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ABSTRACT 23 

To examine the effect of sugar reduction on the sensory perception of sweetened beverages, 24 

an orange juice soft drink model flavoured with seven characteristic compounds (hexanal, 25 

decanal, linalool, ethyl butanoate, α-pinene, β-myrcene and (Z)-3-hexen-1-ol) was developed. 26 

Five samples were prepared with relevant sugar contents (5.2, 8.2, 9.7, 11.2 and 14.2 °Brix). 27 

Using retronasal quantitative descriptive analysis (QDA), nine attributes were found to differ 28 

significantly (p < 0.05) with sugar content. When the samples were evaluated orthonasally, 29 

only the attribute “overripe orange” significantly decreased (p < 0.05) with reduction of sugar 30 

content. Headspace solid-phase microextraction with gas chromatography–mass spectrometry 31 

showed that as sugar concentration decreased, the headspace concentration of six of the 32 

volatile compounds decreased, whilst ethyl butanoate remained constant. Principal component 33 

analysis revealed that the total release of the flavour compounds was highly correlated with 34 

the perceived intensity of the orthonasal attribute “overripe orange”. 35 

Keywords: Orange flavour; sugar reduction; salting-out; sensory analysis; direct gas 36 

chromatography-olfactometry; headspace solid phase microextraction with gas 37 

chromatography-mass spectrometry; principal component analysis 38 

  39 
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1. Introduction 40 

The interest in developing “light” or “diet” beverages is rising, driven largely by the 41 

market potential for beverages that can maintain or promote the well-being of consumers. 42 

Beverage manufacturers have shown strong interest in addressing the challenge of sugar 43 

reduction in soft drinks, whilst maintaining the organoleptic characteristics, often using high 44 

intensity sweeteners to replace sugars. Yet little is known about the interactions between 45 

sugar and flavour in soft drinks and subsequent effects on sensory quality. To date, it has 46 

been suggested that an increase in release of specific flavour compounds with increasing 47 

sucrose concentration (from 20 to 60% w/w) is possibly due to a “salting-out” effect 48 

(Hansson, Andersson, & Leufven, 2001). Nahon and co-workers (Nahon, Roozen, & de 49 

Graaf, 1998) investigated the release of an orange aroma in various mixtures of sucrose and 50 

sodium cyclamate. It was shown that there was a significant association between the retention 51 

time of a volatile compound on a gas chromatography column and its release behaviour. 52 

Specifically, the release rates of volatile compounds with short retention times intensified by 53 

increasing sucrose content from 0 to 60% (w/v) whilst flavour compounds with higher 54 

retention times were negatively influenced, if at all, by modifying sucrose concentration. 55 

Similar results were obtained by Rabe and her co-workers (Rabe, Krings, & Berger, 2003), 56 

who revealed that various flavour compounds showed an increased release with increasing 57 

sugar content ranging from 0 to 500 g/L. Hence, it can be deduced from the aforementioned 58 

studies that the release rate of the volatiles is selectively influenced by the sucrose content, 59 

resulting in a significant shift of the flavour profile. However, when lower levels of sugars 60 

(glucose 0–150 g/L and fructose 0–64 g/L) were applied in a model citrus-flavoured 61 

beverage, it was suggested that flavour enhancement was not fully explained by 62 

physicochemical interactions within the beverage matrix (Hewson, Hollowood, Chandra, & 63 

Hort, 2008). Further investigation is required to clarify the effect on sensory perception of the 64 
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sugar content in these soft drink model systems (sugar level at approximately 10% w/v), since 65 

a number of studies have shown conflicting results. 66 

Solid-phase microextraction (SPME) is a widely applied technique for volatile analysis in 67 

food/flavour chemistry, since it is a rapid, solvent-free and simple adsorption method for the 68 

isolation of headspace flavour compounds (Zhang & Pawliszyn, 1993). To date, many studies 69 

have conducted flavour analysis of different citrus species/varieties (González-Mas, Rambla, 70 

Alamar, Gutiérrez, & Granell, 2011), of fresh (Moshonas & Shaw, 1994) or excessively 71 

heated orange juice (Bazemore, Goodner, & Rouseff, 1999) and the presence of pulp in 72 

orange juice (Rega, Fournier, Nicklaus, & Guichard, 2004), using headspace SPME followed 73 

by gas chromatography–mass spectrometry (HS–SPME/GC–MS).  74 

The optimisation of SPME sampling and gas chromatographic conditions for both 75 

qualitative and quantitative analyses of volatile compounds in the headspace of orange juice 76 

has been investigated in the past (Jia, Zhang, & Min, 1998). Several different types of fibres 77 

have been used in citrus studies, with the divinylbenzene/Carboxen™/polydimethylsiloxane 78 

