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Abstract.  We study temporally persistent and spatially extended extreme 
events of temperature anomalies, i.e. heat waves and cold spells, using large 
deviation theory. To this end, we consider a simplified yet Earth-like general 
circulation model of the atmosphere and numerically estimate large deviation 
rate functions of near-surface temperature in the mid-latitudes. We find that, 
after a re-normalisation based on the integrated auto-correlation, the rate 
function one obtains at a given latitude by looking locally in space at long time 
averages agrees with what is obtained, instead, by looking locally in time at 
large spatial averages along the latitude. This is a result of scale symmetry in 
the spatio-temporal turbulence and of the fact that advection is primarily zonal. 
This agreement hints at the universality of large deviations of the temperature 
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field. Furthermore, we discover that the obtained rate function is able to describe 
the statistics of temporal averages of spatial averages performed over large 
spatial scales, thus allowing one to look into spatio-temporal large deviations. 
Finally, we find out that, as a result of a modification in the rate function, large 
deviations are relatively more likely to occur when looking at spatial averages 
performed over intermediate scales. This is due to the existence of weather 
patterns associated with the low-frequency variability of the atmosphere, which 
are responsible for extended and temporally persistent heat waves or cold spells. 
Extreme value theory is used to benchmark our results.

Keywords: large deviation, numerical simulations, extreme value, nonlinear 
dynamics
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1. Introduction and motivation

The typical way to formalise the analysis of extremes for a stochastic variable X 
revolves around looking at the tail of the probability distribution of X and identifying 
extremes as very large (or very small) events with long return time. This point—as 
discussed below—is mathematically very powerful, but in the usual setting is not well 
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suited for studying, in the case of spatio-temporal chaos, anomalously large or small 
events that are persistent in time and/or extended in space. Persistent climatic extreme 
events—like heat waves or cold spells—can have a huge impact: they not only aect 
human health, but also ecosystems; they can be a danger to our infrastructures and 
crops, and have a destabilising eect over entire societies; the scale of damage depends 
critically on the persistent nature and spatial extent of the events (Easterling et al 
2000, Robinson 2001, WHO 2004, IPCC 2012). Among the most relevant historical 
examples, we would like to mention the mega-drought that played a major role in the 
collapse of the Mayan empire (Kennett et al 2012), and the recurrent extreme cold spell 
episodes referred to as dzuds that led to various waves of migration of the nomadic 
Mongolian populations (Fang and Liu 1992, Hvistendahl 2012).

A heat wave or a cold spell not only lasts for a long time (from several days to sev-
eral weeks, even months) but has also a considerable spatial extent. For example, the 
2003 and 2010 European heat waves had a temporal and spatial extent of the order of 
weeks to months and 106 km2, respectively (Barriopedro et al 2011). These persistent 
events are primarily caused by anomalous synoptic conditions, and, in the case of the 
mid-latitudes, by atmospheric blocking situations, so we talk about persistence in space 
and time on large synoptic scales (Vautard et al 2007, Sillmann et al 2011, Stefanon 
et al 2012). In figure 1(a) we portray the intensity and extent of the 2010 heat wave 
and, in figure 1(b), we show how the excess fatalities observed in France during the 
2003 heat wave increase dramatically as a result of persistent large positive anomalies 
of temperatures (Poumadere et al 2005).

In the climate system, there is a non-trivial relationship between spatial and tempo-
ral scales of variability—with large spatial scales typically associated with longer time 
scales. An eective way to represent such a relationship is through the so-called Hayashi 
spectra (Hayashi 1971, Fraedrich and Boettger 1978, Speranza 1983, Dell’Aquila et al 
2005). The existence of such a relationship comes from the fact that one can loosely 
identify dierent dynamical regimes, each characterised by specialised dynamical bal-
ances between the forces acting on the fluid components (Lucarini et al 2014). Such bal-
ances can be rigorously derived via asymptotic analysis applied on the Navier–Stokes 
equations on a rotating frame of reference (Klein, 2010).

As is well known, the understanding of the processes associated with synoptic dis-
turbances, which dominate weather variability in the mid-latitudes is firmly grounded 
in the theory of baroclinic instability (see Holton (2004)). Things are considerably less 
clear when looking into phenomena characterised by longer characteristic time scales.

Often the term ‘low-frequency variability’ is used to describe a vast range of atmo-
spheric processes occurring on a time scale ranging from about a week to about a 
month. Low-frequency variability features a much greater variety of phenomena with 
respect to synoptic variability, and, despite decades of eorts in terms of theoretical 
studies, observations, and numerical modelling, no complete understanding has yet 
been reached. Persistent weather anomalies, which can lead to long-lasting temperature 
extremes, i.e. heat waves and cold spells, are associated with quasi-stationary Rossby 
waves (Sillmann et al 2011, Stefanon et al 2012). The phase speed of these waves 
depends on the wavelength and is always westwards, i.e. opposite to the direction of 
the mean flow, at mid-latitudes. If the wavelength is large enough, the phase speed 
of Rossby waves can become very low or even zero, giving rise to quasi-stationary or 
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stationary anomalous synoptic situations—so-called blocking events; see the recent 
review by Tibaldi and Molteni (2018).

1.1. A mathematical framework for climatic extremes

1.1.1. Extreme value theory. A robust mathematical framework for the study of 
extreme values is provided by extreme value theory. One way to construct a theory of 
extremes according to the procedure of block maxima can be summarised as follows. 
One considers a sequence of realisations of independent and identically distributed 
variables X1,X2, ... and takes the maximum Mm over m of such variables (Fisher and 
Tippett 1928, Gnedenko 1943). Alternatively, extremes can be constructed according to 
the so-called peak over threshold method by considering the same sequence of variables 
as before, and selecting the values exceeding a given threshold u (Balkema and de Haan 
1974, Pickands 1975). Both methods are formulated in the form of limit laws, and rely 
on the convergence in distribution of the selected extreme values to one limiting family 
of distributions for a vast class of parent distributions, as one considers more and more 
extreme levels, i.e. for the block sizes m and threshold u, respectively. The condition 
of independence of the stochastic variables can be relaxed in order to include the case 
of weakly correlated variables (Leadbetter et al 1983), and can be formulated in such 
a way as to allow the establishment of extreme value laws for observables of chaotic 
dynamical systems (Lucarini et al 2016).

The limiting family of distributions is the generalised extreme value distribution in the 
case of the block maxima method, and the generalised Pareto distribution in the case of 
the peak over threshold approach. The Pickands–Balkema–de Haan theorem guarantees 

(a) (b)

Figure 1. Spatio-temporal features of heat waves and their impacts on health. (a) 
Anomalies of temperature maxima over four dierent time scales during the 2010 
heat wave. Contour lines indicate the anomalies divided by the climatological 
standard deviation of temperature in the same location during summer days. 
The record-breaking locations are indicated with dots. The absolute maxima 
are indicated in the top left corners. Reproduced from Barriopedro et al (2011). 
(b) Number of excess deaths in France in August (calendar days of the month 
indicated in the x-axis) during the 2003 heat wave. Note that the number of daily 
excess deaths increases day by day during the heat wave, and goes rapidly to zero 
afterwards. Reproduced from Poumadere et al (2005).

https://doi.org/10.1088/1742-5468/ab02e8


A large deviation theory-based analysis of heat waves and cold spells

5https://doi.org/10.1088/1742-5468/ab02e8

J. S
tat. M

ech. (2019) 033404

that, in the limit, there is a one-to-one correspondence between the generalised extreme 
value and generalised Pareto limiting distributions for a given dataset, even if, when 
finite data are considered, the two approaches select dierent candidates for extremes 
(Balkema and de Haan 1974, Pickands 1975). If the limiting generalised extreme value or 
generalised Pareto distributions exist and can be estimated reliably, one can calculate the 
probability of occurrence of events that are more extreme than any observed event. In 
other words, reliable estimates of return periods for time ranges longer than what is actu-
ally observed can be constructed. This indicates that, if the limit law applies, predictive 
power (in a statistical sense) emerges for events with very low probability of occurrence. 
Note that while universality emerges in the limit, the speed at which the asymptotic 
properties are realised is process-specific, i.e. not universal (Gálfi et al 2017).

As clearly emerges from the discussion above, a statistical analysis based on extreme 
value theory is in principle extremely useful exactly for those stakeholders that need to 
plan for a long time ahead, and has in fact long been applied in areas such as finance 
(Embrechts et al 1997), engineering (Castillo 1988), and hydrology (Katz et al 2002). 
Somewhat surprisingly, while examples of application can obviously be found, the meth-
ods of extreme value theory are still not the mainstream approach for studying very 
intense events in climate studies, where it is more popular to use empirical methods 
based on the analysis of high (or low) percentiles of the probability distribution of the 
variable of interest. In fact, it is usually assumed that the theory is too data-hungry to 
be eectively applied in most available climatic time series (IPCC 2012). Nonetheless, 
it has been recently shown that the theory of extreme values can be rigorously and 
robustly applied also in the case of a relatively short time series of a few tens of years, 
see e.g. Zahid et al (2017).

We have mentioned above the problem of persistence. One can analyse persistent 
events generally in two ways: first, by treating them as a concatenation of successive 
extreme events and studying the properties of clusters of extremes (Ferro and Segers 
2003, Segers 2005), or, second, by looking at PDFs of time-averaged observables. In 
this study we follow the second route. Following intuition, if we look at the PDF of 
finite-size averages of an observable, one expects that the tails of the distribution are 
mainly populated by averages coming from persistent extremes. A rationale for this is 
that the averaging window acts like a low-pass filter on the length of the considered 
persistent events, leading to a connection between extremes of averages and persistent 
events with a certain length (greater or approximately equal to the chosen averaging 
window). This will roughly be, in fact, the scenario we will explore below. However, 
the link between persistence and extremes of finite-size averages is not always true: in 
the case of heavy-tailed random variables, for example, the extremes of averages are 
dominated by a single very large extreme event within the averaging window (Mikosch 
and Nagaev 1998). We remark that, generally, the methods of extreme value theory can 
also be applied in the same way to study extremes of averaged observables. However, 
the averaging process reduces the amount of available data, so that these methods can 
become more dicult to apply as the averaging window length is increased.

1.1.2. Large deviation theory. A powerful mathematical framework describing the 
properties of PDFs of averaged observables is provided by large deviation theory (LDT), 
introduced by Cramér (1938) and further developed by other mathematicians, like 

https://doi.org/10.1088/1742-5468/ab02e8
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Donsker and Varadhan (1975a, 1975b, 1976, 1983), Gärtner (1977), and Ellis (1984). 
The central result of the theory consists of writing the probability of averaged random 

variables An = 1
n

∑n
i=1 Xi: for n → ∞ the probability of averages decays exponentially 

with n, p(An = a) ≈ e−nI(a). This is called a large deviation principle. The speed of decay 
is described by the so-called rate function I(a) � 0. The probability p (An  =  a) decays 
everywhere with increasing n, except when I(a) = 0. Here, e−nI(a) = 1. For indepen-
dent identically distributed random variables, one would have that E[An] = a∗, where 
a* is such that I(a*)  =  0. If the rate function exists, one can estimate the probability 
of averages for every n. Similarly to extreme value theory, if the limit law applies, we 
gain predictive power, with the dierence that in this case it is directed towards aver-
ages with increasing n. This means that one no longer has to deal with the problem of 
the decreasing amount of data as n increases. The theory of large deviations is used 
very extensively in physics, mostly in the context of thermodynamics and statistical 
mechanics; see the review by Touchette (2009).

