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Abstract8

Particle filters are fully non-linear data assimilation methods and as9

such are highly relevant. While the standard particle filter degenerates10

for high-dimensional systems, recent developments have opened the way11

for new particle filters that can be used in such systems.12

The implicit equal-weights particle filter (IEWPF) is an efficient ap-13

proach which avoids filter degeneracy because it gives equal particle weights14

by construction. The method uses implicit sampling whereby auxiliary15

vectors drawn from a proposal distribution undergo a transformation be-16

fore they are added to each particle.17

In the original formulation of the IEWPF, the proposal distribution18

has a gap causing all but one particle to have an inaccessible region in19

state space. We show that this leads to a systematic bias in the pre-20

dictions and we modify the proposal distribution to eliminate the gap.21

We achieved this by using a two-stage proposal method, where a single22
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variance parameter is tuned to obtain adequate statistical coverage prop-23

erties of the predictive distribution. We discuss properties of the implicit24

mapping from an auxiliary random vector to the state vector, keeping in25

mind the aim of avoiding particle resampling. The revised filter is tested26

on linear and weakly nonlinear dynamical models in low-dimensional and27

moderately high-dimensional settings, demonstrating the suiccess of the28

new methodology in removing the bias.29

1 Introduction30

Geophysical models involving numerical simulations of processes unfolding in31

space and time often take the form of state space models with non-linear dy-32

namics and millions of state variables. As the evolution of such systems is33

sensitive to initial conditions and boundary conditions, which are almost never34

known precisely, the actual system state is generally uncertain. Model error,35

failure of the numerical model to faithfully represent the simulated process, also36

contributes to system state uncertainty. If observations of the modelled sys-37

tem are available, then incorporating information from these into the model38

through data assimilation can mitigate uncertainty and lead to more accurate39

predictions.40

Data assimilation in a Bayesian setting begins with a prior probability distri-41

bution representing background knowledge about the unknown state variables.42

The relationships between states and observations are represented by condi-43

tional probability distributions referred to as the likelihood. Combining the44

prior distribution and likelihood according to Bayes’ theorem yields a posterior45

distribution of the state conditional on the observations. When this is done over46

time, data assimilation conditions the dynamical model to data.47

Variational data assimilation methods like 3D-Var and 4D-Var use optimi-48
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sation to locate the posterior mode (Asch et al., 2016; Van Leeuwen et al., 2015;49

Fletcher, 2017). While variational data assimilation methods do not necessarily50

characterise the spread of the posterior distribution, an estimate of the poste-51

rior covariance is available via the inverse of the Hessian evaluated at the mode.52

More direct uncertainty quantification is possible with ensemble-based data as-53

similation methods such as the many variants of the ensemble Kalman filter54

(EnKF), see e.g. Evensen (2009). However, the EnKF uses linear updating and55

implicitly assumes that the state distribution and likelihood are Gaussian. This56

limits the applicability of EnKF variants to only mildly non-linear dynamical57

models.58

Particle filters (PFs), see e.g. Doucet et al. (2000), most of which are based59

on importance sampling, have no assumptions of linearity or Gaussianity. They60

work by propagating particles, or model realizations, forward in time via a61

forecast step and then weighting particles according to the likelihood, so that62

the resulting weighted ensemble of particles represents the posterior probability63

density. Some PF variants modify the forecast step by drawing particles from64

a proposal distribution instead of the forward model (e.g. Doucet et al., 2000;65

Van Leeuwen, 2009; Morzfeld et al., 2012; Van Leeuwen et al., 2015). This is then66

accounted for in the weighting step. PFs are appealing in large part because67

they are free of distributional assumptions and will, given enough particles,68

correctly sample the posterior distribution even when applied to highly non-69

linear dynamical models. In practice, when the number of particles is limited,70

PFs are subject to the curse of dimensionality and can be relied on for correct71

sampling only when state and observation dimensions are low to moderate.72

Applied to high-dimensional data assimilation tasks, PFs tend to suffer from73

filter degeneracy in the form of sample impoverishment. That is, the distribution74

of particle weights, which is initially uniform, quickly begins to concentrate75

3



around, and eventually collapses onto, a small subset of particles, effectively76

reducing the ensemble size (Snyder et al., 2008).77

There have been several approaches trying to combine strengths from PFs78

with EnKF approaches. Stordal et al. (2011) constructed a useful Gaussian79

mixture approximation to the predicted distribution at each step, bridging the80

EnKF update with a special kind of PF updates. Rezaie and Eidsvik (2012)81

shrinked the PF update towards the EnKF update, also relying on Gaussian82

mixture models, and tuned the shrinkage parameter to avoid degeneracy while83

maintaining reasonable statistical properties. Frei and Künsch (2013) applied84

a tuning parameter in the exponent of the likelihood part, where parts of the85

data (with larger variance) are used in an EnKF update, while the remaining86

part is used in a PF step. In principle, these approaches have the non-linear87

appeal of PFs, but automatized tuning tends to give results closer to the EnKF88

output for high dimensional systems and moderate particle sizes (Stordal et al.,89

2011).90

Although in theory filter degeneracy issues can be remedied by increasing the91

number of particles, computational limitations restrict ensemble sizes to around92

