid.  

 

The ozonolysis of oleic acid is usually the point of reference to assess the atmospheric 

reactions of fatty acids. This reaction follows a mechanism involving Criegee 

intermediates, to yield a variety of products, such as carboxylic acids and aldehydes. 

According to a comprehensive review by Zahardis and Petrucci (2007), the main four 

products formed from this reaction are nonanal, nonanoic acid, 9-oxononanoic acid and 

azelaic acid.  
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Figure 3.3 Raman spectra obtained from an ozonolysis experiment of a levitated droplet 

of oleic acid before starting the reaction (green line) and after one hour (pink line) of 40 

ppm ozone exposure. 

 

Evidence showed in the Raman spectra of Figure 3.3 obtained from the ozonolysis of a 

levitated droplet of oleic acid (diameter = 145 μm) suggest the formation of various 

oxygen-containing products, as the band at 864 cm-1 is intensified after 1 hour of 

exposition at 40 ppm ozone concentration (Compare Lee and Chan, 2007b). A 

considerable decrease in the intensity of the peaks at 1274, 1664 and 3016 cm-1 

evidences the breaking of C=C,  whereas the rise of a weak and broad peak at 1751 cm-1 

suggests the formation of carbonyl groups. The intensity of the band at 1450 cm-1 

remained constant, as the number of CH2 groups over the reaction stayed constant. 

GC/MS analysis of products formed from this reaction will be detailed in Section 3.8, to 

complement the findings from Raman spectroscopy. 
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3.1.2 RAMAN SPECTRA OF PALMITOLEIC ACID 

 

Palmitoleic acid is a 16 C monounsaturated Ω-7 carboxylic acid, also known as Cis-9-

hexadecenoic acid. It is found in human adipose tissue (Gong et al., 2011). Vegetable 

sources such as Roureopsis obliquifoliata (Spencer and Kleiman, 1978), and 

Macadamia ternifolia seed oils (Bridge and Hilditch, 1950) comprise 32 and 20% of 

palmitoleic acid, respectively. 

 

Figure 3.4 presents the resultant Raman spectra of a levitated droplet of palmitoleic acid 

(diameter = 175 μm) before and after 1 hour of O3 exposure (40 ppm). It is evident in 

these spectra that there are many similarities between ozonolysis of PA and OA. The 

intensity of the peaks at 1274, 1664 and 3016 cm-1 dropped, indicating the cleavage of 

the carbon double bond, whereas the gradual increase on the band at 864 cm-1 indicates 

the formation of peroxides, and the broad peak at 1750 cm-1 emerged as a consequence 

of the formation of carbonyl groups. These results are consistent with the reported by 

Pryor et al. (1995) who confirmed the formation of a C7 aldehyde, but also C7 

hydroxyperoxide and C7 Criegee ozonide from the ozonolysis of phospholipids 

containing palmitoleic acid; and also Spencer and Kleiman (1978) who stated that 

palmitoleic acid produced a seven-carbon aldehyde and a nine-carbon aldehyde-ester 

when reacted with ozone.  
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Figure 3.4 Raman spectra obtained from the ozonolysis of a levitated droplet of 

palmitoleic acid before starting the reaction (blue line) and after one hour (red line) of 

40 ppm ozone exposure. 

 

 

3.1.3 RAMAN SPECTRA OF LINOLEIC ACID 

 

9-cis,12-cis -octadecadienoic acid, also known as linoleic acid, is a polyunsaturated Ω-6 

and Ω-9 long-chain fatty acid, it is one of the essential fatty acids in mammalian diet 

and occurs naturally in plant glycosides.  

 

The Raman spectra obtained from a levitated droplet of linoleic acid (diameter = 145 
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μm) before and after one hour of exposure to ozone at 40 ppm are shown in Figure 3.5. 

The intensity of the characteristic peaks of C=C at 3021, 1666 and 1274 cm-1 was 

clearly reduced after one hour of reaction, evidencing the consumption of C=C bonds, 

but when it is compared to its counterparts oleic and palmitoleic acids, the reduction in 

the intensity of the same bands is not as dramatic as in the spectra shown in Figure 3.3 

and 3.4, evidencing the influence of the extra C=C in the oxidation of linoleic acid. 

Nevertheless, linoleic acid also yielded oxygen-containing products such as carbonyl 

and peroxides, which is seen by the increase in the corresponding bands at 1745 and 

876 cm-1, respectively.  Moise and Rudich (2002) suggested an alternative pathway that 

involves rearrangements of the remaining double bond to produce more stable 

compounds due to the conjugation of C=C and C=O bonds. Section 3.8 will present the 

further analysis of products from the ozonolysis of linoleic acid at low and high RH. 

 

Autoxidation of linoleic acid: Lee and Chan (2007a) pointed that the C=C bonds in 

linoleic acid are attacked by ozone in a very similar way as in oleic acid via Criegee 

intermediates, however they found evidence of a different mechanism occurring in the 

case of linoleic acid, especially at low ozone concentrations, when linoleic acid 

undergoes autoxidation, following a mechanism via free radicals and the formation of 

conjugated dienes. Thus in Figure 3.6 (a), it is observed an emerging, weak band at 

≈1600 cm-1 corresponding to these species. In addition to this, the peak at 1660 cm-1 

characteristic of C=C tended to increase when O3 exposure time increased, it has been 

explained by the formation of a variety of products that keep the C=C; also there is 

evidence of the formation of carbonyl groups (which band at ≈1750 cm-1). An 

experiment with LA exposed to oxygen (blank) was also conducted, and the increase of 

the ratio of Gaussian area of the peaks C=C/CH2 (see Figure 3.12 and 3.20 with red dots 
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and black hexagons respectively representing the blank) was observed. Linoleic acid has 

shown a tendency to be oxidised at room temperature; this has been explained by 

Frenkel (1998) as the autoxidation of the fatty acid that is present in oils and tissue of 

animals and plants can react with O2 to form radicals that contain two carbon-carbon 

double bonds. This reaction of autoxidation of UFA may explain the increasing peak 

and the appearance of peroxidic and C=C-C=C bands in the spectra taken during the 

experiment using only oxygen, and the increase of peaks at 1270 and 1663 cm-1, 

indicating that C=C are formed, as shown in Figure 3.6 (b).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 Raman spectra obtained from the ozonolysis of a levitated droplet of linoleic 

acid before starting the reaction (red line) and after one hour (purple line) of 40 ppm 

ozone exposure 
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Figure 3.6 (a) Raman spectra obtained from the ozonolysis of a levitated droplet of 

linoleic acid before starting the reaction (blue line) and after two and three hours (purple 

and pink lines respectively) of 4 ppm ozone exposure. (b) Raman spectra of LA exposed 

to autoxidation with O2 (blank), after 4 h a weak band at  1600 cm-1 emerged due to 

the formation of conjugated dienes. 
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3.2 REACTIVE UPTAKE  

 

When a reaction is taking place, the reacting molecules start colliding, but these 

collisions need to be sufficiently reactive to ensure that bonds are breaking and new 

bonds are forming to yield new products. Depending on different conditions, such as the 

nature of reacting molecules, reaction phase, temperature or concentration, there is a 

probability of one of the molecules colliding with the other reactants. In gas phase 

reactions, such as the ozonolysis of fatty acids, the ozone molecule collides with the 

fatty acid molecule, either at the surface or in the bulk. The proportion of the number of 

collisions between both the gas molecule and the solid or liquid phase compound 

leading to a reaction is known as reactive uptake coefficient (Zeng et al., 2013; Smith et 

al., 2002) and is expressed for the ozonolysis of oleic acid as: 

 

𝑑[𝑂𝐴]

𝑑𝑡
= −𝛾 (

𝑃𝑂3𝑐̅

4𝑅𝑇
)

𝑆𝐴

𝑉
   Equation 3.1 

 

where γ is the probability of the reaction when one molecule of O3 collides with a 

particle of OA, PO3 is the partial pressure of ozone (in atm), 𝑐̅ is the mean kinetic speed 

of ozone molecules in the gas phase (equivalent to 3.6 x 104 cm s-1), [OA] is the oleic 

acid concentration, T is the temperature (298 K), R is the gas constant (0.082 atm L 

mol-1 K-1), and SA/V corresponds to Surface area/Volume ratio.  

 

The reactive uptake coefficient has also been described as the reduction in the gas-phase 

particles, either at the surface or in the bulk of the particle. In their work, Worsnop et al. 

(2002) presented the resistor model to illustrate the chemical interaction between a gas 

and an aerosol particle, focussing on the gas uptake in the particle and the 
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transformations in the condensed phase. Based on this model, Smith et al. (2002), Hearn 

et al. (2005), Thornberry and Abbat (2004) and He et al. (2017) have calculated the 

ozone uptake coefficient for reactions of ozonolysis of fatty acids such as oleic, linoleic, 

and linolenic acids.  

 

As the reaction can occur with gas interacting either at the surface or in the bulk, it 

should penetrate the particle. Given that the gas uptake is not constant over the reaction, 

it is necessary to have an extrapolation from the general decay of the reaction, thus, it 

has been established that the uptake coefficient can be limited by different processes, 

according to Smith et al. (2002) and Hearn et al. (2005), which is depending on the rate 

of diffusion of the ozone within the particle. The analysis of these cases helps to 

identify the operative case to calculate the uptake coefficient for the specific reaction. 

Table 3.2 summarises four limiting cases for the reaction of O3 with fatty acids and the 

corresponding equations to calculate γ values for each reaction (Zahardis and Petrucci, 

2007).  
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Table 3.2 Summary of limiting cases for the reaction of O3 with oleic acid and other 

fatty acids used in this study (Zahardis and Petrucci, 2007). Analytical solutions of these 

equations are provided in detail in the original studies by Wornsop et al. (2002), Smith 

et al. (2002) and Hearn et al. (2005). The parameters in the equations are listed below. 

Limiting case [OA]/ [OA]0  

Case 1: Diffusion of O3 throughout 

the particle is fast, l >r    

𝑒(−𝐻𝑘2𝑃𝑂3𝑡) 

 

4𝐻𝑅𝑇𝑟 𝑘2[𝑂𝐴]

3𝑐̅
 

Case 2: Reaction of O3 near the 

surface, limited diffusion, l<r/20  
(1 −  

3 𝐻 √𝐷𝑘2 𝑃𝑂3𝑡

2𝑟√[𝑂𝐴]
0

)

2

 
4𝐻𝑅𝑇

𝑐̅
√𝐷𝑘2√[𝑂𝐴] 

Case 3: Ozone reacts at the surface  
𝑒

(
−3𝛿2𝐻𝑘2

𝑠𝑢𝑟𝑓
𝑃𝑂3𝑡

𝑟
)

 

4𝐻𝑅𝑇

𝑐̅
𝛿2𝑘2

𝑠𝑢𝑟𝑓
[𝑂𝐴] 

Case 4: As [FA] is not constant 

across the particle,  is limited by 

FA diffusion  

𝑒
(− 

12 𝐷[𝑂𝐴]

𝑟2 𝑡)
 

16𝐷

𝑃𝑂3 𝑐̅ 𝑟
[𝑂𝐴] 

 

 

The Henry’s Law coefficient of ozone is represented as H (0.48 M atm-1) (Pfrang et al., 

2011), r is the particle radius, δ is the depth of the surface layer, which is the penetration 

depth of O3 in a self-assembled monolayer of the liquid (fatty acid), with an estimated 

value of ≈ 1 nm for oleic acid (Hearn et al., 2005), this parameter was reported by 

Shiraiwa et al. (2009) as 0.8 nm. The factor denoted as l is the reacto-diffuse length, 

which is the distance of diffusion of the ozone molecule throughout the particle before 

the reaction, and is calculated by: 
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   𝑙 =  √
𝐷

𝑘2[𝐹𝐴]
     Equation 3.2  

 

where D is the diffusion coefficient of ozone in oleic acid (1 x 10-5 cm2 s-1, Mendez et 

al., 2014), k2 is the second order rate constant of the reaction (either bulk or surface, 

generally referred as 𝑘2
𝑏𝑢𝑙𝑘 and 𝑘2

𝑠𝑢𝑟𝑓
, respectively), and [FA] is the concentration of the 

fatty acid.  

 

In this study, reactive uptake coefficients were calculated for the reactions of ozone with 

oleic, palmitoleic and linoleic acids. From the plot of decay of the ratios of the Gaussian 

area for C=C/CH2 a graph of [FA]/[FA]0 as a function of 𝑃𝑂3 𝑡 was plotted, then plots of 

ln[FA]/[FA]0 and sqrt [FA]/[FA]0 against 𝑃𝑂3 𝑡 were also obtained in order to determine 

the best fits, by taking the R2 value of both exponential and quadratic fits. Figure 3.7 

shows the plot of the decay of palmitoleic acid reacted as a function of ozone exposure 

(represented by PO3 t), with a droplet size of 155 μm and [O3] = 2 ppm. Fittings for this 

curve are exponential (dotted purple line) and quadratic (solid black line), with their 

respective R2. From this plot it is inferred that the best fit is the quadratic, indicating 

that the reaction is taking place at the particle surface, thus case 2 is operative for this 

specific reaction (see Table 3.2).   