(DVB/CAR/PDMS) fibre predominantly used, due to its ability to extract from the orange 79 

juice matrix a large number of flavour compounds with different polarities (Berlinet, 80 

Guichard, Fournier, & Ducruet, 2007; González-Mas et al., 2011; Rega, Fournier, & 81 

Guichard, 2003).  82 

The number and nature of the extracted volatile compounds are strongly dependent on the 83 

food type and matrix, as well as the sampling time of the fibre, heating temperature and time 84 

(Yang & Peppard, 1994). In this sense, it has been suggested that a short time of sampling is 85 

preferable, to better represent the original headspace of samples (Rega et al., 2003; Roberts, 86 

Pollien, & Milo, 2000). Rega and co-workers (2003) developed an instrumental method to 87 

evaluate odours from headspace extracts, in order to improve SPME performance, which they 88 

termed direct gas chromatography–olfactometry (D–GC–O). In this method, headspace 89 
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extracts are injected into a deactivated fused silica capillary, which is attached to a GC-90 

sniffing port. Trained assessors sniff the extract coming out from the GC-sniffing port and 91 

rate the similarity of the headspace extract to the original headspace of the sample. By this 92 

method, various sampling conditions are validated, including type of fibre, extraction time, 93 

heating time and temperature (Berlinetet al., 2007; Rega et al., 2003).  94 

A plethora of volatile compounds and key odorants in orange juice has been identified and 95 

their odour and flavour thresholds have been quantified (Plotto, Margaría, Goodner, & 96 

Baldwin, 2008; Plotto, Margaría, Goodner, Goodrich, & Baldwin, 2004). There is no single 97 

volatile in orange juice that can be considered as a character impact compound. Instead, the 98 

perception of orange flavour is a result of a group of aroma-active compounds present in low 99 

concentrations. In the current study, an orange flavour mixture was used, consisting of 100 

decanal, hexanal, (Z)-3-hexen-1-ol, ethyl butanoate, linalool, β-myrcene and α-pinene, most 101 

of which have been found at higher concentration levels in processed orange juices than 102 

freshly-squeezed ones and are characterised as some of the key odorants in orange juice 103 

flavour (Moshonas & Shaw, 1994). Decanal and hexanal are straight-chain aldehydes present 104 

at low concentration in processed juice and considered as an important contributor to the 105 

green, grassy note of orange juice flavour. Similarly, (Z)-3-hexen-1-ol contributes to the 106 

green/woody top notes of freshly squeezed orange juice. Ethyl butanoate is the single most 107 

important ester and most intense odorant in orange juice, imparting a fruity odour quality. 108 

Linalool is a terpene alcohol which contributes floral, sweet and fruity aromas. β-Myrcene 109 

and α-pinene are the most abundant terpenes after limonene, and their levels depend on the 110 

peel oil content of the processed juice. These compounds are considered to possess a low 111 

odour-active intensity, with β-myrcene imparting a mossy odour note and α-pinene a pine-112 

tree, resin odour quality (Perez-Cacho & Rouseff, 2008). 113 
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The objective of the current study was to examine how sugar reduction affects the release 114 

of seven different flavour compounds (of known hydro-phobicity/philicity) and sensory 115 

perception in an orange juice soft drink model. Initially, a sensorial approach was 116 

implemented, conducting two independent quantitative descriptive analyses, one orthonasal 117 

and one retronasal, in order to investigate how sugar reduction can influence the sensory 118 

perception of orange juice soft drink samples. Then, D–GC–O was applied to determine the 119 

optimum experimental conditions to obtain the most representative SPME extract. 120 

Subsequently, samples were subjected to HS–SPME/GC–MS to examine whether the flavour 121 

release of the volatile compounds was influenced by sugar content modification, and to relate 122 

this to change in orthonasal perception. 123 

2. Materials and Methods 124 

2.1 Materials and sample preparation 125 

The soft drink model system consisted of 7% (w/w) deodorised orange juice concentrate of 126 

