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Is Bitcoin a hedge or safe haven for currencies? An 

intraday analysis 

 

 

Abstract 

 

Bitcoin has attracted a wealth of attention in the media and by investors alike and this paper 

investigates whether Bitcoin can act as a hedge or safe haven against world currencies.  Contrary 

to previous studies, we assess the relationship between Bitcoin and currencies at the hourly 

frequency since Bitcoin experiences quite large volatility throughout the day.  We employ an 

ADCC model and find that Bitcoin can be an intraday hedge for the CHF, EUR and GBP, but 

acts as a diversifier for the AUD, CAD and JPY.  We also implement the non-temporal Hansen 

(2000) test to examine the safe haven properties of Bitcoin and find that Bitcoin is a safe haven 

during periods of extreme market turmoil for the CAD, CHF and GBP.  Therefore our results 

indicate that Bitcoin does act as an intraday hedge, diversifier and safe haven for certain currencies, 

which will be of great interest to currency, cryptocurrency and high-frequency investors alike. 
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1. Introduction  

Bitcoin, first proposed by Nakamoto (2008), is a new financial asset which is a peer-to-peer 

electronic cash system which allows online payments to be sent directly from one party to another 

without going through a financial institution.  Therefore unlike most other financial assets, Bitcoin 

has no association with any authority and has no physical representation.  Bitcoin’s value is not 

based on any tangible asset or any country’s economy and instead is based upon the security of an 

algorithm which traces all transactions.  The potential use of Bitcoin as a medium of exchange is 

attractive due to its low transaction costs, its peer-to-peer, global and government-free design.  

However users may be concerned by the lack of confidence in the system as well as the lack of 

acceptability of Bitcoin to make transactions.1 Another concern for users of Bitcoin is the volatility 

of Bitcoin which is represented by the Bitcoin price increase from $4.9 in September 2011 to over 

$6,000 by October 2017.  Nevertheless, Bitcoin has received a lot of attention by investors, media 

and politicians. 

 

The dramatic growth of Bitcoin (and other cryptocurrencies) challenge politicians and policy-

makers as Bitcoin resembles the role of money but also creates an alternative environment for 

businesses. Bitcoin has recently experienced excessive speculative demand which supported 

empirically by Baur et al (2018) who report that Bitcoin accounts are mainly used as a speculative 

investment rather than an alternative currency or medium of exchange.  Given the surge in price, 

Bitcoin has become an increasingly important and popular topic which has been widely covered 

by the media, government bodies and the academic community. However Bitcoin has not been 

examined in much detail in academia given the media attention, and it is an area that needs to be 

addressed in future research (Lucey et al 2018). 

 

A group of recent papers examine the price dynamics and speculation bubbles in cryptocurrency 

markets, although the results are somewhat mixed.2 Cheah and Fry (2015) show that 

cryptocurrencies are prone to substantial speculative bubbles and that the fundamental value of 

Bitcoin is zero, while recently Corbet et al (2018a) examine the fundamental drivers of the Bitcoin 

price and show there are clear periods of bubble behaviour of Bitcoin. Dwyer (2015) shows that 

the average monthly volatility of Bitcoin is higher than that of gold and any currency, while the 

lowest monthly volatility of Bitcoin is less than the highest monthly volatility of gold and any 

currency. Urquhart (2017) shows price clustering in Bitcoin while Katsiampa (2017) shows the 

                                                      
1 However some companies do accept Bitcoin as a form of exchange, such as Microsoft, Dell, Expedia, Tesla and 
many more. 
2 For a complete review of the literature of cryptocurrencies, see Corbet et al (2018b). 
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importance of the short- and long-run component of the conditional variance when examining 

the volatility of Bitcoin through various GARCH models. Peng et al (2018) examine the volatility 

of three cryptocurrencies and show that SVR-GARCH models outperformance traditional 

GARCH models for daily and hourly data and therefore machine learning models yield better 

forecasting power for all three cryptocurrencies examined.  The market efficiency of Bitcoin has 

also been examined in some detail, with Urquhart (2016) first documenting the inefficiency of 

Bitcoin returns which has subsequently been supported by Nadarajah and Chu (2017), Bariviera 

(2017) and Tiwari et al (2017). Recently, Urquhart (2018) shows that high trading volume and 

volatility are drivers of the attention of Bitcoin while Shen et al (2019) show that the number of 

tweets related to Bitcoin significant predict the trading volume and volatility of Bitcoin 

 

An area of research which has received some attention in the literature is the relationship between 

Bitcoin and other financial assets and determining whether Bitcoin can be classified as a diversifier, 

hedge or safe haven against other financial assets. Dyhrberg (2016) shows that Bitcoin can act as 

a hedge against the US dollar and the UK stock market, sharing similar hedging capabilities to 

gold. Bouri et al (2017a) employ a quantile regression approach to analyse the relationship between 

gold and global uncertainty and show that Bitcoin can hedge against global uncertainty at short 

investment horizons and in bull regimes only.   Also, Bouri et al (2017b) employ a DCC model 

and show limited evidence of the hedging and safe properties of Bitcoin, although it can still be 

an effective diversifier. Corbet et al (2018c) suggest that Bitcoin has a role in an investor’s portfolio, 

although Bitcoin may contain its own idiosyncratic risks that are difficult to hedge against, while 

Shahzad et al (2019) show that Bitcoin can be a safe haven, although its role is time-varying and 

differ across markets.  Recently, Plantakis and Urquhart (2019) show that add cryptocurrencies to 

stock-bond-commodity portfolios significantly improves the portfolio performance by much 

higher risk-adjusted returns, which is confirmed by Kajtazi and Moro (2019).  Therefore there is 

some evidence that Bitcoin has some hedging capabilities and diversification benefits.   All of the 

aforementioned papers have examined the interaction between Bitcoin and other financial assets 

at the daily frequency. However given the rise in high-frequency trading amongst investors and 

the huge variation in price of Bitcoin at the intraday level, the interaction between Bitcoin and 

other financial assets at the daily level may be quite different to the intraday interaction between 

the assets.   

