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Abstract 

  

Prior neuroimaging studies have reported white matter network underconnectivity as a 

potential mechanism for Autism Spectrum Disorder (ASD). In this study, we examined the 

structural connectome of children with ASD using Edge Density Imaging (EDI); 



and then applied machine leaning algorithms to identify children with ASD based on tract-

based connectivity metrics. Boys aged 8 to 12 years were included: 14 with ASD and 

33 typically developing children (TDC). The Edge Density (ED) maps 

were computed from probabilistic streamline tractography applied to high angular 

resolution diffusion imaging (HARDI). Tract-Based Spatial Statistics (TBSS) was used 

for voxel-wise comparison and coregistration of ED maps in addition to conventional 

DTI metrics of Fractional Anisotropy (FA), Mean Diffusivity (MD), and Radial Diffusivity 

(RD). Tract-based average DTI/connectome metricswere calculated and used as 

input for different machine learning models: naïve Bayes, random forest, support vector 

machines (SVM), neural networks. For these models, cross-validation was performed 

with 

stratified random sampling (×1000 permutations). The average accuracy among validati

on samples was calculated. In voxel-wise analysis, the body and splenium of corpus 

callosum, bilateral superior and posterior corona radiata, and left superior longitudinal 

fasciculus showed significantly lower ED in children with ASD; whereas, we could not 

find significant difference in FA, MD, and RD maps between the two study 

groups. Overall, machine-learning models using tract-based ED metrics had better 

performance in identification of children with ASD compared to those using FA, MD, and 

RD. The EDI-based random forest models had greater average accuracy (75.3%), specificity 

(97.0%), and positive predictive value (81.5%), whereas EDI-based polynomial SVM had 

greater sensitivity (51.4%), and negative predictive values (77.7%). In conclusion, 

we found reduced density of connectome edges in the posterior white matter 

tracts of children with ASD; and demonstrated the feasibility of connectome-based machine-

learning algorithms in identification of children with ASD. 

  

Acronyms 

  

ADIR= Autism Diagnostic Interview-Revised; ADOS= Autism Diagnostic Observation 

Schedule; ASD = Autism Spectrum Disorder; AUC= Area Under the Curve; BEDPOSTX= 



Bayesian Estimation of Diffusion Parameters Obtained using Sampling Techniques; DTI= 

Diffusion Tensor Imaging; ED= Edge Density; EDI= Edge Density Imaging; FA= Fractional 

Anisotropy; FMRIB= Functional Magnetic Resonance Imaging of the Brain; FSL= FMRIB 

Software Library; GLM= General linear model; HARDI= High Angular Resolution Diffusion 

Imaging; MD= Mean Diffusivity; NPV= negative predictive value; PPV= positive predictive 

value; RD= Radial diffusivity; ROC= Receiver Operating Characteristics; TBSS= Tract-

Based Spatial Statistics; TFCE= Threshold-Free Cluster Enhancement; TDC= typically 

developing children; SCQ= social communication questionnaire; SVM= support vector 

machines 

  

Introduction 

  

Autism spectrum disorder (ASD) represents a complex, heterogeneous 

neurodevelopmental condition characterized by deficits in social communication, as well 

as repetitive behaviors and atypical sensory reactivity (1). A 2013 survey by Centers for 

Disease Control and Prevention's National Center for Health Statistics showed that the 

prevalence of parent reported ASD among children aged 6-17 has continued to increase from 

1.16% in 2007, to 2.00% in 2011-2012, likely due to broader diagnostic criteria, increased 

awareness of the disorder among parents and providers, increased parental age, and 

environmental contributors affecting epigenetic factors (2). It is now clear that inherited 

and de novo genetic changes, including copy number variations and single 

nucleotide variants, in neurodevelopment genes contribute to the phenotype in 25-40% of 

cases with an evolving understanding of polygenetic and epigenetic factors (3, 4).  In addition 

to learning about genetic and epidemiologic factors, there has been increasing evidence from 

neuroimaging research suggesting that alterations in white matter microstructure and 

connectivity contribute to cognitive and behavioral deficits in affected children (5). 