65 ⁰Brix, a non-commercial orange flavour mixture, 0.25% (w/v) citric acid, and sucrose at 127 

five different concentrations. Givaudan Ltd (Milton Keynes, UK) provided the flavour 128 

mixture, which contained 7 compounds with known concentrations and different solubility 129 

properties, all dissolved in triacetin. Hexanal, decanal and linalool were present at 5 g/L. 130 

Ethyl butanoate was present at 50 g/L, α-pinene at 37.5 g/L, β-myrcene at 12.5 g/L and (Z)-3-131 

hexen-1-ol at 20 g/L. The flavour mixture was dosed at 300 mg/L in all samples; thus, it was 132 

calculated that the dosage would deliver 1.5 mg/L for each of the compounds hexanal, 133 

decanal and linalool, 15 mg/L of ethyl butanoate, 11.25 mg/L of α-pinene, 3.75 mg/L β-134 

myrcene and 6 mg/L of (Z)-3-hexen-1-ol in the soft drink model (Supplementary Table S1). 135 

Five sucrose concentrations were chosen (2.0, 5.0, 6.6, 8.2 and 11.5% w/v) resulting in 136 

samples of 5.2, 8.2, 9.7, 11.2 and 14.2 °Brix (the total sugar levels), determined by a hand-137 
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held refractometer. All sample preparation, pasteurisation, aseptic bottling and measurement 138 

of refractive index and acidity were performed by a commercial soft drinks manufacturer. 139 

Subsequently, bottles of juice were shipped and stored at 4 °C at the Department of Food and 140 

Nutritional Sciences, University of Reading, UK, until they were used for sensory and 141 

volatile compound analysis. 142 

2.2 Sensory analysis by quantitative descriptive profiling 143 

Samples of juice (25 mL) were poured into tulip-shaped whisky glasses (200 mL volume; 144 

Glencairn, East Kilbride, UK) and covered with a Petri dish for sensory evaluation. Samples 145 

were coded with 3-digit random codes and prepared 2 hours prior to tasting, to allow 146 

headspace equilibrium and ambient temperature to be reached.  147 

A sensory panel (n = 8, n = 9) based at the Sensory Science Centre (Department of Food 148 

and Nutritional Sciences, University of Reading) participated in two independent qualitative 149 

descriptive analysis (QDA) tests, one orthonasal and one retronasal assessment. The assessors 150 

were screened and trained, with a minimum of 6 months experience in sensory evaluation of 151 

flavour. An experienced sensory panel was preferred, to dissociate possible interactions from 152 

odour and taste modalities (Hewson, Hollowood, Chandra, & Hort, 2008). 153 

The orthonasal assessment preceded the retronasal assessment. At the beginning of each 154 

type of assessment, the panellists were asked to generate as many sensory terms as possible to 155 

describe the characteristics of all samples. Subsequently, the panel leader initiated a 156 

discussion to develop a consensus vocabulary, in which flavour characteristics of all samples 157 

were described and defined. There followed four training sessions on separate days, where 158 

various references were chosen to standardise the definitions of descriptors (Supplementary 159 

Table S2). Next, panellists individually rated samples in duplicate on two separate days, in 160 

individual booths under artificial daylight and at a room temperature of 23 °C. Samples were 161 

presented monadically and in a balanced order. The intensity of each attribute was rated using 162 
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unstructured line scales (scaled 0–100), with anchors predetermined by the consensus panel; 163 

data were captured using Compusense 5 software (Compusense, West Guelph, ON, Canada).  164 

2.3 Measuring representativeness of extraction by HS–SPME/D–GC–O 165 

The D–GC–O method was performed to determine the SPME extract most representative 166 

of orange juice aroma. The trained panel (n = 7), who had previously undertaken the sensory 167 

profiling of the two sets and hence were familiar with the samples and the descriptors, 168 

participated in the D–GC–O analysis. A similarity test was carried out in duplicate on five 169 

SPME extracts obtained using different extraction conditions from the headspace of reference 170 

sample 11.2 °Brix. Sample 11.2 °Brix was chosen since it was the sample most assessed 171 

during QDA training of the panellists, thus it was the most familiar to them. The five 172 

different sets of experimental conditions for aroma extraction are shown in Error! Reference 173 

source not found.. Initially longer fibre exposure periods were tested (15–30 minutes). 174 

