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ABSTRACT 

 

Designing nanomaterials to release their drug pay-load upon exposure to an exogenous 

trigger can help to direct drug delivery, but how the triggered release, which often modifies 

the nanomaterial properties, influences the biological fate of these systems is currently 

unknown. The aim of this study was to investigate how the triggered drug release from PEG 

coated, soft, 50 nm distensible lipid nanocapsules (LNC) influenced their diffusion across a 

mucus barrier. The translocation speed of the non-triggered LNC across a 35 µm thick 

purified gastric mucin (PGM) barrier was 3 times faster (30.08 ± 2.49 x 10
-10

 cm
2 

s
-1

) 

compared to equivalent-sized negatively charged polystyrene particles (9.87 ± 0.61 x 10
-10

 

cm
2 

s
-1

, p < 0.05). In cystic fibrosis mucus (CFM), harvested from patient primary cells, the 

non-triggered LNC translocation speed was similar to the PGM, but the polystyrene particles 

diffusion was so slow it could not be measured. The trigger induced LNC distension process 

had no effect on the particle diffusion rate in both PGM and CFM (p > 0.05) in a static mucus 

barrier, but when shear was applied to the barrier the distended LNCs diffused more slowly 

(3.97 ± 1.38 x 10-8 cm
2
s

-1
, p < 0.05) compared to the non-distended materials (4.94 ± 0.04 x 

10-8 cm
2
s

-1
). This data suggested the rapid mucus penetration of the distended LNCs, despite 

their increased size, was a consequence of their capacity to take a less tortious path through 

the barrier, i.e., they experienced less steric hinderance, compared to the non-distended LNC.    

Key words: mucus; nanoparticle; nanomaterial; diffusion; mucoadhesion; penetration; cystic 

fibrosis; size, zeta potential, surface charge, polystyrene, lipid. 
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1. INTRODUCTION 

 ‘Soft’ nanomaterials can be designed such that they are responsive to a drug release 

trigger signals. 
1-3

 This approach can be particularly advantageous when attempting to deliver 

sensitive drug payloads, e.g. SiRNA, into epithelial cells, e.g., during the treatment of cystic 

fibrosis, because it can provide protection from enzymatic processes prior to efficient cellular 

uptake. 
4-6

 However, to deliver therapeutic agents into epithelial cells using trigger sensitive 

nanomaterials they need to translocate across a mucus barrier effectively and their ability to 

do this is currently unknown. 

Previous work has demonstrated that non-trigger responsive nanomaterials can diffuse 

through cystic fibrosis (CF) sputum,
7
 human respiratory mucus,

8
 human buccal mucosa,

9
 

human rhinosinusitis mucus,
10

 porcine gastric mucin (PGM)
11

 and mucus expressed by cell 

lines
12

. However, the diffusion of trigger sensitive nanomaterials through mucus could be 

impeded as a consequence of the nanomaterial changes induced by the triggering system. It is 

not easy to predict how the triggered drug release will influence mucus diffusion because a 

relationship between nanomaterial transport through mucus and particle characteristics has 

yet to be clearly defined.    

Nanomaterial diffusion through gels is hindered by two physical phenomena, 

hydrodynamic and steric interactions 
17,18

 (Equation 1): 

),(
0

f

eff
dFS

D

D
     (Equation 1) 

where Deff is the diffusion coefficient through the mucus gel, D0 is the diffusion 

coefficient through water, F is the hydrodynamic interactions and S(df,) the steric 
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interactions (both F and S range from 0–1). The steric interactions are a function of the size 

exclusion process imparted by the gel and the hydrodynamic interactions are a function of the 

frictional retardation that is imparted on the nanomaterial diffusion, i.e., the nanomaterial – 

gel interactions. However, because nanomaterial diffusion through mucus does not show 

Stokesian dynamics (mucus is a non-Newtonian gel) and it is difficult to use micro-rheology 

techniques to understand the interactions between nanomaterials and mucus, a validated 

approach to isolate and calculate both steric and hydrodynamic interactions of drug delivery 

nanomaterials with mucus does not currently exist 
14-16

. As a consequence, nanomaterial 

mucus barrier interactions are often studied using combinations analytical approaches to 

probe the effects of nanomaterial characteristics on mucus diffusion. For example, particle 

tracking, fluorescence correlation spectroscopy, dynamic light scattering and pulsed-field 

gradient NMR.
16

 However, these approaches have yet to be applied to soft trigger responsive 

nanomaterials in order to understand their diffusion in mucus barriers.   

The aim of this study was to investigate how soft nanomaterials that were responsive to 

drug release trigger signals interacted with and diffused through mucus. Lipid nanocapsules 

