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Abstract: The uncertainty in a climate data records (CDRs) derived from Earth observations in part 
derives from the propagated uncertainty in the radiance record (the fundamental climate data 
record, FCDR) from which the geophysical estimates in the CDR are derived. A common barrier to 
providing uncertainty-quantified CDRs is the inaccessibility to CDR creators of appropriate 
radiance uncertainty information in the FCDR. Here, we propose radiance uncertainty information 
designed directly to facilitate estimation of propagated uncertainty in derived CDRs at full 
resolution and in gridded products. Errors in Earth observations are typically highly structured and 
complex, and the uncertainty information we propose is of intermediate complexity, sufficient to 
capture the main variability in propagated uncertainty in a CDR, while avoiding unfeasible 
complexity or data volume. The uncertainty and error correlation characteristics of uncertainty are 
quantified for three classes of error with different propagation properties: independent, structured 
and common radiance errors. The meaning, mathematical derivations, practical evaluation and 
example applications of this set of uncertainty information are presented. 

Keywords: climate data record; fundamental climate data record; essential climate variable; Earth 
observation; remote sensing; metrology; uncertainty; error budget; error propagation; radiance 

 

1. Introduction 

Climate data records (CDRs) are generated from Earth observations within several programmes 
[1–4] in support of societal and scientific needs to quantify change and variability in Earth’s climate 
system. The uncertainty in the trends and variations of climate variables in CDRs is arguably as 
important to understand as the trends and variations themselves, in order to avoid incorrect 
inferences or optimistic levels of confidence in conclusions drawn from the data [5–8]. Recently, 
greater efforts have been directed to CDR generation [9,10], and specifically to quantifying 
uncertainty in CDRs [11–13]. Consideration has been given to good practice, drawing on experience 
across a range of essential climate variables [14], a major conclusion being that in cases where 
uncertainty in the CDR is highly variable, uncertainty evaluations should be available per datum. 
This implies the need to understand and model the dominant processes causing uncertainty in the 
CDR. 

Climate data records from Earth observation are derived by a series of transformations of data. 
Raw telemetry is processed by a ground segment to ‘level-1’ datasets, comprising radiances or counts 
with sufficient information to convert to calibrated radiances. Note that radiances may then be 
expressed as brightness temperature or reflectance in level-1 products, and in this paper, we use 
“radiance” generically to encompass all such quantities. It also needs to be acknowledged that some 
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level-1 data comprise signals of a different nature, as in the cases of altimetry and gravimetry. In 
level-1 data, observations are also located in time and space. A level-1 dataset of sufficient length, 
consistency and stability to support the derivation of a CDR may be referred to as a fundamental 
climate data record (FCDR). From the level-1 dataset, often using retrieval techniques involving 
multi-channel inferences, estimates of geophysical quantities are derived, and the full resolution 
dataset of the retrieved variable is described as a CDR at ‘level 2’. For some applications, regularly 
gridded data are preferred, often at a lower spatio-temporal resolution, and level-2 data may be 
averaged on such a regular grid to generate a CDR at ‘level-3’. Further processing to other forms of 
higher-level dataset may also be done. 

At each transformation from level 1 to level 3 and beyond, there is both (i) propagation of 
uncertainty from the lower-level data to the higher, and (ii) introduction of new sources of 
uncertainty by virtue of the parameters, assumptions and/or limitations of the method of data 
transformation [15]. The relative importance of these two sources of uncertainty in a CDR will vary, 
depending on the nature of the radiance data and of the retrieval process. Generally, rigorously 
quantifying CDR uncertainty requires propagation of radiance uncertainty through the 
transformations to higher levels.  

In practice, a large proportion of level-1/FCDR datasets contain either no or very limited 
radiance uncertainty information, meaning that CDR creators have no practical means to evaluate 
propagated radiance uncertainty. In part, this situation arises because it is not obvious what selection 
of radiance uncertainty information is needed to adequately support CDR creation, given that 
providing comprehensive uncertainty information would entail infeasible data volumes and/or 
complexity (see below). 

The focus of this paper is to address the question, “What radiance uncertainty information 
should be provided to support the characterisation of uncertainty in derived CDRs?” The proposed 
approach is intended to support propagation of uncertainty to levels 2 and 3, which means that inter-
channel and spatio-temporal error correlations must be included. The key contributions of the paper 
are (i) to propose a set of summary information on errors and their correlations that it is feasible and 
sufficient to provide, and (ii) to summarise the mathematics and computing techniques required to 
calculate this uncertainty information. References [15–19] illustrate the working out of these concepts 
in particular cases. 

Although facilitating CDR generation is our focus, we note that radiance uncertainty 
information at level 1 is also directly relevant to environmental re-analysis using data assimilation 
e.g., [20]. In data assimilation, the ideal approach is to assimilate level-1 observations. An evaluation 
of the observation-to-model error covariance associated with FCDRs is required by the assimilation, 
and the observation-related component of this is directly addressed by the methods described in this 
paper. Data assimilation may also help validate uncertainty information in FCDRs and CDRs [21], 
although this topic is beyond the present scope. 