However, this led to fibre overload and poor chromatography (data not shown) All samples 175 

were subjected to agitation during equilibration and extraction. SPME extracts were 176 

presented in balanced order and labelled with numbers from 1 to 5. Assessors were firstly 177 

asked to read the list of odour descriptors, then to smell the reference sample (3.75 mL) 178 

contained in an amber bottle (30 mL). Subsequently, they evaluated the different SPME 179 

extracts using D–GC–O in one session, rating the similarity to the reference using a 10-cm 180 

line scale, ranging from 0 (far from reference) to 10 (close to reference). At the end of the 181 

evaluation, the panellists were asked to describe the differences between the odour of the 182 

SPME extract and that of the reference. Between sample evaluations, panellists had to smell 183 

the reference again. Panellists individually rated samples in duplicate on two separate days.  184 

The SPME extracts were evaluated by D–GC–O, using a Hewlett-Packard 5890 gas 185 

chromatograph equipped with a sniffing port (ODO II; SGE, Ringwood, Australia). A short 186 

capillary made of untreated fused silica (80 cm × 0.32 mm i.d.; Supelco, Bellefonte, PA) 187 
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connected the injection port to the sniffing port. The carrier gas was helium with a flow rate 188 

of 10 mL/min. The SPME extracts were injected in splitless mode (injector temperature at 189 

240 °C) and the oven temperature was kept at 50 °C. Since the short capillary contained no 190 

stationary phase, there was no chromatographic separation of compounds in the SPME 191 

extract and the extracts were assessed as “global” odour (Rega et al., 2003). 192 

2.4 Gas chromatography–mass spectrometry (GC–MS) 193 

Sample aliquots (2.5 mL) were added to 20-mL screw-cap glass vials and headspace 194 

SPME was performed using an Agilent GC Sampler 120 PAL autosampler (Agilent 195 

Technologies, Santa Clara, CA). A Stableflex 50/30 μm DVB/CAR/PDMS SPME fibre was 196 

used for extraction (Supelco, Bellefonte, PA) and samples were agitated during equilibration 197 

and extraction. Analyses were conducted using a 7890A gas chromatography system (Agilent 198 

Technologies) attached to a 5975C inert MSD triple-axis detector (Agilent Technologies). 199 

The injection port was kept at 240 °C and the fibre was desorbed in the injection port in 200 

pulsed splitless mode for 45 s, with a pressure pulse of 25 psi. Helium was used as carrier gas 201 

and flow through the column was constant at 1.2 mL/min (8.5 psi at 30 °C). A ZB-5MSi (30 202 

m, 0.25 mm i.d., 1 μm film thickness; Phenomenex, Torrance, CA) capillary column was 203 

used for volatile compound separation. The initial oven temperature was held at 30 °C for 4 204 

min. It was then raised at 4 °C/min to 200 °C, and finally at 8 °C/min to 300 °C, where the 205 

temperature remained constant for 1 min.  206 

The mass spectrometer operated in electron impact mode with an electron energy of 70 eV 207 

and scanned from m/z 29 to m/z 400. The interface was at 280 °C, the ion source at 230 °C and 208 

the quadrupole at 150 °C. Peaks were identified by comparing retention times and mass spectra 209 

with those of reference compounds. The GC peak area was measured for each compound, in 210 

order to determine the release of volatiles from the sample, and all data were obtained in 211 

triplicate. 212 
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2.5 Statistical analysis 213 

The QDA results were statistically analysed by two-way analysis of variance (ANOVA) 214 

with sample and assessors fitted as fixed and random effects, respectively, and main effects 215 

tested against the assessor by sample interaction. Tukey’s post hoc test was performed to 216 

identify significant differences between sample pairs (p < 0.05) (SENPAQ software; Qi 217 

Statistics, Ruscombe, UK). The GC peak areas of the flavour compounds recovered by GC-218 

MS were statistically analysed by one-way ANOVA and Tukey’s post hoc test was applied to 219 

determine differences between samples. Principal component analysis, using the mean 220 

volatile data as the variables and with the mean sensory ratings (that were significantly 221 

different between samples) regressed onto the space as supplementary variables, was carried 222 

out using XLSTAT software Version 2014.6.01 (Addinsoft, Paris, France). 223 

3. Results and Discussion 224 

3.1 Sensory analysis 225 

Figures 1 and 2 show the mean intensity scores for the sensory attributes, when samples 226 

were assessed orthonasally and retronasally, respectively. When analysed retronasally, 9 out 227 

of the 16 described attributes (listed in Supplementary Table S1) differed significantly 228 

between samples. However, when assessed orthonasally, only one attribute, “overripe 229 

orange”, was found to vary significantly with sugar concentration. As sugar was not replaced 230 