(LNCs) were selected as the soft, mucus penetrating nanomaterials for this work because, in 

addition to their PEG decorated surface, which has previously been shown to assist diffusion 

through mucus,
14

 they were amenable to trigger responsive drug delivery through a particle 

distension process (size increase from 50 nm to 200 nm) upon exposure to a Pluronic 

surfactant (Fig 1).
 1,19 

It was envisaged that in a final presentation of the inhaled formulation 

the trigger would be mixed with the nanoparticles upon dose actuation as this would allow 

nanoparticle distension to occur after deposition upon the airway epithelia. In order to aid the 

understanding of how the LNCs interacted with the mucus they were compared with non-

trigger sensitive polystyrene nanoparticles with diameters of 50, 200 and 750 nm. The 
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particle size range of the polystyrene materials was selected to cover the distensible size of 

the LNCs and the typical sizes of materials used for mucosal administration of therapeutic 

agents. The 200 nm polystyrene particles were chosen to investigate the types of interactions 

that hindered particle diffusion through varying the pH of the mucus. In addition, in order to 

understand the manner in which the mucus properties influenced the interactions with the 

nanomaterials diffusion studies were conducted in both PGM and human cystic fibrosis 

mucus (CFM), derived from human primary airway epithelial cells donated from a 

homozygous CF donor 
20, 21

. These two types of mucus were specifically chosen due to the 

difference in extracellular material in the two barriers, the PGM was purified to remove the 

extracellular component and thus display comparatively less steric interactions with the 

nanomaterials compared with the CFM, which was used as recovered from the cells and thus 

contained a higher concentration of extracellular material. A static Transwell was used to 

measure particle diffusion speed during translocation across the mucus via a chemical assay. 

The particle diffusion speed in Transwell assay was considered to be influenced by both 

steric and hydrodynamic particle interactions. In contrast, a second assay which measured 

particle diffusion using multi-particle tracking employed shear to disrupt the mucus structure, 

this diminished the mucus’s capacity to hinder diffusion through steric interactions with the 

nanomaterials and thus render the hydrodynamic interactions more consequential when 

considering particle diffusion speed in these measurements. 
13 
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Fig 1. Illustration of the delivery, absorption and drug release of the lipid nanocapsules that 

distended in response to co-administration with a Pluronic ‘trigger’. Images adapted from 

Chen et al, 2016
1
 and Chana et al, 2015

19
. 

 

2. MATERIALS AND METHODS 

2.1. Materials  

Pig stomachs were purchased from Mutch Meats (Whitney, UK). The CFM was from 

Epithelix (Epithelix Sarl, Geneva, Switzerland). Fluoresbrite YG carboxylate polystyrene 

microspheres (0.05, 0.2 and 0.75 µm, 2.5% w/v) were sourced from Polysciences (Eppelheim, 

Germany). Medium chain triglycerides (Labrafac
® 

lipophile 1349) and Lipoid
®
S75-3 were 

kindly supplied by Gattefossé S.A. (Saint-Preist, France) and Cargill GmbH (Germany), 

respectively. PEG 15 hydroxystearate (Solutol
®
 HS15) and Pluronic

® 
surfactant L62D were 

from BASF (Ludwigshafen, Germany). 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine-

N-diethylenetriaminepentaacetic acid (DMPE-DTPA) was purchased from Avanti Polar 

Lipids Inc, Alabama, USA. Sodium chloride, ethylene diamine tetra acetic acid (EDTA), 

phenylmethylsulfonyl fluoride (PMSF), sodium azide, N-methyl-2-pyrrolidone, sodium 

fluorescein salt, Nile red, sodium phosphate dibasic heptahydrate, sodium phosphate 
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monobasic monohydrate, thioglycolic acid, trypsin, lysozyme, bovine serum albumin (BSA), 

transferrin and haemoglobin were purchased from Sigma-Aldrich (Dorset, UK). 

2.2. Mucus Preparation and Characterization 

The porcine mucus collected from the stomachs of freshly slaughtered pigs was 

purified to remove particulate debris and increase the mucin content. The stomachs were 

opened along their greater curvature, inverted and any food content removed mechanically. 

They were rinsed with double-distilled water, the mucus lining was gently removed by 

scraping and the recovered mucus was mixed in a 1:1 ratio with a protease inhibitor buffer 

containing 200 mM sodium chloride, 0.02 % (w/v) sodium azide, 5 mM EDTA and 1 mM 

PMSF. The protease inhibitors prevent the mucin degradation.
44

 The mucus mixture was 

centrifuged to remove particulate debris at 11,200 g for 45 min at 4°C. The supernatant was 

poured into Visking dialysis tubing (MWCO: 12-14 kDa, Fisher Scientific, Loughborough, 

UK) and it was dialysed against at least 10L of deionised water for 24 h to remove the small 

molecular weight material. The dialysed mucus solution was concentrated using an Amicon 

ultra-filtration cell (Model 8400, 10 kDa membrane, Merck Millipore, UK) under nitrogen at 

a pressure of 40 psi and temperature of 4°C. The retained mucin sample was frozen at -20°C 

until used. A total of 10 stomachs produced ~16 g of PGM in the form of a homogenous 

viscous gel. The dry weight of the purified mucin was determined to be 28% w/w. Where 

possible the PGM was used as prepared, i.e., without dilution, as preliminary data showed 

that this purified mucin had similar rheological properties to non-purified mucus. A single 

batch of PGM was prepared for all the nanoparticle diffusion studies.  
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The elastic (G’) and viscous modulus (G’’) of the collected mucin was determined 

using a 2 g sample on the Carri-Med rheometer (TA Instruments, US) at a constant stress of 

1.8 Pa (shown not to break down the mucus structure).  

The purified mucin swelling was quantified by applying 1 µL of the mucin sample onto 

the apical surface of a Transwell diffusion cell (0.3 cm
2
 polyester, 3 μm pore size, Corning, 

UK) incubated at 37°C using a calibrated positive displacement pipette. Then 600 μL of Tris 

buffer (50 mM, pH 8.5) was added to fill the basolateral chamber of the Transwell. The 

experiment was initiated with the addition of 1, 5 or 10 µL of the polystyrene nanosuspension 

on top of the mucin in the apical chamber. At regular time points the change in weight of the 

mucin barrier was characterised gravimetrically and 50 μL samples were removed from the 

receiver chamber to determine the particle translocation. The sample volume was replaced 

after each time point to keep the receiver volume constant in the experiments. The amount of 

fluorescein in the samples removed from the receiver chamber was determined by measuring 

fluorescence intensity using an excitation of 460 nm and an emission of 515 nm at 37°C 

(FLx800 Microplate Fluorescence Reader, Bio-TEK Instruments, UK).  