 

The hedging and safe haven properties of gold have been examined in some detail with Baur and 

Lucey (2010) find that gold is a hedge and safe haven for stocks but not for bonds, while gold is 



 4 

also found to act as a safe haven for only 15 days after a market crash. Baur and McDermott (2010) 

extend this analysis and show gold’s status as a safe haven for equities but not for all countries 

examined. Bredin et al (2015) employ a wavelet analysis and show that gold can be safe haven up 

to a year while Lucey and Li (2014) find the instability of the safe haven property of gold, indicating 

that gold’s ability to act as a hedge and safe haven fluctuate over time. Ciner et al (2013) report 

that gold can act as a safe haven for the US dollar and UK pound from 2000 onwards. Therefore 

is a well-established literature examining the hedge and safe haven properties of gold but there 

lacks a detailed examination of Bitcoin.3 

 

This paper adds to the cryptocurrency and safe haven literature by examining the hedge and safe 

haven properties of Bitcoin and currencies at the intraday level.  Especially, we study the hourly 

frequency of Bitcoin and six developed currencies to determine whether Bitcoin can be classified 

as a diversifier, hedge or safe haven asset for popular currencies.  Given the increased in Bitcoin 

trading as well as the evidence that there is value in including Bitcoin in a well-diversified portfolio, 

we study whether investors are jumping to Bitcoin when there are extreme returns in developed 

currencies. We choose currencies since unlike equities, since they trade 24-hours a day and 

therefore are more aligned to the trading hours of Bitcoin.4  We employ a DCC model to determine 

the time-varying hedge properties of Bitcoin while we also follow Fatum and Yamamoto (2016) 

by employing the non-temporal threshold testing procedure originally developed by Hansen (2000) 

which enables us to endogenously identify the market thresholds of extreme price movements. 

Specifically, we examine periods of extreme returns in each currency and study the behaviour of 

Bitcoin returns during this period.  This enables us to examine the safe haven behaviour of 

investors when there are extreme negative returns in each developed currency. Our results suggest 

that Bitcoin is a hedge at various times for each currency according to the asymmetric dynamic 

conditional correlation (ADCC) model at the hourly frequency indicating that investors should 

include Bitcoin in their portfolios to help diversify against currency risk. Using regression analysis, 

we show that over the full sample period Bitcoin is a hedge for the CHF, EUR and GBP, while a 

diversifier for the AUD, JPY and CAD currencies.  Bitcoin is also a safe haven for the CAD, CHF 

and GBP currencies indicating that investors may want to take the ‘flight to safety’ during periods 

of extreme market turmoil in each of these currencies. Our results will therefore be of great interest 

to investors of Bitcoin who include the cryptocurrency in their portfolios.  Recently, Platanakis 

and Urquhart (2019) show that the inclusion of Bitcoin in a simple stock bond portfolio 

                                                      
3 For a complete review of the literature of gold, including the hedge and safe haven properties, see O’Connor et al 
(2015). 
4 Bitcoin markets trade 24-hours a day, 7 days a week. 
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significantly improves the risk-return metrics, even when Bitcoin experiences negative returns.  

Platanakis et al (2018) examine the diversification benefits of cryptocurrencies and show that there 

is little difference between optimal and naïve diversification.   Therefore our paper adds to these 

papers by examining the intraday hedge and safe haven behaviour of Bitcoin to currencies where 

our results could be incorporated by investors who employ an intraday algorithm to trade their 

portfolios. 

 

This paper contributes to the growing literature on Bitcoin in the following ways. This is the first 

paper to thoroughly examine the hedge and safe haven properties of Bitcoin at the intraday level. 

Previous research has reported the potential hedging properties of Bitcoin at the daily level but no 

paper has examined the intraday hedging for safe haven properties of Bitcoin. Given the rise in 

high-frequency trading and the high volatility in intraday Bitcoin returns, examining hourly data 

will provide a more comprehensive indication of the relationship between Bitcoin and world 

currencies. We also employ a recently developed methodology to examine the safe haven 

properties of Bitcoin, which is able to endogenously identify periods high market turmoil. This 

ensures we only examine periods of extreme currency returns in order to determine how Bitcoin 

reacts in periods of currency market turmoil. 

 

The rest of the paper is organized as follows. Section 2 discusses the data employed in this paper 

while Section 3 presents the methodology. Section 4 reports the empirical results while Section 5 

provides conclusions. 