 

In contrast, the decay profile shown in Figure 3.8 indicates that the best fit for the 

reaction of a droplet of palmitoleic acid (125 μm) with ozone at 40 ppm is exponential, 

leaving three possibilities to take into account, cases 1, 3 and 4. In order to decide which 

case is operative for this reaction, several aspects of the gas phase reaction should be 

considered for each case. In the study by Smith et al. (2005) Case 1 was described as 

fast diffusion of the ozone inside the particle, here the ozone concentration is constant 
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all over the particle and the rate of reactions is not affected by ozone diffusion. Given 

that the droplet size in this experiment was 125 μm, and also this case shows no 

dependence of the reaction rate on particle size, by taking into account that the authors 

of aforementioned study found that the value of the reacto-diffuse length (l) should be 

smaller compared to the size of the particle, this case was excluded from consideration, 

leaving case 3 and 4. These two cases show dependence on particle size, with case 4 

having a square dependence on the radius (see equations in Table 3.2); thus case 4 

cannot be considered as this experiment given the quadratic r dependence. Therefore, 

evidence from the decay profile suggests that this reaction occurred mostly at the 

surface. Similar analysis has been done for all experiments in order to calculate the 

uptake coefficients. 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 Reactive decay of the ratio [OA]/[OA]0 obtained from ozonolysis of a 

levitated droplet (90 m) of oleic acid at 20 ppm [O3]. Trend lines are depicting 

quadratic fitting (---) and exponential fitting (---). 
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The following sections on this chapter will develop the kinetics of the ozonolysis of the 

unsaturated fatty acids, considering several factors that can affect the reaction: droplet 

size, ozone concentration, relative humidity and number of carbon double bonds. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8 Reactive decay of the ratio [PA]/[PA]0 obtained from ozonolysis of a 

levitated droplet (125 m) of palmitoleic acid at 40 ppm [O3]. Trend lines are depicting 

quadratic fitting (---) and exponential fitting (). 
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3.3 EFFECT OF THE OZONE CONCENTRATION IN THE RATE OF 

REACTION OF OZONOLYSIS 

 

Although atmospheric relevant ozone concentrations reported by Seinfeld and Pandis 

(2006) range from 20 to 40 ppb in rural areas and 100 to 400 ppb in urban areas, in this 

study the ozone concentrations were considerably higher than those ozone 

concentrations normally occurring in the atmosphere. These ozone concentrations were 

used in order to obtain sufficient experimental data in a short timescale, as the 

experimental conditions might retard the reactions at lower O3 concentrations. In this 

section, the results of the ozonolysis of oleic, palmitoleic and linoleic acids as a function 

of [O3] are presented, and the effect of different ozone concentrations in the reaction 

rate and obtained products are discussed and compared to previously reported studies. 

 

3.3.1 OLEIC ACID 

 

The ozonolysis of oleic acid was conducted at different ozone concentrations, ranging 

from 0.5 to 40 ppm. This section includes the results of experiments carried out at 2, 4, 

12, 20, 32 and 40 ppm, and they are compared to the blank (see Figure 3.9). 

 

The reaction was monitored by assessing the changes in the intensity of C=C (variable) 

with respect to CH2 (constant). Thus, the plots in Figure 3.9 correspond to the changes 

in the ratio of the Gaussian area under curve of two Raman bands: C=C at ≈1664 cm-1 

and CH2 at ≈1445 cm-1. These plots depict the effect of ozone concentration in the 

ozonolysis of levitated droplets of OA, which sizes were obtained randomly. They show 

a trend to accelerate the decay of the ratio of Gaussian area of those peaks when ozone 
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concentration is gradually increased. However, at higher [O3] concentrations (over 12 

ppm), the decay shows a very similar trend, thus these results are in agreement with the 

reported by Lee and Chan (2007b), who suggested that higher [O3] exposure might not  

affect the mechanisms and products of this reaction significantly. Regarding the size of 

the droplet, its effect on the ozonolysis of oleic acid will be discussed in section 3.5 of 

this Chapter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9 Effect of ozone concentration in the ozonolysis of various levitated droplets 

of oleic acid. Sizes of the droplets are given together with [O3] in the legend. 
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3.3.2 PALMITOLEIC ACID 

 

The reaction of ozonolysis of palmitoleic acid was carried out at same [O3] as the oleic 

acid reaction. The decay in the ratios of Gaussian area under curve of Raman signatures 

at 1445 and 1666 cm-1 corresponding to CH2 and C=C bonds, respectively obtained 

from  the  reaction of ozonolysis of palmitoleic acid at [O3] of 2, 4, 12, 20, 32 and 40 

ppm and exposure to O2 (blank) are displayed in Figure 3.10. An incremental decay in 

these ratios is observed at ozone concentrations under 12 ppm, but at higher 

concentrations, the trend is comparable to that observed for ozonolysis of oleic acid.   

 

Comparison between the rate of ozonolysis of OA and PA is shown in Figure 3.11, at 

concentrations of 2, 8 and 32 ppm. Linear regression was applied to all data sets, 

showing that the slopes corresponding to palmitoleic acid plots were 4.1, 2.1 and 1.3 

times higher than the plots corresponding to oleic acid at 2, 8 and 32 ppm of ozone 

concentration, respectively, confirming the results previously reported by Weitkamp et 

al (2008), who stated that the same reaction of palmitoleic acid was faster than the 

ozonolysis of oleic acid. 
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Figure 3.10 Effect of ozone concentration in the ozonolysis of various levitated droplets 

of palmitoleic acid. Sizes of the droplets are given together with [O3] in the legend. 

 

 

 

 

 

 

 

 

 

 

Figure 3.11 Comparison of the reactivity of oleic and palmitoleic acid at 2 ppm (●), 8 

ppm ( ), and 32 ppm (▲) [O3].  

0 50 100 150 200 250

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 Blank-130 µm

 2 ppm-100 µm

 4 ppm-100 µm

 12 ppm-130 µm

 20 ppm-110 µm

 32 ppm-130 µm

 40 ppm-125 µm

R
a

ti
o

 o
f 

R
a

m
a

n
 p

ea
k

 a
re

a
s 

(C
=

C
/C

H
2
)

O
3
 exposure time (min)



77 

 

3.3.3 LINOLEIC ACID 

 

Figure 3.12 shows the effect of ozone concentration on the rate of reaction for 

ozonolysis of linoleic acid. The results of this reaction have proven that at low O3 

concentrations linoleic acid reacted completely different from oleic and palmitoleic 

acid. At [O3] < 4 ppm, linoleic acid exhibits an increase in the ratio of Gaussian area of 

the peaks corresponding to C=C and CH2, this behaviour has been explained by Lee and 

Chan (2007a) as the autoxidation of the fatty acids, which occurs in presence of oxygen 

only or even at low ozone concentration. On the contrary, at O3 concentration higher 

than 12 ppm, a decay in the ratio of intensities mentioned, with a very similar pattern of 

reaction as oleic and palmitoleic acid.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12 Effect of ozone concentration on the ozonolysis of various levitated droplets 

of linoleic acid. Sizes of the droplets are given together with [O3] in the legend. 
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In order to compare the relative reaction rate of linoleic acid versus oleic and 

palmitoleic acids, the results of experiments carried out at 8 ppm ozone concentration 

are presented in Figure 3.13. Linear regression was applied to calculate the slopes, 

finding that the reaction rate of linoleic acid was comparable to palmitoleic acid; 

however, it reacted faster than oleic acid. Some authors have reported that linoleic acid 

is expected to be more reactive than oleic acid (Lee and Chan, 2007a; Hearn and Smith, 

2004) as the reactive uptake coefficient is augmented by the unsaturation degree of the 

molecule. From the results presented in Figure 3.13 it is possible to affirm that, for this 

specific reaction, linoleic and palmitoleic acid reacted faster than oleic acid.  However, 

it is not possible to make this generalisation only based on these results. Therefore, the 

reactive uptake coefficients will be discussed in section 3.4. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.13 Comparison of the reactivity of oleic, palmitoleic and linoleic acid at 8 ppm 

ozone concentration. 
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3.4 EFFECT OF THE OZONE CONCENTRATION ON THE UPTAKE 

COEFFICIENT 

 

This section will present and discuss the results of the effect of ozone concentration on 

the uptake coefficient for oleic, palmitoleic and linoleic acids, and compare with 

previously reported findings. Reactive uptake coefficients were obtained from the 

ozonolysis of oleic, palmitoleic and linoleic acids at different ozone concentrations, 

applying of limiting conditions listed in Table 3.2 to determine the operative case, as 

described in Section 3.2. Thus, the summary of reactive uptake coefficients calculated 

for various experiments at ozone concentrations ranging from 2 to 40 ppm is shown in 

Table 3.3. It is important to clarify that the reported uncertainty of these values was 

obtained as the average from a set of three experiments carried out at 40 ppm [O3] for 

each fatty acid at low relative humidity. 

 

It is clear that ozone concentration can affect the rate of reaction of ozone with oleic, 

palmitoleic and linoleic acids. Different authors have previously reported the effect of 

O3 concentration on the uptake coefficient. In experiments of ozonolysis of oleic, 

linoleic and linolenic acid, He et al., (2017) explained that before the reaction starts, the 

ozone adsorbs onto the surface. With increasing O3 concentration, more ozone 

molecules are around the particle until saturation. Thus the number of reactive sites will 

decrease, reducing the collision between the gas and the particle, therefore, a reduction 

in the value of γ is expected when the ozone concentration increases. Zeng (2013) stated 

similar conclusion for the ozonolysis of linoleic acid. The findings of these experiments 

are also in agreement with the results reported by He et al., (2017) who suggested a 

reduction of ozone collisions with the surface of the droplet when ozone saturates the 
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reactive sites because of an increment in the concentration. The γ was also calculated 

only for reactions at 40 ppm ozone exposure at the half-life (in red), this was the time 

when [FA] was the half of the initial concentration. The decreasing of the uptake 

coefficient throughout the reaction was observed, and this may be explained by the 

slight reduction of the droplet size, that reduces the surface area and the probability of 

collisions and hence the uptake coefficient, these results were consistent with the 

reported by He et al., (2017) who explained that the number of active sites decreases in 

smaller droplets, affecting the uptake coefficient.  
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Table 3.3 Comparison of calculated uptake coefficient values (γ) obtained from 

ozonolysis of droplets oleic acid (OA), palmitoleic acid (PA) and linoleic acid (LA).  

Figures in red correspond to γ at the half-life.  

Fatty 

acid 

[O3] 

ppm 

Initial 

diameter 

(µm) 

Total time 

of reaction 

(min) 

Final 

diameter 

(µm) 

γ  

OA 

2 145 300 140 (2.40  0.13) x 10-4 

4 120 190 115 (1.71  0.13) x 10-4 

12 125 135 115 (6.14  1.28) x 10-5 

20 90 100 85 (1.80  1.28) x 10-5 

32 125 90 115 (4.23  1.28) x 10-5 

40 105 60 105 (3.78  1.28) x 10-5 

(9.03  9.19) x 10-5 

PA 

2 100 240 100 (1.95  0.30) x 10-4 

4 100 240 115 (6.83  3.03) x 10-5 

12 130 160 120 (4.43  3.03) x 10-5 

20 105 60 100 (7.93  3.03) x 10-5 

32 130 85 130 (2.00  3.03) x 10-5 

40 125 65 125 (5.00  3.03) x 10-5 

(1.38  2.20) x 10-4 

LA 

2 135 300 135 (3.52  0.07) x 10-4 

4 155 180 155 (9.12  0.72) x 10-5 

12 270 165 270 (9.35  0.72) x 10-5 

20 80 130 75 (2.84  0.72) x 10-5 

32 70 90 70 (2.07  0.72) x 10-5 

40 107 150 107 (2.46  0.72) x 10-5 

(3.90  2.61) x 10-5 
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3.5 EFFECT OF THE SIZE OF THE DROPLET ON THE RATE OF 

REACTION OF OZONOLYSIS AND THE UPTAKE COEFFICIENT 

 

Droplets of oleic, palmitoleic and linoleic acid of different sizes underwent ozonolysis 

at relative high [O3] (32 ppm for experiments of OA and LA and 20 ppm for the 

ozonolysis of PA), and the results are displayed in Figure 3.14. The experiments were 

carried out at room temperature (298 K) and low RH (<10%). In order to determine the 

uptake coefficient for all these experiments, the analysis of limiting conditions was 

applied, following the limiting cases summarised by Zahardis and Petrucci (2007) based 

on the experimental uptake coefficient reported by Smith et al. (2002), and Worsnop et 

al (2002), considering the four study cases of ozone uptake by oleic acid previously 

mentioned in section 3.2; thus, the resultant uptake coefficient values of the current 

experiments are shown in Table 3.4.  