While they have recently been applied in the context of geophysical flows (see e.g. 
Bouchet and Venaille (2012), Bouchet et al (2014) and Herbert (2015)), techniques of 
LDT have been used sporadically until now in climate studies, despite the fact that 
they can be useful whenever the connection between macroscopic or long-term observ-
ables and microscopic or instantaneous observables is important, and one is interested 
in persistent and/or extended fluctuations of a climatic field.

One area of climate modelling where techniques based on large deviations are just 
beginning to be applied is the sampling of rare events. Rare event computation tech-
niques based on elements of LDT have been developed with the aim to produce reli-
able statistics of specific rare events of a given model, as an alternative to long direct 
numerical simulations (Giardina et al 2016, Wouters and Bouchet 2016, Lestang et al 
2018). Ragone et al (2017) describes how model trajectories can be selected, based on 
a rare event algorithm, by keeping an ensemble realisation of the system in states that 
are preferentially close to those leading to heat waves. Therefore, one can exponen-
tially oversample events that have ultra-long return periods, and thus construct richer 
statistics of heat waves than one would get by standard Monte Carlo techniques. The 
described method also provides the possibility to investigate dynamical properties of 
the system state (like global circulation patterns and jet stream position) supporting 
the occurrence of the studied extremes (heat waves).

1.2. This paper

In this work we adopt LDT to analyse the properties of temporally and/or spatially 
persistent surface temperature extremes—heat waves or cold spells—generated through 
simulation performed with the Portable University Model of the Atmosphere (PUMA) 
(Lunkeit et al 1998, Fraedrich et al 2005b). We investigate temperature averages com-
puted in time and/or in space, the spatial averaging being performed along the zonal 
direction for reasons of symmetry. We point out that this is the first study to analyse 
persistent climatic events based on this simple application of LDT. We perform non-
equilibrium steady-state model simulations using idealised conditions, which cannot be 
directly related to realistic atmospheric states. Thus, the endeavour in this work is to 
test the introduced methodology, and to understand the possible potential by applying 

https://doi.org/10.1088/1742-5468/ab02e8
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these methods of statistical mechanics to the atmosphere, rather than analysing real 
atmospheric conditions. However, this work should also be seen as a first step into the 
direction of applying LDT to more realistic climate simulations and to observational 
data. At this stage, we do not investigate the dynamical processes leading to the heat 
waves and cold spells, but rather try to construct their asymptotic statistical properties.

PUMA—details given in section 3—describes with a good level of precision the 
dynamics of the three-dimensional atmosphere as an out-of-equilibrium  forced-dissipative 
system. We analyse the properties of the steady state achieved as a result of time-
independent forcing after transient dynamics have been discarded. For a wide range 
of parameter values, PUMA features high-dimensional chaotic dynamics (De Cruz 
et al 2018). By considering the connection between the averaged values and persistent 
events on suitably defined scales (as explained above), large deviations of temperature 
can possibly be related to persistent extreme events of temperature, i.e. heat waves or 
cold spells.

Following the discussion above on the phenomenology of synoptic disturbances, 
we expect to find a link between spatially extended and temporally persistent events. 
In order to achieve a large deviation when considering spatial averages in a turbulent 
system, we need the occurrence of a spatially extended structure of length, say L. In 
a system possessing a characteristic velocity scale U one expects such a structure to 
persist for a typical time of the order τ = L/U . In this work, we explore the connection 
between temporal and spatial large deviations, and we also analyse spatio-temporal 
large deviations. We seek answers to two main questions:

 1.  How well does LDT describe persistent in space and/or in time temperature 
fluctuations in PUMA? 

 2.  What is the link between temporal, spatial, and spatio-temporal large deviations? 

These questions are potentially relevant, because, if we find experimental proofs that 
the large deviation limit does hold in the case of our numerical simulations, there is 
a good chance to calculate the probability of occurrence of arbitrarily long in time 
and/or extended in space (within the limits allowed by the geometry of the Earth, as 
seen later) heat waves and cold spells. We point out that the possibility of establish-
ing large deviation laws in geophysical systems is a non-trivial matter, as a result of 
the presence of temporal and spatial correlations on multiple scales. The strength of 
these correlations is crucial for the practical applicability of the theory given a finite 
amount of data. We remark that, when considering coupled atmospheric and oceanic 
dynamics, finding large deviation laws can become a dicult task. Examining dynami-
cal indicators, De Cruz et al (2018) could not detect large deviation laws in the case 
of finite-time Lyapunov exponents in a quasi-geostrophic coupled ocean-atmosphere 
model. Vannitsem and Lucarini (2016) analysed the large deviations of finite-time 
Lyapunov exponents as well in a low-order version of the above-mentioned coupled 
model, and found a large deviation principle only in the case of non-zero Lyapunov 
exponents, whereas the convergence was considerably slower or even absent in the case 
of near-zero Lyapunov exponents.

Our model does not feature the presence of slow oceanic time scales, and, therefore, 
provides a simpler setting to test our ideas. In the case we find a link between temporal 

https://doi.org/10.1088/1742-5468/ab02e8
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and spatial large deviations, we can deduce the probability of spatial (or spatio-tempo-
ral) averages from the one of temporal averages and vice versa. This can be very useful 
in the case of applications, when for example only temporal or only spatial series are 
available. In order to test the quality of the predictions of the return time based on 
LDT, we compare the results with what can be obtained using extreme value theory 
(we use the peak over threshold method).

The structure of the paper is as follows. In section 2, we provide the theoretical 
formulation of LDT and some elements of extreme value theory. In section 3 we give 
a description of the PUMA model and give details of the numerical simulations per-
formed for the scope of this paper. We present our results in section 4. Here, we first 
focus on the link between temporal and spatial large deviations, and then we addition-
ally consider the case of spatio-temporal large deviations. We test the correctness and 
applicability of our results by computing return periods of extremes of temperature 
averages and comparing them with the empirical data and with return periods obtained 
based on the peak over threshold method. Additionally, in order to assess the robust-
ness and applicability of the proposed approach, we test how our findings related to 
return periods change when considering shorter time series for estimating the large 
deviation rate functions. Section 5 concludes the paper, containing a summary and 
discussion of our results and ideas for future investigations.

2. Some elements of LDT and of extreme value theory

2.1. Constructing the rate functions describing the large deviations

The large deviation theoretical framework can be formulated on three dierent levels, 
corresponding to the complexity of the statistical description of the dynamical system. 
These are, as described by Oono (1989), based on: sample means of observables (level-
1), probability distributions on the state space of observables (level-2), and probabil-
ity distributions on the path or history space, i.e. the entire set of possible orbits or 
histories of the system (level-3). The below description follows the level-1 approach, 
according to the scientific purpose of this paper, and is mostly based on the works of 
Touchette (2009) and Oono (1989). We do not pursue a rigorous mathematical form-
ulation here; our aim is rather to recapitulate the main concepts and results, and to 
introduce our notation.

We say that the random variable An = 1
n

∑n
i=1 Xi, where Xi are identically distrib-

uted random variables, satisfies a large deviation principle if the limit

lim
n→∞

− 1

n
ln p(An = a) = I(a) (1)

exists. The probability density p (An  =  a) decays exponentially with n for every value 
of a except the ones for which I(a) = 0, where limn→∞ p(An = a∗) = 1, and a∗ = E[An]. 
I(a) � 0 is the so-called rate function, representing the rate of this exponential decay 
of probabilities. Whenever the limit (1) holds and I(a) has a unique global minimum, 
An converges in probability to its mean a* and obeys the law of large numbers. If 
then additionally I(a) is quadratic (i.e. twice dierentiable) around a*, the central 

https://doi.org/10.1088/1742-5468/ab02e8
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limit theorem holds, meaning that small fluctuations around the mean are normally 
distributed. The expression ‘small fluctuations’ is very important here, because large 
fluctuations around the mean are not necessarily normally distributed. Since the rate 
function describes both small and large deviations, LDT can be considered as a gener-
alisation of the central limit theorem.

Now let’s consider, instead of random variables, observables produced by a deter-
ministic dynamical system. If the system is Axiom A, all of its observables obey a large 
deviation principle (Eckmann and Ruelle 1985). If we consider a high-dimensional cha-
otic system, by invoking the chaotic hypothesis introduced by Gallavotti and Cohen 
(1995), one can expect to find large deviation laws, even in systems which are not 
Axiom A.

The dynamical nature of out-of-equilibrium steady-state systems requires, however, 
a slight modification of our theoretical approach, which mainly implies that time has to 
be considered in the formulation of the large deviation principle, replacing the parameter 
n. Due to temporal correlations in these systems the computation of the rate function 
requires level-2 or level-3 theory. This has been done for Markov chains and random 
variables with a specific form of dependence, and involves mostly the computation of 
transition matrices or joint PDFs (den Hollander 2000, Touchette 2009). In the case 
of non-Markovian processes and high dimensional systems the computation of analyti-
cal rate functions is a hopeless endeavour. Thus, in this work, we adopt another (very 
simple) strategy to deal with temporal correlations. In the case of weakly correlated 
observables (i.e. Xj  and Xl have an exponentially decreasing correlation if |j − l| is large 
enough), one can take advantage of the fact that for large enough n the averages An 
become almost uncorrelated. This represents the basis for the block averaging method 

(Rohwer et al 2015). We transform the variables Xi into variables Yi =
1
b

∑b
i=1 Xi, where 

b represents the size of the averaging block, i.e. b  =  n/k with the number of blocks k. 
In the case that Yi are almost independent and identically distributed (ergodic Markov 
chain), a large deviation principle can be obtained for:

An =
1

k

k∑
i=1

Yi =
1

n

n∑
i=1

Xi. (2)

Intuitively, one can argue that b has to be at least so large that Xi and Xi+b are almost 
uncorrelated, i.e. b � ρ where ρ is a metric of persistence expressed in terms of the 
amount of successive correlated data. One usually quantifies persistence in terms of 
the auto-correlation function. Considering our scientific goal, which is the study of 
probabilities of averages, it makes sense to choose the integrated auto-correlation as a 
general measure of persistence in time and space, since this quantity plays a central role 
in the central limit theorem for Markov chains, as described below.