100 particles in many data assimilation applications (Van Leeuwen, 2009). What93

is desired in such cases is a PF variant that is resistant to filter degeneracy and94

maintains a resonable particle weight distribution when applied to nonlinear95

dynamical systems. Unlike the standard PF, such a filter might be a viable96

solution for nonlinear and high dimensional data assimilation despite having to97

operate with only a moderate number of particles.98

The equivalent weights particle filter (EWPF, Van Leeuwen, 2010; Ades and99

Van Leeuwen, 2013) is a non-linear data assimilation approach which uses a100

proposal distribution constructed to give equal weights in the update step, thus101

avoiding particle degeneracy. Depending on the specifics of the proposal density102
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used, some or all particles may need to be resampled to maintain exact equality103

between weights.104

The implicit equal-weights particle filter (IEWPF), introduced by Zhu et al.105

(2016), similarly prevents filter degeneracy by constructing the proposal dis-106

tribution so that the weights are uniform. The IEWPF combines the implicit107

sampling framework of Chorin et al. (2013) with the equal-weights idea from108

Ades and Van Leeuwen (2013). By the implicit construction no parameter tun-109

ing is required. However, the approach tends to give biased results, particularly110

for moderate state dimensions, because its construction yields a proposal density111

for particle updates that is zero on parts of state space.112

The new contributions of the current paper are first a demonstration that113

this bias is systematic, and leads to underestimation of the filter variance. Sec-114

ondly, we modify the IEWPF to remedy some of the deficiencies of the proposal115

distribution under the original IEWPF formulation, specifically to eliminate the116

gap in state space described by Zhu et al. (2016) and to reduce the mismatch117

between the reported and actual prediction variance of the ensemble represen-118

tation of the posterior probability density. Our suggested modification achieves119

this by introducing an additional perturbation of each particle in the update120

step of the filtering algorithm. Adjusting the scale of this perturbation enables121

calibration of ensemble spread without compromising particle weight equality.122

Additionally, the revised IEWPF can be applied to systems of any dimension.123

This is in contrast to the original IEWPF, which relied on an approximation124

that is only valid when the state dimension is large.125

The new filter is a substantial improvement of the original IEWPF as it126

provides a way to mitigate the bias in the original method. Still, it should127

be noted that as with the original IEWPF, the emphasis is on handling non-128

Gaussianity resulting from a nonlinear dynamical model rather than a non-129
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Gaussian likelihood. Allowing a nonlinear observation operator does not pose130

a fundamental problem but part of the analytical development involving the131

incomplete γ functions would not be possible, and solutions to the nonlinear132

equations would rely more on iterative methods. Such an extension is outside133

the scope of the this work.134

This paper is organized as follows: In Section 2 the original single-stage135

IEWPF algorithm is described. In Section 3 the new two-stage IEWPF is136

presented. In Section 4 a linear example and a non-linear Lorenz96 example137

are studied.138

2 Implicit equal-weights particle filter (IEWPF)139

In this section we describe the main ideas and building blocks of the IEWPF140

algorithm. Some properties and challenges of this algorithm are discussed. A141

modified version of the filter is then described in Section 3.142

2.1 Problem description and background143

Consider a dynamical system with an Nx-dimensional state vector xn, n =144

0, 1, . . . , nt. Set initial distribution x0 ∼ N(µ,B), denoting an Nx-dimensional145

Gaussian distribution with mean vector µ and covariance matrix B. Given the146

state at time tn−1 the state at time tn is given by147

xn =M(xn−1) + un, (1)

where M denotes forward integration of the dynamical system, and un ∼148

N(0,Q) represents additive model error that we assume to be independent149

over time.150

Suppose that at times m ∈ {1, 2, . . .} an observation vector ym ∈ RNy is151
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available. The relationship between the state and observation vectors is152

ym = Hxm + vm. (2)

Here, H is a size Ny × Nx linear observation operator and vm ∼ N(0,R)153

represents additive observation error. In this article we will consider observation154

operators which simply select certain elements of the state vector, but operations155

like averaging and convolution of state vector elements are also possible. We156

assume that the error terms are independent over time, and independent of the157

error terms in the dynamical system model. Furthermore we will assume in the158

remainder of this article that observations are available at every time step n, so159

that the above notation may be simplified by letting m = n.160

The filtering problem consists of estimating the current state xn given all161

available observations up to time n. We denote the set of observations by y1:n.162

The filtering probability density function is p(xn|y1:n), and this is computed163

sequentially for n = 1, 2, . . .. The PF (Gordon et al., 1993) represents the164

filtering distribution at every stage n by a size Ne ensemble of state realizations165

xn
i , i = 1 . . . , Ne, called particles. Weights wn

i , i = 1, . . . , Ne, are assigned to166

each particle. A particle’s weight is proportional to the likelihood of all data167

along its sample path. It is updated sequentially using the multiplicative factor168

p(yn|xn
i ).169

One major problem affecting PF methods is sample degeneracy, also known170

as sample impoverishment. This happens when the distribution of weight over171

particles becomes more unequal with every iteration. Eventually this leads to172

a situation where almost all weight is concentrated on a single particle, so that173

the effective sample size is much smaller than the nominal ensemble size, and174

the usefulness of the resulting ensemble is very limited. To avoid this behaviour175

it is of interest to minimise the variance of the weights with respect to the176
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filtering distribution. The weights could be reset by including various kinds177

of resampling of particles at different stages, but this is usually not enough to178

avoid degeneracy in high-dimensional state space models.179

Some PF variants employ importance sampling (Van Leeuwen, 2009), whereby180

particle updates are drawn from a proposal probability density function, or im-181

portance function, q(x). Proposal densities are typically chosen to allow easy182

sampling and pointwise evaluation. The choice of proposal distribution can also183

affect the overall efficiency of the algorithm. For consistent results the particle184

weights are multiplied by the ratio of the target density to the proposal density185

p(xn|y1:n)

q(xn)
. (3)