The remainder of the paper proceeds as follows. In Section 2, we describe the steps a CDR creator 
would want to be able to take to propagate and quantify radiance uncertainty in their CDR. From 
these steps, we infer the uncertainty information that should be provided at level 1 in an FCDR. In 
Section 3, we outline the understanding necessary to be able to characterise the radiance uncertainty 
in a single datum, based on understanding sources of error in the instrument. We emphasise that 
CDR creators should not need such detailed knowledge of the instrument: providing quantification 
and understanding of level-1 uncertainty should be the responsibility of space agencies, in our view. 
In Section 4, we present the theory and formulae for turning knowledge of per-datum instrument 
uncertainty into summary uncertainty information suitable for inclusion in FCDRs, ready for CDR 
creators to use. Practical evaluation of the formulae requires care, and so these considerations are 
presented in Section 5. Section 6 briefly illustrates what results can look like in a real case without 
extensive discussion of the sensor or error sources addressed; this section focuses on the meaning 
and interpretation of the uncertainty information shown. The concluding Section 7 includes 
summational remarks regarding the assumptions and implications of the ideas presented, as well as 
some closing discussion. 
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2. Requirements for Propagation of Uncertainty to a Climate Data Record  

Typically, estimation of a geophysical variable for inclusion in a CDR (i.e., at level-2/3) involves 
several pre-processing steps followed by a multi-channel retrieval (inference of the variable’s value 
from a combination of radiance values at different wavelengths). The pre-processing steps may 
include pixel classification (including target selection or cloud screening) and selection of the valid 
channel set for the retrieval (which may vary between day and night scenes, for example). In the 
retrieval step that is applied to the selected pixels, a set of 𝑛"  observations 𝒚 = [𝑦' ⋯ 𝑦)*	]-  is 
exploited to infer a geophysical variable, 𝑧. In creating a level-2 CDR, this process of inference usually 
operates on single pixels. Let the retrieval be  

𝑧 = 𝑔(𝒚, 𝜷) + 0 (1)  

where 𝑔 is the retrieval function which may or may not be expressible analytically, and 𝜷 is the set 
of retrieval parameters used (which may include externally sourced information). The term +0 
obviously does not change the retrieved value 𝑧, but is explicitly included here to remind us that 
there are three components to the uncertainty in the retrieved value: 

• The propagation of radiance uncertainty through 𝑔 to 𝑧. 
• The propagation of parameter uncertainty through 𝑔 to 𝑧. 
• The uncertainty, “𝑢(0)”, introduced into 𝑧 by any approximations and inherent ambiguities of 

the retrieval that are not directly traceable from uncertainty in 𝒚 or 𝜷. 

This paper is concerned with methods to make the first component listed above straightforward 
for creators of CDRs to calculate, by defining the uncertainty characterisation that they need. 

The propagated radiance standard uncertainty can readily be calculated for a given set of 
radiances	𝒚 if the radiance error covariance matrix, 𝑺8, is known: 

𝑢(𝑧) = 9𝒄-𝑺8𝒄, (2)  

where 𝒄 = ;
<=
<>?

⋯ <=
<>@*

	A
-

. Equation (2) is the law of propagation of uncertainty [22], which 

expresses (i) a first-order approximation in which a small error in, say, 𝑦' propagates linearly to an 
error in 𝑧 in proportion to the derivative <=

<>?
, and (ii) that independent errors combine as the sum of 

squares. Readers unfamiliar with the matrix form of (2) can readily verify that in the case where 𝑺8 is 

diagonal it corresponds to a textbook expression that may be more familiar: 𝑢(𝑧) = B∑ D<=
<>E
𝑢(𝑦F)G

H
F . 

The matrix form additionally allows for the convenient propagation of correlated errors through any 
off-diagonal terms in 𝑺8 . An off-diagonal term takes the value 𝑟""J𝑢(𝑦")𝑢(𝑦"J) , where 𝑟""J  is the 
correlation coefficient of errors arising between radiance in channels 𝑐  and 𝑐L . When errors are 
independent, 𝑟""J = 0 for all 𝑐 ≠ 𝑐L, and the error covariance matrix is diagonal. 

The answer to the question of this paper, “What radiance uncertainty information should be 
provided to support the characterisation of uncertainty in derived CDRs?”, thus might seem quite 
simple: “Provide the radiance error covariance matrix”.  

If we assume that it is understood how to estimate 𝑺8 for a given set of radiances, there remains 
a practical problem with this answer: 𝑺8 is not a constant matrix. The radiance uncertainty typically 
arises from several error-causing effects, the relative importance of which may change with 
instrument state and with the scene characteristics. The degree of cross-channel error correlation is 
also likely to differ between effects. Thus, the uncertainties, 𝑢(𝑦"), and the correlation structures, 𝑟""J, 
usually vary. On the other hand, it is not practical and affordable to provide 𝑺8 per pixel from the 
point of view of data volumes [14]. Thus, there is a need to find a useful and efficient approximate 
representation, preferably one that reflects most of the variability in 𝑺8. That need is addressed in this 
paper. 

Turning to level-3 CDRs, a gridded CDR can generally be considered to contain weighted 
combinations, 〈𝑧〉, of 𝑛P selected retrieved values,	𝒛, from the full resolution CDR: 
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〈𝑧〉 = ℎ(𝒛, 𝜸) + 0. (3)  

The process of selecting which pixels contribute to 〈𝑧〉 includes identifying which pixels lie 
within the required space-time cell for a given level-3 datum, and perhaps a process to select the best 
pixels to include. The parameters, 𝜸, may include weights, length-scales, correlation coefficients, etc. 
As at level 2, there are three categories of uncertainty in 〈𝑧〉: 

• The propagation of retrieved-value uncertainty through ℎ to 〈𝑧〉. 
• The propagation of gridding parameter uncertainty through ℎ to 〈𝑧〉.  
• The uncertainty, 𝑢(0), introduced by incomplete sampling across the space-time domain which 

the level-3 datum represents [23].The uncertainty from incomplete sampling is sometimes 
referred to as “standard error in the mean”, and reflects observations errors, geophysical 
variability within the space-time cell, and correlations in these. 