with sweeteners in this study, then the taste attributes rated were expected to significantly 231 

differ between samples when assessed retronasally. Indeed, as can be seen in Figure 2, sweet 232 

taste increased significantly with sugar content and the sample with the least sugar (5.2 Brix) 233 

had a significantly higher bitter taste, as might be expected because sweetness suppresses 234 

bitterness (Green, Lim, Osterhoff, Blacher, & Nachtigal, 2010). As expected, “syrupy” 235 

mouthfeel significantly increased with sugar content, especially at 11.2 and 14.2 Brix. In 236 
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addition, the tactile sensation “astringency” (drying in nasal cavity) and “mouth-drying” were 237 

found to significantly decrease with sugar content, as supported by previous literature 238 

(Lyman & Green, 1990). Considering the ratings of the retronasal flavour attributes “fresh 239 

ripe orange”, “cooked orange”, “artificial orange”, “citrus/non-orange” and “overall orange 240 

strength”, these were found to vary significantly with the sucrose content, as shown in Figure 241 

2. Apart from “citrus/non-orange”, the perceived intensities of the remaining attributes 242 

showed an increase with increasing sugar content. The effect of sugar concentration on the 243 

“overall orange strength” perception was the most pronounced. This overall odour intensity 244 

significantly increased as sugar content increased. Likewise, the intensity of the attributes 245 

“cooked orange” and “artificial orange” increased, from the low-sugar samples to the high-246 

sugar samples. However, this effect was not consistent in the case of “fresh ripe orange”, 247 

where the scores increased gradually from samples 5.2 Brix until 11.2 Brix, but a 248 

significant reduction occurred in the score of the 14.2 Brix sample. As this evaluation was 249 

retronasal, significant differences in flavour perception with sugar content may be attributed 250 

to either differences in flavour release or to cross-modal taste enhancement.  251 

Considering flavour release, it is reported that odour perception is directly related to the 252 

aroma compounds released in the vapour phase of a model system (Rega et al., 2004). The 253 

perceived intensity of an aroma is a function of the initial concentration in the model system 254 

as well as the physical parameters that determine molecular transfer into the headspace. 255 

Subsequently, any perceived alterations detected by the trained panel between samples could 256 

be explained by differences in release of the various volatiles when sugar concentration is 257 

modified. Therefore, it is hypothesised that as sucrose concentration increased, the perceived 258 

intensity of these attributes may have increased, due to a salting-out effect. As literature 259 

suggests, the “fresh” quality could be associated with terpenic compounds, whereas hexanal 260 

and decanal could be responsible for the “fruity/fresh” intensity. Finally, the “artificial” and 261 
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“overall” intensity could be related to ethyl butanoate, which is characterised by a strong 262 

“sweet orange” quality. Linalool has been found to impart “cooked” quality (Rega et al., 263 

2004). However, from the retronasal evaluation we cannot rule out cross-modal enhancement 264 

of the “cooked orange”, “artificial orange”, “citrus/non-orange” notes as well as “overall 265 

orange strength” by the sweet taste, as sweetness is known to enhance the perception of 266 

sweet-congruent flavours (Lim, Fujimaru, & Linscott, 2014). 267 

When the assessment was orthonasal any differences with sucrose content should be due 268 

to flavour release as they cannot be due to perceptual cross-modal effects. Therefore, we 269 

propose that the trend of “overripe orange ”orthonasal aroma to increase with sugar content 270 

(Figure 1), which was significant between the 8.2 and 14.2 Brix samples, is due to a salting-271 

out effect.  272 

3.2 Aroma quality analysis by HS–SPME/D–GC–O 273 

Five SPME extraction procedures were examined, varying three sampling conditions 274 

(Table 1), with the sensory panel comparing each extract to the complete reference juice at 275 

11.2 Brix. Generally, a short time of fibre exposure was preferred, since many studies 276 

suggested that a shorter time of sampling shows better sensitivity and less likelihood of fibre 277 

overloading from compounds with high affinity to the coated material of the fibre (Rega et 278 

al., 2003; Roberts et al., 2000). The mean similarity ratings (scored out of 10) obtained from 279 

the trained sensory panel for each of the extraction conditions varied from 4.8 to 6.3, 280 

although these differences were not significant (p = 0.068). Overall, this showed that the 281 

odour of the SPME extracts did not perfectly match that of the reference sample. Although 282 

the differences were not significant, it is interesting to note that the aroma of the extract with 283 

the highest fibre sampling time (5 min) was rated to be the least like the reference sample, 284 

which agreed with previous studies (Rega et al., 2003; Roberts et al., 2000). The equilibration 285 

temperature of 40 °C tended to give greater similarity than 30 °C, while the combination of 286 
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40 °C for 30 min with agitation has been previously reported as one of the most suitable 287 

sampling conditions for the headspace analysis of orange flavour compounds (Jia et al., 288 