According to Doucet et al. (2000), among potential importance functions of186

the form q(xn) = q(xn|xn−1
i ,yn), the one which minimises the particle weight187

variance is the conditional distribution p(xn|xn−1
i ,yn), referred to as the op-188

timal proposal density (OPD, Snyder et al., 2015). Ades and Van Leeuwen189

(2013) showed that a PF using the optimal proposal density as an importance190

function will degenerate slower than the standard SIR PF, but the exponential191

dependence on the size of the system remains the same.192

With our modeling assumptions, this OPD is Gaussian. At stage n, and for193

every particle i = 1 . . . , Ne, its mean and covariance matrix, denoted by xn,a
i194

and P respectively, are given by195

xn,a
i =M(xn−1

i ) + QHT (HQHT + R)−1(yn −HM(xn−1
i )), (4)

and196

P = (Q−1 + HTR−1H)−1. (5)
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2.2 Single-stage IEWPF197

The proposal density can be constructed in various ways. We will now discuss198

the implicit scheme used in the IEWPF. This implicit sampling is realised by199

centering the proposal distribution on the mode of the OPD for each particle,200

and adding a random perturbation vector which is pre-multiplied by the square201

root of the OPD covariance matrix (5) and by a particle-specific scale factor202

α
1/2
i .203

Mathematically, the updated state of particle i is computed according to204

xn
i = xn,a

i + α
1/2
i P1/2ξni , (6)

where the random vector ξni ∈ RNx is drawn from the proposal distribution205

q(ξni ), which is specified as N(0, INx
). With αi = 1 this scheme is equivalent206

to drawing samples from the OPD. When αi 6= 1, the corresponding sampling207

distribution is either compressed or extended relative to the OPD. Note that αi208

will change over time steps, but for notational convenience we have suppressed209

the superscript n.210

By selecting αi judiciously one can gain flexibility in the algorithm and avoid

particle degeneracy, for instance by aiming for equal weights like we do here.

The weight of particle i is given by

wn
i = wn−1

i

p(xn|xn−1
i )p(yn|xn)

q(ξni )

∥∥∥∥∂xn

∂ξni

∥∥∥∥
=

1

Ne

p(xn|xn−1
i ,yn)p(yn|xn−1

i )

q(ξni )

∥∥∥∥∂xn

∂ξni

∥∥∥∥ , (7)

where it is assumed that wn−1
i = 1/Ne for all particles i. To have equal weights211

wn
1 = wn

2 = . . . = wn
Ne

= wn
target the unnormalized log-weights must also be212

9



equal, hence for each particle i the scalar αi must satisfy213

(αi − 1)ξTi ξi − 2 log(α
Nx/2
i )− 2 log

(∣∣∣∣∣1 +
∂α

1/2
i

∂ξi

ξi

α
1/2
i

∣∣∣∣∣
)

= C − ϕi, (8)

for a constant C and with214

ϕi = [yn −HM(xn−1
i )]T (R + HQHT )−1[yn −HM(xn−1

i )], (9)

so that215

p(yn|xn−1
i ) ∝ e−ϕi/2. (10)

In practice the scale factor αi is determined numerically by solving216

γ

(
Nx

2
,
αiξ

n,T
i ξni
2

)
= e−ci/2γ

(
Nx

2
,
ξn,Ti ξni

2

)
, (11)

for αi, where γ(s, x) =
∫ x

0
ts−1e−tdt is the lower incomplete gamma function.217

and we refer to ci = maxj [ϕj ]− ϕi as the ith offset. See Appendix for details.218

By using the solution of (11) in the update expression (6) one ensures that219

the unnormalized weight associated with the ith updated state vector xn
i is equal220

to the chosen target weight. The log-weight offsets c1, c2, . . . , cNe
are necessary221

because the likelihood p(yn|xn−1
i ) ∝ exp(−ϕi/2) of the current observation222

given the previous state of the ith particle will differ between particles. For223

every particle i to reach the target weight we need ci ≥ 0. That is, the target224

unnormalized weight cannot be set larger than the smallest unnormalized weight225

in the ensemble. Consequently, since the incomplete γ-function is monotonically226

increasing, we must have αi ≤ 1 for every particle i. We therefore expect an227

updated IEWPF ensemble to have a smaller spread than a sample drawn from228

the OPD, and this suggests an explanation for the bias in the original IEWPF.229

The offset ci in equation (11) is chosen by targeting the smallest unnormalized230
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xn,a

xn

α1/2P1/2ξ

xn−1

M(xn−1)

Figure 1: Single-stage IEWPF proposal scheme.

weight in the forecast ensemble. In principle, ci could be defined differently,231

targeting for instance the average or median weight. Targeting the smallest232

weight, i.e. the maximum ϕi, has the advantage of making all offsets non-233

negative, which guarantees that a solution of (11) exists.234

In their original formulation of the IEWPF, Zhu et al. (2016) considered the235

limiting case of (11) when Nx → ∞. This yields a simplified equation for αi236

which admits an analytical solution in terms of the Lambert W function (Weis-237

stein, 2002). A feature of this closed-form solution is a gap between branches238

of the Lambert W function, leaving a region in state space where the proposal239

density of the filter is zero. The authors used both branches of the solution, one240

corresponding to αi ≤ 1 and one to αi ≥ 1, to reduce the bias of the resulting241

filter. We see here that using both solutions is in fact inconsistent, and only242

the αi ≤ 1 solutions are valid. In this article we do not simplify or approximate243

equation (11). Instead we resort to numerical solution methods for determin-244

ing αi. Although the solutions of (11) obtained in this way do not have a gap245

between distinct branches, the resulting transformation from ξni to xn
i is not in246

general bijective (see Section 2.3).247

An elementary sketch of the particle movement of the single-stage IEWPF248

is summarized in Figure 1. Details of the IEWPF implementation are provided249

in the Appendix.250
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2.3 Properties of the single-stage IEWPF251