Neuroimaging studies not only help illuminate the underlying mechanism of ASD phenotype 

in general (6, 7), but also could provide objective 



biomarkers for timely identification of the ASD (8) as well as providing a marker for change 

with practice-based intervention (9). 

Diffusion tensor imaging (DTI) and fiber tractography have provided quantitative 

evaluation of white matter microstructure and connectivity in children with ASD (10). The 

structural connectome, representing the whole-brain network of macro-scale white matter 

connectivity, has emerged during the past decade as a powerful formalism for the study of 

neurological and psychiatric diseases. The connectome is particularly relevant for ASD, 

which is hypothesized to result from short-range overconnectivity and long-

range underconnectivity (11-13). However, to date there are no studies of ASD 

examining regional connectomic properties within white matter. Edge Density 

Imaging(EDI) has recently been introduced as a framework to represent the anatomic 

embedding of connectome edges within the white matter (14, 15). In EDI, the edges or links 

of the white matter connectome – from probabilistic tractography – are constrained to 

network nodes based on standard atlas parcellation of the cortical and deep gray 

matter nuclei (14, 15). 

Machine learning analyses are also gaining popularity for pattern recognition and 

development of classification (or regression) models based on multidimensional data. These 

algorithms seem particularly suitable for devisingclassifiers based on multitude of variables 

extracted from diffusion and connectivity maps. In this study, we compared the white matter 

connectome and microstructure between children with ASD and typically developing 

children (TDC) using voxel-wise analysis. Then, we applied different machine-learning 

algorithms for identification of ASD based on the white matter tract-based average Edge 

Density (ED) and conventional DTI metrics. 

  

  

Subjects and Methods 

  

Participants and assessment 



The participants in this study were recruited and prospectively enrolled through the 

UCSF Sensory Neurodevelopment and Autism Program clinical sites and 

research database (16-18). Children with ASD were diagnosed according to the Autism 

Diagnostic Interview-Revised (ADI-R) (19), Autism Diagnostic Observation Schedule 

(ADOS-G) (20), social communication questionnaire (SCQ) (21), and based on Diagnostic 

Statistical Manual – IV criteria (1). In addition, all participants were screened and 

interviewed by a senior pediatric neurologist (EJM) with expertise in neurodevelopmental 

disorders. The exclusion criteria were history of premature birth (<34 weeks), known genetic 

disorder associated with autism at time of enrollment (e.g. fragile X syndrome), or other 

neurological conditions that can potentially affect neurodevelopment (e.g. epilepsy). TDC did 

not meet diagnostic criteria for ASD or sensory processing disorders. In order to limit the 

confounding effects of age and gender, only boys aged 8 to 12 years were included in our 

analysis. Under the institutional review board approved protocol, informed 

consent was obtained from the parents or legal guardians, with the assent of all participants. 

  

MRI protocol 

All brain imaging was performed on a 3T MRI scanner (Siemens, Erlangen, Germany), 

using a 12-channel head coil. Anatomical scans were acquired using a three-dimensional T1-

weighted MPRAGE sequence (field of view=256 mm, 1 mm cubic voxels, time to 

repeat/echo time/inversion time = 2300 ms/2.98 ms/ 900 ms, flip angle=9°). The whole 

brain high angular resolution diffusion imaging (HARDI) scan was acquired using 

a multislice 2D single-shot twice-refocused diffusion-weighted echoplanar imaging sequence 

(repetition time, 8000 ms; echo time, 109 ms; 100×100 matrix; field of view, 220 mm; voxel 

size, 2.2×2.2×2.2 mm; 64 non-collinear diffusion directions, uniformly distributed around a 

unit sphere with b value of 2000 s/mm2; and 1 brain volume with no diffusion weighting (16-

18). 

  

DTI post processing 



We used the software packages included in the Functional Magnetic Resonance Imaging 

of the Brain (FMRIB) Software Library (FSL) version 5.0.8 (http://www.fmrib.ox.ac.uk). 