According to a formulation of the central limit theorem in the case of dependent 
variables based on Billingsley (1995), suppose that X1,X2, ... is a stationary Markov 
chain with E[Xn] = 0 and satisfies the appropriate mixing conditions, then the variance 
of the sample mean An is

nE[A2
n] → E[X2

1 ](1 + 2
∞∑
k=1

c(k)) (3)
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where c(k) = C(k)
C(0)

 is the auto-correlation, and C(k) denotes the auto-covariance at lag k, 

C(k) = E[XiXi+k]. Equation (3) shows that the rescaled variance of the sample mean of 
the Markov chain converges to the variance of X1 times the integrated auto-correlation.

It is well known that the central limit theorem is violated when large extreme val-
ues dominate the fluctuations around the mean. In these cases, the probability of sums 
converges to a more general limit instead of the Gaussian distribution. This limit is 
represented by the class of infinitely divisible distributions, including Levy alpha-stable 
distributions (West et al 2003). As a consequence of diverging second (or even first) 
moments of the distribution of the stochastic variable of reference, the probability of 
sums decays sub-exponentially and the rate function is trivially 0 (Touchette 2009). 
Large deviation results can still be obtained in many cases; however, they are domi-
nated by the largest values in the sample instead of the mean, as already mentioned in 
the introduction (Mikosch and Nagaev 1998). These conditions are relevant for some 
variables of interest in (geo)physical fluid dynamics. It has been shown that for cer-
tain variables of turbulent flows the central limit theorem does not hold. For example, 
velocity dierences (or gradients) between two points in space often develop long tails, 
as an eect of long-lived strong vortices near the dissipative range of scales (Biferale 
1993, Jiménez 1996, Jiménez 2000). Several climatic variables have been also found to 
exhibit an increasing variability at low frequencies: atmospheric surface variables in the 
tropics (due to the eect of pulse-like convective events), or sea surface temperature in 
some regions (Blender et al 2008, Fraedrich et al 2009). It is expected that in these cases 
the long-term memory prevents convergence to what was predicted by the central limit 
theorem, at least on the relevant finite scales.

2.2. Extreme value theory: peak over threshold approach

A straightforward way to investigate the extremes of averaged quantities is, clearly, 
through the use of extreme value theory. Note that, despite such an approach being 
unfeasible or impractical in many practical applications because the procedure of aver-
aging dramatically reduces the size of the dataset, our numerical simulations are long 
enough to allow for a reliable implementation also in the case of averages. We briefly 
summarise below the main ideas of extreme value theory.

Let us consider Zm = max{X1, ...,Xm}, where X1, ...,Xm is a sequence of indepen-
dent and identically distributed random variables with common distribution function 
F (x). The Fisher–Tipett–Gnedenko theorem (Fisher and Tippett 1928, Gnedenko 1943) 
states that the distribution of properly normalised block maxima Zm converges under 
certain conditions, for m → ∞, to the so-called generalised extreme value distribution 
G(z;µ, σ, ξ), with three parameters: the location parameter µ, scale parameter σ, and 
shape parameter ξ:

G(z) =

{
exp

{
−
[
1 + ξ

(
z−µ
σ

)]−1/ξ
}

for ξ �= 0,

exp
{
− exp

[
−
(
z−µ
σ

)]}
for ξ = 0,

 (4)

where −∞ < µ < ∞, σ > 0, 1 + ξ(z − µ)/σ > 0 for ξ �= 0 and −∞ < z < ∞ for ξ = 0 
(Coles 2001).
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Pickands (1975) reformulated the Fisher–Tipett–Gnedenko theorem based on the 
conditional probability of values exceeding a high threshold u and reaching the upper 
right point of the distributions of X, given that X  >  u. Under the same conditions such 
that the distribution of Zm converges to the generalised extreme value distribution, 
the exceedances y   =  X  −  u are asymptotically distributed according to the generalised 
Pareto distribution family (Coles 2001)

H(y; σ̃, ξ̃) =




1−

(
1 + ξ̃y

σ̃

)−1/ξ̃

for ξ̃ �= 0,

1− exp
(
− y

σ̃

)
for ξ̃ = 0,

 (5)

where 1 + ξ̃y/σ̃ > 0 for ξ̃ �= 0, y   >  0, and σ̃ > 0. H(y) has two parameters: the scale 
parameter σ̃ and the shape parameter ξ̃ . The shape parameter ξ̃  describes the decay 

of probabilities in the tail of the distribution, and determines to which one of the 

three possible types of generalised Pareto distributions H(y) belongs. If ξ̃ = 0, the 
tail decay is exponential; if ξ̃ > 0, the tail decay is polynomial; and if ξ̃ < 0 the dis-

tribution is bounded, i.e. the extremes are limited from above (Balkema and de Haan 
1974, Pickands 1975). The parameters of the generalised extreme value and generalised 

Pareto distributions are related as follows: ξ̃ = ξ and σ̃ = σ + ξ(u− µ) (Coles 2001). 
This implies that the two approaches (block maxima and the peak over threshold) for 
investigating extremes are asymptotically equivalent.

Classical extreme value theory has been extended to deal with weakly correlated 
random variables (Leadbetter et al 1983), and adapted to analyse extremes of observ-
ables of chaotic dynamical systems. A detailed overview of this research field is pro-
vided by Lucarini et al (2016), where it is shown that, if one considers an Axiom A 
system, one obtains that extreme values of dierent classes of observables can be used 
to infer the properties of the stable and unstable manifold, including the possibility of 
estimating the Kaplan–Yorke dimension (Eckmann and Ruelle 1985). Just as discussed 
above, adopting the chaotic hypothesis (Gallavotti and Cohen 1995), such findings 
can be expected to apply for more general systems possessing high-dimensional chaos; 
see a detailed analysis in Bódai (2017) and an accurate investigation in the case of a 
high-dimensional system (with O(103) degrees of freedom) in Gálfi et al (2017). Extreme 
value theory combined with the analysis of recurrences has proved very useful for pro-
viding a new framework for identifying the so-called weather patterns in actual climate 
data and in the outputs of climate models, and for interpreting their specific dynamical 
properties (Faranda et al 2017, Messori et al 2017).

2.3. Return periods and return levels

We compare the two methods of analysing rare events on a practical level, i.e. based on 
return periods and return levels. In the case of LDT, we estimate the return periods r of 

events exceeding the value a using the general formula r = 1
P (An>a)

= 1
1−P (An�a)

, where 

P (An � a) represents the cumulative distribution function of the large deviation law 
according to the data. In the case of the peak over threshold approach, the expected return 
levels can be written explicitly in terms of the generalised Pareto parameters, which 
can be inferred using the usual proven estimation methods, like maximum likelihood 
estimation (Coles 2001) or L-moments (Hosking 1990). The level y r that is exceeded on 
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average once every r observations is called the r-observation return level and is the solu-

tion of r = 1
P (Y >y)

. One obtains P (Y > y) from H(y)− 1 = P (Y > y|Y > u) = P (Y >y)
P (Y >u)

, 

and consequently (Coles 2001):

yr =




u− σ̃

ξ̃

[
1− ( 1

rP (Y >u)
)−ξ̃

]
for ξ̃ �= 0,

u− σ̃log( 1
rP (Y >u)

) for ξ̃ = 0.
 (6)

As an eect of serial correlations, the threshold exceedances can be organised in 
clusters. If an extreme value law does exist at all in this case, it is necessary to intro-
duce the so-called extremal index—the inverse of the limiting mean cluster size—which 
has to be considered in the estimation of the generalised Pareto parameters, with the 
exception of the shape parameter (Coles 2001). A widely adopted method to deal with 
correlated threshold excesses is to apply declustering, which basically aims to identify 
the maximum excess within each cluster and then to fit the generalised Pareto distribu-
tion to the cluster maxima (Leadbetter et al 1989, Ferro and Segers 2003). Here, since 
the operation of averaging dramatically reduces the eect of serial correlation, the peak 
over threshold approach can be applied in a straightforward way, similarly to the case 
of independent and identically distributed random variables.

3. Model description and setup

We perform simulation with PUMA, which is a simplified spectral general circulation 
model developed at the University of Hamburg. PUMA has been used for the invest-
igation of several atmospheric phenomena, like storm track dynamics or low-frequency 
variability (Lunkeit et al 1998, Fraedrich et al 2005b), and has even been adapted 
to extra-terrestrial atmospheres (Grieger et al 2004). A recent study investigates the 
properties of the Lyapunov spectrum in PUMA, including large deviations of finite-
time Lyapunov exponents (De Cruz et al 2018). PUMA is the dry core of the Planet 
Simulator (PlaSim), which is a climate model of intermediate complexity (Fraedrich 
et al 2005a, Lucarini et al 2010).

In the following, we summarise the model equations and the applied parameteri-
sations. For a more detailed description of the model, please consult (Fraedrich et al 
2009). As commonly done in atmospheric modelling, the physics of the model are fun-
damentally described by the primitive equations for the atmosphere, which amount to 
a modification of the Navier–Stokes equation in a rotating frame of reference where the 
vertical acceleration of the fluid is constrained to be small compared to gravity (Klein 
2010). These equations provide a good representation of the dynamics of the atmosphere 
for horizontal spatial scales larger than few tens of kms (Holton 2004). Compared to 
a full atmospheric general circulation model, moist processes are omitted, and simple 
parameterisations are used to account for the eect of friction (Rayleigh friction), dia-
batic heating (Newtonian cooling), and diusion. The Newtonian cooling and Rayleigh 
friction terms are such as that proposed by Held and Suarez (1994) for the comparison 
of dynamical cores of general circulation models. The model equations allow for the 
conservation of momentum, mass, and energy. The prognostic equations for absolute 
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vorticity, given by the sum of the relative vorticity ζ and planetary vorticity f, horizon-
tal divergence of the velocity D, temperature T, and surface pressure p s can be written 
by using spherical coordinates and the vertical σ-system as follows:

∂(ζ + f)

∂t
=

1

1− µ2

∂Fv

∂λ
− ∂Fu

∂µ
− ζ

τF
−K∇8ζ (7)

∂D

∂t
=

1

1− µ2

∂Fu

∂λ
+

∂Fv

∂µ
−∇2

(
U2 + V 2

2(1− µ2)
+ Φ + T0 ln ps

)
− D

τF
−K∇8D

 (8)
∂T ′

∂t
= − 1

1− µ2

∂(UT ′)

∂λ
− ∂(V T ′)

∂µ
+DT ′ − σ̇

∂T

∂σ
+ κ

T

p
ω +

TR − T

τR
−K∇8T

 (9)
∂ ln ps
∂t

= −
∫ 1

0

(D + �V · ∇ ln ps)dσ (10)

with

Fu = V (ζ + f)− σ̇
∂U

∂σ
− T ′∂ ln ps

∂λ

Fv = −U(ζ + f)− σ̇
∂V

∂σ
− T ′(1− µ2)

∂ ln ps
∂µ

.