The implicit formulation of the IEWPF makes it difficult to study the properties252

of the resulting particle representation. For instance it is not clear, even in sim-253

plified model settings, how to calculate closed form expressions describing how254

the IEWPF update changes the ensemble mean or variance. In what follows we255

will nevertheless gain insight in the solutions via the form of the implicit trans-256

formation, and by simulating from a Gaussian model where the exact solution257

is known. In Section 3 we then modify the algorithm and overcome some of the258

shortcomings of the single-stage IEWPF.259

Figure 2 shows solutions of the equal weights equation (11) for seven different260

offsets c (ignoring the subscript i in this display). When implementing the261

IEWPF, we require c > 0, but here we consider the more general case c ∈ R.262

The solutions in Figure 2 are shown in terms of the transformation from ξ to263

α1/2ξ. When c = 0 the solution is α = 1 which gives the identity transformation.264

Furthermore the solution α decreases with increasing c, so for c < 0 the resulting265

transformation has the effect of expanding the probability distribution of the266

perturbation ξ, whereas for c > 0 the transformation contracts the distribution.267

As can be seen in Figure 2 the contracting solutions for c > 0 have horizontal268

asymptotes while the expanding solutions for c < 0 have vertical asymptotes.269

As a consequence, the transformation from ξ to α1/2ξ, and hence to xn, is not270

defined on the whole domain when c > 0, and is not surjective when c < 0. Only271

when c = 0 is the transformation bijective. When solving (11) with negative272

offsets therefore, we are not free to use any proposal distribution for ξ as the273

range of possible perturbation vectors must be restricted to the appropriate274

subset of the domain. One could try to achieve this by truncating the proposal275

distribution at the location of the vertical asymptote when c < 0. But this276

is not a viable modification of the IEWPF, because truncation introduces a277
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Figure 2: Solutions of (11) for different offsets c shown in terms of g = ‖ξ‖ and
b = ‖α1/2ξ‖.

particle-dependent normalisation constant into the expression for the particle278

weights, making them unequal. Here, the requirement that weights be kept279

equal appears to be in conflict with the requirement that the transformation280

from ξ to xn should be a bijection from RNx to RNx (Chorin et al., 2010). A281

theoretical justification of the IEWPF ultimately necessitates the resolution of282

this conflict, but it is unclear whether it can be resolved.283

Considering the OPD and the update expression (6), it is clear that when284

αi < 1, the IEWPF produces updated particles with a smaller variance than285

the OPD PF, which is known to be unbiased. Hence we expect underestimation286

of variance as a consequence of using only contracting solutions of the equal-287

weights equation. As is illustrated in the following simulation study, the IEWPF288

does indeed tend to underestimate the variability of the state vector in the long289

run.290
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To make the presentation of the IEWPF more concrete before introducing291

the revised version, we now apply the IEWPF to a test case involving a Gauss-292

linear model. We revisit the same test case in Section 3.2 after describing the293

revised IEWPF. A more detailed description of the test case is given in Section294

4.1.295

We consider a size 100 state vector with initial state x0 ∼ N(0,B). The296

transition mechanism is defined by xn ∼ N(xn−1,Q), n = 1, . . .. Further,297

observations are given by yn ∼ N(xn,R). The filtering distribution is then298

Gaussian and its mean and covariance matrix are provided by the Kalman filter299

(Kalman, 1960). The covariance matrices B, Q and R are all diagonal, with300

constant diagonal entries of 1.0, 0.04 and 0.12 respectively.301

When applying the IEWPF as defined by equation (6) and (8) to this model302

we find that while the ensemble mean matches the KF mean on average, the303

ensemble spread is too small to match the KF variance in the long run. This304

means that the IEWPF systematically underestimates the variance of the state305

(see Figures 3 and 4).306

In Figure 3 the results of 1000 independent simulations are visualised for one307

state variable (component 42) at time n = 120. We show the rank histogram of308

the true variable in the set of Ne = 25 particles. This is computed by sorting309

the particles from smallest to largest by the value of this component, and then310

determining the position of the true value in this ordering. The procedure is311

repeated for each simulation. When the true state is unavailable the preferred312

approach is to carry out ranking in data space, comparing observations with313

realizations of their model equivalents generated from the ensemble. For a314

detailed treatment of rank histograms, their use and cautions, see Hamill (2001).315

The rank of the true state relative to the ensemble should ideally be uniform,316

but in Figure 3 we notice few ranks in the middle. The true value is too often317

14



at the extremes of the distribution represented by the 25 particle members.318

This means that the ensemble is underdispersive, i.e. the variability in the319

particle set is too small. Figure 4 shows the distribution over 1000 simulations320

of variance at time n = 20, averaged over all 100 entries of the state vector.321

A corresponding variance distribution for the stochastic EnKF is included for322

comparison. None of the filters being compared use inflation or localization.323

The purpose of the comparison is not to show which filter performs better,324

but rather to demonstrate that the IEWPF systematically underestimates the325

filtering variance. The variance in the particle representation varies somewhat326

between the different state vector entries but is mostly between 0.02 and 0.04.327

In comparison, the variance calculated by the Kalman filter is 0.052 for all state328

vector entries. Both the IEWPF and the EnKF underestimate the long-run329

process variability for this example. For the EnKF, variance estimates become330

more consistent with the KF level when the ensemble size is increased (Figure331

4, bottom display). The same is not true of the IEWPF.332

In Section 4 we provide further analysis of this example, studying how the333

filter behaves over time. We also compare results of the single-stage IEWPF334

with our new algorithm using two stages.335

3 Modifying the IEWPF336

To address the underestimation of variance by the IEWPF described in the337

previous section, we now introduce a modified version of the filter. We add338

a second perturbation vector ηi, orthogonal to ξi, to the analysis state xn,a
i .339

We refer to the filter with two separate perturbation vectors as the two-stage340