 

2. Data 

We collect high-frequency Bitcoin data from www.bitcoincharts.com which provides data on a 

number of liquid Bitcoin markets.  We select the Bitcoin price from the Bitstamp exchange since 

it is one of the first, most popular and liquid Bitcoin exchanges (Brandvold et al (2015)).  Bitstamp 

is also one of the largest Bitcoin exchanges, is based in the UK and is considered to be a rather 

safe exchange by market participants around the world (Bouri et al (2017a)).  We study intraday 

Bitcoin data from 1st November 2014 to 31st October 2017 thereby incorporating three full years 

of intraday data.  The start date is selected since before this date, intraday Bitcoin data was quite 

illiquid with insubstantial trading volume while the end date ensures we avoid any seasonality 

effects. We select the hourly frequency since any higher frequency for Bitcoin lacks liquidity. 

Hourly currency data is provided from Bloomberg for the six main developed currencies 

throughout the world, namely the Australian dollar (AUD), Canadian dollar (CAD), the Swiss 

http://www.bitcoincharts.com/
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franc (CHF), the Euro (EUR), the British pound (GBP) and the Japanese yen (JPY), all per one 

US dollars (USD).  Therefore if the value of the non-US currency increases, this suggests a 

weakening of the non-US currency and vice-versa.  Consistent with Manahov et al (2014) we allow 

24-hour trading for currencies except at weekends with trading taking place from 9 pm (GMT) on 

Sunday until 10 pm on Friday.  Since Bitcoin trades 24-hour a day, 7-days a week, we filter out 

Bitcoin prices during periods when the currency markets are closed.5  Figure 1 shows the time-

series plot of the currencies, per US dollars, over time while Figure 2 reports the time series graph 

of the Bitcoin price over the same sample period.  We employ logarithmic returns for Bitcoin and 

currencies such that: 

 

 
𝑟𝑡 = [ln

𝑃𝑡
𝑃𝑡−1

] × 100 
(1) 

 

Where 𝑟𝑡 are the logarithmic returns and 𝑃𝑡 is the price at time t and 𝑃𝑡−1 is the price at time t-1.   

The descriptive statistics of the returns are reported in Table 1 where we can see that Bitcoin has 

largest return, which is over 15 times larger than any of the currencies.  All currencies experience 

positive returns, which indicates a weakening of the currency against the US dollar. The currency 

with the highest mean return is the GBP while JPY has the smallest mean return. Bitcoin is 

substantially the most volatile of all currencies while CHF is the most volatile currency while CAD 

is the least volatile currency.  All variables experience negative skewness except the GBP and all 

currencies experience excess kurtosis indicating a leptokurtic distribution.  Table 2 reports the 

correlation matrix between the variables and it shows that Bitcoin has very small correlations with 

all currencies.  The correlation between AUD and Bitcoin and JPY and Bitcoin is -0.01 indicating 

a negative relationship between these two currencies and Bitcoin. However the correlation 

between the remaining the currencies and Bitcoin is all 0.00.  Although the correlation matrix gives 

some information into the relationship between these variables, our detailed analysis below 

provides a more robust estimation of the relationship between Bitcoin and currencies. 

 

3. Methodology 

We follow the definitions of Baur and Lucey (2010) to define a hedge, diversifier and safe haven 

since these have become standard in the literature.  A hedge is defined as an asset that is 

uncorrelated or negatively correlated with another asset, while a diversifier is defined as an asset 

                                                      
5 The trading volume of Bitcoin and the currencies is extremely small during the periods excluded (Friday 10 pm to 
Sunday 9 pm) and therefore all markets are illiquidity during this period. 
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that is positively (but not perfectly) correlated with another asset.  A safe haven asset is an asset 

that is uncorrelated or negatively correlated with another asset in times of market stress or turmoil. 

In this paper, the dynamic conditional correlation (DCC) model of Engle (2002) and the 

asymmetric dynamic conditional correlation (ADCC) model of Cappiello et al (2006) are used to 

model the volatility dynamics, conditional correlations and hedge ratios between Bitcoin and 

foreign exchange markets. 

 

Let 𝑟𝑡 be a 𝑛 × 1 vector of asset returns.  An AR(1) process for 𝑟𝑡 conditional on the information 

set 𝐼𝑡−1 can be written as: 

 

 𝑟𝑡 = 𝜇 + 𝑎𝑟𝑡−1 + 𝜀𝑡 

 

(2) 

 

The residuals are modelled as: 

 

 𝜀𝑡 = 𝐻𝑡
1 2⁄ 𝑧𝑡 

 

(3) 

 

𝐻𝑡 is the conditional covariance matrix of 𝑟𝑡 and 𝑧𝑡 is a 𝑛 × 1 i.i.d random vector of errors.  The 

Engle (2002) dynamic conditional correlation (DCC) model is estimated in two steps, where in the 

first step, the GARCH parameters are estimated and the conditional correlations are estimated in 

the second step where: 

 

 𝐻𝑡 = 𝐷𝑡𝑅𝑡𝐷𝑡 

 

(4) 

 

Where 𝐻𝑡 is a 𝑛 × 𝑛 conditional covariance matrix, 𝑅𝑡 is the conditional correlation matrix, and  

𝐷𝑡 is the diagonal matrix with time-varying standard deviations on the diagonal.   

