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Abstract 

Many catchment management schemes in the UK have focussed on peatland restoration to improve 

ecosystem services such as carbon sequestration, water quality and biodiversity. The effect of these 

schemes on dissolved organic carbon (DOC) flux is critical in understanding peatland carbon budgets 

as well as the implications for drinking water treatment. In many catchments, however, peatland 

areas are not the only source of DOC, meaning that their significance at the full catchment scale is 

unclear. In this paper we have evaluated the importance of different land uses as sources of DOC by 

combining three datasets obtained from the Exe catchment, UK. The first dataset comprises a 

weekly monitoring record at three sites for six years, the second, a monthly monitoring record of 25 

sites in the same catchment for one year, and the third, an assessment of DOC export from litter and 

soil carbon stocks. Our results suggest that DOC concentration significantly increased from the peaty 

headwaters to the mixed land-use areas (ANOVA F=12.52, p<0.001, df=2), leading to higher flux 

estimates at the downstream sites. We present evidence for three possible explanations: firstly, that 

poor sampling of high flows may lead to underestimation of DOC flux, second, that there are 

significant sources of DOC besides the peatland headwaters, and finally, that biological- and photo-

degradation decreases the influence of upstream DOC sources. Our results provide evidence both 

for the targeting of catchment management in peatland areas as well as the need to consider DOC 

from agricultural and forested areas of the catchment. 

 

Key words: Dissolved organic carbon (DOC), catchment management, flux estimates 
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1.0 Introduction 

Peatland catchments have been the focus of much research in recent years due to their global 

importance as carbon stores (Billett et al., 2010). Dissolved organic carbon (DOC) represents an 

important carbon flux with the highest concentrations and fluxes observed in peatland catchments 

(Aitkenhead and McDowell, 2000), meaning that the transport and transformation of DOC in inland 

waters needs to be considered in global carbon models (Cole et al., 2007). DOC concentrations have 

been rising in many surface waters across northern Europe and North America as catchments 

recover from acidification (Monteith et al., 2007). Future DOC levels may be altered further by low 

peatland water tables favouring decomposition of organic matter and DOC production, particularly 

in catchments which have been drained or degraded (Freeman et al., 2001).  

As well as being important for carbon budgets, DOC is also an important parameter for drinking 

water treatment as it can cause problems with taste, odour and discolouration. Further to this, DOC 

which is not removed during treatment can react to form disinfection by-products (DBPs) which are 

regulated in the UK as they are potential carcinogens (Nieuwenhuijsen et al., 2009). As well as posing 

a risk of regulatory failure, DOC impacts operational costs of treatment works by increasing 

coagulant demand and sludge production whilst decreasing filter run times (Edzwald, 1993; 

Eikebrokk et al., 2004). How DOC quantity and quality, in terms of ease of removal during treatment, 

will change in the future is unclear, however greater seasonality due to altered temperature and 

rainfall patterns, increased influence from algal blooms and continued recovery from acidification 

are all plausible scenarios (Ritson et al., 2014). In response, many water companies in the UK, Europe 

and North America have invested in catchment management schemes focussed on restoring drained 

and degraded peatland areas as a way of improving raw water quality, biodiversity and carbon 

sequestration (Bonn et al., 2014; Parry et al., 2014; Yu et al., 2017), potentially limiting the need for 

future capital investment in new treatment technologies. 
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Although some catchments in the UK drain exclusively peatland areas, there are many which cover a 

number of land uses with potential influences from agriculture, forestry and urban areas. Studies 

concerning catchment scale influences on DOC concentration and chemical character often highlight 

percentage wetland cover in the catchment as a key parameter for predicting the concentration of 

DOC, however significant associations with DOC concentrations have also been observed for 

cropland, woodland and urban extent (Noacco et al., 2017; Wilson and Xenopoulos, 2008; Yang et 

al., 2017). Furthermore, DOC which enters rivers in the headwaters is subject to a number of 

mechanisms of removal and transformation including photolysis, bacterial utilisation and 

flocculation/sedimentation (Jones et al., 2016). These mechanisms can act together to limit the 

variability in DOC concentration as stream order increases, leading to the concept of rivers acting as 

chemostats (Creed et al., 2015) wherein variation in DOC concentration and quality is muted by the 

combined effect of the processes listed above. This effect can be accentuated where waters of 

differing DOC and nutrient concentration meet, creating hotspots of higher rates of decomposition 

(Palmer et al., 2016). The influence of peatland areas in the headwaters is therefore unclear at the 

full catchment scale as decreases in DOC concentrations have been reported in the UK when 

measured at the catchment outlet (Worrall et al., 2018).  

Where sub-catchments of differing land use join the main channel close to points of drinking water 

abstraction, these may represent highly significant sources of DOC as removal processes are likely 

much less than that observed elsewhere in lakes and reservoirs (Köhler et al., 2013). We therefore 

hypothesised that sub-catchments of urban, woodland and agricultural land use close to the point of 

abstraction may act to increase DOC flux, resulting in a decreasing peatland influence on catchment 

carbon budgets as the complexity of land use within the catchment increases.  

To test this hypotheses, we evaluated weekly grab sampling data collected by a water company from 

2012-2017 at three sites on the river Exe, UK, a mixed land use catchment from which direct 

abstraction occurs for drinking water production at two of the sampling points (Bolham and 
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Brampford Speke). This represents an unusually high sampling frequency dataset as characterisation 

of DOC in rivers is commonly based on a monthly sampling frequency (e.g. United Kingdom Acid 

Waters Monitoring Network). The monitoring programme aimed to ascertain whether DOC 

concentration, flux and trends were influenced by peatland restoration works occurring in the 

peatland headwaters of the catchment (detailed in Grand-Clement et al., 2013) . To supplement the 

long-term monitoring data, we also performed a monthly grab sampling survey in 2016-2017 for 25 

sites across the catchment to identify the contribution of DOC made by each sub-catchments to 

evaluate peatland and non-peatland sources of DOC. This part of the study was undertaken at lower 

temporal resolution but offered an unusually high spatial resolution compared to previously 

published datasets. Finally, we compared the amount and biodegradation of extractable DOC from 

litter and soils in both a peatland and a woodland area within the catchment to ascertain differences 

in the environmental persistence of DOC from contrasting land uses and to establish further 

understanding of the connectivity of DOC sources with concentrations and loads in surface waters. 