IEWPF, while the original filter with one perturbation vector is referred to341

as the single-stage IEWPF. Like the single-stage filter, the two-stage case also342

involves a particle-specific parameter αi which ensures equal particle weights.343
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Figure 3: Rank histogram of x12042 of true realisation relative to IEWPF ensemble
over 1000 simulations. U-shape suggests ensemble is under-dispersed.
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In the two-stage filter there is an additional parameter β, which is common344

to all particles and is related to the spread of the ensemble. Note that in the345

single-stage case, αi depends on the unnormalised weight of the ith particle346

in the forecast ensemble as well as the magnitude of the sampled perturbation347

vector ξi, i.e. αi,1-stage = αi(ϕi, ‖ξi‖). In the two-stage case, αi will also depend348

on β and the magnitude of ηi, i.e. αi,2-stage = αi(ϕi, ‖ξi‖, β, ‖ηi‖).349

3.1 Two-stage IEWPF350

In the two-stage proposal scheme, the updated particle xn
i is given by351

xn
i = xn,a

i + β1/2P1/2ηi + α
1/2
i P1/2ξi, (12)

where the perturbation vectors ξi,ηi ∈ RNx are standard multivariate Gaussian

random vectors satisfying ξTi ηi = 0. Requiring orthogonality simplifies the

particle weight expression so that the equal-weights equation for αi has the

same form as in the single-stage case. Using perturbation vectors that are

not orthogonal would introduce extra terms in the equal-weights equation (see

Appendix). The equal-weights equation for the updating scheme (12) is

(αi − 1)ξTi ξi − 2 log(α
Nx/2
i )− 2 log

(∣∣∣∣∣1 +
∂α

1/2
i

∂ξi

ξi

α
1/2
i

∣∣∣∣∣
)

= C − ϕi − (β − 1)ηT
i ηi.

(13)

Note that (13) is identical to the single-stage equal-weights equation (8) with352

the offset now defined as ci = maxj [Dj ]−Di where Dj = ϕj − (1− β)ηT
j ηj .353

The purpose of the additional perturbation ηi and the common scale factor354

β is to control the spread of the updated particles so that the filter correctly rep-355

resents the variability of the filtered state. In applications β would be considered356

a tuning parameter.357
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Figure 5: Two-stage IEWPF proposal scheme. Compare with Figure 1.

To determine a suitable value of β, particle ranks or coverage probabilities358

may be used. Since the spread of the updated ensemble is sensitive to the value359

of β, different values will produce differently shaped rank distributions and dif-360

ferent observed coverage probabilities. This can indicate whether the currently361

used value of β is suitable and, if it is not, whether the value should be ad-362

justed up or down. An automated search procedure based on some quantitative363

mismatch criterion—say, the difference between observed and nominal coverage364

probabilities—is also possible.365

A coverage probability is the observed frequency with which a prediction366

interval covers the predicted quantity. Ideally it should match the interval’s367

nominal confidence level. For instance, an 80% prediction interval for yn is368

(yn(0.1Ne)
, yn(0.9Ne)

), and on average about 80% of the data vector entries at time369

n should fall within this interval. We suggest tuning β such that the coverage370

probabilities at the 50%, 60%, . . . , 90% levels all match their respective nominal371

confidence level reasonably well. This entails running the algorithm for a range372

of β values, and choosing a value that gives an acceptable calibration (see Section373

4 for more details about how this is tuned in practical experiments).374

An elementary sketch of the particle movement of the two-stage IEWPF is375

summarized in Figure 5. Implementation details are provided in the Appendix.376
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3.2 Properties of the two-stage IEWPF377

As for the single-stage IEWPF, it is difficult to study analytical properties of378

the two-stage IEWPF, even in simplified model settings. Some insight can still379

be gleaned by simulating from a Gaussian model where the exact solution is380

known.381

In section 2.3 we stated that the single-stage transformation from ξ to x382

implied by (6) is only injective for c ≥ 0 and is only surjective for c ≤ 0, i.e. it383

is a bijection only when c = 0. In the two-stage case we can think of the map384

from ξ to x as depending on η and β through c. That is, there is not one map385

ψ : ξ 7→ x, but a set {ψc : c ≥ 0} of maps where c is a function of β and η. The386

two-stage IEWPF keeps β fixed and draws a random η, thereby selecting one387

of the maps ψc. Then ξ is drawn subject to the orthogonality constraint. For388

any point x ∈ RNx and any c ≥ 0, there is some combination of η and ξ with389

ηT ξ = 0 such that ψc maps ξ onto x. With η fixed, there may not exist a ξ that390

is orthogonal to η and is mapped onto x. Introducing a second perturbation391

vector to randomize the selection of a map is thus a way to ensure that state392

space is covered by the proposal distribution.393

Since the proposal distribution of the additional perturbation vector is zero-394

mean, the expectation of the state vector is the same under the two-stage update395

scheme as under the single-stage scheme. Hence, the modification does not396

induce a bias in the ensemble mean.397

We return now to the Gauss-linear model from Section 2.3. A more detailed398

description of the test case is given Section 4.1. This time we apply the two-399

stage IEWPF to the Gauss-linear test case. Results of this method and that of400

the Kalman filter are shown in Figures 6 and 7. As in Section 2.3, these are the401

results of 1000 independent simulations, and the results are presented for time402

n = 120. Also as in Section 2.3, the ensemble size is Ne = 25.403
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Figure 6 shows the rank histograms for the true value of state vector entry404