 

As the times to complete reaction were variable, this table reports the estimated uptake 

coefficient at one hour of reaction and also at the end, which was the moment when the 

flow of ozone was stopped and the last Raman spectra registered. The calculated values 

reported in Table 3.4 indicate that γ increased when the size of the droplet increased 

both after one hour and at the end of the reaction. This behaviour was expected as a 

previous study by He et al. (2017) concluded that uptake coefficient might augment 

with increasing droplet diameter, due to larger droplets have more reactive sites on the 

surface compared to smaller droplets, easing the collisions that lead to ozonolysis of the 

fatty acid. It was also observed a decrease in γ when the reaction was finished, this 

might be due to the collisions of ozone with the particle surface that could decrease as a 

consequence of products formed at the surface that could have reduced the number of 
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reactive sites over the time of reaction; in addition, the droplet diameter was reduced, 

affecting the surface area and therefore the probability of collisions of ozone with the 

particle. These findings are consistent with the study above and they suggest that the 

assumption of a reaction either close to the surface of the droplet (case 2) or at the 

surface (case 3) is in accordance with the evidence.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14 Comparison of result from ozonolysis of different droplet sizes of fatty 

acids at different ozone exposure time: Oleic acid at 32 ppm [O3] (pink circles); 

Palmitoleic acid at 20 ppm [O3] (green triangles); C) Linoleic acid at 32 ppm [O3] (blue 

diamonds). Dark colours represent the small sizes of droplets, while light colours 

symbolize the large droplet diameters. 
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Table 3.4 Comparison of calculated uptake coefficient values (γ) obtained from 

ozonolysis of droplets of different sizes of three fatty acids: oleic acid (OA), palmitoleic 

acid (PA), and linoleic acid (LA). 

 

Fatty 

acid 

Initial 

diameter 

(µm) 

Total time of 

reaction 

(min) 

Final 

diameter 

(µm) 

γ 

OA 

115 60 110 1.9 x 10-5 

302.5 120 285 1.7 x 10-4 

PA 

110 100 100 7.0 x 10-5 

295 155 275 2.9 x 10-4 

LA 

70 90 70 2.5 x 10-5 

320 90 320 1.3 x 10-4 

 

 

It is clear that the droplet size affects the rate of fatty acid loss. Smith et al (2002) 

reported that the reactive uptake coefficients decreased as droplet size increased and 

thus they explained the results by assuming that the reaction is limited by oleic acid 

diffusion inside the particle with a more significant impact on larger particles, because 

these large particles must cover longer distances to diffuse to the reaction section to 

maintain a constant concentration of fatty acid through the particle. Likewise Hung and 

Tang (2010) reported that the fast consume of O3 in the first stage of reaction in smaller 

droplets of oleic acid was probably due to higher total surface area of these droplets 

while in larger droplets O3 was consumed at constant rate after 1 min of reaction 

although the concentration was notably lower compared to the initial value, thus this 

behaviour showed the significant effect of diffusion of ozone throughout the particle.  
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In a previous study in the group Rastogi (2015) reported the ozonolysis at 30 ppm [O3] 

and RH <10% of two droplets of oleic acid with diameter 70 and 120 μm, it was found 

that the estimated uptake coefficient increased with the increasing size, from (2.16 ± 

0.2) x 10-4 to 2.52 ± 0.3) x 10-4 however it was observed that droplets with smaller 

diameters reacted at higher rates than the bigger droplets after 1 hour of ozone exposure. 

This was explained by the faster diffusion of ozone in smaller droplets. In the research 

presented here, the most plausible explanation for a higher uptake coefficient when size 

increased might be the augmented surface area in larger droplets, with more reactive 

sites for ozone to react with the fatty acids.  
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3.6 EFFECT OF RELATIVE HUMIDITY ON THE RATE OF REACTION OF 

OZONOLYSIS 

 

Water is present in the atmosphere, and the amount of water is measured as relative 

humidity (RH%). When organic aerosols are oxidised, they produce more compounds 

that might interact with the water depending on their hydrophilicity (Zhou et al. 2014). 

In the case of unsaturated organic compounds, it is known that the reaction follows the 

Criegee intermediate mechanism, and more specifically, for oleic acid this reaction 

produces four main compounds (Hearn and Smith, 2004; Katrib et al., 2004). However, 

under humid conditions, this reaction has been proven to yield additional products due 

to the secondary reactions with the water present in the system (Vesna et al. 2009). 

Also, it has been explained that pure water can decompose O3 via a chain mechanism 

initiated by OH- attack to form radicals that propagate the reaction (Staehelin and 

Hoigné, 1982, Bühler et al., 1984). This section will present the results of ozonolysis of 

oleic, palmitoleic and linoleic acids under dry and humid conditions, and the effect of 

relative humidity (RH) on the kinetics and products of these reactions will be discussed. 

 

3.6.1 OLEIC ACID 

 

Figure 3.15 (a) and (b) depict the Raman spectra obtained from the experiments carried 

out at 32 ppm [O3], with RH of ≈15% and >60% to simulate dry and humid conditions 

respectively. In the first case, the exposure times were the initial (0 min) and final (75 

min), whereas at high RH the exposure times are initial (0 min), intermediate (75 min to 

compare) and final (130 min). Droplet sizes were very similar, in order to compare the 

results and focus on the effect of relative humidity only. These spectra demonstrate that 
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RH can affect both the kinetics of the reaction and the products. A previous study by 

Vesna et al. (2008) reported that increased RH does not affect the growth factor of oleic 

acid since the mechanism of ozonolysis of this fatty acid undergoes an alternative 

pathway when Criegee intermediates (CIs) react with water forming smaller acids. The 

spectra in Figure 3.15 show that after 75 min, in both low and high RH the peak 

corresponding to double bond decreased, indicating that OA reacted with ozone, 

however at humid conditions the same peak is more visible compared to the spectrum of 

the same reaction at low RH. Likewise, the peaks at 1280 and 3020 cm-1 assigned to 

HC=CH deformation and CH2 symmetric stretching respectively are still visible at high 

RH after 75 min of O3 exposure, suggesting unreacted carbon-carbon double bond 

remaining. Vesna et al. (2009) also suggested that water affected ozonolysis as it might 

react with CIs to produce peroxides, and similarly, these CIs may react with other 

carbonyl compounds to form peroxidic polymers. This could explain the increased peak 

at 880 cm-1 appearing in the spectrum of ozonolysis of OA at high RH, corresponding to 

O−O stretching in peroxides. Then, after 130 min, the reaction carried out in humid 

conditions showed signs to be completed, as the C=C peak at ≈1664 cm-1 in the last 

spectrum (blue) has decreased to a minimum and the area of the peak associated to 

peroxides is augmented. In both cases, dry and humid conditions, the spectra suggest 

the formation of carbonyl compounds, with the rising of a weak band at ≈ 1750 cm-1 

associated to C=O stretching.  
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Figure 3.15 Raman spectra obtained from the ozonolysis of oleic acid under low (a) and 

high (b) RH conditions. The [O3] was 32 ppm, and the diameter of levitated droplets 

were 140 μm (RH 15%) and 130 μm (RH > 60%).  
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Despite the evidence of incorporation of water to the droplet in the studies by Zeng et al 

(2013) and Asad et al (2004), for reactions of ozonolysis of linoleic acid and oleic acid 

respectively at high relative humidity and using FTIR to monitor the reactions, it is not 

completely clear in these experiments whether or not OA had incorporated water, 

except for the very weak peak at approximately 3500 cm-1 and normally related to 

intramolecular OH stretching in Raman spectra (Carey and  Korenowski, 1998), which 

is hardly visible in the last spectrum (130 min) at high RH in Figure 3.14. This peak 

evidences the presence of OH- from water and it is believed that this species could 

initiate the decomposition of ozone in water following the mechanism proposed by 

Stahelin and Hoigné (1982): 

 

O3 +OH-  HO2
- + O2    Equation 3.3 

 

And also HO2
- may react with O3,  

 

O3 +HO2
-  OH• + •O2  + O2   Equation 3.4 

 

Thus the concentration of O3 may decrease causing the decay in the rate of reaction.  

 

Figure 3.16 presents the plots obtained from the ozonolysis of oleic acid at different 

ozone concentrations (0.8 to 32 ppm) at a) low (<10%) and b) high (>50%) relative 

humidity. The sizes of levitated droplets are shown in the legend together with the 

ozone concentrations. For all reactions, the expected decay in the ratio of the Gaussian 

area of C=C/CH2 peaks was obtained. By comparison of both (a) and (b) charts, a slight 

decay at lower ozone concentration is observed, but it is also evident that there is a 
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tendency to a gradual decay of the ratio when the concentration is augmented under dry 

conditions. In the plots at high RH (b), it is possible to distinguish a very similar trend 

when [O3] increases, with considerable decay at the highest ozone concentration when 

compared to the reactions at O3 concentrations lower than 2 ppm. Experiments were 

carried out using oxygen as a benchmark (grey stars) to contrast to the results of 

ozonolysis. The first interpolation was that at low RH the reactions are faster as the 

decays are considerably more noticeable in plots at low RH. However, previous 

evidence (He 2017; Zeng 2013; Lee 2012) suggested that the uptake of ozone slightly 

increased at higher RH for highly unsaturated species, such as linoleic, linolenic and 

arachidonic acid, with no dependence on RH in the case of oleic acid. This means that 

the expected results would be the decays of the ratios of Gaussian area at high RH to be 

steeper than the decays at low RH, but this was not the case for the results presented 

here. These findings can be explained by the decomposition of ozone in water may 

decrease the rate of reactions when [O3] is to low, but when the concentration increased 

the saturation of gas is enough to be preserved, and it reacts with the fatty acid instead 

of water. This may also explain the constant intensity of the signal at 1663 cm-1 (C=C) 

throughout the reactions at [O3] lower than 4 ppm. 
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Figure 3.16 Decay of the ratio of Gaussian area of peaks C=C/CH2 obtained from the 

ozonolysis of oleic acid at different ozone concentrations under (a) low and (b) high 

relative humidity. Sizes of the droplets are displayed in the legend together with [O3]. 
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3.6.2 PALMITOLEIC ACID 

 

The Raman spectra obtained from the ozonolysis of palmitoleic acid at 32 ppm ozone 

concentration are shown in Figure 3.17. The reaction of ozonolysis of a droplet (140 μm 

in diameter) under low RH (Fig. 3.17 a) finished at the elapsed time of 85 min, while 

the ozonolysis of a droplet (diameter = 165 μm) at high RH (Fig. 3.17 b) was conducted 

for more than four hours. Both reactions showed many differences in the obtained 

spectra. At low RH the peaks located at 1270 and 1663 cm-1 corresponding to C=C 

deformation and C=C stretching respectively have decreased when the reaction finished. 

This feature is a clear indication of the cleavage of the carbon double bond. In addition, 

the peak at 3080 cm-1 corresponding to CH2 stretching is not visible at the end of the 

reaction. An increase of the peak situated between 850 and 900 cm-1 characteristic of 

peroxides is noticeable, as well as the emerged peak at 1750 cm-1 due to carbonyl 

groups, confirming the formation of aldehydes.  
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Figure 3.17 Raman spectra obtained from the ozonolysis of palmitoleic acid under low 

(a) and high (b) RH conditions. The [O3] was 32 ppm, and the diameter of levitated 

droplets were 140 μm (RH <10 %) and 165 μm (RH > 60%).  
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In the case of Raman spectra obtained from the experiments at high RH, after 85 min 

the bands at 1270, 1663, 3080, and between 800 and 900 cm-1 remain with minimal 

changes in intensity, suggesting a slowdown in the rate of reaction in comparison with 

the same reaction under dry conditions. No emerging peak at 1750 cm-1 is observed. 

Significant changes in intensity are visible after four hours of ozone exposure, with RH 

over 70%. The decrease of the characteristic bands for C=C and CH2 bonds and the 

slight rising of the typical peak of carbonyl compounds (1700-1750 cm-1) is observed; 

also the intensity of the peroxide band increased when the experiment finished after 270 

min.   

 

The effect of the relative humidity in the decay of Gaussian area of the peaks C=C/CH2 

obtained from the ozonolysis of palmitoleic acid at ozone concentrations between 0.8 

and 32 ppm is shown in Figure 3.18. Plots in (a) represent the experiments at low RH, 

while plots in (b) represent the experiments carried out at high RH. The gradual decay 

of the ratio when ozone concentration is augmented from 2 to 32 ppm is observed in (a). 