Peatland and woodland sites were selected as they were identified in the monthly monitoring 

program as contributing high DOC concentrations. Whilst extractable DOC data is more widely 

available for soils and vegetation, there is a growing awareness of the need to consider the 

persistence of this DOC. Our dataset adds important information in this area. 

2.0 Material and methods 

The Exe catchment drains an area of 600.9 km2 at the lowest gauging station used in this study 

(Thorverton 45001) with a mean daily flow in the period 1956-2016 of 16.2 m3 s-1 (NRFA data). The 

catchment geology contains mainly Devonian sandstones and Carboniferous Culm Measures with 

land use typically moorland and forestry in the northern headwaters and increasing agricultural and 

urban influence further down the catchment. Climatically, the catchment shows a significant north-

south gradient in both temperature and rainfall with Liscombe climate station in the northern 

headwaters recording a mean annual temperature of 5.8 – 12.1 oC and mean annual rainfall of 
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1,445.2 mm, whereas the Exeter Airport climate station near the mouth of the Exe has a mean 

annual temperature of 6.8 – 14.8 oC and mean annual rainfall of 784.9 mm (UK Met Office figures). 

Please see supplmetary figure for locations of the climate stations and gauging stations used. The 

area is part of a catchment management scheme which is being studied as part of the ‘Upstream 

Thinking’ program funded by South West Water, detailed in Grand-Clement et al., (2013). 

2.1 Monitoring programme and flux estimates 

Weekly grab sampling was undertaken by South West Water during the period October 2011 to 

December 2017 for three sites: Exebridge (51.009694, -3.526232), Bolham (50.9277, -3.49738) and 

Brampford Speke (50.76412, -3.51811). To estimate DOC flux we obtained data from the National 

River Flow Archives (NRFA) which operate gauging stations near the sites. At Brampford Speke we 

used ‘Exe at Thorverton (45001)’ which is approximately 6.05 km upstream and had a mean gauged 

daily flow for the period of interest of 17.61 m3 s-1. For Bolham we used the ‘Exe at Thorverton 

(45002)’ gauging station which is approximately 2.75 km upstream from the sampling site and had a 

mean gauged daily flow for the period of interest of 12.42 m3 s-1. At the Exebridge site there is no 

gauging station after the confluence of the Exe and the Barle, however nearby gauging stations 

before the confluence offer a method of estimating the flow. We therefore summed the flow from 

the gauging stations ‘Barle at Brushford (45011)’ and ‘Exe at Pixton (45009)’ to give an estimate of 

flow after the confluence. This gave a mean gauged daily flow for the period of interest of 10.36 m3 s-

1 

Load was estimated from the weekly grab sampling data via Method 5 (Walling and Webb, 1985) 

shown in Eq 1. 

         
     

 
   

   
 
   

    Eq 1. 

Where K is the time conversion factor, Qr is the annual mean discharge from the continuous daily 

flow record, Ci is the instantaneous concentration and Qi is the instantaneous discharge. We then 
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estimated the standard error using published methods (Hope et al., 1997) which are summarised in 

Eq 2 and Eq 3. 

 

                                 Eq 2. 

 

Where F is the total annual flow from the continuous daily record and VarCF is the variance in the 

flow-weighted mean DOC concentration. 

                
   

  
   

  
 

  
    Eq 3. 

Where Qn is defined as the sum of instantaneous flow measurements. Note, the standard error 

calculated by this method focusses mainly on errors in the flow weighted mean DOC concentration 

and does not include, for example, errors in flow gauging or discrepancies caused by the distance 

from the sampling point to the flow gauge. 

2.2 Catchment survey 

Between November 2016 and October 2017 25 sites in the Exe catchment were grab-sampled 12 

times with two replicates on each date. Samples were returned to the laboratory on ice, filtered with 

pre-ashed GF/F filters within 24 hours and analysed for DOC concentration and UV-Vis absorbance. 

Sites were selected to include the major tributaries of the Exe as well as to cover most major land-

use classes. We also included the inlet and outlet of a small-scale fish farm, of which there are many 

in the catchment, to study the effect of aquaculture on downstream DOC quantity and quality 

(‘Fishery’ site in Fig 1.). The fishery rears rainbow trout (Oncorhynchus mykiss) for the stocking of 

fishing ponds and has an annual production of 150 t. We refer to this as small-scale in comparison to 

the more heavily researched marine aquaculture systems which can be up to 2,500 t production in 

the UK and 4,500 t in Norway (Salama and Murray, 2011). The locations of the 25 sites as well as 
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sites for the weekly monitoring programme are shown in Figure 1 alongside the peatland areas in 

the catchment, determined using the Natural England Priority Habitat Inventory dataset (note: 

Exebridge was used in the weekly monitoring programme but not the catchment survey). 

Abstraction for drinking water production occurs at Bolham and Brampford Speke. 

[Figure 1] 

 

Figure 1: Map showing the locations of the 25 sites in the catchment survey of the Exewith the peatland areas highlighted in 

red. *Denotes site was used in the weekly monitoring programme.  

Details of the catchment area and land use of each sampling site are available in the Supplementary 

Information (Table 1). The distribution of different land use classes is also shown in a map of the 

catchment in the supplementary information. To assess the contribution of different land used to 

DOC concentration and properties, we performed automated linear modelling in SPSS v24 (IBM) 

using the land use percentages in for the sub-catchments identified in Supplementary Table 1. We 

performed this analysis on the 15 sub-catchments as samples taken from within the main channel 

were not independent of each other. All predictors were entered based on the best subsets 

procedure with adjusted r2 used as the criteria for entry and removal. We then compared the best 

possible models using the variance explained (adjusted r2). 