The initial quality assurance involved eddy current and motion corrections, which was 

followed by removal of non-brain tissue. The FSL's DTIFIT toolbox was used to compute the 

fractional anisotropy (FA), mean diffusivity (MD), and radial diffusivity (RD) maps. The 

Bayesian Estimation of Diffusion Parameters Obtained using Sampling Techniques 

(BEDPOSTX2) package from FSL was used for estimation of diffusion parameters at each 

voxel, and modeling of multiple fiber orientations per voxel (16-18). Figure 1 summarizes the 

image post-processing pipeline. 

  

Edge Density Imaging 

For computation of ED maps, the T1-weighted series were first parcellated into 68 

cortical and 14 subcortical regions based on the Desikan–Killiany atlas 

from FreeSurfer software (22). These 82 regions served as the connectome nodes (Figure 

1). Then, the T1-weighted volumes, and subsequently the 82 cortical and subcortical regions, 

were registered to the diffusion space. Using EDI methods reported previously (14, 15, 

23) the cortical and subcortical regions were employed as seed and target regions for 

probabilistic tractography using the FSL probtrackx2 algorithm (14). The total number 

of structural connectome edges passing through each voxel in white matter was calculated as 

the EDvalue for that voxel (Figure 1). 

  

Tract-Based Spatial Statistics (TBSS), and voxel-wise analysis 

For TBSS, each FA map was registered to all other FA maps to identify the most 

representative map of the cohort, and use this representative FA map as the target image. This 

target image was then affine-aligned into MNI-152 standard space, and then the rest of FA 

maps were transformed into MNI-152 space, combining the nonlinear transform to the 

target and the affine transform from the target to standard space. The mean of 

aligned FA maps was used to create a skeletonized image representing the center of white 

matter tracts across all subjects. This white matter skeleton was thresholded to exclude voxels 



with FA values less than 0.2 (Figure 2), which may represent regions of high inter-subject 

variability. The ED maps were projected to MNI-152 using the registration matrix from 

corresponding FA maps and threshold. For non-parametric voxel-wise statistics, we used 

“randomise” from FSL with 5000 permutations and applying Threshold-Free Cluster 

Enhancement (TFCE) for multiple voxel-wise comparison correction. General linear 

model (GLM) designs were applied to correct for subjects’ age as a covariate. For the ED 

maps, both ASD>control and control<ASD contrast designs were tested. The final statistical 

maps at a p value < 0.05 threshold were created, and corrected for multiple 

comparisons (Figure 2). For anatomic localization, we used the John Hopkins University 

white matter tractography atlas (ICBM-DTI-81) incorporated in FSL. 

  

Extraction of tract-based DTI and connectome metrics 

For univariate, and multivariate analysis as well as machine learning models, the average 

FA, MD, RD, and ED of white matter tracts from the ICBM-DTI-81 atlas were calculated. 

For this purpose, the ICBM-DTI-81 template was warped into each subject’s 

native diffusion space applying the inverse spatial transformations from coregistration step 

described above (16-18). The average DTI/connectome metrics was thecalculated for all 48 

white matter tracts in the ICBM-DTI-81 atlas for each subject. 

  

Voxel-based morphometry (VBM) 

We applied VBM to investigate voxel-wise differences in the local grey and white matter 

volume and topography between children with ASD versus TDC. The VBM tool included in 

FSL was used(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLVBM). Initially, the brain in T1-

weighted images was extracted using the Brain Extraction Tool. Next, brain-extracted images 

were segmented into gray matter, white matter, and CSF. Then, 

thegray matter segments were aligned to ICBM-152 space applying the affine registration. 

These images were averaged to create a study-specific template, and finally all gray matter 

segments were nonlinearly registered and concatenated onto ICBM-152 

space. These registered volume images were then modulated, and corrected for local 



expansion or contraction. These modulated segmented images were smoothed with an 

isotropic Gaussian kernel at a sigma of 3 mm.Similar to voxel-wise statistics for TBSS, we 

used “randomise” from FSL with 5000 permutations and applied TFCE. We 

also used GLM for analysis of age as a covariate. 