To characterize the molecular weight of the collected PGM and CFM samples, a size 

exclusion assay was employed. A calibration plot of molecular weight against retention time 

was obtained for the standards lysozyme, trypsin, peroxidase, BSA and thyroglobulin using 

the Ominsec software (Malvern Instruments, Worcestershire, UK). The calibration and test 

samples (100 µL, 1 mg/mL) were injected into a size exclusion column (TSK Gel 3000 SW, 

Tosoh Bioscience LLC, Japan) at a flow rate of 1 mL/min using gel permeation 

chromatography machine equipped with a refractive index detector (Malvern Instruments, 

Worcestershire, UK). Phosphate buffer (50 mM) with 0.3 M sodium chloride at pH 7 was 

used as the mobile phase. Both the PGM and CFM mucus samples were provided as frozen 
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mucus samples, which were defrosted and directly injected into the size exclusion system 

(Malvern Instruments, Worcestershire, UK). 

2.3. Nanomaterial Preparation 

The LNCs were manufactured via precipitation from a stable emulsion following 

repeated phase inversion, as previously described by Heurtault et al.
22

 The emulsion 

contained medium chain triglycerides (17% w/w), phosphatidylcholine (1.75% w/w), PEG 

hydroxystearate (17% w/w) and a 3% w/v sodium chloride aqueous solution (64.25% w/w). 

The LNC suspensions were purified from excess excipients and larger particulate matter via 

centrifugation (Beckman L8-80 ultracentrifuge, Beckman Coulter, Buckinghamshire, UK), 

110,000 g at 25°C for 1 h. The PEG is an integral part of the soft nanocapsule shell and 

though presents a highly stable nanomaterial.
22

 For the particle tracking analysis, Nile red 

was loaded into LNCs by dissolving 5 mg of Nile red in 5 mL acetone and then mixing with 

the oil phase. The LNC fabrication was then repeated, following the evaporation of acetone, 

to generate nanocapsules loaded with Nile red. The loading, recovery and retention of the dye 

in the LNCs has been previously described.
19

  

To allow quantification of the LNCs in the mucus translocation studies a radiolabel 

chelator, 0.1% w/w 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine -N-

diethylenetriaminepentaacetic acid (DMPE-DTPA), was incorporated into the shell of the 

LNC systems. The radiolabel was added to the LNC components during the emulsification 

step of the nanocapsule manufacture process. This was achieved by diluting the 

nanosupension to 12 mg/mL with 0.1 M ammonium acetate buffer (pH 6.6). Indium-111 

chloride (Mallinckrodt Medical Inc, Petten, The Netherlands), ~50 MBq (
111

InCl3, half-life 

2.83 days), was dissolved in 0.5 M ammonium acetate (pH 5.0) and mixed with LNC50-
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DMPE-DTPA at a ratio of 1:2 v/v. The mixture was incubated at 37°C for 45 min under 

gentle shaking. Radiolabelling efficiency and stability was measured by quantifying the 

radioactivity in the supernatant of the washing solution and washed particle residue after 

three cycles of washing using spin filtration with Amicon ultrafiltration centrifuge tubes (30 

kDa MWCO; Millipore Ltd, Hertfordshire, UK). 

2.4. Nanomaterial Characterization 

The size of the LNCs and the polystyrene nanoparticles were analysed by dynamic light 

scattering using a Zetasizer Nano ZS (Malvern, Worcestershire, UK). The nanosystems (250 

µg/mL) were suspended in 50 mM Tris buffer solution (50 mM, pH 8.5) and sizes were 

measured at 37°C. Tris was used as the electrolyte as, unlike phosphate, it is not known to 

screen electrolyte interactions in mucus barriers. All measurements were carried out at a 

scattering angle of 173° using water as the dispersant. Each measurement comprised of 10 to 

14 runs and was performed in triplicate for each sample. Zeta potential measurements were 

performed at 37°C and the nanosuspensions were diluted in Tris buffer (50 mM, pH 8.5) to a 

final concentration of 250 µg/mL. Each measurement collected data from between 50 to 100 

runs and the measurements were performed in triplicate. 

2.5. Nanomaterial Translocation Studies 

In the translocation experiments the polystyrene diffusion coefficients in undiluted 

PGM were calculated using a fluorescence assay, whilst the diffusion of the LNCs was 

calculated using a radiochemical assay. The translocation studies used a Transwell system 

(0.3 cm
2
 polyester, 3 μm pore size, Corning, UK) was used to support a PGM/CFM layer, 

which was inserted above a receiver chamber containing 600 μL of Tris buffer (50 mM, pH 

8.5).  The particle translocation through the Transwell support was measured in preliminary 
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studies, but it was extremely rapid, presumably due to the limited barrier properties of the 

support alone with contained 3 µm holes, and hence a diffusion rate could not be calculated. 