1998). The experimental conditions that provided the most representative extract (40 °C 289 

equilibration for 30 min followed by 1 min fibre exposure) were used for all subsequent HS–290 

SPME/GC–MS analyses. 291 

3.3 Gas chromatography-mass spectrometry (GC–MS) 292 

The experimental data of flavour release from the orange juice model system at varying 293 

sucrose concentrations are presented in Figure 3. Although limonene was absent from the 294 

flavouring, it was present as the compound with the largest peak area in the GC–MS trace.  295 

The limonene is a component of the orange pulp, which was not fully removed by the 296 

deodorisation process. Because of its importance in citrus, it was decided to examine how this 297 

compound varied as a result of sucrose reduction.  298 

Overall, the results show a significant decrease in the concentration of hexanal, α-pinene, 299 

β-myrcene, limonene, linalool and decanal by decreasing sugar content (p < 0.05). These 300 

findings might be attributed to the salting-out of flavour volatiles into the headspace above 301 

the samples when sucrose interacts with water, resulting in increased concentration of the 302 

flavour compounds in the remaining “unbound water” (Friel, Linforth, & Taylor, 2000; 303 

Hansson et al., 2001; Rabe et al., 2003).  304 

The decreasing sugar did not lead to a consistent decrease in the release of ethyl butanoate 305 

and although the release of hexanal was significantly different between samples, the extent of 306 

difference was small and the relationship between sugar concentration and hexanal release 307 

was not consistent. There was an observable trend that the release of (Z)-3-hexen-1-ol slightly 308 

varied with sugar content (at a significance value, p < 0.05), whereas linalool release 309 

significantly decreased with decreasing sugar concentration. The release of these flavour 310 

compounds has been reported to increase at elevated sucrose levels in soft drink model 311 
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systems (Hansson et al., 2001; Rabe et al., 2003). It is an indication that changes in the sugar 312 

levels used in commercial soft drinks slightly modify the amount of “free water”, which 313 

subsequently has a minor effect on salting-out of some aroma compounds. 314 

Moreover, one robust finding to have emerged from the current HS–SPME analysis is the 315 

clear and significant pattern observed in the concentrations of α-pinene, β-myrcene, limonene 316 

and decanal, aroma compounds with relatively high molecular weights and relatively low 317 

polarities. Release of these volatile compounds showed a significant increase from 5.2 °Brix 318 

to 14.2 °Brix while release at the intermediate sucrose levels of 8.2 °Brix, 9.7 °Brix and 11.2 319 

°Brix did not statistically differ. Regardless of the aforementioned salting-out effect, the up to 320 

4-fold increased release of these compounds could be additionally explained by the strong 321 

polar environment of the model system, the hydrophobic nature of these flavour compounds 322 

and the low pulp content which such hydrocarbons are more associated with; a positive 323 

correlation between reduction of pulp content and decreasing release of hydrophobic 324 

compounds has been found (Berlinet et al., 2007). A previous study reported that limonene 325 

did not show any significant changes in its release into the headspace above a soft drink 326 

model system across different sugar concentrations ranging from 20 to 60% w/v, due to the 327 

non-polar character of this compound (Hansson et al., 2001). 328 

Low variation in the quantification of flavour compounds between replicates was observed 329 

using the SPME/GC–MS conditions optimised in this study. This indicates both that 330 

equilibrium had been reached in sampling and that the ratio between the added volume of the 331 

orange juice and the total volume of the vial (1:8) was optimal. Likewise, the sugar levels 332 

used in the current model system are low, resulting in limited complexity of the hydration 333 

processes and low variability of the experimental data, as has been suggested in a previous 334 

study (Rabe et al., 2003).  335 

3.4 Comparison of sensory and analytical data 336 
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Principal component analysis (PCA) was performed using the relative values of volatile 337 

compounds determined in the HS–SPME extracts of the samples, with the sensory data for 338 

the same samples fitted onto the PCA plot as supplementary variables (Figure 4), assuming 339 

that the sensory perception of the orange juice soft drinks was affected by their volatile 340 

flavour profile. Specifically, one orthonasal (O) and five retronasal attributes (R) were used 341 

for this analysis; the attributes that differed significantly between samples. Similarly, among 342 

the volatile compounds of the model flavour mixture, only ethyl butanoate was excluded 343 

from the principal component analysis, since it did not vary with sugar concentration. The 344 

first two principal components accounted for 94% of the variance in the data; principal 345 

component 1 (PC1) explained 73.5% of the variance, discriminating samples in terms of 346 