Depending on the nature and assumptions of the gridding, the gridding parameter uncertainty, 
the second bullet above may be justifiably neglected. For example, if the aim is to average evenly 
across the cell area and the fields of view of the contributing pixels are well quantified, then the 
weight of each pixel in the cell average may be determined with negligible uncertainty. 

Consider the propagation of the retrieved-value uncertainty at pixel level to the cell-mean value. 
The propagated standard uncertainty is: 

𝑢(〈𝑧〉) = 9𝒄-𝑺𝒛𝒄, (4)  

where the sensitivity coefficients are now 𝒄 = ;
<T
<P?

⋯ <T
<P@U

	A
-
, and 𝑺𝒛 is the error covariance matrix 

of the selected pixels being averaged within the cell. Continuing to assume that the retrieved values 
are derived one-pixel-at-a-time, what is the structure of 𝑺𝒛? The simplest possibility arises if the errors 
in the retrieved pixels are independent, in which case 𝑺𝒛 is diagonal and the uncertainty in the cell 
average diminishes as the familiar 1/√𝑛. This is rarely, if ever, the case. Retrieval parameters are 
likely to be strongly related for nearby pixels, and generally so too will be their errors. Noise may be 
the largest uncertainty in radiances, and although noise may often be independent between pixels, 
the noise frequency spectrum can be such that there is inter-pixel error correlation [24]. On-board 
calibration cycles for imagers are once-per-scan-line or less frequent, and calibration errors are 
correlated across scans and across the duration of the calibration cycle. Error correlations mean that 
the uncertainty 𝑢(〈𝑧〉) will be greater than the uncertainty expected on the basis of “1/√𝑛”. Making a 
robust estimate of the level-3 uncertainty requires knowledge of error covariance between retrieved 
values across the cell (level 2), which in turn is in part determined by spatial error covariance in level-
1 radiances—i.e., by cross-pixel correlations in radiance errors. 

In summary, for propagation of radiance uncertainty to the CDR at level 2 and level 3, estimates 
of cross-channel and cross-pixel error covariance are needed, and should be available as part of the 
FCDR. The next two sections briefly describe how such summary error covariance information can 
be developed from an understanding of the sensor. 

3. Methods 1—Radiance Uncertainty Analysis 

There are various sources of information from which a good understanding of radiance 
uncertainty can be developed. Satellite sensors are extensively analysed during design, build and 
pre-flight characterisation [24]. On-board calibration systems provide information that enables 
quantification of sensor noise and related calibration uncertainty [25,26], as well as characterisation 
of the noise spectrum and cross-pixel error correlation [18]. Specifications and pre-flight 
characterisation of sensor features such as calibration of target properties [26], detector non-linearity 
[27], sensitivity to instrument temperatures [28] or quantisation [29,30] can be used to infer estimates 
of uncertainty in the calculated radiance from a range of sources of errors. These are general 
comments, and it is beyond the scope here to give a comprehensive account of the sources of 
information that underpin an uncertainty analysis of radiance for a given sensor or sensors in general. 
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A lengthier account of principles of uncertainty analysis applied to Earth observation radiances, with 
examples, is presented in [15].  

The focus of this paper is to show how the outcome of such an uncertainty analysis can be 
condensed into summary information about radiance uncertainty that is then useful in CDR 
development. For the sake of argument, therefore, we assume that an uncertainty analysis has been 
undertaken for a given sensor, resulting in quantification of an adequately comprehensive set of 𝑛Y 
sources of error (“effects”), which will be indexed as 𝑘 = 1…𝑛Y. Let the radiance in a given channel, 
𝑐, for a certain pixel, 𝑝, be calculated as 

	𝑦 = 𝑓 D𝑥', … , 𝑥)_G + 0 (5)  

where 𝑥  is one of the 𝑛  input quantities that appear in the calculation of the FCDR radiance, such as 
sensor counts, calibration target counts, calibration parameters and measurements of instrument 
state. The function 𝑓 is the measurement function for radiance. Quantification of an effect, 𝑘, means 
that we: 

• have identified which input quantity (index 𝑗) in the radiance measurement function the 
effect influences; 

• can evaluate the corresponding standard uncertainty 𝑢Y(𝑥 ; 𝑐, 𝑝) associated with that input 
quantity, which may be a constant for all 𝑝, may change for every 𝑝, or be in-between these 
extremes; 

• can estimate the correlation in error in 𝑥  between any pair of channels (𝑐, 𝑐L); this correlation 
will usually lie between 1, where the same value of 𝑥  is used in the measurement equation 
for both channels, and 0, where the values are independent; 

• can estimate the error correlation in error in 𝑥  between any pair of pixels (𝑝, 𝑝L) of the image 
in a given channel; and 

• can quantify 𝜕𝑓/𝜕𝑥  (the sensitivity coefficient of the measurand to the input quantity), either 
analytically or by perturbation. 

Once this set of information has been developed across the key error-causing effects, the 
required radiance uncertainty information can be calculated, as derived in the next section of this 
paper.  

Here, we now define how the information listed above, i.e., the result of radiance uncertainty 
analysis, is encapsulated quantitatively, in various matrices. 

First, we define the identity matrix, 𝑰, and the matrix of ones, 𝑱. The former describes the error 
correlation between quantities that are independent. The latter describes the error correlation 
between quantities subject to errors that are in common (or in fixed proportions). We have: 

𝑰 = f
1 0 ⋯
0 1 ⋯
⋮ ⋮ ⋱

i ; 	𝑱 = f
1 1 ⋯
1 1 ⋯
⋮ ⋮ ⋱

i	 (6)  

Second, we introduce notation for error correlation matrices. There are several such matrices 
that we will need to distinguish carefully, and thus the notation is necessarily detailed. All error 
correlation matrices will be represented as 𝑹F?,{Y}

Fm,Fn…. The subscripts and superscripts have meanings 
according to their position, as follows.  