For lower concentrations (0.8, 1.2 and 2 ppm), the appearance of the plots indicates the 

reaction is occurring at very low rate. Plots in (b) show that palmitoleic acid 

experienced the ozonolysis apparently at a low rate compared to a higher ozone 

concentration. In both cases, the highest O3 concentration (40 ppm) showed the fastest 

decay. As mentioned in the previous section, palmitoleic acid tends to be more reactive 

than oleic acid, thus the decays of the ratio of Gaussian peak areas are expected to be 

sharper for both set of experiments using PA (low and at high RH), but this was not the 

case, and one possible reason could be that bigger droplet sizes are affecting the decays, 

but also the decomposition of O3 in water, as described in Equations 3.3 and 34.   
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Figure 3.18 Decay of the ratio of Gaussian area of peaks C=C/CH2 obtained from the 

ozonolysis of palmitoleic acid at different ozone concentrations under (a) low and (b) 

high relative humidity. Sizes of the droplets are displayed in the legend together with 

[O3]. 
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3.6.3 LINOLEIC ACID 

 

The Raman spectra in Figure 3.19 correspond to the ozonolysis of linoleic acid at 40 

ppm ozone concentration, for low (a) and high (a) relative humidity.  

 

The spectra show changes in the characteristic bands. By inspection of the spectra at 

low RH, it is evident that after 60 min the bands at 1270, 1660 and 3080 cm-1 attributed 

to C=C have only insignificant changes in intensity. The reaction proceeded for more 

than four hours, and changes in the intensity of bands occurred slowly. For example, 

after 170 min the band at 1270 cm-1 scarcely reduced its intensity, although changes 

were noticeable after 270 min when the experiment was stopped. The peak at 3080 cm-1 

has disappeared and the most representative band, at 1660 cm-1 was significantly 

reduced after 4hr 30 min, indicating the cleavage of C=C bonds. Formation of oxygen-

containing groups caused the emerging of peaks at 850 and 1750 cm-1, assigned to 

peroxides and carbonyl compounds, respectively.  

 

The Raman spectra obtained from the experiment of ozonolysis of linoleic acid at 32 

ppm and humid conditions showed that the reaction took place, but unlike the same 

reaction at low RH, the peak at 1663 cm-1 characteristic for the C=C bond maintained 

high intensity over the entire ozone exposure time. The reaction was stopped at 170 

min, and few changes were observed: the loss of intensity of the peaks at 1270 and 3080 

cm-1 indicate the breaking of the C=C bond, and the rising of the band characteristic for 

peroxides confirm that linoleic acid reacted with ozone. The appearance of a weak band 

around 1600 cm-1 indicates the formation of conjugated dienes, as stated by Lee and 

Chan (2007a). The peak that normally is located at 1750 cm-1 is still weak after 170 min 
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of reaction; this is an indication that the reaction follows a mechanism that involves the 

formation of different species apart from carbonyls. Zhou et al. (2014) found that the 

reaction of ozone with linoleic acid at the air/water interface yielded aldehydes such as 

hexanal, 3-nonenal and glyoxal, thus it is expected the emerging Raman signature of 

C=O located close to the high intensity band of C=C, as in the Raman spectra shown in 

Figure 3.19.   

 

The ratios of Gaussian area calculated for the peaks C=C/CH2 obtained from ozonolysis 

of linoleic acid at 40 ppm at low and high relative humidity was plotted, and the 

resultant charts are displayed in Figure 3.20. In most cases, the ratio increased due to 

the formation of products containing carbon-carbon double bonds, thus the peak at 1663 

cm-1 increase. In various Raman spectra at different concentrations the bands located at 

850, 1270, and 3080 cm-1 showed significant changes, this is an indication that linoleic 

acid reacted, but unlike oleic and palmitoleic acid, the reaction is probably following an 

alternative mechanism (autoxidation) leading to the formation of products that keep the 

double bond intact. These results were expected for ozonolysis of linoleic acid at 

concentrations lower than 4 ppm (Lee and Chan, 2007a); however, that was not the 

case. Only the reaction carried out at 32 ppm, and low RH showed a drop in the ratio of 

Gaussian area. It is possible to infer that both relative humidity and the size of droplet 

could affect the intensity of the carbon-carbon double bond peak. According to Zeng et 

al. (2013), given that the ozonolysis produces more hydrophilic compounds that can 

trap water, in addition to the fact that ozone is partially soluble in water, the residence 

time of ozone increase and therefore the uptake probability. This effect might favour the 

reaction to form more unsaturated species, thus the peak at 1663 cm-1 increases and 

therefore the ratios of the Gaussian areas. Also, species from water, such as OH- ion and 
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HO2 can destroy O3 (Staehelin and Hoigné, 1982), this may alter the concentration and 

therefore decrease the rate of reaction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.19 Raman spectra obtained from the ozonolysis of linoleic acid under low (a) 

and high (b) RH conditions. The [O3] was 32 ppm, and the diameter of levitated 

droplets were 115 μm (RH < 10 %) and 170 μm (RH > 70%).  
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Figure 3.20 Decay of the ratios of Gaussian area of peaks C=C/CH2 obtained from the 

ozonolysis of linoleic acid at different ozone concentrations under (a) low and (b) high 

relative humidity. Sizes of the droplets are included in the legend together with [O3]. 
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3.7 EFFECT OF RELATIVE HUMIDITY ON THE UPTAKE COEFFICIENT 

Table 3.5 Comparison of calculated uptake coefficient values (γ) obtained from 

ozonolysis of droplets oleic acid (OA), palmitoleic acid (PA) and linoleic acid (LA) at 

low and high RH.  

Fatty 

acid 
RH% 

[O3] 

ppm 

Initial 

diamete

r (µm) 

Total time 

of reaction 

(min) 

Final 

diameter 

(µm) 

γ 

OA 

<5 0.8 100 330 100 (1.14  0.13) x 10-4 

<5 1.2 100 300 100 (1.12  0.13) x 10-4 

<5 2 150 300 150 (2.57  0.13) x 10-4 

<5 4 120 190 115 (1.71  0.13) x 10-4 

≈10 32 140 75 135 (3.52  1.28) x 10-5 

53-66 0.8 125 330 125 (1.69  0.36)  x 10-4 

56-68 1.2 130 240 130 (1.14  0.36) x 10-4 

50-69 2 130 360 125 (6.52  3.59) x 10-5 

68-71 4 300 250 300 (9.75  3.59) x 10-5 

55-65 32 130 130 125 (2.18  3.59) x 10-5 

PA 

<10 0.8 105 230 105 (3.52  3.03) x 10-5 

<10 1.2 115 210 115 (6.22  3.03) x 10-5 

<10 2 100 240 100 (1.95  0.30) x 10-4 

<15 4 100 230 95 (8.10  3.03) x 10-5 

<10 32 140 85 135 (6.19  3.03) x 10-5 

64-73 0.8 150 270 150 (1.40  3.91) x 10-5 

56-70 1.2 140 240 140 (4.63  3.91)x 10-5 

61-67 2 160 360 160 (1.49  0.39)x 10-4 

59-71 4 165 300 165 (4.55  3.91)x 10-5 

59-77 32 170 270 160 (2.34  3.91)x 10-5 

LA 

<5 0.8 120 300 120 (1.27  0.72) x 10-3 

<5 1.2 95 300 95 (-6.30  0.07) x 10-4* 

<5 2 120 300 118 (2.87  0.07)  x 10-4 

<15 4 180 330 170 (2.20  0.07)  x 10-4 

<15 32 125 240 115 (1.80  0.72) x 10-5 

58-69 0.8 125 300 125 1.41 x 10-3 

67-69 1.2 160 300 155 -1.35 x 10-3* 

57-70 2 150 305 150 -7.56 x 10-4* 

57-73 4 170 300 170 3.37 x 10-4 

68-75 32 170 170 170 -4.82 x 10-5* 

* Negative values of γ, due to the slopes of plots have positive values 
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Table 3.5 summarises the reactive uptake coefficient calculated for ozonolysis of oleic, 

palmitoleic and linoleic acid at ozone concentration ranging from 0.8 to 32 ppm and 

different relative humidity percentages. It is important to mention that the reported 

uncertainty of these values was obtained as the average from a set of three experiments 

carried out at 40 ppm [O3] for each fatty acid at low relative humidity and only for OA 

and PA at RH higher than 60 %., it was not possible to carry out the same set of 

experiments with LA due to experimental limitations. The results of these experiments 

allowed the obtaining of γ at the half-life, the time when [FA] was the half of the initial 

concentration. Table 3.6 compares the values of uptake coefficient for each fatty acid in 

terms of RH and time of reaction (half-life and at the end of the reaction). 

 

Table 3.6 Uptake coefficient obtained from the ozonolysis of droplets of OA, PA and 

LA exposed to 40 ppm ozone concentration and under dry and humid conditions. Two 

values of γ were calculated for each fatty acid: half-life and at the end of the 

experiment. 

Fatty 

acid 

RH 

%  

Particle 

radius 

(µm) 

Half-

life 

(min) 

γ (half-life) 

Total time 

of reaction 

(min) 

γ (final) 

OA 

< 15 105 22 (9.03  9.19) x 10-5 60 (3.78  1.28) x 10-5 

> 50 143 38 (6.96  6.01) x 10-5 110 (2.88  3.59) x 10-5 

PA 

< 15 125 20 (1.38  2.20) x 10-4 70 (5.00  3.03) x 10-5 

> 50 133 55 (6.42  9.28) x 10-5 110 (3.18  3.91) x 10-5 

LA < 20 107 85 (3.90  2.61) x 10-5 155 (2.46  0.72) x 10-5 
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By comparing the uptake coefficients in Table 3.5, some tendencies were identified in 

the reactive uptake coefficient depending on RH%. For example, OA showed a slight 

decrease at very low [O3] when RH was augmented, then it increased at [O3] higher than 

2 ppm whereas palmitoleic acid experienced a fall in the value of uptake coefficient 

with increasing relative humidity.  

 

In contrast, the uptake coefficient obtained from ozonolysis of linoleic acid raised with 

higher RH. It is worth to mention that the values marked with (*) indicate the obtained 

number was negative, given that operative case 3 was applied for these experiments, 

which is exponential, and the slopes of these curves were positive (see Figures 3.19 and 

3.20). The discrepancies in the results for the other two fatty acids may be explained by 

the effect of the extra double bond C=C present in linoleic acid, as stated by He et al. 

(2017): the more unsaturation, the more dependence on relative humidity. Also, the 

study of ozonolysis of LA by Zeng et al. (2013) explained that uptake coefficient 

increased at higher RH due to LA can capture water molecules by forming hydrogen 

bonds, then this water can retain O3 molecules to augment their residence times and 

therefore the probability of higher values of γ. 

 

Concerning the values in Table 3.6, a comparison of the values of uptake coefficient of 

OA, PA and LA in terms of RH and time (half-life and at the end of the reaction). 

showed the tendency of γ to decrease throughout the reaction, also it was very clear that 

relative humidity affected the reaction of ozonolysis of oleic and palmitoleic acids, as 

the uptake coefficient was lower for experiments under humid conditions, although this 

may also be influenced by the particle size, because variations in size affect the reactive 

sites on the surface and have effects on values of uptake coefficient (He et al., 2017). 
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3.8 ANALYSIS OF PRODUCTS OF THE REACTION OF OZONOLYSIS OF 

FATTY ACIDS 

 

Several changes were observed during the ozonolysis of fatty acids. Raman spectra 

showed the formation of products such as aldehydes and peroxides. Numerous studies 

have reported the possible formation of products from ozonolysis of fatty acids such as 

oleic and linoleic acid. The evidence suggested that products are peroxides, 

hydroperoxides, and polymers among others. They are formed via different pathways, 

for example in secondary processes when the products react with each other, also when 

products react with water, or even some of them undergo new reactions with ozone 

(Vesna et al., 2009; Moise and Rudich 2002; Ziemann 2005; Lee et al., 2012; Katrib et 

al. 2004; Zeng et al. 2013; Zhou et al., 2014).  

 

This section will present the results of the analysis and identification of products using 

GC/MS and HS-SPME, and possible mechanisms are formulated from these findings. 