  

Machine learning 

We evaluated different machine learning algorithms for predicting cohort assignment as 

ASD versus TDC based on tract-specific average connectome/DTI metric: naïve 

Bayes, random forest, support vector machine (SVM) with linear kernel, and polynomial 

kernel, and neural networks. Combination of these models with different DTI and 

connectomic metrics were evaluated using the 48 white matter average FA, MD, RD, and ED 

values as input for each model. In order to evaluate the performance of these algorithms, the 

subject cohort was randomly divided into the training and validation datasets with 

preservation of ASD-to-TDC ratio. The stratified random sampling for training 

and validation datasets was repeated 1000 times for cross-validation. For each permutation, 

the machine-learning model was trained on training sample, and a confusion matrix was 

constructed in corresponding validation sample based on the model predictions. The 

accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive 

value (NPV) were calculated using thr confusion matrix for each validation cohort, and the 

average across 1000 permutations are presented. The accuracy was defined by sum of true 

positive and true negative subjects (correctly classified) divided by total number of subjects 

in each validation sample. For each confusion matrix, the area under the curve (AUC) of 

receiver operating characteristics (ROC) was also calculated. 

For naïve Bayes, we applied the “naivebayes” “r” package with a Laplace smoothing 

value of 0 (https://www.r-project.org/). For random forest analysis, we applied the 

“randomForest” package. As recommended by the package authors, we used 500 random 

trees in each of the random forest models; and a 1/3 subset of variables was tried at each 

split. The averaged “mean decrease in Gini coefficients” is reported to depict the effect 

of different variables on classification accuracy of the final model. For SVM analysis, we 

https://www.r-project.org/


used the “e1071” package in “r” project. We applied both linear and polynomial kernels 

for data classification. Tuning the SVM models, a cost of 0.1 returned the optimal error rate, 

and was applied for all linear kernels. For the polynomial kernel, a sigma of 1 was 

applied. For neural networks, we applied the “neuralnet” package using “resilient back 

propagation” methods. Using 2/3 rule, we included 5 hidden layers with 32, 21, 7, 4, and 

2 neurons, consequentially. 

  

Statistics 

The data are expressed as number (frequency) or average ± standard deviation, where 

appropriate. For univariate analysis, student’s t test was performed. The Cohen’s d coefficient 

was calculated to determine the effect size of the tract-based average DTI/connectome 

metrics using the “effsize” package from “r”. For multivariate analysis, we applied the 

penalized logistic regression with stepwise forward and backward selection using the 

“stepPlr” package. The penalized regression is suitable for multivariate analysis with 

substantial collinearity between independent variables. 

  

  

Results 

  

Participant characteristics 

A total of 47 boys, 8 to 12 years of age, were included from the Sensory 

Neurodevelopment and Autism Program neuroimaging collection. Of these, 14 (30%) boys 

met criteria for ASD and 33 (70%) did not. All children with ASD exceeded screening 

criteria on either the ADIR or SCQ parent report measures, with all these children exceeding 

autism score criteria on the ADOS. There was no significant difference in the average age of 

children with ASD (8.9 ± 2.7 years) versus the TDC (10.0 ± 3.3 years, p=0.52). 

  

Voxel-wise comparison of connectivity maps 



On voxel-wise TBSS analysis, after applying TFCE, the body and splenium of the corpus 

callosum, bilateral superior and posterior corona radiata, and the left superior longitudinal 

fasciculus had significantly lower ED in children with ASD compared to TDC (Figure 

2). Conversely, there were no voxels in which the TDC cohort showed lower ED relative to 

the children with ASD. Table 1 lists the number of voxels in each of the white matter tracts 

from the ICBM-DTI-81 atlas with significant differences between the ASD and TDC study 

groups after applying TFCE. The GLM showed that children’s age – in the restricted 8-12 

years range examined – had no significant effect on voxel-wise ED values. In addition, there 

was no voxel-wise difference between children with ASD and TDC comparing FA (lowest 

voxel-wise p=0.245), MD (lowest voxel-wise p=0.275), and RD (lowest voxel-wise p=0.240) 

maps. 