The variables and parameters used in equations (7)–(10) are listed in table 1.
The horizontal representation of the prognostic model variables is given by a series 

of spherical harmonics, which are integrated in time by a semi-implicit time-dierencing 
scheme (Hoskins and Simons 1975). The linear contributions in the prognostic equa-
tions are computed in spectral space, the non-linear contributions in grid point space. 
The horizontal resolution is defined by triangular truncation. The vertical discretisa-
tion is based on finite dierences on equally spaced σ-levels. The vertical velocity is set 
to 0 at the upper (σ = 0) and lower (σ = 1) boundaries.

A Rayleigh damping of horizontal velocities with time scale τF accounts for the 
eect of boundary layer friction in the lowest levels. τF = 0.6 d at σ = 0.95 (the vertical 
level nearest to the surface), and τF = 1.65 d at σ = 0.85. For higher levels no friction is 
considered, i.e. τF = ∞. The eect of non-resolved processes on the energy and enstro-
phy cascade is represented by hyperdiusion (∼∇2h). The hyperdiusion coecient K 
is such that it provides a maximal damping of the shortest waves, and has no eect 
on the mean state (wave number 0). The integer exponent h  =  4 leads to an additional 
damping of short waves. The diusion time scale for the shortest wave is 1/4 d. The 
diabatic heating (cooling) is parameterised by a Newtonian cooling term. This forces 
the relaxation of the model temperature to a so-called radiative–convective equilibrium 
state specified by the restoration temperature TR, which depends only on the vertical 
level and latitude.

TR(φ, σ) = TR(σ) + f(σ)TR(φ) (11)
TR(φ) describes the meridional form of the restoration temperature, whereas f(σ) 
accounts for the vertical changes in this meridional profile:
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TR(φ) = (∆TR)NS
sinφ

2
− (∆TR)EP(sin

2 φ− 1

3
), (12)

where (∆TR)NS is the temperature dierence between the North and South poles, 
and (∆TR)EP represents the equator-to-pole temperature dierence. The meridi-
onal temper ature gradient decreases with height in the troposphere, f(σ) =
sin(0.5 π(σ − σtp)/(1− σtp)) for σ � σtp, and vanishes at the tropopause, f(σ) = 0 for 
σ < σtp, where σtp is the height of the tropopause. TR(σ) describes the vertical profile 
of the restoration temperature:

TR(σ) = (TR)s − Lztp +

√[
L

2

(
ztp − z(σ)

)]2
+ S2 +

L

2

(
ztp − z(σ)

)
, (13)

with: restoration temperature at the surface, (TR)s = 288 K; moist adiabatic lapse 
rate, L  =  6.5 K km−1; global constant height of the tropopause, ztp = 12 km; geometric 
height z. S allows for a smoothing of the temperature profile at the tropopause. In the 
case of ten vertical levels l, the time scale of the Newtonian cooling τR is 2.5 d in the 
lowest level at l  =  10, and 7.5 d at l  =  9. τR continues to increase monotonically with 
height until the upper three levels, where it is set to 30 d.

We run the model in a simple symmetric setting (usually referred to as an aqua-
planet), i.e. without orography. We remove the annual and diurnal cycle, and use 
a symmetric forcing with respect to the equator, (∆TR)NS = 0. We set the equator-
to-pole temperature dierence (∆T )EP to 90 K, thus creating a baroclinically more 
unstable atmospheric state than in the standard setting with (∆T )EP = 70 K. We run 
the model with constant forcing in time using a time step of 30 min. The horizon-
tal resolution is T42 (triangular spectral truncation with 42 zonal waves), and the 
vertical resolution consists of ten levels. The length of the simulations is 104 years, 
excluding a transient of 5 years, which are discarded in order to consider steady 
state conditions. We consider for our analysis the air temperature in the lowest 
vertical level at 960 hPa, with daily output. The spectral temperature variable is 
transformed during the post-processing into grid point space consisting of a 65× 128 
equidistant latitude–longitude grid.

Using the same model settings as above, but with a lower equator-to-pole temper-
ature dierence, De Cruz et al (2018) estimated a Kaplan–Yorke dimension DKY of 
187 and a number of positive Lyapunov exponents of 68 for (∆T )EP = 60 K. In this 
study, (∆T )EP = 90 K, thus the model atmosphere is baroclinically substantially more 
unstable than in the mentioned study. Thus, to provide a rough estimation, DKY > 200 
and the number of positive Lyapunov exponents  >80 in our system. Consequently, we 
expect for this setup a very high dimensional chaos, which fulfils the chaotic hypoth-
esis, as shown also by the fast decay of auto-correlations in figures 2(c) and (d) below. 
As a result, we expect that the outputs of our model can be analysed using extreme 
value theory and LDT, as discussed above. Nonetheless, it is a priori unclear whether 
the asymptotic result can be clearly detected at finite size given the length of our 
numerical integrations. Note that in De Cruz et al (2018) it was shown that the finite-
time Lyapunov exponents obey a large deviation law.
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4. Results

Before discussing our main results related to the large deviations of temperature, it is 
useful to have a general picture of the properties of the simulated temperature field 
at 960 hPa (i.e. close to the surface). For the analysis of temporal, zonal, and spatio-
temporal large deviations, we select three latitudes: 60°, 46°, and 30°. We focus on the 
mid-latitudes because it is the region of the atmosphere with the strongest turbulence, 
so we expect that the corresponding observables should behave in agreement with the 
chaotic hypothesis; see discussion in Gálfi et al (2017). We remark that the inclusion of 
moist processes, of more comprehensive parameterisations, and less idealised boundary 
conditions would greatly increase chaotic processes, and higher horizontal and vertical 
resolutions would lead to substantially stronger turbulence in the tropical belt.

In the considered setting, the two hemispheres have identical statistical properties; 
additionally, the two hemispheres are weakly coupled, broadly as a result of the cho-
sen boundary conditions, of the lack of seasonal cycle, and of the conservation law for 
potential vorticity. Therefore, we can treat the time series coming from the two hemi-
spheres as separate realisations of the same dynamical process. In the following, we pro-
vide first a qualitative comparison of temporal and spatial features of the temper ature 
field, and then we quantify the persistence in time and space based on the integrated 
auto-correlation. We point out that we perform the analysis in a Eulerian framework, 
corresponding to our objective of studying persistent temperature extremes from a 

Table 1. List of variables and parameters in PUMA, equations (7)–(10).

Symbol Value Description

ζ = ∂v
∂x

− ∂u
∂y

Relative vorticity
f Coriolis parameter
D = ∂u

∂x
+ ∂v

∂y
Horizontal divergence

T Temperature
T0 250 K Reference temperature
T ′ = T − T0 Temperature deviation from T0

p Pressure
p s Surface pressure
σ = p/ps Vertical coordinate
U = u cosφ Zonal velocity in spherical coordinates
V = v cosφ Meridional velocity in spherical coordinates
�V Horizontal velocity with components U and U

t Time
φ Latitude
µ sinφ
λ Longitude
φ Geopotential
ω = dp/dt Vertical velocity in p -system
σ̇ = dσ/dt Vertical velocity in σ-system
τF Time scale for Rayleigh friction
K Hyperdiusion coecient
τR Time scale for Newtonian cooling
TR Restoration temperature
κ 0.286 Adiabatic coecient
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spatially fixed point of view: this provides the most relevant information for the specific 
problem—the investigation of persistent temperature anomalies—we have in mind.

Figure 2(a) illustrates the temperature field T(x,y ,t*) as a function of longitude x 
and latitude y  at one selected time point t*, whereas figure 2(b) represents the temper-
ature field T(x*,y ,t) as a function of latitude y  and of time t at one selected longitude 
x*. Qualitatively similar figures would be obtained for dierent values of t* and of x*, 
respectively. Note that to facilitate the comparison between space and time, the x-axis 
in figure 2(b) is backward in time according to the prevailing eastward zonal winds 
(also referred to as westerlies) at mid-latitudes (Holton 2004). Additionally, the range 
of the x-axis in figure 2(b) is the same as in figure 2(a) once we rescale the time axis 
according to the scale velocity Uτ introduced below (computed for 46°), which weights 
the decay of the correlation in space at a fixed time and in time at a fixed location. 
Comparing these two figures we realise that by cutting across time or across longitudes 
we obtain very similar wavy patterns, which is not surprising since the forcing is invari-
ant in time and along a latitudinal band.

While this result would be trivial when observing a periodic or quasi-periodic signal, 
we need to consider here that the dynamics of the atmosphere feature a non-trivial 
mixture of wave, turbulence, and particles (Ghil and Roberston 2002), so that we need 
to look at this space-time similarity from a statistical point of view. According to this, 
we have that, at a given latitude y *, the temporal series T (x∗, y∗, t) and the zonal series 
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Figure 2. General properties of the temperature field at 960 hPa. (a) Temperature 
values T(x, y , t*) as a function of longitude x and latitude y  at one selected time 
point t*. (b) Temperature values T(x*, y , t) as a function of latitude y  and of time 
t at one selected longitude x* (the x-axis is backward in time). (c) Temporal and 
(d) zonal auto-correlation functions according to (16) and (17) for the selected 
latitudes (dierent colours according to the legend). (e) Variance σ2 of near-surface 
temperature according to (15). The dashed lines in (a), (b), and (e) mark the 
selected latitudes.
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T (x, y∗, t∗) are sampled from two similarly distributed random processes, given the 
condition of steady state and the discrete symmetry with respect to translation along 
latitudes.

The main dierence between T (x∗, y∗, t) and T (x, y∗, t∗) is related to distinct tem-
poral and spatial characteristic scales, i.e. to temporal or spatial correlations. At mid-
latitudes, cyclones have a typical temporal scale of ≈1 d and a characteristic spatial 
scale of about 1000 km (Holton 2004). Obviously, these scales are relevant when we 
try to obtain a large deviation principle, thus it is very important to find an adequate 
metric to describe them. 

We quantify the typical temporal and zonal scales based on the integrated auto-cor-
relation, as explained in section 2. We calculate the auto-correlations of the temporal 
and zonal series at a selected latitude y *, based on which we later obtain the integrated 
temporal and zonal auto-correlations. For this, we use 1000 years of our simulation out 
of a total of 10 000 years, as this proves to be more than enough to reach robust esti-
mates. As described in section 2, the auto-correlation is defined as the ratio between 
the auto-covariance C(l) at lag l and the variance σ2: c(l) = C(l)/C(0) = C(l)/σ2. To 
obtain better auto-correlation estimates, we calculate the spatio-temporal mean and 
variance at each y *, and use these estimates for the computation of both temporal and 
zonal auto-correlations:

µ =
1

NtNx

Nt∑
j=1

Nx∑
i=1

T (i, y∗, j) (14)

and

σ2 =
1

NtNx − 1

Nt∑
j=1

Nx∑
i=1

(T (i, y∗, j)− µ)2 , (15)

where Nt = 3.6× 105 is the number of considered points in time (daily data), and 
Nx  =  128 is the number of grid points in the zonal direction. This is reasonable consid-
ering the symmetries in our system in time and along latitudinal circles. The subscripts 
t and x refer to time and to the zonal dimension, also in what follows.