 

 𝐷𝑡 = 𝑑𝑖𝑎𝑔(ℎ1,𝑡
1 2⁄ , … ℎ𝑛,𝑡

1 2⁄ ) 

 

(5) 

 

 𝑅𝑡 = 𝑑𝑖𝑎𝑔(𝑞1,𝑡
−1 2⁄ , … 𝑞𝑛,𝑡

−1 2⁄ )𝑄𝑡𝑑𝑖𝑎𝑔(𝑞1,𝑡
−1 2⁄ , … 𝑞𝑛,𝑡

−1 2⁄ ) (6) 
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The expressions for ℎ are univariate GARCH (H is a diagonal matrix).  For the GARCH(1,1) 

model the elements of 𝐻𝑡 can be written as: 

 

 ℎ𝑖,𝑡 = 𝜔𝑖 + 𝛼𝑖𝜀𝑖,𝑡−1
2 + 𝛽𝑖ℎ𝑖,𝑡−1 

 

(7) 

And that 𝑄𝑡 is a symmetric positive definite matrix such that: 

 

 𝑄𝑡 = (1 − 𝜃1 − 𝜃2)�̅� + 𝜃1𝑧𝑡𝑧𝑡−1
′ + 𝜃2𝑄𝑡−1 

 

(8) 

Where �̅� is the 𝑛 × 𝑛 unconditional correlation matrix of the standardized residuals 

𝑧𝑖,𝑡 (𝑧𝑖,𝑡 =
𝜀𝑖,𝑡

√ℎ𝑖,𝑡
).  The parameters 𝜃1 and 𝜃2 are non-negative and these parameters are associated 

with the exponential smoothing process that is used to construct the dynamic conditional 

correlations.  The DCC model is mean reverting as long as 𝜃1 +𝜃2 < 1.  The correlation 

estimator is: 

 
𝜌𝑖,𝑗,𝑡 =

𝑞𝑖,𝑗,𝑡

√𝑞𝑖,𝑖,𝑡𝑞𝑗,𝑗,𝑡
 

 

(9) 

 

Cappiello et al (2006) build on the DCC model and the asymmetric GARCH model of Glosten et 

al (1993) by adding in an asymmetric term and create the Asymmetric DCC (ADCC) model such 

that: 

 

 ℎ𝑖,𝑡 = 𝜔𝑖 + 𝛼𝑖𝜀𝑖,𝑡−1
2 + 𝛽𝑖ℎ𝑖,𝑡−1 + 𝑑𝑖𝜀𝑖,𝑡−1

2 𝐼(𝜀𝑖,𝑡−1) 

 

(10) 

 

The indicator function 𝐼(𝜀𝑖,𝑡−1) is equal to one if 𝜀𝑖,𝑡−1 < 0 and 0 otherwise.  For this 

specification, a positive value for 𝑑 means that the negative residuals tend to increase the variance 

more than positive ones. The asymmetric effect (or leverage effect) is designed to capture an often 

observed characteristic of financial assets that an expected fall in prices tends to increase volatility 

more than an unexpected increase in asset prices of the same magnitude. This can be interpreted 
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that bad news increases volatility more than good news.  For the ADDC model, the dynamics of 

𝑄 are given by: 

 

 𝑄𝑡 = (�̅� − 𝐴′�̅�𝐴 − 𝐵′�̅�𝐵 − 𝐺′�̅�−𝐺) + 𝐴′𝑧𝑡−1𝑧𝑡−1
′ 𝐴 + 𝐵′𝑄𝑡−1𝐵 + 𝐺′𝑧𝑡

−𝑧𝑡
′−𝐺 

 

(11) 

Where 𝐴, 𝐵 and 𝐺 are 𝑛 × 𝑛 parameters matrices and 𝑧𝑡
− are zero-threshold standardized errors 

which are equal to 𝑧𝑡 when less than zero and zero otherwise.  �̅� and �̅�− are the unconditional 

matrices of 𝑧𝑡 and 𝑧𝑡
− respectively. 

 

The methodology we employ to examine the safe haven properties of Bitcoin broadly follows the 

work of Fatum and Yamamoto (2016).  Firstly, we examine relationship between Bitcoin and 

various currencies through all periods, thereby examining the diversifier and hedging capabilities 

of Bitcoin over the full sample period for each currency.  We use an OLS with heteroskedasticity 

and autocorrelation consistent (HAC) standard errors to estimate: 

 

 ∆𝐵𝑡 = 𝛼 + 𝛽∆𝑆𝑡 + 𝛾∆𝐵𝑡−1 + 𝜀𝑡 

 

(12) 

Where ∆𝐵𝑡 is the Bitcoin returns at time t and ∆𝑆𝑡 is the currency spot returns at time t.  This 

model enables us to further examine the hedging capabilities of Bitcoin over the full sample period. 

To augment the model specified in equation (12) and to address the question whether Bitcoin is a 

safe haven, we employ the non-temporal threshold testing procedure developed by Hansen (2000).  

This test sorts the currency returns in a non-temporal fashion from positive to negative returns 

and then detects a single unknown breakpoint.  This allows us, in a non-temporal modelling 

framework, to endogenously identify the currency market thresholds around which Bitcoin 

behaviour changes and thereby testing whether Bitcoin acts as a safe haven during extreme 

movements in currency returns.  Therefore we test the following model: 

 

 ∆𝐵𝑡 = 𝛼𝐿 + 𝛽𝐿∆𝑆𝑡 + 𝛾𝐿∆𝐵𝑡−1 + 𝜀𝐿,𝑡𝑖𝑓𝑆𝑡 ≤ 𝑞 

∆𝐵𝑡 = 𝛼𝐻 + 𝛽𝐻∆𝑆𝑡 + 𝛾𝐻∆𝐵𝑡−1 + 𝜀𝐻,𝑡𝑖𝑓𝑆𝑡 > 𝑞 

 