42. The rank histogram for β = 0.05 is clearly U-shaped. As β increases to405

0.25 and 0.30 the rank distribution becomes more uniform. The rank histogram406

for β = 0.5 is indistinguishable from a uniform distribution given the sampling407

error and the calibration is better than when using the single-stage approach as408

shown in Figure 3.409

Figure 7 shows the distributions of average variances produced by the two-410

stage IEWPF for β set to 0.05, 0.25, 0.30 and 0.50. The average is taken over all411

elements of the state vector. The display also shows the Kalman filter variance412

estimate as a thin, vertical line. Ideally the IEWPF should produce an ensemble413

whose variance matches the KF variance. Of the four β-values considered,414

0.3 and 0.5 come closest to realizing this, showing a clear improvement over415

the variance distribution of the single-stage IEWPF in Figure 4. Judging by416

Figure 7, the optimal value of β in terms of variance calibration seems to lie417

closer to 0.3 than to 0.5 in this case. Yet Figure 6 shows a more uniform418

rank distribution for β = 0.5 than for β = 0.3. It is important to keep in419

mind, however, that comparing the rank histograms in terms of their degree of420

departure from uniformity is less precise than comparing the more concentrated421

variance histograms in terms of their locations along the horizontal axis. Figure422

7 is therefore probably a better guide to identifying the optimal value of β.423

On the other hand, it cannot be ruled out that the discrepancy between the424

two figures has a different cause, such as the updated particles having a non-425

Gaussian distribution.426

4 Numerical experiments427

We present two synthetic test cases for assessing the performance of the IEWPF428

algorithms described in sections 2 and 3. The first is a Gauss-linear test case429
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Figure 6: Rank histogram of x12042 of true realisation relative to IEWPF ensemble
over 1000 simulations. Results are for the two-stage IEWPF using four different
values of β.

Figure 7: Histograms of two-stage IEWPF estimates of the variance of x120, av-
eraged over all elements, for four different values of β, based on 1000 simulations
each.
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where the dynamical system evolves according to a linear model and the system430

state is observed directly except for an additive observation error term. In the431

second case the state evolves according to the Lorenz96 model (Lorenz, 1995)432

and we observe every second element of the state vector. We assume Gaussian433

probability distributions for the initial state, model errors and observation errors434

as described in section 2.1. In the Gauss-linear case the filtering distribution435

is analytically available via the Kalman filter under these assumptions, and we436

will make use of this to judge the quality of the estimates produced by the437

single-stage and two-stage IEWPFs.438

4.1 Gauss-linear model439

This is the Gauss-linear test case referred to in Sections 2.3 and 3.2. We re-use

the model and observation equations from Section 3.1 of Zhu et al. (2016):

xn = xn−1 + un, (14)

yn = xn + vn, (15)

un ∼ N(0,Q), vn ∼ N(0,R), x0 ∼ N(0,B),

Nx = 100, nt = 120, Q = 0.04I, R = 0.12I, B = I.

The filtering probability density p(xn|y1, . . . ,yn) is Gaussian with parame-
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Figure 8: Example trajectories of x17 under Gauss-linear model. Top: Single
stage IEWPF. Bottom: Two-stage IEWPF with β = 0.5. In both panels
analysis ensemble members are shown in red and the true model trajectory in
black.

ters µn and Pn, given recursively via the Kalman filter:

µn = µn−1 + (Pn−1 + Q)(R + Pn−1 + Q)−1(yn − µn−1)

Pn = Pn−1 + Q− (Pn−1 + Q)(R + Pn−1 + Q)−1(Pn−1 + Q), (16)

where µ0 = 0 and P0 = B.440

We compare results of the single-stage and two-stage IEWPF, using the KF441

filtering distribution (16) as a reference solution. The number of particles is442

Ne = 25, and we run the algorithm for 1000 simulations.443

Example trajectories of the single-stage and two-stage IEWPF algorithms444

are shown in Figure 8. Both follow the true state pretty well, but the single-stage445

results (top display) have less variability.446
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Figure 9: Comparison of posterior variance estimates from the Kalman filter
and the single-stage IEWPF for state vector entry 42 in the Gaussian linear
model case with Nx = 100 and Ne = 25. The IEWPF variance curves show the
result of 1000 repetitions of the filtering task.

Figure 9 shows variance results for the single-stage IEWPF over the assim-447

ilation steps. Initial filtering variance, specified through the background error448

covariance matrix B, is 1. The variance of the KF filtering distribution decreases449

quickly before stabilising, while the IEWPF ensemble variance takes longer to450

stabilise, and does so at a lower variance level. Comparing the IEWPF and451

KF variance estimates, it is clear that the IEWPF overestimates the filtering452

variance early on, and underestimates it in the long run.453

Figure 10 shows average two-stage IEWPF variance estimates over the as-454

similation steps. As in the single-stage case (Figure 9), variability is still over-455

estimated at the beginning of the time interval, but the long-run KF variance456

can now be matched quite well by an appropriate choice of β.457

4.2 Lorenz96 model458

We study the performance of the single and two-stage IEWPF using the model459

presented in Section 3.2 of Zhu et al. (2016). The dynamical model is given by460

dxi
dt

= −xi−2xi−1 + xi−1xi+1 − xi + F, i = 1, . . . , Nx, (17)
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Figure 10: Evolution of variance estimates from the two-stage IEWPF with
four different values of the common scale factor β. The solid curves show vari-
ance estimates averaged over 1000 independent simulations. The Kalman filter
variance estimate is included for comparison.

where the indices wrap around so that xNx+1 is identified with x1. Letting461

xn = x(tn) with tn = n∆t, the model equation can be written as462

xn =M(xn−1) + un, un ∼ N(0,Q), n = 1, . . . , nt,

where M denotes integration of equation (17) by a fourth order Runge-Kutta463

scheme and464

Nx = 40, nt = 300, F = 8, ∆t = 0.05.