In the case of the temporal series T (x∗, y∗, t), we calculate the auto-covariance at 
one selected longitude x*. This estimate is independent of x*, thus it is unimportant 
which longitude we choose. We have:

ct(lt) =
1

σ2

1

Nt

Nt−lt∑
i=1

(T (x∗, y∗, i)− µ) (T (x∗, y∗, i+ lt)− µ) . (16)

The length of the zonal series T (x, y∗, t∗), however, is too short to obtain reliable 
auto-correlation estimates. The number of grid points along the zonal dimension is only 
128. Together with such a restriction related to the size of the Earth, there is another 
one related to the shape of the Earth. In fact, we have to reduce the maximum lag to 
Nx/2  =  64 because at larger lags the correlations start to increase again due to the peri-
odicity along a latitudinal circle. To increase the robustness of our estimate, we first 
calculate the lagged zonal auto-correlation coecients at each time point and then we 
take the average over time:
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cx(lx) =
1

σ2

1

NxNt

Nt∑
j=1

Nx−lx∑
i=1

(T (y∗, i, j)− µ) (T (y∗, i+ lx, j)− µ) . (17)

Figure 2(c) shows the temporal auto-correlation coecient as a function of the 
temporal lag in units of days, whereas figure 2(d) illustrates the zonal auto-correlation 
coecient as a function of the spatial lag expressed as longitude indexes ix  =  0,1,2,.... 
Both temporal and spatial auto-correlations decay to zero, meaning that two temper-
ature values which are far away from each other in time or in space are independent 
for all practical purposes. We finally estimate the integrated temporal and zonal auto-
correlations by taking the sum of the auto-correlation coecients until the maximum 
lag lt = lx = 64. Note that we use the same temporal and zonal maximum lags for 
consistency reasons. The temporal integrated auto-correlation can be obtained also for 
larger maximum lags, but this changes the estimated value only negligibly because the 
decay to 0 is relatively fast. We define:

τt = 1 + 2
64∑

lt=1

ct(lt), (18a)

τx = 1 + 2
64∑

lx=1

cx(lx). (18b)

τt is 1.32 at 60°, 1.05 at 46°, and 1.61 at 30° (in units of time steps, which are 
equivalent to days), whereas τx is 3.26 at 60°, 3.54 at 46°, and 7.68 at 30° (in units of 
grid points, which correspond to 391 km at 60°, 732 km at 46°, and 1292 km at 30°). 
We define τt and τx in a non-dimensional form (i.e. as the number of time units or zonal 
data points) to facilitate the comparison of temporal and spatial persistence based on 
the resolution of our data, and because in this form we can use them directly for scaling 
the rate function, as we show below.

We define the scale velocity Uτ := τxδx
τtδt

, where δt is the time step of 1 d and δx is 
the latitude-dependent grid spacing. From a statistical point of view, Uτ is the ratio 
between spatial and temporal persistence6. From a geometrical/dynamical point of 
view, Uτ represents the ratio between spatial and temporal typical scales. Thus, Uτ is a 
measure of the anisotropy between space and time. At 60° Uτ = 4.25 ms−1 and at 46° 
Uτ = 8.47 ms−1. For these latitudes, the scale velocity Uτ is in good agreement with the 

mean zonal velocity at 960 hPa [U ], which is 3.6 ms−1 at 60°, and 6 ms−1 at 46°. This 
is hardly surprising as, to a first approximation, the turbulent structures are advected 
by the mean flow.

The agreement is lost when looking at 30°, the boundary of the mid-latitude baro-
clinic zone, for which the qualitative description given above applies. As we approach 
the equator, the atmospheric dynamics have a much lower degree of chaoticity with 
respect to the mid-latitudes, unless we look at convective scales, which are not resolved 

6 A straightforward connection between spatial and temporal typical scales would be the phase speed of patterns, 
which is represented on synoptic scales at mid-latitudes by the phase speed of Rossby waves. As discussed in the 
introduction, this phase speed depends on the wave length, thus, unlike Uτ, it is not a general property of the flow 
at a certain latitude.
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at all in this model. The spatial persistence is strongly enhanced (see also figures 2(a) 
and (b), as a result of the dominance of larger structures associated with the down-
draft of the Hadley cell rather than synoptic disturbances associated with mid-latitude 
weather systems advected by the prevailing westerlies. In this case we find Uτ = 14.95 

ms−1, while [U ] is  −3.4 ms−1, which indicates prevailing easterly flow, a clear signature 
of tropical dynamics.

Figure 2(e) emphasises that the near-surface temperature experiences the largest 
variance near latitude 46°, as a result of the very strong baroclinic instability associ-
ated with mid-latitude weather patterns. This latitude also corresponds to the mean 
position of the jet, the localised region where the speed of the upper-level winds are at 
a maximum (Holton 2004).

Before continuing with the description of the temporal and spatial large deviations, 
we briefly discuss the connection between high values of coarse-grained temperatures 
and long individual events where the temperature readings are persistently above the 
long-term average, discussed already in section 1. Figures 3(a)–(c) show three short 
temporal series at latitude 46° together with the corresponding series of the coarse-
grained quantities where averages are computed using block lengths of 20τt, 10τt, and 
5τt, respectively. The three short time series have been specifically chosen because they 
feature a large fluctuation in the coarse-grained quantity. Figures 3(d)–(f) show the 
same in the case of the zonal fields. The main finding is that up to moderately long 
averaging windows of about 10τt (or 5τx for spatial averages) it is possible to link large 
fluctuations with individual persistent events. When a coarser graining is considered, 
using a window of 20τt for time averages and 10τx or 20τx for spatial ones, thus going 
in the direction of the regime of the large deviations discussed below, we do not have 
such a one-to-one identification. Instead, large ultra-long fluctuations are related to the 
occurrence of subsequent moderately long persistent features.

4.1. The link between temporal and zonal large deviations

At this point, we turn our attention to the estimation of the temporal and zonal rate 
functions. For this, we first have to obtain sequences of temporal and zonal averages 
for increasing lengths of averaging blocks nt and nx, for which we use the total length 
of our simulation of 10 000 years.

Ant =
1

nt

nt∑
i=1

T (x∗, y∗, t = i), (19a)

Anx =
1

nx

nx∑
i=1

T (x = i, y∗, t∗). (19b)

The lengths of temporal averaging blocks are chosen to be multiples of τt: 
nt = 5τt, 10τt, ..., 40τt. Similarly, the lengths of zonal averaging blocks are multiples of 
τx, but in this case the largest possible multiple m is limited due to the size and shape 
of the Earth, as mentioned above: nx = 5τx, 10τx, ...,mτx. m  =  20 in the case of latitudes 
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60° and 46°, whereas m  =  10 in the case of latitude 30°. To increase the number of aver-
aged values for the computation of the temporal rate functions, we lump together the 
temporal averages from every 25th longitude along a latitudinal circle. Since τx � 25, 
these temporal sequences can be treated as independent realisations7. In the case of 

Figure 3. Relationship between persistent events and large fluctuations of the 
coarse-grained fields. (a) Time series (black line) of near-surface temperature at 46° 
in the case of a large event of the coarse-grained time series (red line) with averaging 
window of 20τt; x-axis in units of τt = 1.05 d. (b) Same as (a), for averaging window 
of 10τt. (c) Same as (a), for averaging window of 5τt. (d) Zonal series (black line) of 
surface temperature at 46° in the case of a large event of the coarse-grained zonal 
series (red line) with averaging window of 20τx; x-axis in units of τx = 3.54 grid 
points. (e) Same as (f), for averaging window of 10τx. (f) Same as (d), for averaging 
window of 5τx. In all panels the grey horizontal line represents the long-term and 
longitudinal average.

7 We remark that the aim here is to obtain better temporal large deviation estimates. For this purpose it is impor-
tant to exclude spatial correlations, thus the time series at the chosen latitudes should not be correlated.
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zonal averaging, we take one averaged value in space from every tenth point along the 
time axis, which we consider to be independent realisations as well8. Such an assump-
tion is reasonable because the integrated temporal auto-correlation of zonal averages is 
much lower then 10, even for the largest nx (as shown later in figure 5). We obtain for 
each value of nt and nx estimates of the rate functions, after using the re-normalising 
factors given by 1/τt or 1/τx, respectively:

Ĩnt(a) = − ln p(Ant = a)

nt

τt, (20a)

Ĩnx(a) = − ln p(Anx = a)

nx

τx, (20b)

where p(Ant = a) and p(Anx = a) represent empirical estimates of the PDFs of the 
temporally and zonally averaged sequences. Due to the re-normalisation, the logarithm 
of the probabilities is scaled by nt/τt or nx/τx, i.e. by the amount of uncorrelated data, 
instead of by the total amount of data, in an averaging block. Thus, we eliminate the 
eect of correlations.

Figure 4 shows Ĩnt (a–c) and Ĩnx (d–f) for every nt and nx. As a side note, we remark 
that in every figure below the shown re-normalised rate function estimates are shifted 
vertically so that their minimum is at 0. In the case of the temporal rate functions, it 

is clear that for nt � 20τt the estimates Ĩnt do not change in shape by further increase 
in nt, meaning that we obtain stable and reliable estimates, i.e. there is a proof in our 
data for a large deviation principle in time. We also notice that the range of Ant values 
becomes narrower as nt increases as an eect of averaging, which reduces the amount 
of available data. Thus, we obtain our best estimate at an optimal averaging block 
length n∗

t which is large enough to allow for the convergence of rate function estimates, 
but is at the same time small enough so that the range of Ant is not too narrow, i.e. 

n∗
t = min(nt; Ĩnt ≈ Int). We choose the same optimal averaging length for all three lati-

tudes: n∗
t = 20τt; although in the case of latitudes 60° and 30°, Ĩnt=10τt already seems to 

be a good estimate for the asymptotic Int. Comparing the re-normalised rate function 
estimates at the selected latitudes, we realise that the rate function has smaller curva-
ture at latitude 46° than at 60° and 30°. This is not a trivial consequence of the larger 
variability of the system in the middle of the considered domain, as mentioned above 
and shown in figure 2(e), because we are considering averages of fluctuations here.