• 𝑖' is an index across a dimension of the satellite image, and indicates the dimension across 
which the matrix expresses the error correlations. This subscript can take the following 
values: 𝑐, the channel dimension, indicating a cross-channel error correlation matrix; 𝑒, the 
image element dimension, indicating a cross-element error correlation matrix; 𝑙, the image 
line dimension; and 𝑝, used to index pixels generically (across both lines and elements), as 
when indexing a selection of pixels within a particular L3 grid-cell.  

• The superscripts 𝑖H, 𝑖r, etc., identify indices (line, elements, input quantities or effects) over 
which the matrix does not average or integrate: 𝑝 = 𝑃 in the superscript position indicates 
the error covariance matrix is evaluated for a specific pixel, 𝑃 ; 𝑝  alone means we are 
referring to evaluation for single pixels generically, without specifying which pixel 
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particularly; 𝑘 = 𝐾 in this position indicates that the matrix refers to one specific effect, 𝐾; 
and so on. 

• {𝑘}, if present, indicates a sub-set of effects whose combined effect is quantified by the error 
correlation matrix; absence of this optional label indicates all effects have been combined; 
the possible sub-sets of effects will be defined in Section 4.  

The partition between superscripts and subscripts is, in summary, as follows: the subscripts 
indicate the aspects the covariance matrix does include, while the superscripts express aspects across 
which the matrix does not average or integrate.  

For example, 𝑹"
u,Yvw  refers to a cross-channel error correlation matrix (subscript 𝑐 ) for one 

identified effect, 𝐾 (superscript 𝑘 = 𝐾), evaluated at a single, arbitrary image pixel, 𝑝. We use the 
same labelling convention for corresponding error covariance matrices, such that 𝑺u

u,`  would 
designate a cross-pixel error covariance matrix (subscript 𝑝 ) from all effects affecting the 𝑗 th 
measurement equation input quantity, evaluated for a single, arbitrary image-pixel.  

Third, we introduce notation for uncertainty. The uncertainty of the measured value in pixel 𝑝 =
(𝑙, 𝑒) in channel 𝑐 arising from the combination of all effects 𝑘 is:  

𝑢(𝑦; 𝑐, 𝑙, 𝑒) = xyy𝑐 D𝑥 (𝑐, 𝑙, 𝑒)G
H
𝑢Y D𝑥 (𝑐, 𝑙, 𝑒)G

H

Y|``

 (7)  

where the notation of the summation makes explicit that each input quantity can be affected by more 
than one effect, hence the double sum over all 𝑘|𝑗  (effect 𝑘  given input quantity 𝑗) and 𝑗  (input 
quantities). The sensitivity coefficients, 𝑐 = 𝜕𝑓/𝜕𝑥 , change with the input quantity but not the effect, 
whereas each effect contributes its own uncertainty, 𝑢Y(𝑥 ), in the relevant input quantity. All these 
effects are likely to vary between channels, and may vary across lines and/or elements in the image. 
Using the same labelling convention as error correlation matrices, the matrix 𝑼F?

Fm… is a diagonal matrix 
with the diagonal elements calculated across channels, lines, elements or pixels (as indicated by 𝑖') 
for the specific instances indicated by the superscript(s), 𝑖H …. For example, 

𝑼"Y,|,} = ~
𝑢Y D𝑥 (𝑐 = 1, 𝑙, 𝑒)G 0 ⋯

0 𝑢Y D𝑥 (𝑐 = 2, 𝑙, 𝑒)G ⋯
⋮ ⋮ ⋱

� 

 

(8)  

shows an uncertainty matrix with diagonal elements being the uncertainty in the 𝑗th input quantity 
arising from one of the effects, 𝑘, relevant to that input quantity. 

Lastly, we define the sensitivity matrix, in a similar way to uncertainty. Thus, for example, 

𝑪"
`,|,} = ~

𝑐 D𝑥 (𝑐 = 1, 𝑙, 𝑒)G 0 ⋯

0 𝑐 D𝑥 (𝑐 = 2, 𝑙, 𝑒)G ⋯
⋮ ⋮ ⋱

� 

 

(9)  

shows a sensitivity matrix of the sensitivities to the 𝑗th input quantity of the radiance measurement 
equation across different channels, for a single choice of image line and element. 

4. Methods 2—Equations to Define Summary Uncertainty Information 

A conclusion of Section 2 was that propagation of radiance uncertainty to the CDR at level 2 and 
level 3 requires estimates of the cross-channel and cross-pixel error covariances to be provided at 
level 1. In this section, the equations necessary to quantify these covariances are developed, starting 
with calculation of the cross-channel error covariance matrix. 

Considering a single effect, 𝑘, at an arbitrary pixel, 𝑝, in an image, the cross-channel radiance 
error covariance matrix is equal to: 

𝑺"
u,Y = 𝑪"

u,`𝑼"
u,Y𝑹"

u,Y𝑼"
u,Y𝑪"

u,` (10)  

where 𝑗  is the index of the input quantity in which the effect causes error. The form of this is 
analogous to the earlier equations for propagation of uncertainty, with the error covariance on the 
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right-hand side (representing the uncertainty that is to be propagated to the radiance) has been 
decomposed into a diagonal matrix of uncertainty values, 𝑼"

u,Y, and the error correlation matrix, 𝑹"
u,Y. 