2.3 Assessment of carbon stocks under different land uses 

To assess the contributions of soil and litter sources of riverine DOC under different land uses we 

measured carbon stocks, extractable DOC and the persistence of this DOC with respect to microbial 

mineralisation. We assessed two sites; Spooners, a peatland site, and Tarr Steps, an oak woodland 

with freely draining acid loam soils. These were selected as these types of sub-catchment were 

identified in the monthly sampling program as contributing high DOC concentrations. 
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On 8/11/18 we performed field sampling at the Spooners peatland site (51.12238, -3.75307) at 

approximately 424m of elevation above sea level. Five sampling points were selected using a 

stratified random method in a 1 ha area and the following measurements were taken: peat depth 

(three replicates at 1 m from sampling point), peat cores (two replicates) and destructive collection 

of above-ground biomass (two replicates of 25 cm2). This gave a total of 15 peat depth 

measurements, 10 peat cores and 10 litter collections. Samples were shipped on ice to the 

laboratory where the peat cores were split into 0-10 cm and 10-20 cm depths before measurement 

of bulk density, loss on ignition (LOI), C:N and Water Extractable Organic Matter (WEOM). The 

subsequent WEOM sample was analysed for pH, DOC concentration, UV-Vis absorption and 

biodegradable dissolved organic carbon (BDOC) concentration. The litter samples were oven dried at 

60 oC until constant weight and then sorted by hand into individual species and weighed. For 

Sphagnum we did not attempt identification of each species but instead recorded a class of mixed 

Sphagnum Spp.  

On 9/11/18 we performed field sampling at the Tarr Steps forested site (51.07713, -3.61778), a site 

of specific scientific interest (SSSI) of ancient semi-natural woodland at approximately 235 m of 

elevation. Five sampling points were selected using a stratified random method and the following 

measurements were taken: bulk density at 0 - 10 cm and 10 - 20 cm (two replicates), soil samples at 

each depth (two replicates) and destructive collection of above-ground biomass (two replicates of 25 

cm2). This gave a total of 20 bulk density measurements, 20 soil samples and 10 litter collections. 

Our sampling methodology was based on the European Commission methodology for assessing soil 

carbon stocks (Stolbovoy et al., 2007) and we followed these protocols in sampling. Samples were 

shipped on ice to the laboratory where they were analysed for the same parameters as the 

peatlands samples. At each site we also performed a survey of dominant vegetation types present 

(Supplementary Information). The litter samples were oven dried at 60 oC until constant weight and 

then sorted by hand into individual species and weighed. For the litter samples we also analysed C:N 

and WEOM (five replicate extractions of a bulked litter sample) as well as the pH, UV-Vis absorbance 
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and BDOC of this WEOM. We did not complete this additional analysis for the peatland site as we 

have already published data concerning C:N, WEOM and BDOC for these species (Ritson et al., 2016). 

At the same time as the vegetation and soil sampling we took grab samples from the river 

immediately downstream of the sampling site. At Spooners and Tarr Steps this was the same point 

as used in the catchment survey, however, we also included an additional sampling point at Tarr 

Steps which was a small tributary dominated by forest land cover (51.081544, -3.626349, elevation 

240 m). At each sampling point four samples were collected and shipped on ice to the laboratory 

where they were filtered with GF/F filters and then evaluated for pH, DOC concentration, UV-Vis 

absorbance and BDOC. 

2.4 Laboratory procedures 

For the data collection described in section 2.2 and 2.3 the following protocols were followed. DOC 

was measured as non-purgeable organic carbon (NPOC) on samples acidified with HCl and filtered 

through pre-ashed GF/F filters on a Shimadzu TOC-V instrument which was calibrated daily. UV-Vis 

absorbance was measured on a Perkin Elma Lambda 3 instrument using a 1 cm quartz cuvette 

between 200 and 600 nm. The specific absorbance, SUVA, was calculated as the absorbance at 254 

nm in units of m-1 divided by the NPOC content (mgC l-1) and is used as an indicator of aromaticity of 

the DOC (Weishaar et al., 2003). BDOC was measured as the loss of NPOC after a one-week 

incubation at 20 oC in the dark with added nutrients and a standardised inoculum (McDowell et al., 

2006). WEOM was obtained by performing a 24-hour extraction on a shaker table with reverse 

osmosis water at a 20:1 water to sample ratio. LOI was calculated as the loss of mass on dry samples 

after heating to 550 oC for four hours. Bulk density was measured by weight of soil contained in a 50 

mm diameter, 50 mm height soil density ring for the forest soil and by displacement of water for the 

peat soil. For elemental analysis sub-samples of dry litter and soil were ground to a fine powder 

using a Tema mill and analysed in duplicate on a Thermoflash CHN analyser at the University of 
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Reading. Aspartic Acid was used for calibration and certified reference material for plant and peat 

soil were run every 15 samples. 

For the weekly grab sampling described in section 2.1, analysis was performed by South West Water. 

For the period to July 2015 DOC analysis was performed on samples filtered to 0.45 µm on a Hach-

Lange IL550 thermal combustion instrument. From July 2015 to the end of the dataset DOC was 

analysed by a Shimadzu TOC-L thermal combustion instrument. As the DOC measurements were 

obtained from different laboratories the values presented in different sections may not be directly 

comparable, however we used the values obtained by South West Water to target the work in the 

catchment and do not compare the absolute values in our subsequent analysis. 

3.0 Results 

3.1 Long-term monitoring dataset 

As a first step to assess how representative the grab sampled data are, we plotted the dates of 

sampling against the hydrograph from gauged daily flow data. This is shown in Figure 2, below. 

 

[Figure 2] 

Figure 2: Time series of gauged daily flow, Exe at Thorverton station (45001) 2012-2017 with flow at grab sampling dates 

highlighted by black squares. Data from NRFA. 