  

Univariate and multivariate tract-based comparison 

There was no significant difference between average ED and DTI microstructural 

metrics of select white matter tracts between ASD and TDC groups. Tables 2a through 2d 

tabulate the results for select 22 white matter tracts chosen based on their Cohen’s d effect 

size and results of voxel-wise analysis (Table 1). However, in multivariate stepwise penalized 

regression, the average ED of the left posterior corona radiata emerged as the only 

independent predictor of ASD (p=0.046). In ROC analysis, the average ED of the left 

posterior corona radiata yielded an AUC of 0.665 (95% confidence interval: 0.491 to 0.838, 

p=0.077) for distinction of children with ASD from TDC. 

  

Machine learning classification 

Applying a 3:7 ratio with preservation of the ASD-to-TDC proportion, we created 

1000 stratified random samples of training and validation datasets. The training datasets 

included 26 TDC, and 11 ASD children; while the validation datasets included 7 TDC, and 3 

ASD children. Table 3 and Figure 3 demonstrate the test characteristics for different machine 

learning models. Overall, the machine learning models using tract-based ED had better 

performance in classification of children with ASD compared to those using FA, MD, or 



RD. Among all combinations, the greatest accuracy (75.3%), specificity (97.0%), and PPV 

(81.5%) were achieved by EDI-based random forest models; and the greatest sensitivity 

(51.4%), and NPV (77.7%) were achieved by EDI-based SVM with polynomial kernel 

(Figure 3). 

The averaged “mean decrease in Gini coefficients” of random forest models from 

stratified cross validation are reported to depict the effect of different variables on 

classification accuracy of the final model (Table 4). In EDI-based random forest models, the 

mean ED of left posterior thalamic radiation, right sperior cerebellar peduncle, left sagittal 

stratum, left medial lemniscus, and left superior corona radiata had the highest averaged 

mean decrease in Gini coefficient. 

  

Voxel-based morphometry 

The VBM analysis revealed no macrostructural difference between the two study groups. 

There was no significant difference in gray-white matter relative tissue concentration, or 

regional volume comparing ASD children with TDC, in either ASD<control or 

control<ASD constructs. 

  

  

Discussion 

  

In voxel-wise analysis of the white matter connectome in children with ASD, we found 

lower ED in the body and splenium of corpus callosum, bilateral superior and posterior 

corona radiata, and the left superior longitudinal fasciculus compared to TDC. This measure 

of regional white matter connectome ED was more sensitive than conventional DTI metrics 

(i.e. FA, MD, and RD maps) as well as VBM of brain macrostructure, which failed to detect 

significant differences between the ASD and TDC groups at the studied sample size. While 

the voxel-wise analysis provides crucial information regarding the microstructural 

underpinning of the ASD, tract-based metrics extracted based on preset atlas might provide 

more feasible tool for distinguishing individual subjects with ASD. In this 



preliminary study, we showed the feasibility of applying different supervised machine 

learning algorithms for identificationof children with ASD based on tract-based DTI and 

connectomic metrics. While univariate tract-based variables fail to distinguish children with 

ASD from TDC, machine learning models could construct imaging biomarkers for 

identification of ASD based on multitude of topographic DTI and connectomic 

information. In present study, the EDI-based models had better performance in identification 

of children with ASD compared to conventional DTI metrics, although the results should be 

confirmed in larger cohorts. 

Numerous tractography and functional MRI studies characterize ASD as 

a neurodevelopmental disorder due to underconnectivity between different brain regions (10, 

24). The majority of prior DTI studies have demonstrated decreased FA and increased 

MD in white matter tracts (25), most commonly reported in the corpus callosum, and 

cingulum (26). The FA represents directional variation in apparent diffusion, and the MD 

is the average of eigenvalues measuring diffusion rate irrespective of direction. While the 

changes in FA and MD are sensitive measures of white matter microstructure, they are 

relatively nonspecific, and may represent lower axonal density, thinner axons, or less 

myelination. In EDI, on the other hand, quantification of network edges represents the 

significance of each white matter voxel in the overall connectomic framework. Driven from 

the probabilistic calculation of tract density, ED provides a metric sensitive to directionality 

of diffusion at each voxel, and theoretically more likely representative of true neural fibers 

given the constraints in construction of edges originating from predetermined cortical and 

subcortical gray matter regions as connetome nodes. Although the number of cases 

in the current cohort was too small to draw a firm conclusion, these results suggest that ED is 

potentially more sensitive than FA, MD, and RD maps for identification of microstructural 

connectivity differences between children with ASD and the control cohort. 