 

3.8.1 OLEIC ACID 

 

The mechanism of ozonolysis of oleic acid was shown in Figure 1.6 in Chapter 1; this 

reaction yields four main products: nonanal, nonanoic acid, azelaic acid and 9-

oxononanoic acid, and also the secondary chemistry produces additional products such 

as octanoic acid, hydroperoxides and polymers (Hung, Katrib and Martin, 2005). As 

shown in the schematic of Figure 1.5 (Chapter 1), it is clear that ozonolysis of oleic acid 

might also produce dimeric peroxides, esters, lactones, and ozonides. Ziemann (2005) 

proposed a mechanism of the reaction of ozone with pure oleic acid that produces a 
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variety of high molecular weight compounds such as hydroperoxides, oligomers, and 

diperoxides, in addition to the known aldehydes and carboxylic acids. Similarly, Vesna 

et al. (2009) described the reaction of ozone with oleic acid as a sequence of three steps, 

that involves secondary reactions between the Criegee intermediate (CI) 1 or 2 and any 

of these compounds: 1) water, to produce hydroperoxides; 2) carboxylic acids or 

aldehydes formed in the first step to yield secondary ozonides or α-acyloxyalkyl 

hydroperoxides (AAHP); 3) reaction of two CI to form diperoxides, and 4) reaction of 

polymerization between AAHP and CI to produce high molecular weight compounds.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.21 Chromatogram obtained from a levitated droplet of oleic acid exposed to 32 

ppm O3 concentration and low RH (<10%). The retention times of identified products 

are highlighted in red: 6.46, 7.15 and 8.22 corresponding to nonanal, octanoic acid and 

nonanoic acid respectively.  
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The analysis of products by GC/MS HS-SPME was carried out for the experiments of 

ozonolysis of oleic acid under dry and humid conditions and a high ozone concentration 

of 32 ppm. The chromatogram obtained from the ozonolysis of oleic acid at 32 ppm 

[O3]  and low RH (< 10%) is displayed in Figure 3.21, The retention times highlighted 

in red correspond to the compounds that were identified: 6.46 min corresponds to 

nonanal (MW 142), 7.15 min is due to octanoic acid (MW 144) and 8.22 min attributed 

to nonanoic acid (MW 158), their mass spectra are shown in Figure 3.22:. These mass 

spectra were compared to the reported MS by Rastogi (2015) and also the online 

spectral database (NIST Chemistry WebBook, NIST Standard Reference Database 

Number 69) in order to confirm they were nonanoic acid, nonanal and octanoic acid. 

Nonanoic acid (MW = 158) has peaks at m/z 129 and 115, from the loss of CH2CH3 and 

CH2CH2CH3 fragments, whereas nonanal shows spectral peaks at m/z 125 and 114, 

from the loss of H2O and C=O fragments, respectively. With respect to octanoic acid, 

the mass spectrum shows peaks at m/z 55, 73 and 115, they may be due to the loss of 

C3H7COO, C5H11 and C2H5 fragments respectively. These compounds were also 

observed in the mass spectra of the reaction of oleic acid with ozone at 32 ppm and high 

RH. Azelaic and 9-oxononanoic acids were not observed, but spectra of high-molecular 

weight compounds were obtained; they probably are formed from secondary reactions, 

confirming the presence of peroxides that were detected by Raman spectroscopy (see 

Raman spectra in Figure 3.15). 
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Figure 3.22 Mass spectra of a) nonanoic acid and b) nonanal and c) octanoic acid, 

obtained from the ozonolysis of oleic acid at 32 ppm and RH < 10%. 
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3.8.2 PALMITOLEIC ACID 

 

According to Weitkamp et al. (2008), the ozonolysis of palmitoleic acid should produce 

azelaic acid. Spencer and Kleiman (1978) found two main products from the ozonolysis 

of palmitoleic acid: a seven-carbon aldehyde and nine-carbon aldehyde-ester, the former 

compound might correspond to heptanal, whereas the latter probably might be a derived 

from 9-oxononanoic acid.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.23 Chromatogram obtained from a levitated droplet of palmitoleic acid 

exposed to 32 ppm O3 concentration and low RH (<10%). The retention times of 

identified products are highlighted in red: 4.44 and 8.27 corresponding to heptanal and 

nonanoic acid respectively.  
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The chromatogram obtained from the ozonolysis of palmitoleic acid at 32 ppm ozone 

concentration under dry conditions (< 10% RH) is shown in Figure 3.23. The retention 

times of two compounds are highlighted in red: 4.4 min assigned to heptanal and 8.27 

min, apparently corresponding to nonanoic acid. Nonanoic acid is an expected product 

of the ozonolysis of OA. However the analysis of the mass spectra evidenced the 

presence of these two compounds after comparison of the MS obtained from this 

reaction to the MS reported by Rastogi (2015) for the same compound. The presence of 

that unexpected product might be explained by the isomerisation of the 9C Criegee 

intermediate (Ziemann, 2005; Hung and Ariya, 2007) formed when primary ozonide is 

decomposed into heptanal and ECI2 after PA underwent the cleavage shown in Figure 

3.28 as “ac” (blue). The MS was also contrasted to the online spectral database (NIST 

Chemistry WebBook, NIST Standard Reference Database) confirming the formation of 

nonanoic acid as one of the products of this reaction. Figure 3.24 shows the mass 

spectra of nonanoic acid (a) and heptanal (b) obtained from the reaction of ozone with 

PA at 32 ppm and RH < 10. These compounds were also found in the mass spectra 

obtained from the reaction of ozonolysis at 32 ppm at high RH and 4 ppm at dry and 

humid conditions (RH < 10%). Moise and Rudich (2002) reported that azelaic and 9-

oxononanoic acids were formed in condensed-phase; these two compounds are not 

easily volatilised and adsorbed into the SPME fibre. Therefore they were not identified 

by GC/MS. Evidence of high-molecular weight in the mass spectra confirmed the 

presence of peroxides, as shown in the Raman spectra reported in Figure 3.17. 
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Figure 3.24 Mass spectra of a) nonanoic acid and b) heptanal, obtained from the 

reaction of ozone with PA at 32 ppm and RH < 10%.  
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3.8.3 LINOLEIC ACID 

 

The ozonolysis of linoleic acid is expected to yield a variety of products, including 

saturated and unsaturated carboxylic acids and unsaturated aldehydes since this fatty 

acid has two carbon-carbon double bonds to react with ozone. Thus the unsaturated 

products might react with ozone to form more products, as stated by Zhou et al. (2014), 

who suggested a mechanism of reaction of 3-nonenal with ozone to form 

malondialdehyde and glyoxal at the air-water interface air/water at high humidity 

conditions. Moise and Rudich (2002) proposed the formation of 2-nonenal and 4-

nonenal from isomerisation of 3-nonenal, and the formation of 1-hexenal, based on 

evidence from mass spectra of ozonolysis of linoleic acid, their pathway includes the 

formation of azelaic, 9-oxononanoic, 3-nonenoic and 3-dodecenedioic acids.  

 

Figure 3.25 depicts the chromatogram obtained from the ozonolysis of linoleic acid 

exposed to 32 ppm O3 concentration and low RH (<10%), the retention time of four 

products are highlighted in red: 3.56 min (hexanal), 5.71 min (hexanoic acid), 6.59 min 

((Z)-non-3-enal ) and 8.99 min ((Z)-non-3-enoic acid). These four compounds were 

identified by comparison of the mass spectra shown in Figure 3.26 to the spectral 

database (NIST Chemistry WebBook, NIST Standard Reference Database). They were 

present at the highest [O3] and under dry conditions. However their presence was not 

evident in all cases, for example hexanal was also present at O3 exposure of 4 ppm and 

low RH, whereas (Z)-non-3-enoic and (Z)-non-3-enal were not detected at 4 ppm [O3] 

under high RH, and hexanoic acid was only detected when [O3] was 40 and RH was 

<10%.  
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The expected products of the ozonolysis of linoleic acid are shown below in Figure 3.29 

and Figure 3.30. These products are: a) saturated chain: hexanal, hexanoic acid, azelaic 

acid, and 9-oxononanoic acid; b) unsaturated chain: (Z)-non-3-enal (NA), (Z)-non-3-

enoic acid (NEA), (9Z)-12-oxododec-9-enoic acid (ODDEA), and (Z)-dodec-3-enedioic 

acid (DDEA). Additional reactions might occur with ozone and the double bond of the 

unsaturated products mentioned in b) to form new products. Table 3.7 summarises the 

likely compounds from the second reaction of ozone with these unsaturated products 

and the sources of each product.  

 

Table 3.7 Likely compounds formed from the second ozonolysis of unsaturated 

products during ozonolysis of linoleic acid. 

Product name Source* MW 

Propanedioic acid DDEA, NEA 104 

9-oxononanoic acid 

3-oxopropanoic acid 

Azelaic acid 

Malondialdehyde (MDA) 

DDEA, ODDEA 172 

DDEA, ODDEA, NA, NEA 88 

DDEA, ODDEA 188 

NA, ODDEA 72 

Hexanal NA, NEA 100 

Hexanoic acid NA, NEA 116 

*Assigned abbreviations: (Z)-non-3-enal (NA), (Z)-non-3-enoic acid (NEA), (9Z)-12-oxododec-9-enoic 

acid (ODDEA), and (Z)-dodec-3-enedioic acid (DDEA). 

 

These findings are in accordance with Zhou et al. (2014), who reported n-hexanal and 3-

nonenal as main products of the reaction of ozone with LA monolayers, suggesting the 

possibility of decomposition of the primary ozonide to form these two compounds in the 
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gas phase. In humid conditions, some aldehydes and carboxylic acids formed are likely 

hydrophilic and tend to trap water molecules forming hydrogen bonds, then they stay in 

the condensed-phase, this may explain why they do not appear in the mass spectra of 

ozonolysis carried out at high RH. This might also be the case for azelaic and 9-

oxononanoic acids; they are probably staying in the condensed phase, and therefore 

were not detected in the mass spectra obtained. Spectral evidence showed peaks of high 

molecular weight compounds, probably due to the formation of peroxides, ozonides and 

hydroperoxides, confirming the results of the Raman spectra shown in Figure 3.5.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.25 Chromatogram obtained from a levitated droplet of linoleic acid exposed to 

32 ppm O3 concentration and low RH (<10%). The retention times of identified 

products are highlighted in red: 3.56, 5.71, 6.59 and 8.99 corresponding to hexanal, 

hexanoic acid, (Z)-non-3-enal and non-3-enoic acid respectively.  
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Figure 3.26 Mass spectra obtained from the ozonolysis of LA at 32 ppm O3 

concentrations and low RH (<10%). 
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3.9 DISCUSSION 

3.9.1 RAMAN SPECTRA OF FATTY ACIDS 

 

Raman spectra obtained from ozonolysis of OA and PA showed the decrease of the 

peak corresponding to carbon-carbon double bond. LA showed a different behaviour 

depending on the concentration of ozone. It was observed an increase of the Raman 

signature of C=C at low O3 concentrations; this suggested the formation of compounds 

containing double bonds. This finding was consistent with the reported by Lee and 

Chan (2007a), who attributed the results to the autoxidation of linoleic acid at low O3 

concentrations, and it is believed that the reaction may follow an alternative mechanism 

with the formation of a diradical from the reaction of ozone with the double bond, as 

suggested by Lee and Chan (2007a) and Pryor (1994). It was also observed the 

formation of a small band at ≈1600 cm-1 during the ozonolysis of LA, confirming the 

presence of conjugated structures, such as dienes (Lee and Chan, 2007a). However, 

ozonolysis of LA at O3 concentrations over 12 ppm also showed the reduction of the 

band attributed to C=C, and it was verified that this FA is more reactive that oleic acid 

due to the additional C=C, in agreement with the reported by Lee and Chan (2007a) and 

Hearn and Smith (2004).  

 

3.9.2 REACTIVE UPTAKE COEFFICIENT  

 

It was reported that reactive uptake of ozone might be affected by ozone concentration, 

particle size, RH and the number of double bonds (He et al., 2017). The results of 

uptake coefficient obtained in this study showed an evident dependence in size, but not 

constant tendencies at low and high RH. He et al. (2017) reported no RH dependence 
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for the reaction of ozone with OA, but an insignificant RH dependence for the 

ozonolysis of LA. It was also observed that the uptake coefficient tended to decrease 

over the time for oleic and palmitoleic acid, probably due to a reduction of active sites 

because of the reduction in size. On the contrary, the uptake coefficient of LA increased 

over the time, and this may be due to LA is polyunsaturated, with one extra reactive site 

to react with ozone. These results are in accordance with the reported by Moise and 

Rudich (2002) who observed that reactivity is related to the number of unsaturated 

bonds, this structural difference between OA and LA may lead to higher availability of 

the double bonds present on LA. Weitkamp reported 30% higher reactivity of PA 

compared to OA. In this study, PA showed a faster rate of decay when compared to OA. 