“sugar content”, and principal component 2 (PC2) explained a further 20.5% variance. PC1 347 

placed the 5.2 °Brix soft drink on the left-hand side and the 14.2 °Brix on the right-hand side. 348 

8.2 °Brix, 9.7 °Brix and 11.2 °Brix soft drink samples were located close to the origin.  349 

It is well established that differences in the release of volatile compounds into the 350 

headspace of juices and soft drinks are directly associated with the orthonasal perception of 351 

them. Therefore, the perceived differences in the orthonasal attribute “overripe orange” 352 

detected by the sensory panel with increasing sugar content could be partly attributed to 353 

changes found in the volatiles released into the headspace. Specifically, the correlation matrix 354 

showed that the orthonasal “overripe orange” attribute was strongly correlated with all the 355 

flavour volatiles apart from the aldehyde hexanal (no correlation was found with this volatile 356 

molecule). This indicates that the release of these flavour compounds, as a total, gave a major 357 

sensorial impact on the perceived intensity of the sensory orthonasal quality of “overripe 358 

orange”; as reflected by PC1 (Figure 4). Finally, this finding confirms our hypothesis that the 359 

detected differences in the orthonasal perception by the sensory panel could be attributed to 360 

the “salting-out” of the volatiles into the headspace above samples. 361 
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The retronasal perception is more complex and could be affected by many factors (not 362 

only the physical parameters of the soft drink) and interactions between different sensory 363 

modalities. Therefore, differences in the release of the flavour volatiles into the headspace 364 

cannot directly correspond to differences detected during the retronasal evaluation. The 365 

volatile compounds (Z)-3-hexen-1-ol, α-pinene, β-myrcene, limonene, linalool and decanal 366 

were very well correlated with all the sensory variables apart from the retronasal “fresh ripe 367 

orange”. Under closer inspection, this finding has a two-fold importance for the current study. 368 

On the one hand, the flavour volatiles appeared to impart a substantial contribution to the 369 

perceived intensity of these sensory attributes as a group and not as individual compounds; on 370 

the other hand, the retronasal attribute “fresh ripe orange” showed weak correlations with all 371 

volatiles, indicating that differences in the release of these volatiles did not reflect changes in 372 

the intensity of this sensory attribute. In contrast, the “citrus/non-orange” attribute was found 373 

to be negatively associated with all other dependent variables. Moreover, only the sample at 374 

5.2 °Brix was positively correlated with the retronasal “citrus/non-orange” attribute. This 375 

finding indicates that the retronasal quality of “citrus/non-orange” could be a result of low 376 

release concentrations of the flavour volatiles in the soft drink containing 5.2 °Brix sugar 377 

content and not due to a single flavour compound. Also, the increased intensity of 378 

“citrus/non-orange” found in 5.2° Brix sample could be attributed to the increased perceived 379 

bitterness, as a similar pattern in ratings was observed for this odour and taste descriptor. The 380 

sample with 14.2 °Brix sugar content was found to be highly correlated with all the volatile 381 

and sensory data used in the principal component analysis. In fact, the aforementioned 382 

extreme sensory findings between samples with 5.2 and 14.2 °Brix sugar content suggest that, 383 

apart from the observed physical effects (salting-out of volatiles), the perceived differences in 384 

the retronasal evaluation might be attributed to bitterness and sweetness enhancement, 385 
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respectively (cognitive cross-modal enhancement) (Hornung & Enns, 1986; Stampanoni, 386 

1993).  387 

In the case of hexanal, negligible correlations with all the remaining variables were found. 388 