In our study, the results of EDI are consistent with the theory of 

decreased transcallosal fiber connectivity in children with ASD (27). The commissural tracts 

connecting bilateral premotor, primary motor, and primary sensory cortex traverse through 

the body of corpus callosum (28); and the lower ED in the mid corpus callosum 



may help explain sensory and motor processing deficits in ASD children. The splenium, 

specifically, connects occipital, parietal, and temporal regions, which are involved in visual 

processing. Lower ED in the splenium of corpus callosum in children with ASD may be 

related to deficits in visual processing (25). Notably, callosal abnormalities, such 

as the diminished ED noted herein, are one of the most well replicated findings for 

individuals with ASD, with implications for slower transmission of information leading to 

deleterious consequences for processing of nuanced and socially rich visual information (29, 

30). 

While voxel-wise comparison of EDI maps in children with ASD can elucidate the neural 

microstructural underpinning of autism, development of voxel-wise DTI/connectomic 

fingerprint for identification of individual subjects with ASD can be challenging. As a 

solution, atlas-based parcellation of white matter tracts can provide automated and 

reproducible tractometry variables for classification of individual subjects based on 

topographic pattern of connectivity changes. In our series, there was no significant difference 

in average tract-based DTI or connectomic metrics between children with ASD and 

TDC (Table 2). On the other hand, the average ED in the left posterior corona radiata was the 

only independent predictor of ASD in multivariate stepwise penalized regression. Still, the 

average ED of the left posterior corona radiata could not reach statistical significance in 

identification of children with ASD applying receiver operating characteristic analysis 

(p=0.077). Nevertheless, multidimensional data from tract-based connectivity metrics could 

identify individuals with ASD using machine-learning algorithms. 

In recent years, there has been increasing interest in the application of machine learning for 

objective and reproducible decision models in diagnosis or treatment planning. These 

models have been applied in neurological disorders, such as the diagnosis 

of Alzheimer’s (32) and Parkinson’s disease (33), or lesion-symptom mapping in stroke 

patients (34). Different machine learning algorithms, however, vary in their implementation, 

mathematical logic, and computation. Given the small sample size, and inherent variability in 

results of machine learning algorithms depending on the randomly sampled training and 

validation datasets, we reported the averaged test characteristics among 

1000 stratified samples for cross validation of each model. Thus, Table 3 results likely 

represent a realistic assessment of the classification accuracy for each combination of 

diffusion/connectomic metrics and machine learning model in our cohort. The models using 

ED had better performance in identification of ASD compared to those using conventional 

DTI metrics. Also, the accuracy of random forest models were slightly higher than SVM 



models mostly due to higher PPV and specificity, although the results may not hold in a 

larger dataset (Table 3). It should be note that the high accuracy achieved by random forest 

was in part due to assigning majority of participants to control cohort, achieving higher 

specificity and NPV at expense of low sensitivity. This can affect clinical application of the 

model given the cost of assigning a child with ASD to the TDC cohort, and thus preventing 

him/her from receiving proper and timely treatments. It is also noteworthy that, in a larger 

dataset, SVM models may outperform random forests for binary classification (35). Of 

note, random forests models can also offer a glimpse into their classification constructs by 

reporting variable importance (mean decrease in Gini); however, the possible neurobiological 

translation of these outputs remain elusive – whether they are mere reflection of random 

forest algorithm computation or may indeed point out to neurobiologically important white 

matter tracts. Nevertheless, our preliminary results emphasize the importance of exploring 

different machine learning options to identify the suitable solution in the development of 

image-based classifiers. 