Therefore, the translocation of sodium fluorescein through barriers with a theoretical PGM 

thickness of 35, 180, 350, 500, 700, 1400, 2100 and 2800 μm was used to establish the 

translocation model. The thickness of PGM layers were confirmed by microscopy (Leica 

CM3050, Leica Microsystems, UK). For the fluorescein translocation experiments, the PGM 

was placed in the Transwell at 37°C for 1 h to equilibrate before a donor solution containing 

100 μL of sodium fluorescein (100 μg/mL) in Tris buffer (50 mM, pH 8.5) was applied onto 

the surface of the PGM layer, t=0. At regular time points over 30 h, 50 μL samples were 

removed from the receiver chamber, an equivalent volume of Tris buffer was replaced into 

the chamber and the amount of fluorescein in the samples was determined by measuring 

fluorescence intensity using an excitation of 460 nm and an emission of 515 nm at 37°C 

(FLx800 Microplate Fluorescence Reader, Bio-TEK Instruments, UK). The fluorescein assay 

methodology was shown to be fit for purpose in terms of precision and limit of detection in 

previous work.
19

 The cumulative mass of sodium fluorescein transferred to the receiver 

chamber per cm
2 

of PGM area was calculated, plotted against the time and the PGM barrier 

translocation rate was calculated from the linear portion of the mass transported vs time plot.  

Upon establishing the optimal thickness of barrier to use for the PGM layer, the 

penetration of the nanoparticles across the Transwell support was tested at 37°C, the effect of 

using different donor solution volumes (1, 5 or 10 μL) was evaluated using a 35 μm thick 

PGM barrier, the recovery from the experiments was confirmed and the effect of barrier 

thickness effects on the transport of 1 μL of 10 mg/mL polystyrene nanoparticles was 

examined. The optimised methodology was used to test the translocation of polystyrene 

nanoparticles of three different sizes: 50 nm, 200 nm and 750 nm across both PGM and CFM. 
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A particle loading dose of 0.01 mg (i.e. 1 μL of a 10 mg/mL suspension) was applied onto the 

surface of the PGM layer. The effect of pH on the transport of 200 nm polystyrene 

nanoparticles across both PGM and CFM was studied by adjusting the Tris buffer to pH 2.5, 

6.5 and 8.5. Nanoparticle transport was quantified by measuring fluorescence intensity in the 

receiver fluid as described above and the % transport was calculated in relation to the applied 

dose of nanomaterial. The particle translocation rate was converted into a particle diffusion 

rate (Equation 2): 

h

DC

dt

dM
   (Equation 2) 

where dM/dt was the flux, D was the diffusion coefficient, C was the concentration of the 

permeant in the donor solution and h was the thickness of the barrier. This version of Fick’s 

law is probably the most commonly used in the field of pharmaceutics. It does assume that 

the concentration gradient across the barrier is linear and constant, i.e. time independent. It is 

also assumed that the drug substance concentration in the donor compartment is constant and 

that the concentration in the receiver chamber is virtually zero as compared to the donor 

concentration. The concentration gradient thus becomes equal to the concentration of the 

drug substance in the donor chamber at time zero. These assumptions were considered 

reasonable in all the experiments reported in this work. 

 

In order to verify that particles were present in the receiver fluid at the basolateral side 

of the PGM barrier, selected samples were analysed using Transmission Electron Microscopy 

(TEM).  These 3 µL samples were placed onto a Formvar coated grid, washed for 2 min with 

deionized water three times and stained with 1% aqueous uranyl acetate for 3 min at 4°C 
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until dry. Images were obtained using a FEI Tecnai G2 transmission electron microscope 

operated at 200 kV fitted with a Gatan Ultrascan US1000 (2k×2k) camera.  

 

LNC transport was measured using the same translocation protocol as the polystyrene 

nanoparticles using both the PGM and CFM barriers. To induce the LNC to distend they were 

mixed with Pluronic
®
 L62D (80 mg/mL) to obtain a LNC: surfactant ratio of 1:0.5 w/w. 

Upon initiating the distension process the particles were immediately applied to the 

PGM/CFM layer. At appropriate intervals, during the 8 h diffusion experiment, samples from 

the Transwell receiver fluid were removed and the radiolabelled LNCs were quantified by 

scintillation counting. The sample volume was replaced to maintain 600 µL in the receiver 

chamber of the Transwell chamber. 

2.6. Nanomaterial Tracking Studies 

The diffusion of the nanoparticles in a mobile PGM bed was measured directly using a 

NanoSight LM10 (Malvern Instruments, Worcestershire, UK) with an LM14 top-plate, 

equipped with a green 532 nm laser and syringe pump using a method that had previously 

been shown to be fit-for-purpose with non-Newtonian polymer gels.
13

 All the test samples 

were diluted by a factor of 100 (i.e. to 0.28% w/w) and mixed before being injected into the 

system. It should be noted that the dilution of PGM should not influence the hydrodynamic 

interactions of the nanomaterials in the gel, which are concentration-independent at the 

concentration ranges used in this study.
23

 An aliquot of 1 mL was injected into the NanoSight 

LM10 and the images were captured with a 560 nm wavelength filter in place. Then 6×60 s 

videos were recorded for each experiment, whilst samples were pushed continuously through 

the top-plate at a speed of 50 AU. This was repeated 3 times, for 3 independent dispersions of 

particles in the PGM gel. All measurements were conducted at 37°C. The diffusion 
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coefficients were determined for each set of videos using NTA v3.1 software (Malvern, UK) 

and presented as the mean diffusion coefficient distributions (n=3).
13

 Using this method a 

high proportion of particles have previously been shown to diffuse normally and thus the 

effects of subdiffusion was not quantified in this work. 
24

  