The weekly grab sampling captures a reasonable amount of variation in flow and includes some of 

the high flow events, notably the peaks in December 2012. Further analysis of the distributions of 

the daily versus grab sample data, presented in Table 1, shows the grab sampled data is under-

representative of high flow conditions, evidenced by the difference in quartile ranges and skew. 

Despite this, the length of the dataset, sampling period and range of flow conditions covered means 

this weekly grab sampling offers better accuracy than others published in the literature (c.f. weekly 
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sampling for one year in Yates et al., (2016) or fortnightly sampling for two years in Graeber et al., 

(2015)). 

[Table 1] 

DOC concentrations increased down the catchment with means (± standard error) of 2.14 ± 0.09, 

2.32 ± 0.7 and 2.70 ± 0.08 mg l-1 at Exebridge, Bolham and Brampford Speke, respectively. An 

ANOVA test suggested a significant effect of site on DOC concentration (F=12.52, p<0.001, df=2) and 

Brampford Speke had a significantly higher mean than the other two sites using a Tukey test 

(p=0.01). We analysed for differences in seasonality between the sites by performing a factorial 

ANOVA with factors of site and month in the model. This suggested a significant effect of month of 

the year on log transformed DOC concentration (F=13.11, p<0.001, df=11), however the lack of an 

interactive effect between site and month (F=0.95, p=0.534, df=22) suggest this affects all sites 

equally. The monthly means for the three sites are show in Figure 3. 

[Figure 3] 

Figure 3: Monthly DOC averages 2012-2017 for the three sites. Error bars at one standard error. 

 

Using the equations described in the methods section, we were able to derive estimates of DOC flux 

at the three sites for the years 2012 to 2017. These are presented in Table 2, which shows the 

highest flux at the Brampford Speke site in all years except 2015 and 2016. Particularly high flux was 

observed at all sites in 2012 when significant flooding was recorded in the catchment. 

[Table 2] 

 

3.2 Catchment survey 
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The flow on days where the catchment survey grab sampling was performed was typically low and is 

compared to the gauged daily flow data at 45001 in Table 3 and shown graphically in Figure 4. This 

suggests high flow conditions were not captured and as such the catchment survey represents 

spatial variability in DOC quantity and quality for low flow conditions only. 

 

[Table 3] 

[Figure 4] 

Figure 4: Time series of gauged daily flow at 45001 during the survey period with flow at grab sampling dates highlighted 

by black squares. Data from NRFA. 

Analysis of log transformed DOC concentration data across the 25 sites suggest using a significant 

effect of site on concentration (ANOVA F=3.81, p<0.001, df=24). As there were a large number of 

sites our statistical approach was to compare mean concentration from the 12 sample dates at each 

site to Simonsbath, the first measurement in the main channel, thus determining whether each 

downstream/tributary site represented a significant dilution or addition of DOC. This approach was 

favoured to a comparison between all sites as this would have required 325 comparisons meaning 

either a high chance of type 1 error or a significant loss of statistical power. We used a two-tailed 

Dunnet’s test which suggested the Dart (p<0.001), Spooners (p=0.003), Hangman’s Hill (p=0.008), 

Thorverton (p=0.008) and Washfield Lane (p=0.035) had significantly higher DOC concentration, as 

shown in Figure 5. 

[Figure 5) 

Figure 5: Mean DOC concentration during the 2016-2017 catchment survey (n=12). * denotes significant difference to 

Simonsbath. 

We next performed the same analysis for the SUVA values across the sites. This suggested a 

significant effect of site on SUVA (ANOVA F=2.50, p<0.001, df=24), however none of the sites were 
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significantly different to the Simonsbath site (two-tailed Dunnett test, p>0.05). The mean SUVA 

value across all sites was 4.57 ± 0.12 L mg-1 m-1, see supplementary figure for a graph of SUVA by 

site. As we were also interested in the potential effect of aquaculture on DOC quantity and quality 

we also performed an independent samples t-test on the DOC and SUVA data from the inlet and the 

outlet of the fishery. These tests suggested no significant difference in DOC concentration or SUVA 

(p>0.05). To compare urban influence directly we also compared the sites before (Bolham) and after 

Tiverton (Exe at Tiverton). The Exe at Tiverton site is only approximately 2.5 km downstream of 

Bolham, however in this distance the combined urban/sub-urban land use increases from 0.6% to 

1.0% (see Supplementary Information). An independent samples t-test suggested no change in DOC 

concentration (p=0.245), but a significant decrease in SUVA after the urban influence (t=-2.335, 

p=0.03, df=19.58). 

We next assessed the influence of different land uses by performing automated linear modelling 

(ALM) for DOC concentration and SUVA values using the percentage of each land use as the 

predictor. It is possible for a number of different models to explain the data and therefore we 

compare predictors in the models which explain the most variance in the data. The best three 

models had adjusted r2 values of 0.667 (based on Broadleaved woodland, Arable, Acid Grassland, 

Improved Grassland, Sub-urban and Neutral Grassland), 0.687 (based on Broadleaved woodland, 

Arable, Acid Grassland, Improved Grassland and Sub-urban) and 0.692 (Broadleaved woodland, 

Arable, Acid Grassland, Improved Grassland, Sub-urban and Coniferous Woodland). 

The best model for DOC concentration in the (n=15) sub-catchments this suggested a reasonably 

well fit model (F=6.232, p=0.011, adjusted r2=0.692) with significant predictors in the order of 

influence on the model of ‘Broadleaved woodland (coefficient 0.394, p=0.002)’, ‘Arable (coefficient 

0.316, p=0.005)’, ‘Acid Grassland (coefficient 0.303, p=0.008)’ ‘Improved grassland (coefficient 

0.287, p=0.01)’ and ‘Sub-urban (coefficient 0.367, 0.043). The ALM process was unable to build a 

significant model for the influence of land use on SUVA value in the sub-catchments. 
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3.3 Comparison of DOC sources under different land uses 

Peatland and woodland sites were identified from the catchment survey as adding significantly 

higher DOC concentrations to the main channel and were therefore investigated further with 

respect to the sources of DOC in these sub-catchments.  