This finding suggests that hexanal had very little, if any, contribution to the flavour 389 

perception of the samples. This is not supported by the literature, which suggests that fresh 390 

flavour notes are imparted by aldehydes (Rega et al., 2004). However, it could be explained 391 

by the low concentration of hexanal in the flavour mixture and subsequently in its lower 392 

release compared to the other volatiles in the current model system. This is also supported by 393 

the very low intensity rating of green/grassy odour given by the sensory panel.  At 5.2 °Brix 394 

the relatively high headspace concentrations of linalool, ethyl acetate, (Z)-3-hexen-1-ol and 395 

hexanal, relative to those of decanal and the monoterpenes, may also be associated with the 396 

increase in the citrus/non-orange attribute. For example, at 5.2 °Brix, the ratio between the 397 

headspace peak areas for β-myrcene and ethyl butanoate is about 1.5, while at 14.2 °Brix, the 398 

ratio is about 6. This change could affect the balance of the flavouring at reduced sugar 399 

content, resulting in the observed sensory differences. 400 

Although the viscosities of the model orange soft drinks were not measured in this work, 401 

other workers (Hewson, Hollowood, Chandra, & Hort, 2008), who examined sugar levels 402 

close to the range used in this study, suggested that the small viscosity differences they 403 

observed (0.4 mPa s) may not affect assessor perception. Kappes, Schmidt, and Lee (2006) 404 

plotted sucrose solution concentration against viscosity. Their results suggested that the 405 

difference in viscosity between the 5.2 °Brix and 14.2 °Brix model solutions was 406 

approximately 0.5 mPa s. These authors suggested that a viscosity difference of 0.527 mPa s 407 

could cause a perceived difference in mouthfeel. However, they were focusing on the effect 408 

of sweetener removal on mouthfeel and they were comparing diet and regular cola 409 

carbonated beverages, with an added sweetness suppressant. Based on these observations, it 410 
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seems unlikely that viscosity differences in the five orange juice model solutions would affect 411 

flavour release. 412 

 413 

4 Conclusions 414 

The results obtained from sensory and flavour release analysis concluded that a “salting-415 

out” effect of volatiles into the headspace could be observed within sugar levels normally 416 

used in commercial soft drinks. It was observed that the ratings of some orthonasal and 417 

retronasal attributes significantly (p < 0.05) varied by sugar level reduction.  418 

The D–GC–O method, which was conducted, in order to assess the odour quality of the 419 

SPME extracts by applying different sampling conditions, proved to be a valuable research 420 

tool, capable of giving to the researcher confidence about the quality and the 421 

representativeness of an SPME extract.  422 

The HS–SPME/GC–MS analysis successfully determined an association between the 423 

release behaviour of volatile compounds (selected because of their odour quality) and their 424 

importance in orange juice flavour. Principal component analysis was able to explain about 425 

95% of the data variability and strongly correlated the perceived intensity of the orthonasal 426 

attribute “overripe orange” with the release of the flavour compounds, as a total, supporting 427 

the “salting out” hypothesis. However, it remains questionable whether the perceived 428 

differences in the retronasal evaluation might be attributed to sweetness enhancement rather 429 

than flavour release. 430 

 431 
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Figure legends 502 

Fig. 1. Orthonasal evaluation of samples: mean perceived intensity (0–100) of all sensory 503 

attributes (different letters above the bars represent significant differences at p<0.05 from 504 

Tukey’s HSD test) 505 

Fig. 2. Retronasal evaluation of samples: mean perceived intensity (0–100) of all sensory 506 

attributes (flavour, taste and mouthfeel) (different letters above the bars represent significant 507 

differences at p < 0.05 from Tukey’s HSD test) 508 

Fig.3.Effect of sugar concentration on relative amounts of aroma compounds in the 509 

headspace SPME extract of a model orange juice soft drink. Effect significant at:* p < 0.05; 510 

** p < 0.01; *** p < 0.001; ns: not significant (error bars indicate standard deviation between 511 

replicates (n = 3)). 512 

Fig. 4. Principal component analysis biplot where the volatile compound data () that were 513 

significantly different between samples () formed the multidimensional space and the 514 

sensory attributes () were regressed onto the space as supplementary variables; orthonasal 515 

and retronasal evaluations have "O" and "R" letters, respectively. 516 

  517 
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Table 1 518 

Examined experimental conditions of SPME extractions using a Stableflex 50/30 µm 519 

DVB/CAR/PDMS fibre  520 

equilibrium 

temperature 

(°C) 

equilibrium 

time (min) 

fibre 

exposure 

time 

(min) 

30 30 1 

30 30 5 

40 15 1 

40 30 0.5 

40 30 1 

 521 

  522 
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Figure 1: 523 

 524 

  525 
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Figure 2: 526 
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  528 
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Figure 3: 529 
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 532 

Figure 4: 533 
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