Although a higher uptake coefficient of O3 was expected for the ozonolysis of PA when 

compared to OA, the calculated values were lower. However, the uptake coefficient 

indicates that more O3 molecules have been adsorbed on the surface, which causes the 

saturation of the reactive sites; with this saturation, the reaction remains invariable until 

reactive sites are available (Zeng, 2013). From the evidence of this study and taking into 

account that ozone diffusion probably occurred either near or at the surface, structural 

effects of the reactants in addition to the surface area of the droplet of the fatty acids and 

increasing O3 concentrations may affect the uptake coefficient of ozone on PA. 

Nevertheless, results from this study suggests that high uptake coefficient values will 

not guarantee faster reactions.  

 

Tables 3.8 and 3.9 summarise the comparison of the γ values calculated in this study for 

OA and LA under dry and humid conditions to the ozone uptake coefficient reported in 

previous studies. Given the little information concerning to palmitoleic acid in the 

literature, the calculated values for this fatty acid were unable to be compared here.  
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Under dry conditions, two studies used very similar techniques or conditions, for 

example the ozone uptake coefficient obtained of the ozonolysis of a 120 μm droplet of 

oleic acid at 30 ppm [O3] by Rastogi (2015) was appreciably higher than the reported 

here using the same method and technique and very similar [O3] and particle size. The 

majority of previously reported studies show ozone uptake coefficient values in the 

order of 10-3 and 10-4, which is considerably higher than the γ obtained in this study. 

Many factors may explain these differences, for example, the particles used in the 

majority of these studies were significantly smaller than the droplets used here, and also 

the high ozone concentrations applied in the experiments reported here probably caused 

lower uptake coefficient values. Likewise, the values of uptake coefficient obtained 

from ozonolysis of droplet of LA at 4 and 40 ppm ozone concentration and low RH 

were also lower than the γ reported by He et al (2017) and Zeng et al (2013), probably 

due to the different experimental conditions (droplet size and [O3]).  

 

Under humid conditions (see Table 3.9), the uptake coefficient calculated from 

experiments of ozonolysis of OA and LA were close to the values founded in the 

literature. For example in a study of the reaction of OA and O3 conducted by Al-Kindi 

et al. (2016) using aerosol flow tube with smaller droplets and similar [O3] and RH the 

uptake coefficients were similar to the values presented here. For the case of LA, the 

uptake coefficients calculated here were compared to the work by Zeng et al. (2013) and 

also Thornberry and Abbatt (2004), finding some discrepancies that may be attributed to 

the different experimental conditions used for these workers.
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Table 3.8 Comparison to other studies of uptake coefficients from ozonolysis of OA and LA under dry conditions.   
 

   This study Rastogi (2015) He et al (2017) Zeng et al (2013) Mendez et al (2014) 

  

Method and 

detection 

technique 

Acoustic levitation 

combined with Raman 

microscopy 

Acoustic levitation 

combined with Raman 

microscopy 

Gas-flow system 

combined with 

micro-FTIR 

Flow reactor coupled to 

ATR- FTIR(1) 
Aerosol flow tube  

Oleic acid 

Particle 

diameter (μm) 

Two droplets. Particle 

diameter: 125 
120 50-200 

N/A 

0.15 

[O3] 

(molecules/cm3) 
2.96 x 1014 and 7.78 x 1014 7.88 x 1014 

Increases from 1,25 

x 1014 to 1.00 x1015 
6.16 x 1011- 2.71 x 1013 

Temperature 

(K) 
298 » 298 298 295 (± 2) 

Uptake 

coefficient 

(6.141.28) x 10-5 and 

(4.231.28) x 10-5 
2.52 x 10-4 

Decreases from 

2.06 x 10-3 to 1.32 x 

10-3 

(1.0 ± 0.2) x 10-3 

Identified 

Products 
Nonanal, nonanoic acid 

Nonanal, nonanoic acid, 9-

oxononanoic acid, azelaic 

acid, octanoic acid 

N/A 

Nonanoic acid, azelaic 

acid, 9-oxononanoic 

acid 

Linoleic 

acid 

Particle 

diameter (μm) 

Two droplets. Particle 

diameter: 155 and 150 

N/A 

50-200 Film thickness = 0.2 

N/A 

[O3] 

(molecules/cm3) 
9.85 x 1013 and 9.85 x 1014 

Increases from 1,25 

x 1014 to 1.00 x1015 

Increase from 6.16 x 1012 

to 8.62 x 1012 

Temperature 

(K) 
298 298 293 

Uptake 

coefficient 
9.0 x 10-5 and 2.3 x 10-5 

Increases from 2.18 

x 10-3 to 1.47 x 10-3 

(5.08 ± 0.44) x 10-4 to 

(3.48 ± 0.18) x 10-4   

Identified 

Products 

Hexanal, hexanoic acid, non-

3- enoic acid, (Z)-non-3-enal 
N/A N/A 

(1) Attenuated total reflection FT infrared spectroscopy.  
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Table 3.8 (Continued). Comparison to other studies of uptake coefficients from ozonolysis of OA and LA under dry conditions. 

   Hung and Tang (2010) Nash et al. (2006) Hearn and Smith (2004) Morris et al. (2004) 
Thornberry and Abbatt 

(2004) 

  

Method and 

detection 

technique 

ATR-FTIR 

Flow tube reactor 

coupled to Single-

particle MS 

Aerosol flow tube 

coupled to aerosol 

CIMS(2) 

Aerosol flow tube 
Coated-wall flow tube 

coupled to CIMS 

Oleic acid 

Particle 

diameter (μm) 
 10 2 0.8 (average) 0.2-.06 Not specified 

[O3] 

(molecules/cm3) 
1.11 x 1013 5.9 x 1014   (2-3) x 1015 2.46 x 1015 9.85 x 1015  

Temperature 

(K) 
25 Not specified Not specified Not specified 298 

Uptake 

coefficient 
3.43  11.4  x 10-4 3.4 (± 0.3) x 10-4 (7.5 ± 1.2) x 10-4 (1.6 ± 0.2) x 10-3 (8.01 ± 0.3) x 10-4 

Identified 

Products 
N/A N/A 

Nonanal, 9-oxononanoic 

acid, nonanoic acid, 

azelaic acid 

N/A Nonanal 

Linoleic 

acid 

Particle 

diameter (μm) 

N/A N/A 

0.8 (average) 

N/A 

Not specified 

[O3] 

(molecules/cm3) 
(2-3) x 1015 9.85 x 1015  

Temperature 

(K) 
Not specified 298 

Uptake 

coefficient 
(1.1 ± 0.2) x 10-5 (1.33 ± 0.3) x 10-3 

Identified 

Products 

Hexanal, hexanoic acid, 

nonenal, 9-oxononanic 

acid, azelaic acid 

Nonenal, hexanal 

(2) Chemical ionization mass spectrometry. 
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Table 3.8 (Continued). Comparison to other studies of uptake coefficients from ozonolysis of OA and LA under dry conditions. 

 

   
Moise and Rudich 

(2002) 
Smith et al. (2002) 

  

Method and 

detection 

technique 

Cylindrical rotating 

wall flow reactor 

coupled to MS 

Aerosol flow tube 

coupled to a Single -

particle MS 

Oleic acid 

Particle 

diameter (μm) 
Not specified 0.68-2.45 

[O3] 

(molecules/cm3) 
8 x 109 - 2 x 1011 

1.48 x 1014 - 2.46 x 

1015 

Temperature 

(K) 
286-291 Not specified 

Uptake 

coefficient 
(8.3 ± 0.2) x 10-4 5.8-9.8 x 10-3 

Identified 

Products 
Azelaic acid 

Nonanoic acid,  9-

oxononanoic acid 

Linoleic 

acid 

Particle 

diameter (μm) 
Not specified 

N/A 

[O3] 

(molecules/cm3) 
8 x 109 - 2 x 1011 

Temperature 

(K) 
274-265 

Uptake 

coefficient 
(1.2 ± 0.2) x 10-3 

Identified 

Products 

2-nonenal, 4-nonenal, 

hexanal 
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Table 3.9 Comparison to other studies of uptake coefficients from ozonolysis of OA and LA under humid conditions.   

(1) Scanning mobility particle sizer. (2) Aerosol time-of-flight mass spectrometer. (3) Attenuated total reflection FT infrared spectroscopy. (4) Chemical ionization mass spectrometry. 

 
 

This study Al-Kindi et al (2016) Zeng et al (2013) Vesna et al (2009) 
Thornberry and 

Abbatt (2004) 

 
Method and detection 

technique 

Acoustic levitation 

combined with 

Raman 

microscopy 

Aerosol flow tube 

coupled to SMPS(1) and 

ATOFMS(2) 

Flow reactor coupled 

to ATR- FTIR(3) 

Aerosol flow reactor 

combined with GC-MS 

Coated-wall flow 

tube coupled to 

CIMS(4) 

Oleic 

acid 

Particle diameter (μm) Two droplets. 130 0.015-0.667 

N/A 

Geometric mean diameter = 

7.8 x 10-2 

N/A 

[O3] (molecules/cm3) 
2.96 x 1013 and 7.88 

x 1014 
4.93 x 1014 1.23 x 1013 

Temperature (K) 298 298 298 

RH% 50 - 70 65.0 ± 0.2 65 

Uptake coefficient 
1.1 x 10-4 and 2.2 x 

10-5 
2.40 ± 0.3 x 10-4 » 10-4 

Identified Products N/A 

 9-oxononanoic acid, 

nonanal, nonanoic acid, 

azelaic acid 

Nonanal, nonanoic acid, 9-

oxononanoic acid, azelaic 

acid 

Linoleic 

acid 

Particle diameter (μm) Two droplets. 70 

N/A 

Film thickness = 0.2 

N/A 

Not specified 

[O3] (molecules/cm3) 
9.85 x 1013 and 7.88 

x 1014 
6.16 x 1012 9.85 x 1015  

Temperature (K) 298 293 263 

RH% 57 - 75 From 0 to 55 55 

Uptake coefficient 
3.4 x 10-4 and 4.8 x 

10-5 

(5.08 ± 0.44) x 10-4 -

(9.52 ± 1.21) x 10-4   
(1.20 ± 0.06) x 10-3 

Identified Products N/A N/A Nonenal, hexanal 
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3.9.3 PRODUCTS OF THE OZONOLYSIS OF FATTY ACIDS 

 

It is known that the reaction of ozone with olefins generates oxygen-containing 

compounds, such as aldehydes and ketones (Wade, 2013) but also peroxides (Criegee, 

1975). In the case of fatty acids, it is expected that carbonyl compounds and carboxylic 

acids will be formed. Pryor et al. (1995) stated that the presence of water leads to form 

two moles of aldehyde and one mole of hydrogen peroxide.  

 

From ozonolysis of OA, C9 aldehydes and C9 carboxylic acids, such as nonanal, azelaic 

acid, nonanoic acid and 9-oxononanoic acid are the main expected products; but this 

reaction can also yield more products from secondary reactions. Hung et al., (2005) 

proposed a mechanism of formation of octanoic acid, CO2 and azelaic acid from the 

isomerization of one of the Criegee intermediates, this reaction is shown in the Figure 

3.27. Ziemann (2005) and Lee and Chan (2007b) stated that the ozonolysis of OA also 

produces peroxidic products and Vesna (2009) suggested a mechanism of ozonolysis of 

OA at high RH, with the formation of hydroperoxides, peroxides and polymeric 

products. Although products were not quantified, the mass spectra provided the 

evidence to confirm the bands appearing in the Raman spectra, corresponding to 

carbonyl compounds, peroxides and the cleavage of the double bond to form these 

products. Mass spectra of the products of the ozonolysis of OA showed the presence of 

nonanoic acid and nonanal. There was no evidence of azelaic and 9-oxononanoic acid, 

as they probably are present in the condensed-phase. The formation of high molecular 

weight compounds such as peroxides was also confirmed under dry and humid 

conditions, being AAHP identified in the MS. These results are in agreement with the 

reported in the previous studies and demonstrated that the products of ozonolysis of OA 

were mainly aldehydes and peroxides. 



122 

 

 

 

 

 

 

 

 

 

 

Fig. 3.27 Proposed mechanism of conversion of the Criegee intermediate I into azelaic 

and octanoic acids by isomerisation (from the mechanism shown in Fig. 1.6).  