The total error covariance matrix from all the analysed effects is the sum of the individual error 
covariances: 

𝑺"
u =yy𝑪"

u,`𝑼"
u,Y𝑹"

u,Y𝑼"
u,Y𝑪"

u,`

Y|``

 (11)  

Given the results of radiance uncertainty analysis, this channel covariance matrix could be 
provided for every pixel, in principle. However, while the radiance data scales as 𝑛"	, the matrix 
scales as 𝑛"H, which is impractical for users, since FCDRs are already often multi-terabyte or petabyte 
datasets. An average estimate can be made and provided, by averaging over an adequate sample of 
pixels: 

𝑺" = 〈𝑺"
u〉u (12)  

where 〈	〉u is an operator to average over a sample of pixels. (In line with the nomenclature introduced 
earlier, the absence of a superscript in 𝑺" indicates that all effects have been combined and that there 
is averaging over pixels.)  

Provision of 𝑺" would be an advance over present practice, but can be further improved to allow 
CDR producers the ability to reflect some of the variability in uncertainty across an image. (Where 
data are provided as whole orbits, for example, the instrument state may change and radiance 
uncertainty may vary significantly.) One approach is to provide, instead of 𝑺", the average radiance 
error correlation matrix per image, 𝑹", which can be combined with a data layer quantifying per pixel 
uncertainty. The approximation assumed in this approach is that the error correlations are relatively 
constant, whereas uncertainty significantly changes. Any covariance matrix, being positive definite 
and symmetric, can be represented in the form 𝑺 = 𝑼𝑹𝑼T. To see this, let element (𝑚, 𝑛) of the matrix, 
𝑺, be [𝑺]�,), etc. Make the following identifications:  

[𝑼]�,) = 𝛿�,)B[𝑺]�,)  ; 		 [𝑹]�,) =
[𝑺]�,)

9[𝑺]�,�[𝑺]),)
 (13)  

where 𝛿�,)  is zero when 𝑚 ≠ 𝑛  and one when 𝑚 = 𝑛 . Calculating 𝑼𝑹𝑼T  recovers 𝑺 . This is the 
principle on which an overall error correlation matrix can be calculated for a combination of effects. 
Thus, if 𝑼"  is the diagonal matrix whose diagonal elements are the square roots of the diagonal 
elements of 𝑺", the required average error correlation matrix is: 

𝑹" = 𝑼"�'𝑺"𝑼"�' (14)  

The use of 𝑹", combined with uncertainty estimates across the image, will be described later.  
The same equations apply to calculating error covariance across elements and lines. For example, 

the representative cross-element error correlation matrix (for a given channel) is defined by: 

𝑹} = 𝑼}�'𝑺}𝑼}�';	𝑺} = �yy𝑪}
|,`𝑼}|,Y𝑹}|,Y𝑼}|,Y𝑪}

|,`

Y|``

�

|

 (15)  

and equivalent expressions for cross-line error correlations can be obtained by swapping the 𝑒 and 𝑙 
indices. The dimensions of 𝑹| and 𝑹} are, respectively, the squares of the number of along-track lines 
and the number of elements squared (𝑛|H	and	𝑛}H ); this is often likely to represent an impractical 
additional data volume. If further data reduction is required, the approximation may be made that 
error correlations vary spatially as a function of element or line separation only, i.e., as a function of 

|𝑒 − 𝑒L| and |𝑙 − 𝑙L|, respectively. If we write, for example, 𝑹} =

⎣
⎢
⎢
⎢
⎢
⎡
1 𝑟',H 𝑟',r
𝑟',H 1 𝑟H,r
𝑟',r 𝑟H,r 1

𝑟',� 𝑟',� ⋱
𝑟H,� 𝑟H,� ⋱
𝑟r,� 𝑟r,� ⋱

𝑟',� 𝑟H,� 𝑟r,�
𝑟',� 𝑟H,� 𝑟r,�
⋱ ⋱ ⋱

1 𝑟�,� ⋱
𝑟�,� 1 ⋱
⋱ ⋱ ⋱⎦

⎥
⎥
⎥
⎥
⎤

, then 

the average error correlation value for pixels on a given line separated by a difference in element 
index equal to Δ} can be calculated using:  
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with a similar equation for the cross-line average error correlation. 𝒓}  is a vector containing 𝑛} 
elements evaluating this equation for pixel separations from Δ} = 0 (for which [𝒓}]�� = 1) to Δ} =
𝑛} − 1. From this, an ‘average’ 𝑹} can be constructed by substituting [𝒓}]|}�}J| for 𝑟},}J. 

To summarise the implications of the above mathematical development, methods have been 
proposed to calculate: 

• a representative cross-channel error correlation matrix (affordable volume-wise) 
• a representative cross-line error correlation function (from which an approximate error 

correlation matrix etc can be inferred where the matrix itself is unaffordable volume-wise), 
and  

• a representative cross-element error correlation function 

from which all the necessary error covariance matrices for uncertainty propagation to the CDR can 
be generated using the uncertainty provided for each pixel.  

The development above is framed in terms of a single set of uncertainty and error correlations 
being able to represent all effects. This is a strong approximation and does not enable the correlation 
structure to respond to relative changes in uncertainty from effects with contrasting error structures. 
(Such relative changes in uncertainty can arise, for example, when an instrument’s gain changes and 
the balance of pure noise versus calibration uncertainty may change.)  