 

(13) 

Where q is the currency threshold value to be estimated by the maxim and the likelihood ratio 

statistics over all permissible values and subscripts L and H denote low and high currency returns 

regimes. The threshold value is estimated by minimizing the sum of squared residuals generated 

for all tentative thresholds. Also, to ensure potential serial correlations in the errors, we include 
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lags of the dependant variable as additional explanatory variables. To make sure that the residuals 

of the final regression do not exhibit serial correlations, we first estimate the threshold parameter 

and the coefficient estimates to obtain the associated residuals. We then re-order the residuals 

temporally and perform the test for serial correlations using the re-ordered residuals. As it turns 

out, including only the first lag of the dependent variable is sufficient to ensure that the errors are 

free of serial correlation. The heteroscedasticity character of the residuals is controlled by using 

the White (1980) robust standard errors. 

However it could be the case that there are multiple non-temporal thresholds in the foreign 

currency returns and therefore extend the Hansen (2000) procedure by applying the multiple 

structural change analysis proposed by Bai and Perron (1998, 2003) to the sorted returns.  This 

procedure searches for any number of thresholds in the returns over all possible combinations of 

break points.  The extended model is therefore: 

 ∆𝐵𝑡 = 𝛼1 + 𝛽1∆𝑆𝑡 + 𝛾1∆𝐵𝑡−1 + 𝜀1,𝑡𝑖𝑓𝑆𝑡 ≤ 𝑞1 

⋮ 

∆𝐵𝑡 = 𝛼𝑗 + 𝛽𝑗∆𝑆𝑡 + 𝛾𝑗∆𝐵𝑡−1 + 𝜀𝑗,𝑡𝑖𝑓𝑞𝑗−1 < 𝑆𝑡 ≤ 𝑞𝑗 

⋮ 

∆𝐵𝑡 = 𝛼𝑚+1 + 𝛽𝑚+1∆𝑆𝑡 + 𝛾𝑚+1∆𝐵𝑡−1 + 𝜀𝑚+1,𝑡𝑖𝑓𝑞𝑚 < 𝑆𝑡 

 

 

 

 

(14) 

Where m is the number of thresholds present and 𝛽𝑚+1 measures the elasticity of Bitcoin price 

relative to the currency rate during the extreme market turmoil regime for the currency. Given that 

the number of thresholds is not known a prior, we select the optimal number of thresholds by 

minimizing the Bayesian Information Criterion (BIC) since Gonzalo and Pitarakis (2002) as well 

as Hamaker (2009) both find that the BIC shows the best performance of selecting the number of 

thresholds among a number of model selection criteria. Our procedure starts with the null 

hypothesis of 0 threshold against the alternative of 1 threshold, if it rejects, we proceed to 2 

thresholds and so on. We test up to 3 thresholds and following Fatum and Yamamoto (2016), we 

exclude the first and the last 1% of the ordered sample for the possible threshold values. 

 

4. Empirical Results 

4.1. Dynamic Conditional Correlation 

The model building strategy is to estimate several versions of the DCC and ADCC models where 

each specification includes a constant in the mean equation.  We then include an AR(1) term as 
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well as various GARCH models such as the GARCH(1,1) model, the GJRGARCH(1,1) model of 

Glosten et al (1993) to account for the asymmetry in returns as well as the EGARCH(1,1) model 

of Nelson (1991) which has additional leverage terms to capture asymmetry in volatility clustering.  

Table 3 reports the performance criteria according to the Akaike Information Criteria (AIC), the 

Bayesian Information Criterion (BIC) and the Hannan-Quinn Criterion (HQC) where the superior 

DCC or ADCC model is the AR(1) EGARCH(1,1) model since it has the smallest information 

criterion according to all three statistics.  In this study, we only report the results for the AR(1) 

EGARCH(1,1) ADCC model since it is the superior dynamic conditional correlation model.6  

Table 4 reports the AR(1) EGARCH(1,1) ADCC model regression results and we do not elaborate 

on the results in too much detail since the general purpose of ADCC modelling is not to derive 

estimates of the equations but to use these as a generating point for the conditional correlations 

over time. However we do note that the AR(1) term in the mean equation is significant, the 

GARCH parameters (including the asymmetry term) are generally significant and that the 

equations are well specified in terms of residual ARCH and other specification errors.7 

 

The ADCCs are presented in Figure 3 where we can see quite a large variation in the correlation 

between AUD and Bitcoin over time however the vast majority of the correlations are greater than 

zero indicating that as AUD weakens in value, Bitcoin increases in value indicating the hedging 

benefits of Bitcoin.  The CAD and CHF results are quite similar to the AUD results in that there 

are many periods with positive correlation indicating a weakening of the currency is positively 

correlate with a strengthening of Bitcoin, denoting the hedging capabilities of Bitcoin.  The EUR 

and GBP results again show that the correlation between the currency and Bitcoin is positive 

indicating the potential hedging benefits of Bitcoin. Finally, the JPY figure shows very low 

correlation between JPY and Bitcoin, indicating that there is not much of a relationship.  There 

are periods of positive correlation which indicate the potential hedging benefits of Bitcoin.  In an 

attempt to summarize the ADCC results, we report in Table 5 the average ADCC over time for 

each currency and show that highest average ADCC is for AUD with a value of 0.0403, while the 

smallest is for JPY (0.0333).  AUD also has the highest percentage of periods with a positive 

correlation (83.49%) while the lowest number of periods with a positive correlation is EUR 

(72.71%).  All periods with negative correlations indicate periods where Bitcoin is a diversifier for 

the currencies.  Therefore our results so far have showed that Bitcoin does offer intraday hedging 

benefits to investors at specific periods of time.  