 

 

Similarly, the ozonolysis of PA has been reported to yield C7 and C9 carbonyl 

compounds and carboxylic acids, such as heptanal and azelaic acid (Spencer and 

Kleiman, 1978; Weitkamp et al., 2008). However, to the best of author’s knowledge, the 

mechanism of ozonolysis of PA via Criegee intermediate has not been reported yet. It is 

known that this carboxylic acid reacts with ozone to form carboxylic acids and 

aldehydes following a Criegee intermediate mechanism, the mechanism shown in 

Figure 3.28 is proposed to explain the reaction of ozonolysis, based on Criegee (1975), 

obtaining products such as heptanoic acid, heptanal, and also azelaic and 9-oxononanoic 

acid, and also products of secondary reactions, such as the isomerisation of the Criegge 

intermediate ECI 2 to form nonanoic acid (Ziemann, 2005;, Hung and Ariya, 2009). The 

MS obtained from ozonolysis of PA showed the presence of heptanal and nonanoic 

acid, also it is presumed that high molecular weight compounds should be formed from 
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the ozonolysis of palmitoleic acid, similar to the products obtained from ozonolysis of 

OA, but they were not included in the mechanism shown in Figure 3.28. Thus, the MS 

confirmed two of the expected products and the results showed in the Raman spectra of 

ozonolysis of PA that contained characteristic bands of carbonyls and peroxides.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.28 Proposed mechanisms of ozonolysis of PA, based on Criegee (1975), Hung 

& Ariya (2007) and Ziemann (2005) 
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LA has been reported to produce C9 and C6 aldehydes, C9 and C6 carboxylic acids, 

peroxides, hydroperoxides, but unlike OA and PA, the products may contain C=C, and 

this generates C9, C6 and C3 oxygen-containing secondary products (Moise and 

Rudich, 2002; Zhou et al., 2014). Lee and Chan reported the formation of conjugated 

dienes and peroxidic products of autoxidation. Raman spectra obtained from ozonolysis 

of LA showed carbonyls, conjugated dienes, and peroxidic compounds were possibly 

formed during the reaction. Mass spectra obtained from the ozonolysis of LA confirmed 

some of the expected products: hexanal, hexanoic acid, (Z)-non-3-enal and (Z)-non-3-

enoic acid were formed. The presence of high molecular weight products such as 

peroxidic compounds was confirmed by MS (m/z = 355).  

 

Following the mechanism stated by Criegee (1975) for ozonolysis of an unsaturated 

compound, the reaction of ozone with LA may form the products proposed in the 

schemes of Figures 3.29 and Figure 3.30. The former corresponds to the reaction 

between O3 and the C12-C13 double bond, whereas the latter illustrates the cleavage of 

the C9-C10 double bond.  
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Figure 3.29 Proposed mechanism of reaction of ozone with the C12-C13 double bond of 

linoleic acid, based on Criegee (1975). 
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Figure 3.30 Proposed mechanism of reaction of ozone with the C9-C10 double bond of 

linoleic acid, based on Criegee (1975). 
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CHAPTER 4 

OZONOLYSIS OF SELF ASSEMBLED MIXTURES OF FATTY 

ACIDS 

 

 

Surfactants (surface active agent) are amphiphilic molecules that usually consist of two 

differentiated parts, a polar head group which is joined to a non-polar chain (Tiddy, 

1980). It has been estimated that at least 10% of the organic fraction of atmospheric 

aerosols is composed of surfactants (Nájera, 2007; Latif and Brimblecombe, 2004). The 

impact of these surfactants on the physical and chemical properties of atmospheric 

aerosols is still poorly understood. They can act in several ways for instance, at the 

air/liquid interface as surface films of atmospheric particles and form organic 

aggregates in aqueous solution. Thus they affect the absorption properties of water and 

gases among other effects (Nájera, 2007). The formation of organic films at the surface 

can influence the mass transfer of water through the droplet surface as well as the gas-

phase content and the properties of bulk solution and therefore the chemical behaviour 

(Davies et al., 2012).   

 

Previous studies have reported the hygroscopic growth of atmospheric aerosols by using 

Raman microscopy to assess the effect of absorption or loss of water content in size, 

changes of phase, morphology, products of reaction, and reactivity of levitated droplets, 

as Raman spectroscopy is a very sensitive technique to identify phase changes and 

molecular interactions in levitated droplets (Lee et al., 2008). Sodium oleate (SO) is the 

salt of oleic acid, these two compounds are commonly selected as proxies in 

atmospheric studies, given their ubiquity and atmospheric relevance (Nájera, 2007). 
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This Chapter will present the results of the reaction of ozone with droplets of self-

assembled mixtures containing fatty acid (either oleic or palmitoleic acid), sodium 

oleate and NaCl solution that were prepared as described in Section 2.4.7 as proxy for 

atmospheric aerosols.  

 

4.1 RAMAN SPECTRA OF MIXTURES OF FATTY ACIDS 

 

The mixture droplet exists in self-assembled planes (Pfrang et al., 2017), a lamellar 

system that is highly viscous (see Figure 4.1). In these conditions, it is crucial to 

maintaining high humid conditions, in order to ensure the adequate humidity and avoid 

the water evaporation and therefore the solidification of the droplet (Seddon et al., 

2016). Thus, in most of the experiments carried out in this study, RH was kept over 

50%. Sodium oleate is known to exhibit micellization and coagelization at critical 

temperatures, and Raman spectra can detect these phase transitions (Wong and 

Mantsch, 1983). Figure 4.2, 4.3 and 4.4 show the Raman spectra obtained from the 

reaction of O3 with droplets of a mixture of oleic acid with SO and NaCl at ozone 

concentration of 32, 20 and 4 ppm respectively. It is known that Raman spectroscopy is 

highly sensitive to the intramolecular forces, such as hydrogen bonds, helping to 

elucidate the multiple interactions of water with ions and molecules in the aerosol 

particle (Lee et al. 2008, Carey and Korenowski, 1998).  Therefore, the high intensity 

bands corresponding to OH stretching vibration, located at ≈ 3450 cm-1 in Figure 4.2 

and 4.3 are present due to the effect of high RH (in this case, >75%) in the 

deliquescence of the droplet of mixture, as water can have different types of 

intramolecular interactions (ion-dipole forces and hydrogen bonds) with NaCl and with 

other water molecules and ions present in the dissolution (Carey and Korenowski, 1998, 
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Sun 2012).  

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Model of the self-assembled layers. Bilayers of fatty acids are stacked 

forming a lamellar phase with the polar heads of FA attaching the water. 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Raman spectra obtained from the reaction of O3 with a mixture droplet of 

oleic acid, SO and NaCl 32 ppm O3 (d = 125 μm) and a RH between 80 and 86%.  
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Figure 4.3 Raman spectra for the reaction of a mixture droplet of oleic acid, SO and 

NaCl (d = 255 μm) with O3 at a concentration of 20 ppm and RH in the range of 76 to 

80%.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 Raman spectra obtained from the reaction of a levitated mixture droplet of 

oleic acid, SO and NaCl (d = 130 μm) with O3 at 4 ppm and RH around 50 %. 
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The pictures in Figure 4.5 show the levitated droplets in the experiments of ozonolysis 

of droplets of mixture carried out at (a) 32 and (b) 4 ppm ozone concentration. Once the 

droplets were levitated they tended to shrink and change the size, as a consequence of 

the reduction in water content, in some cases the appearance of the droplet indicated 

that it was not solidified, as seen in Figure 4.5 (a) when the relative humidity remained 

at high values. Additionally, changes in size were observed during the reaction. These 

observations confirm the Raman band at ≈ 3450 cm-1 shown in Figure 4.2, 

corresponding to the different stretching OH vibrations of water (Sun, 2009). Also, the 

presence of NaCl intensifies the band at 3450 cm-1, this may be due to the concentration 

of salt increased with the evaporation of water. At moderate values of RH (≈ 50%), the 

droplets tended to lose a significant mass of water, and then they undergo phase 

transformations, before the ozone exposure started, as can be seen in Figure 4.5 (b). In 

this case the O3 exposure concentration was 4 ppm, and changes in size during the 

reaction were not observed. The Raman spectra in Figure 4.4 showed the low content of 

water, with absence of the characteristic high-intensity band at ≈ 3450 cm-1 in the 

spectra taken after 3 and 6 hours of ozone exposure, only the spectrum taken before 

starting the reaction showed a very small band in that region, confirming the visual 

appearance of a liquid at these three different times. Despite the evident reduced water 

content, it was observed that the reaction of oleic acid with ozone (4 ppm) proceeded 

and products such as aldehydes, and peroxides were formed while the characteristic 

bands of C=C at 3080, 1663 and 1272 cm-1 were reduced. Same observations in the 

intensity of bands in Raman spectra obtained at 20 and 32 ppm [O3] indicate that 

ozonolysis of OA also occurred. 
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Figure 4.5 Levitated droplets of the mixture OA-SO-NaCl reacting at (a) 32 ppm [O3], 

and (b) 4 ppm [O3]. In the upper photo row (a), the first picture shows the droplet few 

seconds after levitation, and then its size was rapidly reduced. The lower photo row (b) 

shows the that the droplet was remarkably reduced in size after levitation to some extent 

that first photo was not captured, this droplet had significant loss of water content and 

showing visually observable phase change. 

  

The Raman spectra in Figures 4.6 and 4.7 correspond to reactions of O3 with droplets of 

a mixture of PA-SO and NaCl at 32 ppm and 4 ppm ozone concentration respectively. 

These spectra show the loss of water content of droplets; however, the pictures taken 

few seconds after levitation reveal that phase transformation was not observed in the 

case of the droplet reacting at 4 ppm. On the contrary, the droplet exposed to 32 ppm 

[O3] tended to become highly viscous, but probably during the reaction the hydrophilic 

compounds formed retained water molecules, then the deliquescence of this droplet was 

recovered, evidence of this is shown in the spectra in Figure 4.6 with an emerging band 

at 3450 cm-1 corresponding to the stretching vibrations of water. As can be seen in the 

spectra in Figure 4.6, reactions of ozone with C=C present in the molecules of 

palmitoleic acid took place, as the intensity of peaks at 3080, 1663 and 1272 cm-1 was 
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reduced, and the characteristic peak of aldehydes at 1750 cm-1 slightly emerged. It 

worth mentioning that water also shows bands at 1645 cm-1, corresponding to OH 

bending, this may explain the broadening at the bottom of the band, which caused some 

difficulties during the deconvolution of the peak corresponding to C=C that is 

overlapped with OH bending band. The spectra in Figure 4.7 show that some water was 

retained into the core of the droplet, and the reaction proceeded at a very slow rate.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 Raman spectra obtained from the reaction of levitated droplets (d=140 μm).  

of a mixture of palmitoleic acid, SO and NaCl with ozone at 32 ppm and humid 

conditions (RH 63-71%)  
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Figure 4.7 Raman spectra obtained from the reaction of levitated droplets (d=115 μm).  

of a mixture of palmitoleic acid, SO and NaCl with ozone at 4 ppm and humid 

conditions (RH 65-67%)  
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4.2 REACTIVITY OF MIXTURES OF FATTY ACIDS.  

 

The chemical reactivity of the self-assembled mixtures of oleic and palmitoleic acid is 

compared to the reactivity of the pure fatty acids. The diameter of levitated droplets of 

oleic acid and its mixture was 125 μm, while the diameter of droplets of palmitoleic 

acid and its mixture was 140 μm. The decay of the ratio of Gaussian area of C=C/CH2 

peaks for oleic acid, and mixture OA-SO-NaCl is shown in Figure 4.8 (a), whereas 

Figure 4.8 (b) corresponds to the decay for palmitoleic acid and the mixture PA-SO-

NaCl. 

 

Pure fatty acids showed a faster decay of C=C band, whereas this band showed slower 

decay in the spectra of self-assembled mixtures. Slopes obtained from plots indicate that 

pure OA reactivity is 11 times higher compared to the corresponding mixture, whereas 

pure PA is eight times more reactive than its mixture. These results suggest that self-

assembly occurring in these mixtures diminishes the rate of reaction of ozonolysis of 

fatty acids.  
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Figure 4.8 Comparison of reactivities of pure oleic (a) and palmitoleic acids (b) and its 

internal mixtures at 32 ppm ozone concentration. The levitated droplets of OA and 

mixture OA-SO-NaCl were 125 μm in diameter, while levitated droplets of PA and 

mixture PA-SO-NaCl were 140 μm in diameter. 
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Uptake coefficients of these reactions were calculated following the procedure 

described in Section 3.2 of Chapter 3, the data obtained for each experiment were 

plotted, and in all cases it was found that the best fit was quadratic, therefore based on 

Table 3.2, it was inferred that Case 2 was operative for all the results presented here. 

The resultant uptake coefficients are shown in Table 4.1. As can be seen, γ was affected 

by the droplet size, O3 concentration and nature of carboxylic acid. Given that with a 

greater surface area and lower content of ozone molecules, the droplet might capture 

more ozone at the surface, leading to a higher uptake. For the case of the mixture OA-

SO-NaCl, it is observed the increasing of uptake coefficient with the increasing [O3]. 

Figure 4.9 depicts the decay in the ratio of Gaussian area of the peaks C=C/CH2 of 

levitated droplets of the mixture OA-SO-NaCl reacting with ozone at 4, 20 and 32 ppm, 

the maximal decay occurred at 4 ppm [O3], which corresponds to the highest value of γ, 

whereas the minimal decay was obtained at 20 ppm [O3], it may be attributed to the size 

of the droplet levitated for this experiment. Likewise, the mixture PA-SO-NaCl showed 

the similar tendency to reduce the value of γ with higher ozone concentrations. 