To lessen the degree of the approximation, we can subdivide effects into families of similar error 
correlation structure, providing the set of information above for each family. Such a subdivision, of 
course, increases complexity and data volume, so a balance needs to be struck. A traditional split is 
to partition “random” and “systematic” error sources. We have found that this is not adequate to 
describe the errors in a satellite image, because there are important intermediate effects that cause 
errors that are in common or partially correlated across certain groups of pixels (and thus are neither 
random nor systematic in the usual sense). The minimum complexity that reflects this situation is a 
tripartite division of effects. A tripartite approach to uncertainty information has previously been 
adopted in thermal remote sensing of sea and land surface temperatures at level 2 / CDR e.g., [19], 
and here we discuss how it can also apply at level 1 (and support the tripartite calculations for CDRs). 

We categorise each of the effects, 𝑘, into one subset according to their correlation structure. The 
set of independent effects, {𝑖}, contains effects where there is no (or negligible) correlation of error 
between pixels. White noise from statistical fluctuations in detectors or amplifier circuits on the 
sensor would fall into this category. At the other extreme would be common effects, {𝑚}, which cause 
the same unknown error in all pixels (at least approximately on some large scale). The uncertainty 
from common effects can be characterised across an image by a single uncertainty estimate. Between 
these extremes are structured effects, {𝑠}, which can be either random or systematic in their physical 
origin, whose defining characteristic is that they cause errors that are partially shared across at least 
some pixels in the image. This tripartite classification is discussed in detail in [15]. 

Equations (10) to (15) can all be applied to independent and structured effects separately. For 
example, the modification of eq. 11 for independent effects is:  

𝑺",F
u =yy𝑪"

u,`𝑼"
u,F𝑼"

u,F𝑪"
u,`

F|``

 (17)  

which uses the fact that 𝑹"
u,F = 𝑰 for independent effects by definition. (An extension is made to the 

notation, with the second subscript, 𝑖 , of 𝑺",F
u  indicates the effects class if it is a subset of all.) 

Covariances may be added, and 𝑺"
u = 𝑺",F

u + 𝑺",�
u + 𝑺",�

u , while for a particular pixel the total 
uncertainty is the root sum of squares of the three component uncertainties.  

5. Methods 3—Practical Computation 

Calculating the “CURUC” equations presented in the previous section can be practically 
challenging because of the size and number of dimensions of the arrays involved. A literal 
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implementation of the equations with each matrix in its own array is inefficient with regard to 
computer memory and the number of required floating point operations. This section presents the 
principles of a more efficient formulation of the equations for practical computation, and illustrates 
the principles with reference to specific Python functions that implement these.  

Consider a single orbit of data from a radiometer with 𝑛" channels, 𝑛| scanlines, 𝑛} elements per 
scanline. Without any subsampling, the array containing the cross-line correlation matrix for each 
element and channel, 𝑹|

},Yvw , has dimensions	[𝑛", 𝑛}, 𝑛|, 𝑛|] for a single effect, 𝑘 = 𝐾. To store this 
array for 𝑛Y  effects requires 𝑛Y𝑛"𝑛}𝑛|H  elements. Independent and common effects need not be 
calculated via CURUC equations, since their calculation simplifies, so the CURUC calculation can be 
restricted to the number of structured effects, 𝑛�, giving 𝑛�𝑛"𝑛}𝑛|H correlation coefficients to be stored.  

Turning to the sensitivity matrices, the simplest approach is to store the sensitivities per 
structured effect. (This means some stored values are repeated, since the sensitivity coefficients relate 
to input quantities of the measurement equation rather than effects, and there can be more than one 
effect per input quantity.) A similar comment applies to the uncertainty matrices.  

The calculation of 𝑺|
},� = 𝑪|

},�𝑼|
},�𝑹|

},�𝑼|
},�𝑪|

},�  for all channels, effects and elements requires 
4𝑛"𝑛�𝑛} matrix multiplications of 𝑛| × 𝑛| matrices. Optimised matrix multiplication algorithms exist 
and are implemented in numerical packages; for example, the Python NumPy library uses the Basic 
Linear Algebra Subprograms (BLAS), which implements the Coppersmith–Winograd algorithm [31]. 
Even so, the scale of the matrix computations here necessitates further optimisation: a literal 
implementation of the CURUC equations with matrix multiplication routines would be too slow for 
practical use. 

In our implementation of the CURUC equations, we take advantage of 𝑪 and 𝑼 being diagonal. 
This property allows us to rewrite the matrix multiplication as an elementwise multiplication as 
follows. In the matrix multiplication 𝑴r =	𝑴'𝑴H, where all matrices are square 𝑛� × 𝑛�, the entries 
of 𝑴r  are by definition given by [𝑴r]�,  = 	∑ [𝑴']�,¡[𝑴H]¡, 

)¢
¡v' 	 . If 𝑴'  is diagonal, [𝑴']�,  = 0 

when	𝑣 ≠ 𝑤, such that [𝑴r]�,  = [𝑴']�,�[𝑴H]�, . Defining 𝒅�? as the column vector containing the 
diagonal values of 𝑴', we can construct the [𝑛� × 𝑛�] matrix 𝑫�? = §𝒅�?𝒅�? … ¨, such that we have 
[𝑴r]�, 	 = §𝑫�?¨�, [𝑴H]�,  . Thus, we have rewritten the matrix multiplication as an elementwise 
multiplication, which can be parallelised much more easily. In practice, the final step can be 
calculated without actually constructing 𝑫�?  (in NumPy this process is called broadcasting). By 
storing only the diagonal values, the dimensionality of 𝑪|

},�and 𝑼|
},� is reduced by one and their size 

by a factor 𝑛|. 
In the calculation of 𝑺|

},�, 𝑺}|,�, 𝑺"
u,�, we recognise that 𝑼|

},�, 𝑼}|,�, and 𝑼"
u,� are all arrays containing 

the same set of uncertainties, differing only in order. The arrays of the diagonals of 𝑼}|,� and 𝑼"
u,� can 

be constructed as views of the same memory as 𝑼|
},�, avoiding duplication. The same applies to the 

diagonal sensitivity matrices, 𝑪"
u,�, etc. 