                                                      
6 The other models are also estimated and generate qualitatively similar results, which are available upon request from 
the corresponding author. 
7 The residuals statistics are available upon request from the corresponding author. 
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4.2. OLS regression 

Table 6 reports the results of the OLS with heteroskedasticity and autocorrelation consistent 

(HAC) standard errors analysis of the properties of Bitcoin where we report a negative relationship 

between Bitcoin and AUD and JPY which indicates that as Bitcoin increases in the price, the AUD 

and JPY strengthens in value since the currencies are per unit of US dollar.  Therefore this indicates 

that Bitcoin is a diversifier for the AUD and JPY.  We also find CHF, EUR and GBP all have 

positive relationships with Bitcoin indicating that when the currency value increases per US dollar 

(currency decreases in strength), the price of Bitcoin increases indicating the hedging properties of 

Bitcoin. We also show that the CAD has a zero relationship with Bitcoin indicating that Bitcoin 

can be a hedge for the CAD as well. Therefore these results provide further evidence of the 

potential benefits of Bitcoin to currency investors. 

 

4.3. Multiple non-temporal thresholds regression 

In order to examine whether the relationship between Bitcoin and currency changes when the 

depreciation of currency against the USD beyond a certain level, Table 7 reports the multiple non-

temporal thresholds regression results of Equation (14). Panel A of Table 7 shows the results of 

testing the null hypothesis of no break against the alternatives of up to 3 breaks. As Panel A shows, 

there are 2 thresholds (3 regimes) for the EUR, the CHF, and the JPY. While there are 3 thresholds 

(4 regimes) for the CAD, the AUD, and the GBP. These findings confirm the existence of non-

linearity relationships between Bitcoin and the currencies, which were potentially missed by the 

OLS regression results in Table 6.  Panel B of Table 7 shows the coefficients under different levels 

of market turmoil for the currencies which suggests that Bitcoin is a safe haven for the CAD, CHF 

and GBP currencies.  In each case, there is a positive relationship between each currency and 

Bitcoin in periods of high or extreme market turmoil which indicates when currencies are in 

turmoil, Bitcoin price increase. Although Bitcoin is only a significant safe haven for the CHF. We 

also find that Bitcoin does not offer safe haven status during periods of extreme market turmoil 

for the AUD, EUR and JPY currencies.  This means that in periods of high negative returns, 

Bitcoin does not offer safe haven status to investors.  Therefore our results indicating that Bitcoin 

is a safe haven for the CAD, CHF and GBP currencies, but does not offer any safe haven status 

for the AUD, EUR and JPY. 

 

5. Conclusions 
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In this paper we investigate the intraday hedge and safe haven interaction between Bitcoin and 

world currencies. The objective of our paper is two-fold. The first objective is to assess whether 

Bitcoin is a hedge at the intraday level. Given the rise of high-frequency trading and the high 

intraday volatility of Bitcoin returns, there is a need to study not only the daily hedge and safe 

haven properties of Bitcoin (as in Bouri et al 2017a; Bouri et al 2017b) but also whether it can at 

the intraday level.  We employ hourly returns of Bitcoin and six developed currencies and find that 

the DCC results indicate that Bitcoin can been deemed a hedge at various periods of time. That 

is, the correlation between Bitcoin and currencies is negative and positive indicating that Bitcoin 

may act as a diversifier and hedge for investors.  We also examine the hedge and diversifier benefits 

of Bitcoin over the full sample period and that the CHF, EUR and GBP are hedges while all other 

currencies are diversifiers. 

 

The second objective of this paper is to assess the safe haven properties of Bitcoin and we employ 

the non-temporal threshold procedure of Hansen (2000) which enables us to identify periods of 

extreme currency returns endogenously. Our results for the non-temporal threshold analysis reveal 

that Bitcoin is a safe haven during high and extreme periods of market turmoil for the CAD, CHF 

and GBP, but fails to act as a safe haven for the other currencies.  This suggests some currencies 

that are hedges over the full sample period, are not safe havens during extreme periods of market 

turmoil. 

 

Overall, the results of our study offer three important insights. First, our results show that at the 

intraday level Bitcoin can be considered at hedge and diversifier for currency investors. Second, 

our results add to our understanding of the behaviour of Bitcoin in showing that it is a safe haven 

during high market turmoil in the CAD, CHF and GBP currencies, while Bitcoin offers no safe 

haven benefits for the other currencies.  Third and more generally, our results suggest at Bitcoin 

does have a relationship with other financial assets and therefore future research should dig deeper 

and add to the understanding and modelling of the interaction between Bitcoin and other financial 

assets. 
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Tables and Figures  
 

 
 
 
 
 
  

 Mean St.Dev Max Min Skew Kurt 

Bitcoin 0.0153 0.8753 14.3041 -16.4390 -1.1215 48.4553 
AUD 0.0007 0.1452 2.5301 -1.4487 0.5119 15.1358 
CAD 0.0007 0.1148 1.8067 -1.4247 -0.0538 13.8878 
CHF 0.0002 0.2902 17.4739 -31.4227 -55.0159 7882.7636 
EUR 0.0004 0.1239 2.0810 -1.7925 0.2271 23.9934 
GBP 0.0010 0.1311 5.8981 -2.2720 5.2512 238.6945 
JPY 0.0000 0.1285 1.4635 -3.0312 -1.2451 32.2472 