In case of the zonal rate functions, we first notice that the largest nx seems to be 
too small for a clear-cut convergence. In other words, the latitudinal circle is not long 

enough to clearly obtain a large deviation limit. However, the dependence of Ĩnx on 

nx seems to decrease as nx is increasing, thus we choose the largest possible nx as the 
optimal zonal averaging length n∗

x = max(nx). n
∗
x = 20τx in the case of latitudes 60° and 

46°, whereas in the case of latitude 30°, n∗
x is only 10τx because of the stronger zonal 

auto-correlations.
The best estimates of the temporal and zonal re-normalised rate functions Ĩ∗nt

= Ĩnt=n∗
t
 

and Ĩ∗nx
= Ĩnx=n∗

x
 are shown again in figures 4(g)–(i). The shading represents the 95% 

8 For spatial averaging, we use a similar argument as for temporal averages. The aim is to exclude, at this point, 
the eect of temporal correlations..
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normal distribution (functions boot and boot.ci of the R package boot, Davison 

and Hinkley (1997), Canty and Ripley (2017)). We notice that Ĩ∗nt
≈ Ĩ∗nx

. The equiva-
lence is very good in the case of the latitude 60° and in the case of negative anomalies 
at latitudes 46° and 30°. We also notice some dierences for positive anomalies at lati-
tudes 46° and 30°, with larger dierences at 30°. At this later latitude, however, it has 
to be considered that the maximum possible zonal averaging length is 10τx, whereas 
in the other cases it is 20τx. We assume that the dierences between the temporal and 
zonal re-normalised rate function estimates have to do with the fact that n∗

x is not 
large enough to estimate the rate function properly. Larger values of nx are needed to 
overcome the enhanced skewness in the distribution of zonal averages as the eect of 
spatial correlations; however, this is impossible due to limitations coming from the size 
and shape of the Earth. These findings have correspondence with the large value of Uτ 
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Figure 4. (a)–(c) Temporal re-normalised rate function estimates Ĩnt and (d)–(f) 
zonal re-normalised rate function estimates Ĩnx for the three considered latitudes 
and for increasing averaging lengths nt and nx according to the dierent colours (see 
legend). (g)–(i) Best estimates of the temporal (red) and zonal (blue) re-normalised 
rate functions. All estimates are shifted vertically so that their minimum is at 0. 
T ′ = T − µ represents temperature fluctuations around the mean.

https://doi.org/10.1088/1742-5468/ab02e8


A large deviation theory-based analysis of heat waves and cold spells

23https://doi.org/10.1088/1742-5468/ab02e8

J. S
tat. M

ech. (2019) 033404

at this latitude, defining the anisotropy between space and time. While the temporal 
rate function can be estimated reliably at a relatively small nt, the estimation of the 
zonal one is a much more dicult task.

However, the main message of figure 4 is that the temporal and zonal re-normalised 
rate functions seem to be equal, Int = Inx, if the probability of averages is scaled by 
the amount of uncorrelated data in an averaging block, nt/τt or nx/τx, as explained 
above. In other words, there is a link connecting temporal and spatial large deviations 
or averages, due to the existence of a universal function In; universal in the sense that 
it represents large deviations in both dimensions—time and space.

Obviously, based on the large deviation principle in time or in space, one cannot 
characterise persistent temporal or spatial events, because the limit law starts to act 
on large scales, where persistence is lost and universality emerges. However, one can 
capture persistent space-time events by averaging in both dimensions: space and time. 
To achieve this, it is important that the spatial averaging length is not too small but 
not too large either, as we show in the following.

4.2. Spatio-temporal large deviations

We consider temporal sequences of zonally averaged observables over averaging lengths 
nx = 1τx, 5τx, 10τx, 20τx, and then average each sequence in time for increasing aver-
aging lengths n̂t = 1τ̂t, 5τ̂t, 10τ̂t, 15τ̂t, ...40τ̂t. The notation  ̂ is meant to indicate that 
we average in space and additionally in time, and τ̂t is the decorrelation time of the 
spatially averaged observable. By considering several nx values, we choose the spatial 
scale at which we analyse the large deviations in time. The spatio-temporal averages 
are computed as:

Anx,n̂t =
1

n̂t

n̂t∑
j=1

1

nx

nx∑
i=1

T (i, y∗, j) =
1

n̂t

n̂t∑
j=1

Anx( j). (21)

Similarly to the previous cases, also in the case of spatio-temporal averages, we 
have to take into account the strength of auto-correlations if we pursue to compare 
the spatio-temporal rate functions with the temporal and zonal ones. We estimate the 
integrated temporal auto-correlation τ̂t of spatio-temporal averages analogously to τt 
or τx, but, in order to assure the stability of τ̂t, we choose a higher maximum lag of 120 
d because the auto-correlation in time of zonal averages has a slower decay compared 
to that of unaveraged temporal or zonal observables. Figure 5 shows τ̂t as a function 
of zonal averaging length nx and temporal averaging length n̂t. The temporal auto-cor-
relations of the spatio-temporal observables are increasing with nx and decreasing with 
n̂t. The increase with nx, on the one hand, can be explained by the connection between 
temporal and spatial scales. Large events in space are long-lasting events in time, as 
discussed in section 19. The decrease of the temporal integrated  auto-correlation with 
n̂t, on the other hand, can be explained by the increase of the number of uncorrelated 
events with respect to the number of correlated events in an averaging block as a 
consequence of increasing the block length. This is automatically the case for large 

9 This statement is justified by the properties of Rossby wave propagation in the mid-latitudes as mentioned in 
the introduction. Accordingly, large enough waves can become stationary and lead to persistent temperature 
extremes.
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averaging blocks when correlations are finite, and is crucial for the applicability of the 
block averaging method. The dierent behaviour with nx and n̂t, however, has to do 
mainly with the discrepancies in the temporal resolution of the newly obtained aver-
ages. While in the case of zonal averaging, the temporal resolution remains one day, 
in the case of additional averaging in time, the temporal resolution decreases with n̂t, 
thus the temporal auto-correlation lag increases. However, this is not a problem for 
our analysis since we are interested in the correlations of the averaged observables 
measured in the amount of averaged data. A stronger increase of τ̂t at the ‘end’ of the 
channel underlines the above discussed eect of averaging along a latitudinal circle. 
At the zonal ‘end’ of the channel, the temperature values are strongly correlated with 
those at the ‘beginning’ of the channel.

The dependence of τ̂t on the zonal and temporal averaging lengths is qualitatively 
similar for the chosen latitudes if one considers nx in units of τx (along the vertical lines 
in figure 5 with same colours). As we proceed from South to North, the auto-correla-
tions of the zonally averaged observables become stronger. This is, however, mostly 
due to the decreasing distance between the longitudes leading to stronger correlated 
temperature values at neighbouring longitudes.

Estimates of spatio-temporal re-normalised rate functions are then computed for 
each nx and n̂t as:

Ĩnx,n̂t(a) = − ln p̃(Anx,n̂t = a)

n̂tnx

τ̂tτx. (22)

We remark that equation (22) accounts for both zonal and temporal  auto-correlations 
by multiplication with τ̂tτx, similarly to the case of temporal and zonal rate functions. 
The spatio-temporal re-normalised rate function estimates are displayed in figure 6 

(coloured lines). For comparison reasons, we also show the best temporal and zonal 

estimates Ĩ∗nt
 (continuous black lines) and Ĩ∗nx

 (short-dashed black lines), together with 

the estimate of the zonal re-normalised rate function at the selected zonal averaging 

length Ĩnx (long-dashed black lines). The main message here is that:

 •	  The spatio-temporal re-normalised rate function seems to be equal to the uni-
versal function In for small and large zonal averaging lengths.

 •	  We suppose that in the case of small zonal averaging lengths nx � n∗
x, like 

nx = 1τx, the zonally averaged observable is not significantly dierent from the 

spatially localised observable, so that Ĩnx,n̂t converges to the universal function In.

 •	  In the case of large zonal averaging lengths nx � n∗
x, like nx = 20τx, the zonal 

averages already exhibit universal characteristics, which are not altered by the 

additional temporal averaging, thus Ĩnx,n̂t corresponds again with the universal 
function In.

 •	  At intermediate levels however, i.e. τx < nx � n∗
x, due to the non-trivial zonal 

correlations one obtains after zonal averaging a totally dierent observable from 
the original one.
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The re-normalised spatio-temporal rate functions are dierent from the universal func-
tion In at nx = 5τx in the case of the latitudes 60° and 46°, as well as at nx = 10τx in the 
case of latitude 60°, although in this last case it is worth mentioning that the spatio-
temporal rate function corresponds with the zonal rate function estimate at nx = 10τx. 
In all these cases, the spatio-temporal rate functions are flatter than the universal func-
tion, pointing out a higher probability of large deviations, which favours the presence 
of organised structures in the form of persistent weather patterns. Indeed, this is a new 
way to assess the existence of specific dynamical mechanisms—which result in distinct 
statistical properties of the temperature fields—associated with the low-frequency vari-
ability of the atmosphere discussed in the introduction. Figure 7 represents schemati-
cally the ranges of temporal and zonal averaging lengths, at which universality emerges 
(blue) or is hindered (light blue) due to zonal correlations. Pre-asymptotic regions, 
where the large deviation law is not valid yet, are depicted in white.

As a side note, the horizontal shift of the rate function estimates at small aver-
aging lengths (nx or n̂t) in figure 6 emphasises that these estimates are not reliable 
because the averaging length is too small for the law of large numbers to hold. We 
also wish to remark that dierences emerge when looking at temperature data from 

latitude 30°. Here, the spatio-temporal re-normalised rate function Ĩnx,n̂t at nx = 1τx 

is not identical to the universal function In. One possible reason for this is that when 
averaging over a length nx = 1τx the newly defined observable has already significantly 
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Figure 5. Integrated temporal auto-correlation of spatio-temporal averages τ̂t 
for the selected latitudes as a function of zonal and temporal averaging lengths. 
The vertical lines mark zonal averaging lengths, corresponding to multiples of τx: 
1τx, 5τx, 10τx, 20τx (from white to green).
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Figure 6. Rate functions of spatio-temporal averages for the selected latitudes 
and dierent zonal averaging lengths: (a)–(c) nx = 1τx, (d)–(f) nx = 5τx, (g)–(i) 
nx = 10τx, (j)–(k) nx = 20τx. The coloured lines represent spatio-temporal rate 
functions for dierent temporal averaging lengths n̂t according to the legend. The 
black continuous line is the best temporal rate function estimate, the black short-
dashed line is the best zonal rate function estimate, and the black long-dashed line 
is the zonal rate function estimate at the selected nx. The rate function estimates are 
shifted vertically so that their minimum is at 0. T ′ = T − µ represents temperature 
fluctuations around the mean.
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dierent properties from the local (in-space), time-dependent observable. The uni-
versality of the spatio-temporal rate function cannot be checked properly due to the 
limit in zonal averaging length of 10τx. What we see, however, is that at nx = 10τx the 
 spatio-temporal re-normalised rate function is quite similar to—yet distinct from—the 
universal function.

4.3. Return levels of the large deviations

We briefly summarise our main findings presented until now:

 1.  When considering temporal averages, the estimates of the rate functions seem 
to converge to an asymptotic function, and we obtain the best estimate of the 
rate function at an optimal averaging block length n∗

t. We show that there is 
a large deviation principle, i.e. a universal law that allows us to estimate the 
probabilities of occurrence of averages over nt � n∗

t , without having to actually 
perform the averaging.

 2.  Spatial averages of the temperature field along latitudes obey the same large 
deviation law obtained for temporal averages. This means that we can deduce 
statistical properties of temporal averages from the ones of spatial averages and 
vice versa. Additionally, the same asymptotic law is obtained when performing 
long spatial and temporal (two-dimensional) averages.