Even with those optimisations, a typical orbit file may remain too large for calculating the 
complete arrays as described above. The final optimisation is to approximate the averages across lines 
and elements, by sub-sampling these dimensions. For example, an AVHRR GAC orbit has 𝑛} =
409	and 𝑛| ≈ 12000 . For 𝑛" = 5  channels and 𝑛� = 5	structured effects, the full set of 𝑹|

},�  alone 
would have 1.5 × 10'H elements, which would require 5.9 TB of RAM to store in single IEEE 754 
floating point precision; peak memory use in the calculation of [𝒓}]�� would be several times higher. 
We reduce the pixels across which the covariance matrices are averaged to every 10th element and 
every 50th line to reduce the RAM requirement to 236 MB. The validity of the sampling approximation 
for the estimated uncertainty information has to be verified for each case, and depends on the length 
scale of the effects and the data volume of the sensor. An alternative to sampling would be to calculate 
the length scales for shorter segments rather than full orbits, but that limits the calculation of 
correlation to scales shorter than the selected segment. 

The optimisation described here has been implemented as a set of Python routines, built using 
the numpy [32] and numexpr libraries. 

6. Results—Example from HIRS 
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We illustrate the results of applying the methods described above with the example of the High-
Resolution Infrared Sounder (HIRS). The HIRS is a 20-channel radiometer with a heritage dating to 
1975 [33], and it has been used in numerical weather prediction and analysis, and for climate data 
records [34]. A companion paper [18] describes the uncertainty properties of HIRS data in more 
detail. Figure 1 shows an extract of HIRS data, for channel 7 which measures radiance around 13.34 
µm, which means it detects infra-red emission from clouds and carbon dioxide in the atmosphere. 
Also shown are the calculations of the uncertainty attributed to independent, structured and common 
effects. 

 

Figure 1. Top left: Brightness temperature image raster of an extract between 17:39:73 and 17:49:51 
UTC of HIRS channel 7 on Metop-A. Top right, and lower row: the corresponding fields of standard 
uncertainty in brightness temperature arising from independent, structured and common errors. The 
red square labelled ‘A’ indicates a specific pixel and the dashed lines the position of the scan and 
element arrays through ‘A’. The imagery is taken from a descending pass. 

In Figure 1, the uncertainty fields show variation with respect to the image brightness 
temperature. Uncertainty expressed in brightness temperature tends to be larger for the colder parts 
of the image where high cloud tops are present, since the non-linearity of the relationship between 
radiance and brightness temperature (Planck function) means a radiance error of a given size 
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corresponds to a greater error in brightness temperature. This is the reason that the common 
uncertainty has a spatial structure in Figure 1: the common error is constant in radiance. The mean 
value of the uncertainty from independent effects differs significantly between calibration cycles. 
(The stripes of missing radiance along the orbit are the times when HIRS undertakes a calibration 
cycle.) This component of uncertainty characterises the noise of the instrument. The noise is estimated 
from the variability of the signal when looking at a uniform calibration target. The noisiness of 
instruments does change over time, and inferring the noise from each calibration cycle is appropriate.  

Figure 2 shows the cross-element error covariance matrix from structured effects, 𝑺}
|,� , 

evaluated for the scan line, 𝑙®, that includes pixel ‘A’ in Figure 1. The variation in uncertainty reflected 
in this matrix is associated with the differential impact of structured errors on pixels with different 
brightness temperatures. The brightness temperature uncertainty tends to be greater for the colder 
pixels (which are on the right-hand side of ‘A’ in Figure 1, and which correspond to element numbers 
from 0 to 28 in Figure 2). The error covariance matrix has no obvious diagonal, reflecting the fact that 
the dominant origin of the uncertainty from structured effects is uncertainty in calibration, which 
tends to cause errors of the same sign in all radiances. 

 
Figure 2. Cross-element error covariance matrix calculated for the scan line through point ‘A’ of 
Figure 1. HIRS scans such that element indices 0 to 55 run from east to west (right to left) in Figure 1. 
The range of the colour scale corresponds to brightness temperature uncertainty from 0.10 K to 0.13 
K. The matrix shown gives the error covariance from structured effects. 

Figure 3 shows the cross-line error covariance for elements with the same element number as 
pixel ‘A’ in Figure 1. The scanline number 0 corresponds to the north (top) of the image. The 
variations in error covariance are again dominated by brightness temperature variations in the image, 
although the partial decorrelation of errors between different calibration cycles can also be seen (e.g., 
in the block-diagonal effect obvious as a boundary between row/column 6 and 7 in Figure 3).  
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Figure 3. Cross-line error covariance matrix calculated for the line of constant element number 
through point ‘A’ of Figure 1. Since this is a descending pass of the satellite, the scanline indices 0 to 
88 run from north to south (top to bottom) in Figure 1. The range of the colour scale corresponds to 
brightness temperature uncertainty from 0.06 K to 0.13 K. The matrix shown gives the error 
covariance from structured effects. 

The matrices shown in Figures 2 and 3 have not been averaged across the image to give a 
representative estimate. Since a significant part of their evident structure relates to variations in the 
pixel brightness temperature, it follows that the error correlation matrix is more stable, and, as 
described earlier, could be used in conjunction with the per-pixel uncertainty fields to estimate the 
error covariance for any given pair of pixels more precisely. However, it is not practical for a full orbit 
to include a cross-line error correlation matrix, and the further approximation using Equation 16 must 
be used. Figure 4 presents the cross-line error correlation function thus derived for the image of 
Figure 1, not just for pixel ‘A’, but sampled and averaged across the whole image.  