The sampling of vegetation litter suggested the peatland site had a mean litter density of 1,212 ± 

161 g m-2 from ten replicates. The litter comprised of the following types: Molinia caerulea (74.4%), 

Sphagnum Spp. (22.7%), Juncus efussus (2.0%), Calluna vulgaris (0.9%) and other (0.1%). The ‘other’ 

category was predominantly composed of feather mosses. Peat depth across all sites averaged 159.7 

± 3.2 cm (n=15). The forested site has a mean litter density of 961 ± 180 g m-2 from ten replicates. 

The litter comprised of Quercus petraea (36.6%), Fagus sylvatica (21.5%), Pteridum aquilinum 

(18.9%), woody debris (13.5%), Corylus avellana (3.9%) and other (5.6%). The ‘other’ category was 

composed of unidentifiable leaf mulch, most likely in similar proportions to those detailed above. A 

t-test suggested the mean amounts of litter dry-weight per unit area were not significantly different 

between the two sites (t=0.987, p=0.337). We then combined the %C values from our elemental 

analysis and from Ritson et al. 2016 with the data on litter amounts per m2 which give estimates of 

litter carbon stocks. These were 527 ± 91 gC m-2 for the peatland site and 364 ± 101 gC m-2 at the 

forested site with ten replicates at each. The litter carbon stocks were statistically similar between 

the two sites (t=1.080, p=0.311). 

The results from the experiments concerning extractable DOC and the properties of this DOC are 

summarised in Table 4 with the data comparing soil types summarised in Table 5.  

[Table 4] 

[Table 5] 

By combining our data on litter and soil extractable organic carbon, its persistence (BDOC) and litter 

amounts we were then able to calculate totals for the litter and soil layers at each site. Data in Table 
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4 was supplemented with values for peatland species in our previous work (Ritson et al., 2016) to 

create estimates of extractable DOC and persistent DOC, that is non-biodegradable, per m2 for each 

of the sites. For extractable DOC this gave a mean value of 33.07 ± 10.78 g-DOC m2 for the Tarr Steps 

site and 17.02 ± 4.17 g-DOC m2 for the Spooners site with no significant difference between the sites 

(t=1.39, p=0.202). By combining these values with the BDOC data we were then able to estimate 

persistent DOC from each litter source. This gave mean values of 20.50 ± 3.73 g-DOC m2 at Tarr Steps 

and 10.65 ± 3.31 g-DOC m2 at Spooners. The differences in biodegradability mean that for the 

riparian plots surveyed, the woodland site has significantly more persistent DOC per m2 (t=2.42, 

p=0.036). 

We then estimated carbon stocks at the two sites using the %C and bulk density at the two depths 

surveyed. This gave values at Tarr Steps of 28.3 ± 15.6 t ha-1 in the 0 – 10 cm depth and 12.0 ± 2.5 t 

ha-1 in the 10 – 20 cm depth. At the Spooners site the soil organic carbon (SOC) stock was 40.1 ± 2.4 t 

ha-1 in the 0 – 10 cm depth and 44.8 ± 2.2 t ha-1 in the 10 – 20 cm depth. Extrapolating to the full 

depth of the peat profile (mean 159.7 cm) would suggest a total SOC stock of 714.6 ± 32.6 t ha-1, 

however this figure should be viewed as a rough estimate as both bulk density and carbon content 

can vary down the peat profile (e.g. Wellock et al., 2011). 

The water samples collected at the same time as the vegetation and soil samples are summarised in 

Table 6. 

[Table 6] 

There was a significant effect of site on DOC concentration (ANOVA F=31.58, p<0.001, df=2) with 

Spooners being significantly higher than the other two sites (Tukey test p<0.001). The SUVA value of 

samples did not have a site effect (ANOVA F= 2.07, p=0.182, df=11), however the proportion of 

BDOC did (ANOVA F= 5.97, p=0.022, df=11). A Tukey test suggested that Spooners had significantly 

higher BDOC content than Tarr Steps (p=0.001) with all other comparisons being similar. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

Discussion 

4.1 Monitoring dataset 

The assessment of DOC concentration and flux estimates for the three sites suggested an increase in 

DOC concentration down the catchment and also highest DOC flux estimates at the Brampford 

Speke site in four out of the six years studied. Although the increase in DOC concentration between 

monitoring sites (~0.5 mg l-1) is unlikely to be of great ecological significance, the impact on drinking 

water treatment costs is still significant. This increase in DOC concentration and flux occurs as the 

proportion of peatland area declines. This increase in both concentration and flux is perhaps 

surprising given the well documented importance of peatlands in riverine DOC budgets (Billett et al 

2010) and the decreasing peatland influence down the catchment (Supplementary Table 1). 

Similarly, the ‘river as chemostat’ hypothesis suggests a decrease in DOC concentration and variance 

as stream order increases and processing and dilution takes place (Creed et al., 2015) which is 

contrary to our observations. This would suggest that either of the following may be true, that a) the 

monitoring dataset underestimates the peatland contribution due to the range of the hydrograph 

sampled, b) significant sources of DOC occur from non-peaty tributaries further down the 

catchment, or c) that the impact of peatland sources are minimised through microbial and photolytic 

processing of DOC.  

We discuss evidence for hypotheses b) and c) in the sections 4.2 and 4.3 concerning the catchment 

survey and assessment of carbon stocks. Evidence for hypothesis a) can be found in previous studies 

which suggest as much as 50% of DOC export can occur during the highest 10% of discharge values 

(Clark et al., 2007; Grand-Clement et al., 2014; Hinton et al., 1997), leading to an underestimation in 

DOC flux from grab sampled data. Our monitoring dataset recorded only eight samples (of 335 total) 

in the Q90 range, suggesting this will likely have had some impact on the flux estimates. This effect 

could impact all three sites, however, so further work should address the export of DOC at different 

sites during peak flows. This limitation reduces the utility of the monitoring dataset for carbon 
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budgeting purposes, however the fact that it covers the majority of flow conditions observed with 

weekly frequency and over a long time period means it is still useful for water treatment planning. 