2.7. Data and Statistical Analysis 

The particle diffusion in water (Dw) was calculated using the Stokes-Einstein equation 

assuming a temperature of 37°C, which was equivalent to the experimental studies. The Dw 

was used to calculate the Dm/Dw, which allowed comparison to previous work, e.g., Lai et 

al., 2011.
11

 SPSS version 20 (IBM, UK) was used for all statistical analyses. The transport 

data were tested for the normality, the normally distributed data was analysed statistically 

using one way analysis of variance (ANOVA) and the non-normally distributed data was 

tested using a non-parametric Kruskal-Wallis test. Post hoc comparisons of the means of 

individual groups were performed when appropriate using Dunnet’s test for normal 

distributed data and Games Howell test for non-Gaussian distributed data. For all pair-wise 

comparison of means, Student’s independent T-test or Mann-Whitney test was applied. 

Differences were considered to be statistically significant at a level of P < 0.05. 

 

3. Results 

3.1. Purified porcine gastric mucin and cystic fibrosis mucus characteristics 

Size exclusion chromatography demonstrated that the PGM had not undergone 

significant proteolysis during the preparation stages; molecular weight range of 14 to 860 

kDa with an average of 250 kDa (see supplementary data; Fig.S1). The undiluted PGM (28% 

w/w) possessed viscoelastic properties with a G’ (elastic modulus) that was consistently 

higher than the G” (viscous modulus), which is typical for mucin containing gels  (see 
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supplementary data; Fig.S2).
25

 The gel’s G’ (elastic modulus) was 100.3 Pa and G’’ (viscous 

modulus) was 57.5 Pa at 10 Hz. The PGM G’ was approximately 5 times higher and the G’’ 

approximately 15 times higher than equivalent values reported for mucus taken directly from 

cystic fibrosis patients,
26

 but the sum of these indices (G
*
) was about 3 times lower than 

canine respiratory mucus.
27

 The variance in PGM rheological properties by less than a factor 

of 10 compared to mucus samples directly taken from in vivo sources substantiated its direct 

use, i.e., undiluted, in the translocation studies. 
4
 The rheology of the CFM was not tested in 

the current study, due to the its limited availability, but its viscosity was assumed to be within 

the typical range quoted in the literature.
4
 The CFM displayed an average molecular weight 

of 412 kDa (see supplementary data; Fig.S3), which was higher than the PGM and consistent 

with the suggestion that the CFM contained longer oligosaccharides compared to other mucus 

types.
28, 29

 The CFM displayed a higher molecular weight polydispersity compared to the 

PGM, which was typical for non-purified CFM samples as they contained a high proportion 

of extracellular material. 

3.2. Nanomaterial Translocation Assay Development 

As the PGM barrier increased in thickness the permeation rate of the fluorescein marker 

reduced (see supporting information; Fig.S4) and the amount of fluorescent material leaking 

from the PGM barrier increased (data not shown). Prior to adding the nanomaterials to the 

PGM barrier in the Transwell, the diffusion of the nanomaterials across the Transwell support 

was established to be too rapid to measure (data not shown) and the chemical assay recovery 

was determined (95%). When the nanomaterials were added to the apical surface of the PGM 

using increasing amounts of Tris buffer (total buffer applied increased from 0.05 µmol to 0.5 

µmol) the 200 nm polystyrene nanoparticle diffusion was suppressed (see supporting 

information; Fig.S5), but this did not modify the barrier swelling of the PGM (see supporting 
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information; Fig.S5). As a consequence of this preliminary work the subsequent nanomaterial 

translocation studies used a 1 µL sample application volume and a 35 µm thick barrier (see 

supporting information; Fig.S4) because these conditions produced a confluent PGM barrier 

whilst avoiding significant leaching of mucin fragments into the receiver fluid, which 

produced fluorescence noise (Fig.2). In addition, the selected nanomaterial translocation 

experimental conditions allowed a measurable amount of nanoparticles to pass the barrier 

(Fig.2, TEM images) whilst the barrier retained a thickness that was similar to the respiratory 

mucus in vivo.
30
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Fig.2.Fluorescence intensity and transmission electron micrograph (inset) of the material in 

the Transwell receiver chamber following the application of polystyrene 200 nm 

nanoparticles or particle-free control (Tris buffer pH 8.5) to the purified porcine gastric 

mucin layers with a thickness of (A) 35 µm, and (B) 2800 µm. Data represent mean ± 

standard deviation (n = 3). The black scale bar in the images represents 200 nm. 

In the initial PGM diffusion experiments the nanomaterial translocation was measured 

over 24 h. The transport profile from these measurements implied that the particle transport 

of the polystyrene materials was unidirectional. The subsequent PGM diffusion comparisons 

were made over 60 min as this was thought to be more relevant to the typical resonance of 

nanomaterials in mucus barriers, which are continually replenished in vivo. 
4
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3.3. Nanomaterial Translocation across PGM 

The carboxylated polystyrene nanoparticles were verified to be of the size described by 

the manufacturer’s specification and they were shown to exhibit a negative zeta potential 

(Table 1). The polystyrene particle’s zeta potential reduced as pH of the dispersion medium 

became more acidic (Table 1). 