 
Figure 4. Cross-line error correlation function representative of error correlations from structured 
effects for the data in Figure 1. 

HIRS data are often used in multi-channel atmospheric sounding and for data assimilation, and 
so the cross-channel error correlations are important. Figure 5 shows an example obtained for the 
image in Figure 1. The matrix shows the error correlation between each pair of the 19 HIRS infra-red 
channels for independent effects. For this sensor, errors that are independent between pixels in an 
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image (spatially) turn out to be partially correlated between channels, and so the off-diagonal terms 
of the cross-channel error correlation matrix are non-zero. There are two groups of channels that have 
cross-channel correlated noise between the channels in each group, but not between the groups, as 
can be seen from the block-diagonal form.  

 
Figure 5. Cross-channel error correlation matrix, 𝑹" , from spatially independent effects, 
corresponding to data in Figure 1. 

7. Conclusion 

Uncertainty in derived climate data records and geophysical products comes in part from 
uncertainty in the satellite radiances used in the geophysical retrieval. Information about radiance 
uncertainty is generally not present in radiance products (level 1 data), compelling Earth observation 
practitioners doing geophysical retrievals to invent radiance uncertainty estimates or use other ad 
hoc methods to attribute uncertainties to results (if they do so at all). This situation falls short of best 
scientific and metrological practice, in which uncertainties at all stages are understood, characterised 
and propagated through to the final results. Although much useful science and many applications 
can be done without rigorous end-to-end treatment of uncertainty, where significant policy and 
liability questions rest on the integrity of observations, the trustworthiness and traceability of 
uncertainty estimates must be demonstrated. 

However, providing uncertainty information at level 1 is not trivial. Radiance uncertainties are 
not simple. Uncertainty varies significantly from pixel-to-pixel, errors are correlated across the spatio-
temporal domain in complex patterns that have their roots in instrument design and operation, and 
traditional consideration of “random vs. systematic errors” does not enable adequate characterisation 
of errors in satellite imagery. Moreover, solutions have to be practical for data producers and users, 
while still enabling a proper evaluation of uncertainty in derived products to be obtained. The full 
error covariance information for a multi-channel satellite image, even if we can estimate it, cannot be 
communicated to users because of the data volume implied. 

This paper sets out one set of approaches that address the non-trivial aspects of providing users 
of radiance products with uncertainty information that is as simple as possible, but not simpler than 
necessary. Many details have inevitably been presented, so it is worth reviewing here the high-level 
concepts of the proposed solution. 

First, the new uncertainty information available to users within a product following the methods 
presented here includes: 
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• Per-pixel, per-channel magnitude of radiance uncertainty 
• Per-product, per-channel cross-element and cross-line radiance error correlation coefficients, 

and  
• Per-product cross-channel radiance error correlation 

Second, this uncertainty information is presented for a tri-partite classification of uncertainty 
components that adequately respects the complexity of errors in satellite imagery. The components 
describe the uncertainty that arises from errors that are independent (uncorrelated between pixels of 
a given channel), structured (patterned across an image) and common (systematic across a whole 
image).  

Third, this set of uncertainty information gives users of radiance data a new capability to 
propagate uncertainty in a standardised, rigorous way through their retrieval process to derive 
uncertainty in their geophysical products. This includes where (i) the retrieval is multi-channel and 
therefore sensitive to any cross-channel correlations in errors, and (ii) where the target products 
aggregate in space and time and simplistic treatment radiance errors as “noise” would generally give 
under-estimates of uncertainty in the results. Propagation of the uncertainty information can be done 
using analytic or Monte Carlo methods [22]. 

Fourth, although some increase in data volume is necessary, it is minimised. (i) Uncertainty 
information need not be held to the same numerical precision as the radiances themselves, and so the 
per pixel provision of uncertainty information can be done such that the data volume is no more than 
doubled. (ii) Providing correlation functions as a function of pixel separation and the cross-channel 
error covariance matrices per radiance product has a small associated cost in data volume. 

The framework presented above allows derivation of summary uncertainty (error covariance) 
information in radiance data based on systematic combination of instrumental error sources—a 
“bottom-up” approach. Is it reasonable to expect such an uncertainty analysis to become common 
practice? Space agencies already determine much of the necessary understanding of instrumental 
errors during instrument design, build and testing. Taking this instrument understanding forward 
into radiance uncertainty information for level-1 products, using the framework presented here or 
one similar, is therefore a value-adding extension of a much greater effort of characterisation that is 
already undertaken by agencies.  

This work has been undertaken within the project Fidelity and Uncertainty in Climate data 
records from Earth Observation (FIDUCEO, www.fiduceo.eu), and the level 1 products being 
prepared at time of writing in that project have additional features, where relevant, to provide 
convenience to users. We will re-calibrate the satellite radiances to improve multi-sensor series. The 
products gather radiance, radiance uncertainty, viewing geometry and geolocation data in a self-
described, compressed netCDF format. Lastly, at the scale of level-1 data collections, duplicate data 
are suppressed and orbits are consolidated. A standardised format for data across different sensor 
series allows tools to assist users with handling the uncertainty information to be designed, which 
will be the subject of a future paper. 

Earth observation provides the largest and most globally descriptive set of information about 
the changing state of Earth’s environments. Proper interpretation of and inference from satellite data 
should be done in the context of well quantified uncertainties, to avoid wrong conclusions and bad 
decision-making. Practical delivery of the uncertainty information required presents a significant 
challenge and the methods in this paper are presented as candidate approaches to address this 
challenge.  
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