Observations are gathered at every time step tn, n = 1, . . . , nt, which means465

that here ∆t is both the integration time step of the numerical solution of (17)466

and the time between successive observation time points. Data are related to467

the state vector by468

yn = Hxn + vn, vn ∼ N(0,R),
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where H is a selection matrix which picks out every second element of the state469

vector, so that Hxn = (xn2 , x
n
4 , . . . , x

n
Nx

)T . The remaining model parameters470

are specified as follows:471

B = tridiag(0.25, 1, 0.25), Q = tridiag(0.025, 0.10, 0.025), R = 0.16I,

where tridiag(a1, a2, a3) is a tridiagonal matrix with a1 in every entry of the first472

subdiagonal, a2 on the main diagonal and a3 on the first superdiagonal. The473

nonlinearity in this data assimilation test case is weak due to the high frequency474

of observations. Increasing the time between updates would give a more severe475

test of the filter. A weakly nonlinear test case is still suitable for demonstrating476

that the IEWPF ensemble spread can be controlled through the choice of β.477

We run the single-stage and two-stage IEWPF variants on this test case,478

with Ne = 100 in both cases. Figure 11 shows results of the two-stage IEWPF479

using β = 0.7, where we plot the filtering distribution over time along with the480

truth. This is done for two entries of the state vector (component 1 and 2). The481

ensemble tracks the reference state and covers the truth reasonably well. The482

bottom display shows the estimated variances of component 1 and 2. Because483

the observations provide much more information about the second entry, this484

has smaller variance over time.485

In Figure 12 we plot coverage probabilities at one time step. These are486

plotted for different β parameters and for different confidence levels. The tuning487

procedure tells us that a value of β near 1 is useful in this example because it488

gives the best predictive performance, and any value in the range 0.7 − 1.2489

would be acceptable. Figure 13 compares rank histograms of one run each of490

the single-stage IEWPF and the two-stage IEWPF with β = 0.7, the latter491

being the same run used to make Figure 11. The single-stage rank histogram492

has a clear U-shape while the two-stage rank histogram does not, suggesting493
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Figure 11: Time evolution of true realisations and an IEWPF ensemble. The
components shown are x1 (not directly observed) and x2 (directly observed)
along with ensemble variances. This ensemble was obtained from the two-stage
IEWPF with β = 0.7 applied to the standard Lorenz96 case with Nx = 40.

that the two-stage IEWPF is better calibrated.494

Finally, to test the two-stage IEWPF in a setting that is both weakly non-495

linear and where Nx is much larger than Ne, we run the Lorenz96 case with496

Nx = 1000, Ne = 25 and β = 0.75. Remaining parameter values are unchanged.497

Figure 14 shows two components of the estimated and true model trajectories in498

this moderately high-dimensional test case. The top and bottom displays show499

particle trajectories for an observed component and an unobserved component500

of the state vector respectively. Filter behaviour is not noticeably different from501

the lower dimensional case of Figure 11. The variance is clearly larger for the502

unobserved state. For both variables, coverage is reasonable, and no bias effects503

are apparent. As is common in Lorenz models, the state is sometimes very un-504

certain; for instance at time steps 120–150, and especially so for the unobserved505

state. Even though the state dimension is much larger here, it seems that β506

can be in the same range (β = 0.75 in this plot as opposed to β = 0.7 in the507

Nx = 40 case).508
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Figure 13: Rank histograms for one run of the single-stage IEWPF and one run
of the two-stage IEWPF with β = 0.7 on the Lorenz96 model test case. Ranks
are aggregated over all steady-state time steps and all state elements.
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and Ne = 25. The components shown are x42 (directly observed) and x43 (not
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5 Conclusion509

In this paper we have presented a modification to the Implicit Equal Weight510

Particle Filter (IEWPF). The suggested approach is applicable to data assimi-511

lation in both low and high-dimensional state space models. When applied to512

a weakly nonlinear dynamical model, the revised IEWPF performed reasonably513

well even in the Nx � Ne case.514

A Matlab implementation of the IEWPF algorithm ran in seconds to min-515

utes when applied to the Gauss-linear and Lorenz96 data assimilation test cases516

in Section 4. The runtime increases in proportion with the number of time517

steps. It is not sensitive to the state dimension, but the numerical solution of518

the equal-weights equation may require more iterations to achieve convergence519

for very high-dimensional cases. The IEWPF update can be carried out in par-520

allel for each particle once the weight-offsets for the whole ensemble have been521

determined, making the algorithm easy to parallelize. The memory require-522

ments of the IEWPF are largely determined by the need to store the model523

error and observation error covariance matrices.524
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When using the revised filtering method, particles are updated according525

to a two-stage proposal scheme which draws two separate and orthogonal per-526

turbation vectors from the proposal distribution. By using two stages, we are527

able to eliminate the gap in the proposal distribution of the original IEWPF,528

ensuring that the proposal distribution is nonzero everywhere in state space.529

The random perturbations are scaled to keep weights equal and to achieve the530

correct ensemble spread. Accurately adjusting the spread requires tuning of531

the corresponding scale parameter. In our setting this is a single parameter532

which we propose to specify through the use of coverage probabilities or rank533

histograms. Other approaches might be possible here, for instance a criterion534

guided by the distribution of weights in the optimal particle density proposal.535

We leave this for future work. Note that we have chosen to keep the tuning536

parameter fixed throughout the data assimilation period. One could also adjust537

this parameter dynamically, so that different values can be used at different538

assimilation times as is done in adaptive inflation for EnKFs.539

The updating schemes described in this paper are constructed so that the540

distribution of particle weights will be uniform. An alternative would be to fix541

some proportion of the weights, allowing the rest to vary. This has the possible542

benefit of balancing contracting and expanding solutions of the equal-weights543

equation. Another possibility is to select multiple target weights, so that the544

overall distribution of weights is uniform within sub-ensembles of particles, but545

may differ between sub-ensembles.546
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Appendix605

Single-stage IEWPF equal-weights equation606

Suppose we have a forecast ensemble {M(xn−1
i )}Ne

i=1 with equal weights at the607

previous time step, and we want to update this ensemble with respect to the608

observation yn. We sample the perturbation vector ξni from the proposal dis-609

tribution q(ξni ). The updated weight of particle i is610

wn
i =

p(xn
i |xn−1

i ,yn)p(yn|xn−1
i )

q(ξni )