Table 1. Nanomaterial characteristics and barrier diffusion rates. Data represents the mean ± 

standard deviation (n = 3). Symbols indicate a statistical difference when comparing the 

results across the groups which differed in *particle size, 
#
pH and △surface chemistry 

(p<0.05). PS denotes polystyrene, LNC lipid nanocapsules and DLNC distended lipid 

nanocapsules (diameter denotes the non-distended dimension, note the distended size was 75 

nm at 100 min). PGM represents porcine gastric mucin and CFM cystic fibrosis mucus. Dw is 

the nanomaterial diffusion in water and Dm is the diffusion through the barrier. ND refers to 

no diffusion detected in the 60 min time period of measurement.  

Test System Diameter 

(nm) 
-

potential, 

(mV) 

Diffusivity in 

PGM, (x 10 
-

10
)(cm

2
s

-1
) 

Dw/Dm 

PGM 
Diffusivity in 

CFM, (x 10 
-

10
)(cm

2
s

-1
) 

Dw/Dm 

CFM 

PS50 pH 8.5 53 ±  1 -35.9 ± 0.8 9.87 ± 0.61 132.9 1.14 ± 0.20 1150.7 

PS200 pH 8.5 187 ± 2 -48.4 ± 1.4 19.93 ± 5.47 16.5 ND - 

PS750 pH 8.5 778 ± 3 -61.5 ± 1.0 6.67 ± 1.28* 13.1 ND - 

PS200 pH 6.5 185 ± 2 -41.8 ± 3.9 9.54 ± 3.26 34.4 ND - 

PS200 pH 2.5 183 ± 2 -33.2 ± 1.1 2.98 ± 0.74# 11.0 ND - 

LNC50 pH 8.5 52 ± 2 -3.5 ± 0.6 30.08 ± 2.49△ 43.6 28.99 ± 3.28△ 45.3 

DLNC50
a
 pH 8.5 52 ± 2 -2.4 ± 1.0 27.10 ± 3.84△ 48.4 29.51 ± 2.13△ 44.5 

 

The 200 nm polystyrene particles moved across the PGM barrier twice as fast as the 

50 nm particles and three times faster than the 750 nm particles (p < 0.05; Fig.3A). The 

fastest rate of diffusion for the 200 nm PS nanoparticles was observed at pH 8.5, which was 

2- and 7-fold faster compared to pH 6.5 and pH 2.5, respectively (p < 0.05; Fig.3B, Table 1). 

The PGM had the capability of restricting the polystyrene nanoparticle movement such that 

diffusion was up to 133 times slower than the calculated diffusion in water (Table 1). 
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Fig.3.(A) The translocation of 50, 200 and 750 nm polystyrene nanoparticles (pH 8.5) across 

porcine gastric mucin (PGM) (B) The translocation of 200 nm polystyrene nanoparticles at 

pH 2.5, 6.5 or 8.5 across PGM (C) The translocation of 50, 200 and 750 nm polystyrene 

nanoparticles (pH 8.5) across cell line derived cystic fibrosis mucus (D) The translocation of 

200 nm polystyrene nanoparticles at pH 2.5, 6.5 or 8.5 across cystic fibrosis mucus. Data 

represent mean ± standard deviation (n = 3). 

The LNCs were 50 nm in diameter with a small negative zeta potential (Table 1). Their 

diffusion rate across the PGM was 3 times faster than the equivalent-sized negatively charged 

polystyrene particles (p < 0.05; Fig.3). When the LNC distension process was triggered (size 

increase is reported in supplementary data Fig S6, this data matched that reported in previous 

work
19

), the diffusion rate across the PGM was equivalent to non-distended particles (p > 

0.05), indicating that surfactant-induced particle distension had little effect on translocation in 

this model (Fig.3B). The effect of the surfactant on the barrier structure could not be 

determined, but if the surfactant broke down the barrier structure it may have been 
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counterbalancing the size change experienced during nanomaterial size distension, which 

would be expected to slow the particle diffusion down. The diffusion of the LNCs was 

approximately 45 times slower in the PGM than in water (Table 1). Over 60 min almost all of 

the LNCs that were applied to the apical surface of the PGM barrier passed through it and 

this demonstrated that the SLN translocation was more extensive compared to the polystyrene 

particles (maximum translocation approximately 50%) over the 60 min time period. 

 

   

Fig.4. The translocation of 50 nm lipid nanocapsules (LNCs) upon triggered distension 

compared to non-triggered 50 nm LNCs through a 35 µm thick (A) purified porcine gastric 

mucin (PGM) gel at pH 8.5.and (B) cell-line derived cystic fibrosis mucus gel at pH 8.5. Data 

represent mean ± standard deviation (n = 3). 

 

3.4. Nanomaterial Translocation across CFM 

The translocation of the polystyrene nanoparticles across the static CFM barrier was 

much slower compared to the translocation across PGM for all the polystyrene particles 

(Table 1; Fig. 3C and 3D). Only the 50 nm particles, when applied in a buffer at pH 8.5, 

generated a particle translocation that was significantly different to zero at the 60 min time 

point and therefore the other systems were considered to be effectively immobile in the CFM 

over this time frame. Further, experiments were not conducted to confirm if the 

nanomaterials were immobile or simply diffusing very slowly because even if they were 
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diffusing very slowly it was thought unlikely that such particles would be investigated as 

drug delivery vectors. The magnitude of retardation of the 50 nm polystyrene particle 

diffusion in the CFM compared to the PGM was approximately 10-fold (p < 0.05; Table 1).  