We found generally higher DOC in summer and autumn (Figure 3) when soil microbial activity 

(Tipping et al., 1999) and autochthonous (George et al., 2007) production are likely to be highest, 

however the lack of an interactive effect between site and month of the year suggests the effect of 

season acts equally across the catchment. 

As catchments recover from acidification we can expect this to be a less important driver of DOC 

concentration in the future (Clark et al., 2010), however nitrogen deposition may mean that DOC is 

higher than the pre-industrial baseline (Sawicka et al., 2017). Catchment management to limit 

further destabilisation of organic matter offers a possible method of ameliorating these rises (Grand-

Clement et al., 2015) and thus limiting the impact on drinking water treatment. The flux estimates 

suggest that catchment management schemes focussing on non-peatland areas may also be 

required given the larger DOC flux in the less peatland influenced areas for the majority of the years 

we monitored. 

4.2 Catchment survey 

The catchment survey had a monthly sampling frequency and consequently covered only a small 

proportion of the hydrograph (Figure 4) so can only be considered to be representative of low flow 

conditions. Interesting conclusions can still be drawn, however, relating to which sub-catchment are 

responsible for delivery of DOC to the treatment works during these periods. This survey showed 

that peaty (Spooners), forested (Hangman’s Hill) and agricultural (Dart, Thorverton and Washfield) 

streams represented a significant increase in DOC concentration over the main channel at 

Simonsbath (Figure 5). This provides evidence for hypothesis b), that there are significant sources of 

DOC in the non-peatland areas of the catchment, as all but the Spooners site are downstream of the 

Exebridge monitoring point. Our modelling of DOC based on percentage land use suggested 

broadleaved woodland, arable, acid grassland, improved grassland and sub-urban to be significant in 
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the best model. This suggests both the influence of wooded and agricultural areas, predominantly in 

the south of the catchment, and the acid grassland in the northerly, peaty headwaters on DOC 

concentrations. This would add further weight to our hypothesis b) as arable, sub-urban and 

improved grassland areas are mainly downstream of Exebridge. 

Work in nearby catchments in the south-west of England has also suggested that baseflow DOC 

concentrations can be higher in agricultural catchments than in semi-natural ones (Glendell and 

Brazier, 2014) due to the addition agricultural amendments to the soil and artificial fertiliser altering 

the rate of carbon turnover (Chantigny, 2003). These findings agree with other published work 

suggesting that DOC quantity and quality can be influenced by the extent of riparian wetlands, 

woodlands and cropland (Wilson and Xenopoulos, 2008; Yang et al., 2017). These data also add 

weight to the growing need for an understanding of how agriculturally-derived DOC affects 

catchment carbon budgets, how this may change in the future and how this can be managed for 

positive water quality outcomes (e.g. Graeber et al., 2015; Stanley et al., 2012). 

The comparison of sites in urban areas (Bolham vs. Exe at Tiverton comparison) did not prove to 

offer significant contributions to DOC concentration, despite the potential for urban runoff and 

sewage effluent to influence this (Noacco et al., 2017) and inclusion in the ALM results. This is also 

contrary to the findings of Yang et al., (2017) who noted a significant effect of urban extent on DOC 

concentrations in their study of 1,402 sites across the USA. This could perhaps be explained by the 

relatively small size of Tiverton, the main conurbation upstream of the treatment works, which has a 

population of 21,335 (UK census 2011). Urban runoff and input from sewage treatment works is 

likely to be small, therefore, compared to the size of the Exe which has a mean discharge of 12.75 m3 

s-1 at gauging station 45002, just north of the town (NRFA data). We did, however note a decrease in 

SUVA in the comparison between sites in the main channel before and after Tiverton (Bolham vs. 

Exe at Tiverton). This provides evidence for an impact on DOC quality rather than quantity from 

urban areas, suggesting less aromatic DOC from urban runoff and sewage effluent. Our modelling 
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analysis was unable to detect an impact of urban land-use on DOC quality, suggesting at full 

catchment scale this impact is limited. It should be noted, however, that the sub-catchments used in 

this modelling did not contain a significant proportion of urban area, hence the need for this direct 

comparison before and after Tiverton. The lack of an effect comparing mainly rural sub-catchments  

would seem to suggest the impact of urbanisation on DOC quality is only detectable in significantly 

urban areas, most likely due to the presence of sewage outflows (Noacco et al., 2017). 

We found no effect of aquaculture on DOC quantity or quality, measured by SUVA, suggesting 

limited impact on downstream water quality. Such sites are regulated in the UK by the Environment 

Agency and releases to the river are monitored for nutrient and turbidity levels. To our knowledge 

this is the first study which has looked at the effect of small-scale aquaculture on DOC quantity and 

quality in UK rivers. The lack of any increase in concentration or change in quality may be due to the 

use of two settling ponds at the site which are operated in series to reduce turbidity and nutrient 

loading to the river. The increased residence time, and thus microbial and photolytic processing, 

likely negates any increase in DOC due to the stocking density of the fish and the use of artificial 

feed. Sachse et al. (2005) found that fish farms in the River Spree and River Oder in Germany 

increased the proportion of low molecular weight DOC components which they attributed to 

autochthonous production in the fish ponds, additions of feed and excretions from the fish 

themselves. Differences between our study and the work of Sachse et al. (2005) may possibly be 

explained by the use of settling ponds at our site, differences in farm size and the trophic status of 

the influent water. 