∥∥∥∥∂xn
i

∂ξni

∥∥∥∥
Taking −2 log of both sides gives611

−2 logwn
i = −2 log p(xn

i |xn−1
i ,yn)−2 log p(yn|xn−1

i )+2 log q(ξni )−2 log

(∥∥∥∥∂xn
i

∂ξni

∥∥∥∥)
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and using that p(xn
i |xn−1

i ,yn) ∝ exp(− 1
2 (xn

i − xn,a
i )TP−1(xn

i − xn,a
i )) and

p(yn|xn−1
i ) ∝ exp(− 1

2ϕi) this becomes

−2 logwn
i = (xn

i − xn,a
i )TP−1(xn

i − xn,a
i ) + ϕi − (ξni )T ξni − 2 log

(∥∥∥∥∂xn
i

∂ξni

∥∥∥∥)
= (αi − 1)(ξni )T ξni + ϕn

i − 2 log

(∥∥∥∥∂xn
i

∂ξni

∥∥∥∥)
= (αi − 1)(ξni )T ξni + ϕn

i − 2Nx logα
1/2
i

− 2 log

(∣∣∣∣∣1 +
∂α

1/2
i

∂ξni

ξni

α
1/2
i

∣∣∣∣∣
)
− 2 log

∥∥∥P1/2
∥∥∥

where we have used the single-stage IEWPF update scheme (6) and rewritten612

the determinant of the Jacobian using Sylvester’s determinant lemma (Brookes,613

2011). Equating the negative log-weight with a constant C now gives614

(αi−1)(ξni )T ξni +ϕn
i −2Nx logα

1/2
i −2 log

(∣∣∣∣∣1 +
∂α

1/2
i

∂ξni

ξni

α
1/2
i

∣∣∣∣∣
)
−2 log

∥∥∥P1/2
∥∥∥ = C

or615

(αi − 1)(ξni )T ξni − 2Nx logα
1/2
i − 2 log

(∣∣∣∣∣1 +
∂α

1/2
i

∂ξni

ξni

α
1/2
i

∣∣∣∣∣
)

= ci (18)

where ci = C − ϕi and 2 log
∥∥P1/2

∥∥ has been absorbed into C since it is the616

same for all particles. If it is assumed that αi depends on ξni only through617

gi = (ξni )T ξni , then the above equation simplifies to618

(αi − 1)gi − 2 log

(
α
Nx/2−1
i

∂αigi
∂gi

)
= ci.

Writing bi = αigi, this is619

bi − gi + 2 log g
Nx/2−1
i − 2 log

(
b
Nx/2−1
i

∣∣∣∣∂bi∂gi

∣∣∣∣) = ci.
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Separating the terms involving bi and gi gives

log

(
exp

(
bi
2

)
b
Nx/2
i

∣∣∣∣∂bi∂gi

∣∣∣∣) = log
(

exp
(gi

2

)
g
Nx/2−1
i

)
− ci

2

exp

(
−bi

2

)
b
Nx/2−1
i

∣∣∣∣∂bi∂gi

∣∣∣∣ = exp
(
−gi

2

)
g
Nx/2−1
i exp

(
−ci

2

)

which, when integrated from gi = 0 to gi = g̃i, yields the single-stage equal-620

weights equation (11).621

Two-stage IEWPF equal-weights equation622

In the two-stage IEWPF we draw two orthogonal perturbation vectors ξni and ηn
i623

from the proposal distribution q(ξni ,η
n
i ), and use them to compute the updated624

particle position according to the two-stage update scheme (12).625

Orthogonal pairs of multivariate normal perturbation vectors are generated626

as follows:627

1. Generate η and z by sampling from the standard Nx-variate Gaussian628

distribution.629

2. Decompose z into two components z = z‖ + z⊥ where z‖ is parallel to η630

and z⊥ is orthogonal to η.631

3. Let ξ =
√

(zT z)/(zT⊥z⊥)z⊥, so that ξT ξ = zT z.632

For a pair ξ,η ∈ RNx satisfying ξTη = 0, we have633

q(ξ,η) ∝ exp

(
−1

2
ηTη

)
exp

(
−1

2
ξT ξ

)
I(ξTη = 0), (19)

where I(ξTη = 0) is an indicator function that is equal to one if ξTη = 0 and634

is equal to zero if ξTη 6= 0.635

Under the two-stage scheme, assuming that since β is shared between parti-636

cles the Jacobian matrix of the map from ηn
i to xn

i can be omitted, the expression637
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for the weight of particle i is638

wn
i =

p(xn
i |xn−1

i ,yn)p(yn|xn−1
i )

q(ξni ,η
n
i )

∥∥∥∥∂xn
i

∂ξni

∥∥∥∥
and taking −2 log and proceeding as in the single-stage case now gives

(αi − 1)(ξni )T ξni + (β − 1)(ηn
i )Tηn

i + ϕn
i − 2Nx logα

1/2
i

− 2 log

(∣∣∣∣∣1 +
∂α

1/2
i

∂ξni

ξni

α
1/2
i

∣∣∣∣∣
)
− 2 log

∥∥∥P1/2
∥∥∥ = C

and639

(αi−1)(ξni )T ξni −2Nx logα
1/2
i −2 log

(∣∣∣∣∣1 +
∂α

1/2
i

∂ξni

ξni

α
1/2
i

∣∣∣∣∣
)

= C−ϕi−(β−1)(ηn
i )Tηn

i

which matches equation (18) if we let640

ci = C − ϕi − (β − 1)(ηn
i )Tηn

i = C + (1− β)(ηn
i )Tηn

i − ϕi. (20)

Consequently αi can be determined in the two-stage case by solving equation641

(11) with offset ci given by (20).642
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