 3.  The temporal averages of temperature fields averaged on intermediate spatial 
scales along latitudes obey dierent large deviation laws, which point at a rela-
tively higher probability of occurrence of heat waves and cold spells. This indicates 
the preferential existence of organised spatial structures, which correspond to the 
well-known low-frequency variability of the atmosphere.

Figure 7. Schematic representation of universality and eect of correlations 
depending on the zonal and temporal averaging lengths. The dark blue colour 
marks the region where universality emerges. The light blue colour represents 
the region with non-universal spatio-temporal rate functions as an eect of zonal 
correlations. Pre-asymptotic regions, i.e. where the large deviation law is not valid 
yet, are white.
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Now, the question is how we can use this information in a practical way. One pos-
sible application, which we present in this subsection by the example of latitude 60°, 
arises in the context of computing return periods of large events. Figure 8 shows return 
level plots, i.e. return levels as a function of return periods obtained in three dierent 
ways, based on empirical data (circle markers), large deviation principle (continuous 
lines), and the generalised Pareto distribution (dashed lines). For the estimation of 
return periods based on the large deviation limit, we first obtain kernel density esti-
mates (function density of the R package stats, R Core Team (2016)) of the PDFs 
p (An  =  a) at fixed equidistant return levels An,1, ...,An,256, based on which we estimate 
the cumulative distribution function P (An � a), and then compute the return periods 

for An � a as 1
1−P (An�a)

 and for An � a as 1
P (An�a)

. Thus we obtain the return periods 

of both positive (figures 8(a), (c), and (e)) and negative (figures 8(b), (d), and (f)) large 
deviations. The shading around the continuous lines in figure 8 represents the 95% 
confidence intervals of 2000 nonparametric ordinary bootstrap return period estimates 
based on the normal distribution.

We compute the generalised Pareto return levels based on (6) using the maximum 
likelihood estimates of generalised Pareto parameters (functions gpd.fit and gpd.rl of 
the R package ismev, Stephenson (2016)). We analyse return levels of  high-temper ature 
values exceeding a threshold equal to the 99.9% quantile of the averaged series, as well 
as return levels of low-temperature values below the 0.1% quantile. To verify the appli-
cability of the peak over threshold method, the stability of return levels was checked 
also for a higher (lower) quantile of 99.99% (0.01%). The return level estimates seem to 
be stable even if the threshold is increased (not shown). Note that although the very 
slow convergence of the generalised Pareto shape parameter is well known in some 
cases, the stability of return level estimates still holds if the change in the shape param-
eter is relatively small as the threshold increases (Gálfi et al 2017). The shading around 
the dashed lines in figure 8 represents 95% maximum likelihood confidence intervals of 
return level estimates. As a side note, in the case of the peak over threshold method the 
estimation concerns the return levels while the return periods are fixed, whereas we pro-
ceed the other way around in the case of the large deviations. This is necessary because 
we estimate the rate function I(a) at fixed equidistant values a.

In figures 8(a) and (b) the return levels of temporal averages are shown for three 
dierent averaging windows 20τt, 30τt, 40τt. Here we use point 1 from above, and obtain 
the return periods based on the large deviation principle for every averaging window 
from p(An∗

t=20τt = a). We notice a very good agreement with the empirical data and 
the generalised Pareto return levels not only for 20τt but also in the case of 30τt and 
40τt, for both high (figure 8(a)) and low (figure 8(b)) extremes of averages. In the case 
of nt = 20τt, the confidence intervals of the largest return periods based on large devia-
tions become very unstable, and the lower limits even reach negative values, thus they 
cannot be displayed on this semi-logarithmic scale.

The return periods based on large deviations have an upper (or lower) limit because 
the estimation relies on empirical PDFs. This is not the case for the generalised Pareto 
return periods since they can be extrapolated to even unobserved events. The large 
deviation principle, however, is a limit law that gives us return periods for every aver-
aging length n  >  n*, whereas the generalised Pareto return periods have to be computed 
separately for every n. This becomes more and more dicult with increasing n due to 
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the decreasing data amount as an eect of averaging. With other words, figure 8 points 
out the dierent dimensions in which the two limit laws act, as mentioned already in 
section 1. The predictability of the peak over threshold method (and, in general, the 
predictability of extreme value theory) is directed towards larger and larger events, i.e. 
towards unobserved ones, whereas the predictability of LDT is directed towards larger 
and larger averaging lengths, i.e. towards observables that, by construction, dramati-
cally reduce the amount of data available for statistical analysis.

Point 2 presented above is illustrated by figures 8(c)–(f). In the first case, return 
periods of temporal averages are computed based on the large deviation principle 
obtained for zonal averages (n∗

x = 20τx), and, in the second case, return periods of 
spatio-temporal averages (with a spatial averaging length of 20τx) are obtained from 
the large deviation law for temporal averages (n∗

t = 20τt). In both cases, but especially 
for the spatio-temporal averages, the agreement with the empirical data and the gener-
alised Pareto return levels is good. The dierences between the return levels based on 
the large deviations and the empirical data (also generalised Pareto return levels) are 
related to the discrepancies in the estimation of the temporal and zonal as well as the 
temporal and spatio-temporal re-normalised rate functions. For example, the underes-
timation of low extremes of temporal averages based on the zonal rate function has to 

Figure 8. Return levels and return periods of positive (upper row) and negative 
(lower row), (a)–(d) temporal and (e)–(f) spatio-temporal large deviations of 
temperature at latitude 60°. Circle markers: empirical data; continuous line with 
shading: estimates based on large deviations with 95% confidence intervals of 2000 
nonparametric bootstrap samples based on the normal distribution; dashed line 
with shading: generalised Pareto estimates with 95% confidence intervals based on 
maximum likelihood estimation. The dierent colours represent dierent averaging 
lengths. The large deviation estimates are obtained based on (a), (b), (e), and (f) 
temporal averages at n∗

t = 20τt, and (c), (d) zonal averages at n∗
x = 20τx.
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do with higher re-normalised zonal rate function values compared to the temporal ones 
in their left tails (see figure 4(g)). We remark that the possibility of commuting between 
averages of dierent dimensions (time and space) is due to the fact that by eliminating 
the eect of serial correlations the large deviations of these dierent dimensions follow 
a universal function.

4.4. How sensitive are our results to the length of the numerical simulations?

In typical data analysis exercises based on observational datasets or state-of-the-art cli-
mate simulations, the time span of available data is substantially less than in the case 
of our idealised simulations, ranging from O(100) to O(1000) years. To test the appli-
cability of the method in the case of shorter time series, we divide our 10 000 year long 
simulations into 100 sections of 100 year simulations. For each of them we estimate 
return levels and periods of temporal averages based on temporal large deviations. We 
also estimate the generalised Pareto return levels using the 95% quantile as a threshold. 
Afterwards, we increase the length of the simulations, and repeat these steps also for 10 
sections of 1000 year simulations. The obtained return levels and periods are illustrated 

Figure 9. Return levels and return periods of positive temporal large deviations 
of temperature at latitude 60° based on temporal large deviation estimates at 
n∗
t = 20τt obtained from (a) 100 year and (b) 1000 year simulations as well as 

generalised Pareto parameters from (c) 100 year and (d) 1000 year simulations 
using the 95% quantile as a threshold. The dierent colours represent dierent 
averaging lengths. The circle markers represent the empirical data (10 000 years) 
and the dashed grey lines illustrate estimate averages over the repetitions.
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in figure 9. Note that the empirical return levels are still obtained based on the whole 
amount of data of 10 000 years, and thus represent a reliable basis of comparison.

Figure 9(a) demonstrates that climatologically important events with return periods 
of several tens and hundreds of years can still be approximated reasonably by large 
deviation estimates based on simulations of 100 years. The average of the estimates 
(grey dashed lines) slightly overestimates the empirical return levels; however, the 
agreement is good until long return periods and improves with increasing averaging 
lengths. We additionally point out that the spread of predictions is remarkably low, 
and is decreasing with increasing averaging length. This underlines the advantage of 
using large deviation estimates for return levels of averages over large averaging win-
dows, and shows that the predictions of LDT are also very stable if much shorter data-
sets are considered. The agreement with empirical return levels improves substantially 
by increasing the simulation length to 1000 years (figure 9(b)).

In case of the 100 year simulations, the generalised Pareto return levels agree with the 
empirical data slightly better than the large deviation estimates (compare figures 9(c) 
with (a)). However, the variance of the generalised Pareto estimates increases stronger 
with the return period also for large averaging lengths. Furthermore, the averaged 
generalised Pareto estimates (grey dashed lines in figure 9(c)) tend to underestimate 
the largest events for both 100 and 1000 year simulations. In the case of realistic model 
simulations and observational data, however, one has to deal with additional complica-
tions besides the smaller amount of data, mainly as an eect of non-stationarity and 
strong correlations. We discuss these eects in the next section.

5. Summary and discussion

We have analysed the properties of temporal and spatial near-surface (960 hPa) temper-
ature averages in the PUMA simplified global atmospheric circulation model based on 
LDT. Extremes of averages on specific scales are related to persistent extreme events, 
like heat waves or cold spells. We run the model for 10 000 years with a constant (only 
latitude-dependent) forcing, creating non-equilibrium (due to the forced-dissipative 
nature of the model) steady-state simulations without orography, annual or daily cycle. 
The forcing is symmetrical for the two hemispheres. The horizontal resolution is T42 
with ten vertical levels, and the temperature values are recorded daily. We compute 
and compare the re-normalised rate functions based on the integrated auto-correlation 
for temporal and zonal temperature sequences at selected latitudes (60°, 46°, and 30°), 
focusing on the mid-latitude region, where turbulence is best developed. The spatial 
averaging is performed only in the zonal direction, because this is the geometrical direc-
tion along which the system has a symmetry. We also analyse the two-dimensional 
case, i.e. spatio-temporal averaging. We verify the correctness of our results by compar-
ing the return periods based on the rate functions with return periods from the empiri-
cal data and from the peak over threshold method. Before discussing them in detail, we 
first summarise our main findings:
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 1.  The temperature averages in PUMA follow a large deviation principle.

 2.  The temporal and zonal re-normalised rate functions are equal if we compute 
them by eliminating the eect of temporal and zonal correlations. Thus, we can 
define a universal function, describing temporal as well as spatial large deviations.

 3.  The spatio-temporal re-normalised rate functions are equal to the universal func-
tion for small and large spatial averaging lengths. On intermediate levels, as an 
eect of non-trivial spatial correlation, the spatio-temporal re-normalised rate 
functions dier from the universal ones.