4.3 Carbon stocks under different land uses 

The data on extractable DOC and microbial persistence suggest riparian areas in woodlands 

represent large stores of potential DOC flux. This may partly explain the increase in DOC 

concentration and flux down the catchment which we observed in our monitoring dataset. Riparian 

soil carbon stores have been highlighted as the major source of riverine DOC (Ledesma et al., 2015), 
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whilst a study involving the exclusion of leaf litter from entering a stream suggested that in-stream 

generation of DOC from benthic litter accounted for approximately 30% of DOC when compared to a 

control site (Meyer et al., 1998). Our results suggest that although the amount of extractable DOC 

produced by litter in the two sub-catchment types is similar, differences in BDOC result in more 

persistent DOC being exported per m2 litter in woodlands than peatlands. 

Our comparison of litter carbon stocks between the peatland site at Spooners and the oak woodland 

at Tarr Steps suggest a similar amount of autumnal litter production. It is worth noting, however, 

that sampling took place during leaf-fall in the woodland and therefore these results are likely to be 

an annual maximum, whereas the peatland site has sources of year-round litter production so is 

likely to be less seasonal in litter quantity and thus DOC flux (Ritson et al., 2016). Our results on 

extractable DOC, C:N and BDOC of typical UK oak forest vegetation add to the findings of 

Pinsonneault et al., (2016) who published similar data for peatland vegetation. Our results suggest 

comparable BDOC values to peatland species with some exceptions as in our earlier work we noted 

Sphagnum Spp. produces DOC which is highly labile with BDOC ~90% (Ritson et al., 2016). These 

data add to the growing body of work needed to understand the likely fate of DOC from different 

catchment sources. 

Our assessment of SOC stocks at the two sites show that Spooners, the peatland site, is vastly 

greater due to the ~50x higher soil carbon content (Table 5). As well as this, the much greater depth 

of the organic layer at the peatland site (~20 cm for woodland, ~160 cm for peatland) gives further 

evidence for the targeting of catchment management programmes seeking to stabilise DOC from 

these large SOC stocks. It is worth noting, however, that SOC stocks are not the only factor in DOC 

release as N fertilisation can play an important role in increasing carbon turnover rate in woodland 

and arable systems (Chantigny, 2003), resulting in high DOC concentrations. We noted an increase in 

DOC during the BDOC incubations for the peat soil (Table 5) which were confirmed by repeating 

these incubations a second time. Increases during BDOC incubations have been noted elsewhere in 
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the literature (Moody et al., 2013) and as these occurred exclusively in our most aromatic (indicated 

by SUVA) samples, we hypothesise this may be due to incomplete conversion to CO2 during the 

initial measurement at the start of the incubation. This issue remains an area for future research to 

confirm whether this is an analytical artefact of a genuine increase in DOC. 

The analysis of stream water sampled at the same time as the vegetation and soils suggests the 

peatland site adds low pH, high DOC water to the main channel, compared to the forested site 

(Table 6). This is somewhat counteracted by the higher BDOC values meaning a greater proportion 

of this DOC is likely to be removed in the catchment. This is reflected in the lower DOC concentration 

and %BDOC value at Tarr Steps which is in the main channel of the Barle downstream of the 

Spooners sampling site and therefore contains peatland DOC which has undergone processing. 

These two points provides evidence for hypothesis c), that peatland DOC influence is reduced at the 

catchment scale by microbial and photolytic processing. It is worth noting, however, that despite a 

greater proportion of BDOC, the amount of persistent DOC from the peaty stream is over double 

that of the forest stream (Table 6), suggesting peat sources are highly important despite significant 

degradation although further work considering other processes of removal such as flocculation, 

sedimentation and photodegradation is needed. 

4.4 Synthesis 

Taken together, these three datasets provide significant evidence both for the focus on peatland 

areas in catchment management aimed at lowering DOC concentrations and the need to also 

consider other sources of non-peatland DOC in mixed land-use catchments. The results in the 

catchment survey show that peat influenced headwaters can significantly increase DOC 

concentrations in the main channel and the results from the BDOC tests show that although a 

reasonably large proportion of this is biodegradable, the high starting concentration means that 

large amounts of peat derived DOC will likely reach the treatment works.  
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The monitoring dataset, however, also shows increasing DOC concentration and flux down the 

catchment, suggesting significant inputs of DOC from non-peatland sources under the flow 

conditions observed. This is particularly relevant for catchments such as ours where abstraction for 

drinking water production occurs directly from the river, meaning the opportunity for increases in 

DOC being offset by in-reservoir processing (Köhler et al., 2013) are minimal. Our catchment survey 

and work on carbon stocks highlight the role of forested areas in providing large potential for the 

export of persistent DOC from vegetation litter. Agriculturally influenced streams were also shown 

to be significant (Figure 5 and ALM results) as well as urban sources, however these were not 

covered in as great detail and identifying the sources of DOC on farms or urban runoff and their 

persistence remains an area for future work. We would recommend, therefore, that catchment 

management schemes also consider methods of limiting DOC export from forested and agricultural 

areas as well at peatlands. 

We suggest the increase is DOC flux down the catchment is most likely explained by a combination 

of our hypotheses a), b) and c) presented in section 4.1 based on our own data and the literature. It 

is likely that our flux values are under-estimates as our data is under-representative of Q90 flows 

(hypothesis a), however this may affect all sites in a similar manner (Vidon et al., 2008). Further work 

should explore how the different parts of the catchment respond to peak flows and whether 

increases in DOC concentration and flux down the catchment remain. We have shown through the 

catchment survey that significant downstream sources of DOC do exist (hypothesis b) and catchment 

management options should be considered for both forested and agricultural areas. Finally, we have 

also demonstrated that peatland DOC is relatively labile and therefore peatland influence decreases 

with river order in a mixed land-use catchment (hypothesis c). Peatland areas are still highly 

significant for both carbon budgets and water quality provision, however, due to the high initial 

concentrations counteracting their relative lability and vast SOC stocks. 