 

Table 1: Descriptive Statistics of the hourly Bitcoin returns and the foreign exchange returns.  ‘St.Dev’ refers to the 
standard deviation of returns, while ‘max’ and ‘min’ denote to the maximum and minimum returns.  ‘Skew’ refers to 
the skewness and ‘kurt’ denotes the kurtosis of returns. 
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 Bitcoin AUD CAD CHF EUR GBP JPY 

Bitcoin  -0.01 0.00 0.00 0.00 0.00 -0.01 
AUD -0.01  0.59*** 0.12*** 0.40*** 0.40*** 0.17*** 
CAD 0.00 0.59***  0.12*** 0.34*** 0.36*** 0.10*** 
CHF 0.00 0.12*** 0.12***  0.29*** 0.15*** 0.18*** 
EUR 0.00 0.40*** 0.34*** 0.29***  0.49*** 0.36*** 
GBP 0.00 0.40*** 0.36*** 0.15*** 0.49***  0.07*** 

JPY -0.01 0.17*** 0.10*** 0.18*** 0.36*** 0.07***  

 

Table 2: The correlation matrix between Bitcoin and the currency returns.  *** indicates significance at the 1% 
level. 
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Model AIC BIC HQC 

DCC-AR(1)-GARCH(1,1) -10.896 -10.869 -10.887 

DCC-GARCH(1,1) -10.863 -10.839 -10.855 
DCC-AR(1)-GJRGARCH(1,1) -10.895 -10.865 -10.886 

DCC-GJRGARCH(1,1) -10.862 -10.835 -10.853 
DCC-AR(1)-EGARCH(1,1) -11.101 -11.071 -11.091 

DCC-EGARCH(1,1) -11.070 -11.043 -11.061 

ADCC-AR(1)-GARCH(1,1) -10.939 -10.911 -10.930 
ADCC-GARCH(1,1) -10.907 -10.880 -10.897 

ADCC-AR(1)-GJRGARCH(1,1) -10.939 -10.908 -10.929 

ADCC-GJRGARCH(1,1) -10.905 -10.877 -10.896 
ADCC-AR(1)-EGARCH(1,1) -11.142 -11.112 -11.132 

ADCC-EGARCH(1,1) -11.111 -11.084 -11.102 

 

Table 3: The performance criteria of the different specifications of the DCC- and ADCC-GARCH 
models.  The optimal model for the DCC and ADCC is in bold. 
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Variable Coefficient Variable Coefficient 

mBITCOIN 0.0148*** mEUR 0.0000 

wBITCOIN -0.1051*** wEUR -0.0541*** 

aBITCOIN -0.0074*** aEUR -0.9000*** 

bBITCOIN -0.0020 bEUR -0.0358*** 

gBITCOIN 0.9928*** gEUR 0.7856*** 

lBITCOIN 0.1622*** lEUR 0.5350*** 

dBITCOIN 2.6828*** dEUR 2.8386*** 

mAUD -0.0004 mGBP 0.0000 

w AUD -0.0384*** wGBP -0.0660*** 

aAUD -0.0247*** aGBP -0.9839*** 

bAUD 0.0008 bGBP -0.0142 

gAUD 0.9937*** gGBP 0.7606*** 

lAUD 0.0732*** lGBP 0.6498*** 

dAUD 3.5126*** dGBP 2.6839*** 

mCAD 0.0007 mJPY 0.0014* 

wCAD -0.0524*** wJPY -0.0470*** 

aCAD -1.1361*** aJPY -0.0659*** 

bCAD -0.0069 bJPY -0.0221*** 

gCAD 0.7397*** gJPY 0.9843*** 

lCAD 0.5036*** lJPY 0.1590*** 

dCAD 3.1383*** dJPY 3.0942*** 

mCHF 0.0007 dcca1 0.0054*** 

wCHF -0.0806*** dccb1 0.9910*** 

aCHF -1.0329*** dccg1 0.0039*** 

bCHF -0.0320** mshape 4.0000*** 

gCHF 0.7543***   

lCHF 0.6201***   

dCHF 2.9541***   

 

Table 4: The ADCC AR(1) EGARCH(1,1) results where ‘m’ refers to the constant and ‘w’ refers to the AR(1) term in 

the mean equation.  ‘a’ refers to the constant in the variance equation, ‘b’ refers to the ARCH term, ‘g’ refers to the 

GARCH term, ‘l’ refers to the asymmetry term while ‘d’ refers to the shape term.  ***, ** and * indicate significance at 
the 1%, 5% and 10% respectively. 
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 AUD CAD CHF EUR GBP JPY 

Ave. Corr. 0.0403 0.0356 0.0360 0.0389 0.0346 0.0333 
% Pos. Corr. 83.49% 78.28% 72.93% 72.71% 74.11% 78.50% 
% Neg. Corr. 16.51% 21.72% 27.07% 27.29% 25.89% 21.50% 

 

Table 5: The summary statistics of the ADCC estimated above, where we report the average correlation, as 
well as the percentage of periods with a positive and negative correlation. 
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 AUD CAD CHF EUR GBP JPY 

𝛼 0.01*** 
(2.60) 

0.02*** 
(2.60) 