However, the reactivity of this mixture was augmented when [O3] increased, as shown 

in Figure 4.10. Due to unfavourable experimental conditions, sets of three or more 

experiments for each mixture at different [O3] were unable to be repeated. Therefore the 

values of uptake coefficient reported in Table 4.1 and linear fits in Figures 4.9 and 4.10 

do not include the uncertainty.  
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Table 4.1 Comparison of calculated uptake coefficient values (γ) obtained from 

ozonolysis of droplets of pure OA and PA at low RH (10%) and mixtures of 3% fatty 

acid (OA or PA) with SO (1:1 ratio FA/SO) and 97% of a solution of NaCl (10g/mL).  

 

Mixture 

Initial 

diameter 

(µm) 

[O3] 

ppm 

Total time 

of reaction 

(min) 

Final 

diameter 

(µm) 

γ 

OA-SO-

NaCl 

130 4 300 125 1.52 x 10-6 

255 20 360 240 3.59 x 10-7 

125 32 240 110 9.76 x 10-8 

Pure OA 125 32 90 115 (1.37  3.59) x 10-5 

PA-SO-

NaCl 

115 4 180 115 1.52 x 10-6 

140 32 180 140 2.68 x 10-7 

Pure PA 140 32 85 135 (6.19  3.91) x 10-5 

 

 

The calculated values of γ obtained from ozonolysis of droplet mixtures at 32 ppm [O3] 

are compared to the values obtained from experiments carried out at low RH using pure 

oleic and palmitoleic acids at same ozone concentration and same droplet diameter. As 

expected, pure fatty acids exhibit faster decay and higher ozone uptake coefficient, as 

sodium oleate can form micelles, providing a film at the surface of the droplet, making 

adsorption of ozone more difficult and therefore reducing the uptake coefficient values. 

Also the presence of water in the ozonolysis of self-assembled mixtures may contribute 

to the decomposition of ozone in water, affecting the rate of reaction and uptake 

coefficient of ozone. Table 4.2 summarises the comparison of the uptake coefficient 

obtained from the ozonolysis of mixture OA-SO-NaCl at 7.88 x 1014 molecules/cm3 (32 

ppm) to the values obtained in previous studies. Rastogi (2015) reported values of γ in 

the order of 10-5 at 6.89 and 9.85 x 1014 molecules/cm3 [O3] and RH% < 10 for droplets 
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of OA-SO-NaCl mixture in a range size from 107 to 170 μm, the discrepancies may be 

due to the experiments reported here were carried out under humid conditions that may 

cause the decomposition of ozone in water. The γ reported by Nájera et al. (2015) for 

droplets which size were 2.8-2.9 μm reacting with ozone at concentrations ranging from 

9.61 to 41.6 x 1014 molecules/cm3 and RH >90% was higher than the uptake coefficient 

calculated here and this may be attributed to the significant difference in particle size 

between both experiments. For the case of the mixture PA-SO-NaCl, there was no 

previous report in the literature to compare to the results of this study. 

 

 

Table 4.2 Comparison of reactive uptake coefficient obtained from ozonolysis of the 

self-assembled mixture of OA-SO-NaCl 

 

 
This study Rastogi (2015) Nájera et al. (2015) 

Method and 

detection 

technique 

Acoustic levitation 

combined with Raman 

microscopy 

Acoustic levitation 

combined with 

Raman microscopy 

Aerosol flow tube 

coupled to FTIR 

Particle 

diameter (μm) 
125 107-112 and 90- 170 2.8-2.9 

[O3] 

(molecules/cm3) 
7.88 x 1014 6.89 and 9.85 x 1014 (9.61-41.6) x 1014 

Temperature 

(K) 
 298  298 292-295 

RH% > 50 <10 91-95 

Uptake 

coefficient 
9.8 x 10-8 

(3.1 – 1.2) x 10-5 and 

(2.9 – 1.9) x 10-5 
(1.7 – 0.7) × 10−6 
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Figure 4.9 Decay of the ratio of Gaussian area of the peaks C=C/CH2 obtained from the 

ozonolysis of the mixture OA-SO-NaCl at three different ozone concentrations. 

Trendline and equations are shown.  

 

 

 

 

 

 

 

 

 

 

Figure 4.10 Decay of the ratio of Gaussian area of the peaks C=C/CH2 obtained from 

the ozonolysis of the mixture PA-SO-NaCl at two different ozone concentrations. 

Trendline and equations are shown.  
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CHAPTER 5 

 

CONCLUSIONS AND FUTURE WORK 

 

 

5.1 CONCLUSIONS 

 

The chemical oxidation of atmospheric aerosols has become relevant in these days. 

Many studies have focused on heterogeneous reactions of unsaturated organic acids in 

the gas phase. The study presented here was focussed on the ozonolysis of three 

prevalent UFAs in urban environments, this reaction has shown to occur at the surface 

of the droplet, which affects the kinetics of the particles. The formation of products 

from these reactions and the chemical nature of the aerosol may alter the reactivity of 

the surface. Most of the products are highly oxygenated and hydrophilic and, due to 

their low volatility, they may have an effect on the CCN and growth factor of the 

aerosol, mainly under humid conditions.  

 

Experiments using acoustic levitation linked to Raman microscopy to carry out the 

ozonolysis of levitated proxies of atmospheric aerosols were conducted to study the 

ozonolysis of the three prevalent long-chain unsaturated fatty acids in the organic 

aerosol fraction: oleic acid, linoleic acid and palmitoleic acid. They were oxidised by 

ozone at different concentrations. It was observed that the rate reaction depended on 

several factors, such as the number of C=C, size of the droplet, the concentration of O3, 

relative humidity and the presence of surfactants. 
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The size of droplet has shown to have an effect on the rate of reaction of the studied 

fatty acids. The uptake coefficient of ozone was also affected, this was explained by the 

effect of the surface area on the uptake of the gas molecule (O3), the larger the droplet, 

the greater surface area, therefore higher probability of ozone uptake. It was also 

observed the effect of ozone concentration in the rate of reaction, as faster reactions 

occurred with increasing ozone concentration.  

 

Linoleic and palmitoleic acids showed more reactivity compared to oleic acid. 

Likewise, linoleic acid showed a tendency to undergo autoxidation due to reaction with 

oxygen or low O3 concentration. The plots of linoleic acid showed an increase in the 

ratio of Gaussian area, indicating the formation of unsaturated products. This was 

confirmed by MS analysis and Raman spectroscopy. 

 

Reactions of O3 with fatty acids at high relative humidity were compared to reactions 

carried out at low relative humidity. The effect of the RH in the rate decay was 

identified. However it was not clear if there is an effect of RH on the uptake coefficient, 

especially for the ozonolysis of oleic and palmitoleic acid. On the contrary, the uptake 

coefficient of linoleic acid showed a slight dependence in RH.  

 

Self-assembled internal mixtures were prepared using oleic and palmitoleic acid mixed 

with sodium oleate and NaCl (10g/mL). This mixture was used to levitate droplets that 

reacted with ozone at different concentrations. Relative humidity was maintained high 

and constant, in some cases it was possible to identify the phase transformation, from a 

deliquesced droplet to a highly viscous phase. The uptake coefficients from ozonolysis 
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of pure oleic and palmitoleic acid was compared with the uptake coefficient obtained 

from the mixtures, noticing a reduction of the γ when mixtures were used, this indicates 

that the presence of surfactants affected the properties of droplet, as phase change may 

limit the uptake and diffusion of ozone at the surface, because of these particles may 

exist as self-assembled structures. 

 

A mechanism of ozonolysis of palmitoleic and linoleic acids was proposed, following 

the mechanism stated by Criegee. Some of the volatile products were verified by mass 

spectra, confirming the Raman signatures that indicated they were formed.  

 

5.2 FUTURE WORK: 

 

Many ideas of experimental work emerged during this research, but they were left for 

the future due to limited time, or they need to be strategically planned in order to obtain 

successful results.  

 

1. Previous studies reported electrodynamic balance (EDB) and Raman 

spectroscopy to assess  the phase transformation of aerosols (Lee et al., 2008), 

and the role of the relative humidity in the ozonolysis of levitated droplets of 

carboxylic acids, including oleic acid and maleic acid was studied using mass 

spectra (Lee et al., 2012). Initially in this research maleic acid was used as the 

first proxy for aerosol, but experimental difficulties arose at that moment due to 

the levitated droplets were unstable and underwent phase transformation, 

making difficult to carry out successful experiments, leading to obtaining poor 

quality results that were not reported here. New proxies were selected, starting 

with oleic and linoleic acid, then palmitoleic acid completed the scenario of this 
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research. Although the intention was to come back to the experimental work 

using maleic acid, the experiments using this compound were finally discarded 

due to lack of time. Future research could explore in detail the reaction of 

ozonolysis of maleic acid using the experimental techniques presented in this 

thesis, planning the experimental work with this compound and taking into 

account the phase transformation it undergoes.  

 

2. Linoleic acid has demonstrated to form gas-phase aldehydes when forming sea 

surface microlayers (Zhou et al., 2014). Some of those aldehydes are produced 

from the direct reaction of LA with O3 and contain one carbon-carbon double 

bond. Thus they can react with ozone producing new compounds. In this thesis 

the ozonolysis of self-assembled mixtures of PA and OA with SO and NaCl was 

reported, but the ozonolysis of mixture using LA was not carried out, as LA can 

be easily oxidised even at room temperature, and the process to prepare the 

mixture involves using temperature above 25 C. This reaction shows promising 

results if is carried out to a mixture of LA with its sodium salt and brine, but the 

procedure to prepare this mixture should be reconsidered and modified to avoid 

the oxidation of LA. The use of synchrotron radiation to elucidate the structure 

of the self-assembled mixture of LA may also be considered as part of the 

further experimental work. The comparison of the two systems, LA and OA 

self-assembled mixtures might be relevant to understand the structural 

arrangements recently reported by Pfrang et al. (2017), as these two fatty acids 

18C but they differ in the number of C=C.  

 

3. Arachidonic acid and linolenic acid have been found in the atmosphere in 
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minimal amounts. Arachidonic acid was considered to be one of the proxies for 

reactions with ozone in this research, but time limitations did not allow to use it. 

Previous work using EDB (Lee et al., 2012) showed the effect of humid 

conditions in the ozonolysis of arachidonic acid, whereas Raman spectroscopy 

and EDB showed the high reactivity of linolenic acid (Lee and Chan 2007a), 

although this fatty acid was not taken into consideration to carry out 

experiments. Therefore, It will be important that future research investigates the 

influence of the number of C=C in the reactivity of UFA under dry and humid 

conditions, and compare the findings with the results presented in this thesis.  

 

4. Ozonolysis of oleic, palmitoleic and linoleic acids at different pressure and 

variable temperatures would provide a better insight of this reaction for 

comparison with the results of this study. 

 

5. One intended experiment in this study was the analysis of emission from food 

cooking in a simulated environment. Due to limitation of time, this experiment 

was not carried out. Reports from studies using a different kind of meat have 

shown the composition of the organic aerosol fractions present in environments 

nearby restaurants and kitchens (Mohr et al., 2009; Robinson, 2006). It would be 

relevant to explore the impact of indoor cooking emissions, using different types 

of oils, food and cooking styles in order to assess the potential impact of the 

aerosols in health, and also estimate the further reactions they may undergo and 

products that are released in indoor and outdoor environments. 
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APPENDIX 

 

A. Publications: 

 

From the results reported in this thesis, some publications have been planned to be 

published soon. The approaches for these publications will be: 

 

1. Elucidation of the structural composition of droplets of mixtures of OA and PA with 

SO and NaCl (self-assembled mixtures) using small angle x-ray scattering (SAXS) and 

Raman spectroscopy (Experimental work carried out in the synchrotron science facility 

in Diamond Light Source).  

 

2. The influence of ozone concentrations, relative humidity, droplet size and nature of 

fatty acids in the ozone uptake coefficients.  

 

3. Raman spectroscopy applied to the study of fatty acids as proxies for atmospheric 

aerosols.  

 

 

B. List of attended conferences: 

 

Posters were presented in three conferences:  
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Conference Atmospheric chemistry in the Anthropocene, Faraday Discussion, RSC. 

York, UK, 22-24 May April 2017.  
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Conference:: 22nd European Aerosol Conference. Tours, France, 4 -9 September 2016.  
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Conference: Chemistry in the Urban Atmosphere, Faraday Discussion, RSC. London, 

UK, 6-8 April 2016.  Poster prize was awarded. 
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