5.0 Conclusions 
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 DOC concentration and flux increases downstream from a peaty headwater to a mixed 

agricultural and forested catchment. Storm sampling is needed to confirm if differences in 

flux during peak flows alters this relationship 

 Sampling of 25 points over a period of twelve months suggest that peaty headwaters, 

forested, urban and agricultural areas can add higher DOC concentration water to the main 

channel. We found no effect from small-scale aquaculture but we did detect a change in 

DOC quality (SUVA) around the main conurbation in the catchment. 

 Comparison of carbon stocks showed that vegetation litter in riparian areas of woodlands 

represent a large source of DOC that is relatively recalcitrant to microbial degradation, and 

therefore a likely additional source of DOC to river systems. SOC stocks in peatlands are 

much greater than in woodland areas, justifying interventions in order to stabilise carbon 

losses from them. 
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Table 1: Descriptive statistics comparing daily flow (Exe at Thorverton: 45001) with grab sampled data for the period 2012-

2017. 

 Gauged daily flow 

(m3 s-1) 

Grab sample 

(m3 s-1) 

n 2,558 337 

Mean 17.26 ± 0.44 17.57 ± 1.23 

Q25 4.49 4.27 

Q50 9.11 8.32 

Q75 23.08 22.14 

Skew 3.14 ± 0.05 2.95 ± 0.13 
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Table 2: DOC flux estimates for the three sites on the River Exe, UK. 

Site Exebridge 

(kg ha-1 year-1) 

Bolham 

(kg ha-1 year-1) 

Brampford Speke 

(kg ha-1 year-1) 

2012 47.89 ± 2.14 43.11 ± 1.36 55.34 ± 2.16 

2013 18.53 ± 0.74 19.67 ± 0.82 26.73 ± 1.20 

2014 16.53 ± 1.41 20.91 ± 0.97 25.93 ± 1.06 

2015 31.98 ± 1.66 28.57 ± 1.07 28.13 ± 1.04 

2016 33.60 ± 2.96 21.24 ± 0.79 21.42 ± 0.73 

2017 15.87 ± 0.42 16.51 ± 0.27 17.13 ± 0.50 
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Table 3: Descriptive statistics comparing daily flow with grab sampled data for the period Nov 16 to Oct 17. 

 Gauged daily flow 

(m3 s-1) 

Grab sample 

(m3 s-1) 

n 336 12 

Mean 11.32 ± 0.80 7.82 ± 1.12 

Q25 4.36 3.87 

Q50 7.24 8.39 

Q75 12.05 10.92 

Skew 5.98 ± 0.13 0.40 ± 0.64 
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Table 4: Litter and extractable DOC chemistry of dominant species at Tarr Steps site (n=5). 

Litter type C:N WEOM 

(mg-C g-1) 

BDOC  

(%) 

pH SUVA 

(l mg-1m-1) 

Hazel 

(Corylus avellana) 

42.19  

± 0.07 

55.09 

± 1.41 

9.5 

± 1.1 

5.47 

± 0.03 

2.00 

± 0.15 

Braken 

(Pteridum aquilinum) 

40.63  

± 0.03 

38.56 

± 3.30 

 

59.1 

± 4.5 

 

5.49 

± 0.02 

 

2.10 

± 0.13 

 

Beech 

(Fagus sylvatica) 

47.26  

± 0.13 

30.17 

± 1.35 

 

46.4 

± 6.5 

 

5.51 

± 0.05 

 

2.10 

± 0.07 

 

Oak 

(Quercus petraea) 

49.07  

± 0.14 

49.26 

± 4.66 

 

20.8 

± 6.6 

 

5.25 

± 0.04 

 

1.53 

± 0.07 
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Table 5: Soil chemistry and DOC for two soil depths at the peatland and forested site (n=5). 

 Soil bulk 

density  

(g cm-3) 

Soil C 

(%) 

Soil  

C:N 

LOI  

(%) 

WEOM  

(mg-C g-1) 

BDOC 

(%) 

SUVA 

(L mg-1 m-

1) 

pH 

Spooners 

0-10 cm 

0.076  

± 0.004 

52.94 

± 1.03 

20.47  

± 0.48 

94.7 

± 0.3 

0.59  

± 0.04 

-40.0 

± 4.5 

14.9  

± 1.2 

6.09  

± 0.05 

Spooners  

10-20 cm 

0.085  

± 0.005 

52.93 

± 0.59 

19.12  

±0.44 

94.9 

± 0.1 

0.62  

± 0.11 

-16.2 

± 5.2 

21.1  

± 2.2 

6.20  

± 0.04 

Tarr Steps 

0-10 cm 

1.051  

± 0.055 

2.93 

± 1.53 

13.30  

± 0.58 

14.2 

± 1.8 

34.14 

± 2.13 

58.6 

± 3.1 

1.3  

± 0.1 

4.09  

± 0.10 

Tarr Steps 

10-20 cm 

1.253  

± 0.034 

0.94  

± 0.28 

11.06  

± 0.41 

7.8 

± 0.1 

19.94  

± 1.70 

57.3 

± 2.6 

1.2  

± 0.1 

4.42  

± 0.11 
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Table  6 Water parameters from n=4 grab samples collected alongside soil and vegetation surveys at low flow conditions. 

Site pH DOC  

(mg l-1) 

SUVA  

(L mg-1 m-1) 

BDOC  

(%) 

Spooners 5.63  

± 0.03 

5.30  

± 0.89 

4.05  

± 0.43 

45.0  

± 6.1 

Tarr Steps 7.37  

± 0.02 

1.03  

± 0.04 

4.36  

± 0.12 

17.6 

± 2.8 

Forest stream 7.34  

± 0.01 

1.43  

± 0.04 

3.47  

± 0.14 

25.7  

± 4.0 
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Highlights 

 Peatland, agricultural and woodland sub-catchments increase DOC concentrations. 

 Biodegradability means more persistent DOC from woodland litter vs peatland. 

 No impact from small-scale aquaculture. 

 Catchment management should consider all sources of DOC within a catchment. 
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