0.02*** 
(2.60) 

0.02*** 
(2.60) 

0.02** 
(2.59) 

0.02*** 
(2.60) 

𝛽 -0.04 
(-0.79) 

0.00 
(0.07) 

0.01 
(0.23) 

0.00 
(0.03) 

0.03 
(0.51) 

-0.04 
(-0.71) 

𝛾 -0.05*** 
(-2.98) 

-0.05*** 
(-2.99) 

-0.05*** 
(-2.99) 

-0.05*** 
(-2.99) 

-0.05*** 
(-2.99) 

-0.05*** 
(-2.98) 

No. Obs 19,108 19,108 19,108 19,108 19,108 19,108 

Adj 𝑅2 0.00 0.00 0.00 0.00 0.00 0.00 

ARCH LM 0.00 0.00 0.00 0.00 0.00 0.00 

 

Table 6: Time-series analysis from equation (12) where 𝛼 is the constant, 𝛽 is the currency returns and 𝛾 is the 
autocorrelation term of the Bitcoin returns.  ***, ** and * indicates significance at the 1%, 5% and 10% 
respectively. 
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 AUD/USD CAD/USD CHF/USD EUR/USD GBP/USD JPY/USD 

Panel A:       
Thresholds       

1 1.2203 1.1968 1.0132 0.8584 0.6576 101.0700 
2 1.2222 1.1975 1.0133 0.8599 0.6577 101.1150 
3 1.2516 1.2200 - - 0.6580 - 

BIC -5029.76 -5023.08 -5101.95 -5126.52 -5031.87 -5073.12 

Panel B: - - - - - - 
Coefficients - - - - - - 

𝛼1 (low) 0.01 
(0.31) 

-0.02 
(-0.57) 

0.02*** 
(2.97) 

0.01 
(0.48) 

0.01 
(1.11) 

-0.04 
(-1.17) 

𝛼2 (medium) 0.14 
(0.64) 

-.22 
(-0.57) 

-0.27 
(-0.50) 

0.19 
(1.47) 

-1.40*** 
(-4.84) 

0.06 
(0.33) 

𝛼3 (high) -0.08* 
(-1.78) 

-0.04 
(-1.03) 

-0.02 
(-0.78) 

0.02** 
(2.52) 

0.01 
(0.13) 

0.02*** 
(2.62) 

𝛼4 (extreme) 0.02*** 
(3.29) 

0.02*** 
(3.35) 

- - 0.02** 
(2.40) 

- 

∆𝑆𝑡,1 (low) -0.71* 
(-1.86) 

0.04 
(0.07) 

0.00 
(0.02) 

0.68** 
(2.53) 

0.00 
(0.01) 

-0.41 
(-1.54) 

∆𝑆𝑡,2  (medium) 2.39** 
(2.05) 

2.25 
(0.64) 

7.06 
(0.91) 

-3.59* 
(-1.84) 

16.84*** 
(4.97) 

-2.24** 
(-2.41) 

∆𝑆𝑡,3 (high) 0.11 
(0.28) 

-0.48 
(-1.33) 

0.83** 
(2.05) 

-0.06 
(-0.94) 

0.27 
(0.31) 

-0.03 
(-0.53) 

∆𝑆𝑡,4 (extreme) -0.01 
(-0.23) 

0.01 
(0.20) 

- - 0.02 
(0.33) 

- 

∆𝐵𝑡−1,1 (low) -0.08 
(-1.29) 

-0.06 
(-1.15) 

-0.05*** 
(-2.91) 

0.01 
(0.16) 

-.00 
(-0.06) 

0.32 
(1.10) 

∆𝐵𝑡−1,2 

(medium) 

0.49** 
(2.37) 

0.98*** 
(2.63) 

-1.94 
(-1.05) 

-0.41*** 
(-3.05) 

0.76*** 
(3.16) 

-0.81*** 
(-13.01) 

∆𝐵𝑡−1,3 (high) 0.03 
(0.48) 

-0.00 
(-0.04) 

0.02 
(0.24) 

-0.06*** 
(-2.81) 

0.78** 
(2.03) 

-0.04** 
(-2.54) 

∆𝐵𝑡−1,4 

(extreme) 

-0.06*** 
(-2.99) 

-0.06*** 
(-2.91) 

- - -0.06*** 
(-3.20) 

- 

 

Table 7: Multiple non-temporal threshold analysis. ∆𝐵𝑡  is the first natural logged return for bitcoin at time 𝑡. 𝛼 is the 

constant. ∆𝑆𝑡 is the first natural logged return for the currency at time 𝑡. The subscript 𝑗 represents for the states of the 
regimes. Threshold variable is proxied by the level of the currency against the USD. Regime 1 corresponds to portion of 
the sample in which the level of exchange rate from last hour is less than or equal to the threshold value. Regime 2 
corresponds to portion of the sample in which the level of exchange rate from last hour is greater than the threshold 
value. Under the multiple threshold analysis, Regime 3 (4) refers to the depreciation of currency against the USD during 
the high and extreme market turmoil regime. The optimal number of thresholds is determined by BIC. 
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Figure 1: The time-series graph of the foreign exchange currencies studied in this paper.  Most currencies are denoted 
on the primary y-axis, while the JPY is the only currency attached to the secondary y-axis. 

 

Figure 2: The time-series graph of Bitcoin. 
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Figure 3: The optimal DCCs between the intraday currency returns and Bitcoin. 
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