 The LNCs exhibited a ~ 30-fold higher translocation rate compared to similar sized 

polystyrene particles (p < 0.05), irrespective of the distension process, in CFM (Fig.4A and 

B). Unlike the polystyrene particles, LNC diffusivity was not slowed down in the CFM 

compared to PGM. Almost all the LNCs passed the barrier in the 60 min time frame, which 

suggested the particle diffusion was extensive and unidirectional through CFM (p > 0.05). 

As the diffusion of all the nanomaterials was detectable in PGM only this barrier was 

used in the particle tracking studies in order to understand how the hydrodynamic and steric 

interactions influenced the nanomaterial diffusion in the gel. 

3.5. Nanomaterial Tracking in PGM 

The mean particle diffusion rates were up to thirty times greater in PGM gels mobilised 

in the flow through cell compared to the Transwell diffusion studies according the 

nanomaterial tracking measurements (Fig 5). In the mobile PGM system even though it 

appeared that the 50 nm sized polystyrene particles diffused at a faster rate than the 200 nm 

and 750 nm particles the error associated with the measurements resulted in no statistically 

significant differences between the particle of different sizes (p > 0.05, Fig.5). The distended 

LNCs did diffuse more slowly (3.97 ± 1.38 x 10
-8 

cm
2
/s, p < 0.05) compared to the non-

distended materials (4.94 ± 0.04 x 10
-8

 cm
2
/s, Fig.5)). The LNC data suggested that particle 

size (the distended materials swelled up to a size of 250 nm) was important in the 

nanomaterial diffusion profile in the absence of steric effects for the soft lipid materials. 
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Fig.5. The diffusion coefficients of polystyrene and lipid nanoparticles in porcine gastric 

mucin (PGM) displaying the effect of polystyrene particle size (red), effect of media pH on 

polystyrene 200 nm nanoparticles (blue), distension triggered and non-triggered lipid 

nanocapsules (LNCs) (green) and nanoparticle composition (purple). Data represent the 

means ± standard deviation, where n = 3. 

It was notable that there was a wide range of particle diffusion coefficients measured 

for each polystyrene sample, i.e., the measurement polydispersity was relatively high in 

comparison to that obtained in polymer gels in previous work,
13

 but as the nanomaterial 

particle size increased the diffusion coefficient profile appeared to become more 

monodisperse (see Supplementary material Fig S7 for the diffusion distribution data). 

Changing the pH of the mobile PGM gel showed very little change in measurement 

polydispersity, but it did have an influence on the diffusion of the nanomaterials through the 

mobile PGM gel. The diffusion coefficient at pH 2.5 was significantly different (p < 0.05) to 

pH 6.5 and pH 8.5, but there was no significant difference between the pH 6.5 and 8.5 groups 

of data (Fig S7 and Fig.4, pH 2.5 –1.07 ± 0.07; pH 6.5 –1.98 ± 0.34; pH 8.5 –2.67 ± 0.99x 10
-

8 
cm

2
/s). 

There appeared to be two important differences between the comparisons of the particle 

diffusion speeds in the translocation studies and the particle tracking studies. Firstly, the 50 
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nm LNC diffusion was very similar to the 50 nm polystyrene nanomaterial diffusion in the 

particle tracking experiments (4.94 ± 0.04 x 10
-8

 cm
2
/s, compared to 3.29 ± 165 x 10

-8
 cm

2
/s, 

respectively, no statistical significant difference observed). Secondly, in the particle tracking 

measurements, triggering the distension of the LNC reduced their diffusion speed and this 

was not observed in the translocation studies. These differences were a consequence of 

disrupting the barrier structure and this implied that it was the modification of LNC’s steric 

interactions with the barrier that underpinned their ability to penetrate the barrier faster than 

the polystyrene materials. 

4. Discussion 

Measuring particle diffusion using the translocation assay, which employed 35 µm 

thick PGM and CFM barriers mounted in Transwell diffusion cells, provided evidence to 

suggest that the -ve polystyrene nanoparticles were mucuoadhesive. 
32

 In this work the 

mucoadhesion of the  polystyrene particles resulted in the 50 nm sized materials passing 

through the PGM more slowly compared to the 200 nm sized materials. This type of diffusion 

data has previously been reported and it has been suggested that slower translocation of small 

nanomaterials across mucin rich barriers is a consequence of the materials taking a more 

tortuous diffusion path, i.e., the particles experience more extensive steric interactions with 

the mucin gel. 
14

 The diffusion measurements in a mobile PGM bed supported this theory, 

because when the mucin structure was disrupted and the steric interactions were supressed 

there was no statistical difference between the diffusion of the polystyrene particles of 

different sizes. However, the large error associated with the diffusion measurements in the 

mobile PGM beds and the broad diffusion ranges of the particles suggested that there were 

also significant hydrodynamic interactions between the mucin and the particles even when 

the steric interactions were supressed by perturbing the PGM structure.
34
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Reducing the PGM pH appeared to slow the diffusion of the nanomaterials, both in the 

Transwell and the particle tracking diffusion measurements. This could have been a 

consequence of the change in ionisation of the carboxyl and sulphated groups present on the 

particle surface, which were fully ionised between pH 5-9 (Manufacturer’s data), but only 

partially ionised  pH 2. However, because a greater pH induced reduction in diffusion was 

observed in the translocation experiments compared to the particle tracking experiments this 

again suggested that the steric interactions had a more profound impact on the particle 

diffusion compared to hydrodynamic interactions, hence the effects of pH on the mucus 

barrier were perhaps more consequential. A tighter barrier is produced by the mucin at acidic 

pHs and this probably was the cause of the enhanced the diffusion restriction observed at pH 