The estimated rate functions clearly converge in the case of temporal averages. We 
obtain reliable estimates at an optimal averaging length n∗

t, which is about 20τt, where 
τt represents the temporal integrated auto-correlation. The fact that we find a large 
deviation principle for temperature averages might seem unsurprising, but actually it 
has extremely important consequences on a practical level. Based on large deviations, 
we can estimate the probabilities of averages, and thus for practical use very important 
return periods, for every averaging length nt � n∗

t . All we need to know is the prob-
ability of averages An∗

t
, which we can estimate empirically. In contrast to the temporal 

averages, in the case of zonal averaging the spatial averaging length nx is substantially 
limited by the size and shape of a latitudinal circle. The temporal averaging is per-
formed on a theoretically infinite (and practically very long) line, whereas the zonal 
averaging takes place on a circle. Thus, the convergence of the estimated rate functions 
is not as clear as for temporal averages. However, the comparison of the zonal results 
with the temporal re-normalised rate function estimates shows that the averaging 
length n∗

x = 20τx seems to provide a reasonable rate function estimate, thus we choose 
this one as the optimal zonal averaging length. In the case of latitude 30°, 20τx cannot 
be reached due to the stronger zonal correlations. Here, the maximum averaging length 
is 10τx.

We find that the temporal and spatial re-normalised rate functions seem to be equal 
if we eliminate the eect of correlations according to equation (20), where we basi-
cally scale the rate functions by the amount of uncorrelated data instead of the whole 
amount of data in an averaging block. Based on this equivalence, one finds a universal 
function In = Int = Inx, in the sense that it describes both temporal and spatial large 
deviations. From a practical point of view, this implies that one can commute between 
space and time: we can deduce statistical properties of spatial averages (including 
return level estimates) from a single time series, and this is, of course, true the other 
way round too.

Obviously, based on a large deviation limit obtained in one dimension—time or 
space—we cannot describe persistent events, because the limit law is acting on very 
large scales, where spatial or temporal organisation is lost and universality emerges. 
However, as our results show, persistent space-time events can be studied based on 
LDT if one performs the averaging in both dimensions—time and space.

Therefore, we extend our analysis also to spatio-temporal large deviations. 
Here, we average first in the zonal direction taking dierent averaging lengths 
nx = 1τx, 5τx, 10τx, 20τx, and then we search for a large deviation principle in time of 
the zonally averaged observables. We find that the spatio-temporal re-normalised rate 
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function, computed again by eliminating the correlations according to (22), is equal to 
the universal function In in two cases: (1) for small zonal averaging lengths nx ≈ τx, 
and (2) for large ones nx � n∗

x. We suppose that in the first case, due to the small nx, 
the zonally averaged observable is not significantly dierent from the temporal observ-
able, and thus the rate function converges to the universal function. In the second case, 
the zonal averages already exhibit universal characteristics because the large nx allows 
for enough mixing in the series of zonal averages. These universal characteristics are 
not altered by the additional temporal averaging. On intermediate scales however, i.e. 
τx < nx � n∗

x, due to the non-trivial zonal correlations, one obtains after zonal averag-
ing a totally dierent observable, whose large deviations follow a clearly dierent rate 
function to the universal one. Consequently, by computing large deviations in time of 
zonal averages, we get rid of temporal persistence if the temporal averaging length is 
large enough, but we cannot eliminate the eect of zonal persistence on intermediate 
scales, which then leads to a non-universal re-normalised rate function. This also means 
that in this way we can study persistent extreme events based on LDT. These inter-
mediate scales of about 5–10τx or ≈2000–4000 km are approximately equal to the scale 
of persistent synoptic disturbances, like the ones causing severe heat waves. According 
to this point of view, long-lasting synoptic scale disturbances are large deviations from 
the steady state, which allow for a higher degree of spatio-temporal organisation and, 
in a loose sense, a lower entropy compared to disturbances at any other scale. This is 
an interesting signature of the so-called low-frequency variability of the atmosphere, 
which manifests itself in a complex phenomenology like in the case of blocking events 
(Tibaldi and Molteni 2018).

The advantage of applying LDT to analyse persistent climatic events is, besides 
the already discussed predictive power, the opportunity to learn something about the 
system under investigation:

 •	  Our system is chaotic enough to allow for a large deviation principle. This means 
that correlations decay suciently fast and the system is mixing enough for 
the chaotic hypothesis to hold. A very important characteristic of these kind of 
systems is that fluctuations are dominated by the mean instead of the biggest 
events, and thus the central limit theorem holds.

 •	  The rate functions are approximately symmetric, so that positive fluctuations and 
corresponding negative fluctuations of the same size have a similar probability of 
occurrence.

 •	  We obtain an equivalence between temporal and spatial re-normalised rate func-
tions, meaning that fluctuations in time are equivalent to fluctuations in space if 
one takes into consideration the dierent spatial and temporal scales. Thus our 
non-equilibrium steady-state system exhibits a symmetry between the temporal 
and spatial (zonal) dimensions. This suggests that in the renormalised temporal 
and spatial dimensions the statistical properties of temperature can be considered 
as isotropic.

 •	  We find that the spatio-temporal rate function related to intermediate spatial 
scales is substantially flatter and lower than the universal function. Consequently, 
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large deviations in our system are more probable to appear on intermediate 
spatial scales than on any other scale.

Additionally, we compare the two frameworks for investigating rare events, i.e. LDT 
and the peak over threshold approach of extreme value theory, from a practical point 
of view, based on return level and return period estimates. Both methods are based on 
limit laws, but they dier in the way the limit is obtained, and thus also in the direc-
tion in which the limit acts. The peak over threshold approach deals with the condi-
tional probabilities of averages exceeding a high threshold. The limit law is obtained as 
one considers larger and larger extremes, thus it is directed towards large, even unob-
served events. In the case of LDT, we approach the limit as we consider averages with 
increasing averaging length n, thus the limit is directed towards n → ∞. Our results 
point out these dierences. On the one hand, the return level estimates based on the 
theory of large deviations are limited from above at small averaging lengths because 
they are obtained based on empirical distributions, whereas the estimates based on the 
peak over threshold approach can be extrapolated to unobserved events. On the other 
hand, the return levels based on large deviations can be obtained for every n � n∗ based 
on the probabilities of An∗, whereas in the case of the peak over threshold approach 
they have to be estimated for every n separately. We also have to remark that the 
conv ergence to the limit law seems to be easier to achieve in the case of large deviations 
than in the case of extreme values (Gálfi et al 2017).

As mentioned above, we eliminate the eect of correlations in the computation of 
the rate functions by multiplication with the integrated auto-correlation. We estimate 
both temporal and zonal integrated auto-correlations, τt and τx. By computing the 
ratio between spatial and temporal persistence, we define a scale velocity Uτ = τx/τt, 
which is a measure for the anisotropy between space and time. If the anisotropy 
between space and time is strong, it becomes more dicult to show the existence of 
a universal rate function, as in the case of latitude 30°. We remark that the scale 
velocity we find by such asymptotic procedure could be viewed in connection with the 
research lines aiming at identifying the multifractal nature of the weather and climate 
fields (Lovejoy and Schertzer 2013), and, in particular, of precipitative fields (Deidda 
2000). Generally, the connection between spatial and temporal scales is given by some 
characteristic velocity. In the multifractal analysis of spatio-temporal precipitation 
fields, the temporal dimension is usually rescaled by the advection velocity to fit the 
spatial ones, as explained by Deidda (2000). If the rescaled temporal and the spatial 
dimensions are isotropic the overall advective velocity is sucient to describe the 
relationship between the spatial and temporal properties of the precipitation field. 
In the case of spatio-temporal anisotropy, however, the advective velocity is scale-
dependent. In this work we are searching for the connection between time and space 
in terms of rate functions, and we find that this space-time connection is described 
very well by the ratio between the spatial and temporal integrated auto-correlation, 
which we indicate as Uτ . As mentioned in section 4, Uτ is comparable with the zonal 
mean velocity at latitudes 60° and 46°, which, indeed, advects turbulent structures 
at a first approximation. However, the agreement is worse at 30°. In this case, the 
dynamics have a mixed tropical/extratropical character, and long spatial correlations 
are due to the presence of the Hadley cell downdraft.
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While nature and society do not typically conform to the hypotheses of the theo-
rems needed to establish universal laws, such asymptotic results can nonetheless be 
extremely useful for studying observational data, just as in the widely used case of 
extreme value theory. Therefore, this work should be seen as a first step towards the 
use of LDT for the analysis of actual climatic data and the outputs of state-of-the 
art climate models. The perspective is to find new ways to eciently estimate the 
probability of occurrence of extremely rare events associated with persistent climatic 
conditions. In this work, we have focused on time scales which are long compared to 
those typical of the atmosphere, but one can adopt the same methods for studying 
persistent events of multi-annual scales, where the oceanic variability is, instead, 
essential. This has, potentially, great relevance for addressing the problem of assess-
ing human and environmental resilience to the low-frequency variability of the cli-
mate system.

In the case of applications to state-of-the-art model simulations or observational 
data, one has to deal with various complications, which are absent in our idealised 
model simulations. These have to do mainly with the presence of non-stationarity in 
the time series—as a result, e.g. of the seasonal cycle, and, on longer time scales, of 
climate change—as well as the presence of multiple time scales in the climate sys-
tem, which may lead to a slow decay of correlations for some variables. Note that, 
for example, ocean surface temperature decorrelates more slowly than the temper-
ature over land surface, as a result of the larger heat capacity of the active surface 
layer in the ocean. As discussed above in section 2, strong correlations can inhibit 
the convergence to the limit law, at least when finite-size datasets are considered. 
Pragmatic approaches for dealing with time-dependent systems can be adapted from 
what was done in the case of analyses based on extreme value theory. One can elimi-
nate a long-term trend, and then look at the detrended data using LDT. In a similar 
manner, it is possible to eliminate the annual cycle from the time series, obtain a 
large deviation principle, and consider the annual modulation later in the estimation 
of return levels. Another possibility would be to divide the time series according to 
seasons, and to obtain separate rate functions for separate seasons. Furthermore, it 
would also be more dicult to obtain universal properties of large deviations due to 
the high spatial heterogeneity as an eect of orography. However, we expect that 
this kind of universality should be found in regions with similar orographic and cli-
matic characteristics.

Based on our idealised simulations, the estimated rate functions for the temperature 
fields are symmetric, suggesting that positive large deviations of temperature have the 
same probabilities as negative ones. In more realistic data sets however, we expect to 
find asymmetric rate functions more frequently. An argument supporting such a con-
jecture is that positive large deviations of air temperature should dier from negative 
ones in the presence of moist processes due to dierent chemical and physical charac-
teristics of warm air compared to cold air, which has a much lower water vapour con-
tent. It might in fact be interesting to compare the large deviation rate functions of the 
surface temperature with those of the wet-bulb temperature, which takes into account 
the presence of moisture and is relevant for assessing heat stress (Zahid et al 2017). An 
alternative way to combine information on temperature and moisture is to look at the 
so-called equivalent potential temperature, which is proportional to the logarithm of 
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the specific entropy of the air (Holton 2004). Another promising field for the application 
of LDT to geophysical data is related to precipitation-induced landslides in mountain 
areas, where the standard modelling approach is the exceedance of a threshold defined 
by the cumulated rainfall intensity and duration (Keefer et al 1987, Peruccacci et al 
2017, Ragno et al 2018). We will leave the exploration of these research lines to future 
investigations.
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