2 compared to pH 8.5. 
32

 At low pHs it was also more likely that the carboxylated polystyrene 

nanoparticles, which do possess a hydrophobic surface 
33

, showed stronger interactions with 

mucus mucin through hydrophobic interactions. 
35

  

In the CFM the 50 nm polystyrene materials diffused more rapidly compared to the 200 

nm materials. Therefore, it was unlikely that the same mechanism of diffusion restriction was 

acting on the polystyrene materials in both the PGM and CFM. The principle differences 

between CFM and PGM were that PGM contained more mucin
36

 whilst CFM contained a 

larger amount of extracellular material.
37

 The extracellular material in CFM would effectively 

fill the mesh spaces in the gel and this could increase the steric interactions between the gel 

and the nanomaterials and modify the hydrodynamic interactions by shielding the mucin 

fibres from interacting with the particles. In addition, is it likely that the mucins from the cell 

culture system are of gel forming quality and therefore my retain more of the domains that 

can interact with itself (smaller pores) and the nanomaterials. Unfortunately, direct evidence 

of which of the two interaction types, steric or hydrodynamic, were most influential in the 
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CFM mucus could not be gathered in this work because of the low mobility of the particles in 

the CFM during the diffusion cell measurements and the large amount of CFM required for 

the particle-tracking measurements using the commercial equipment. 

The similar translocation speed of the 50 nm PEG coated LNCs across the mucin rich 

barriers irrespective of the barrier composition or the LNC distension process demonstrated 

that the LNC had very limited interactions with the barrier. These findings were in agreement 

with previously published work that has shown that both 50 nm and 300 nm PEG coated 

materials penetrated respiratory mucus to extend nanoparticle residence at the surface of the 

epithelium.
31

 It appeared that the steric interactions of the LNCs were modified more than the 

hydrodynamic interactions in PGM when comparing the LNCs to the 50 nm polystyrene 

particles which was in agreement with the previous observations made in this work. 

Both the LNC and the polystyrene nanomaterials appeared to show unidirectional 

movement through the mucin rich barriers in the translocation studies, albeit over different 

timescales (LNC 100% diffusion in 60 min and polystyrene in 500 min). Leon et al., (2013), 

who used a novel microchannel diffusion method to understand both the material diffusion 

and the partitioning into the mucus barrier, suggested that the Donnan transport process, 

which drives uni-directional diffusion, played a role in the transport of nanomaterials across 

mucus barriers.
40

 In the current study there were two major gradients in the mucus 

translocation experiments, the particle concentration gradient and the electrolyte gradient, 

both were passive transport processes. The electrolyte gradient was established as a 

consequence of applying 1 µL of 50 mM tris buffer to the apical surface of the mucus and 

600 µL of tris buffer to the basolateral side. When more Tris was applied to the apical surface 

of the mucin rich barrier the rate of particle diffusion was suppressed. The barrier swelling 

did not change upon addition of the different volumes of Tris and so either the buffer 
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transport was involved in the particle diffusion process or the buffer was shielding the 

electrostatic interactions of the mucin. Previous work has shown that charge shielding of the 

mucin electrostatic interactions with nanomaterials by the addition of high electrolyte 

concentrations does not decrease, but rather increases the diffusion of charged nanomaterials 

41
 and so the data reported in the translocation experiments were thought to be most likely 

influenced Donnan phenomena 
42

. As the electrolyte effects were only tested with the 

polystyrene materials in the current study further work is needed to understand how 

electrolyte gradients could function to modify the translocation of soft nanomaterials 

exhibiting different properties across mucus barriers. 

The thirty fold increase in nanomaterial diffusion coefficients when shear was applied 

to the PGM compared to those calculated for the same materials in the static gel suggested 

that the mucin structural integrity was an important factor in its ability to hinder nanoparticle 

diffusion. Previous work has noted that the most hydrophobic domains of the mucus are at 

the points of mucin cross links and in this study the shear imparted on the mucin rich barrier 

during flow through would most probably break these regions down.
38

 The notion that the 

mucus cross links were important in hydrophobic interactions with the nanomaterials fits in 

well with the previous suggestion that the polystyrene materials were interacting the mucus 

through hydrophobic interaction, which were more likely to occur at the mucus cross-link 

points. In addition, it provides an explanation as to why the LNCs showed a similar diffusion 

rate in the nanoparticle tracking measurements compared to the polystyrene nanomaterials, 

whereas in the Transwell translocation experiments the LNCs diffused significantly faster. If 

hydrophobic interactions were important and they were at the cross linking points of the 

mucin then the PEG protection on the LNCs would be most effective when the gel was intact. 

This close relationship between hydrodynamic and structural interaction forces with the 
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mucus structure may be the reason why it is not easy to experimentally separate and measure 

these two types of interactions in different types of mucus systems and suggests that 

theoretical and experimental procedures need to be designed to probe these interactions more 

carefully in order to gain a better understanding of nanomaterials penetration through mucus 

gels. 

CONCLUSIONS 

The calculation of diffusion coefficients using both particle translocation and particle 

tracking measurements showed that the PEG coated, soft, distensible lipid 50 nm 

nanoparticles efficiently penetrated both PGM and CFM. A comparison of the data from the 

two diffusion measurement techniques suggested that the efficient translocation of the LNCs 

was a consequence of diminished hydrophobic interactions with the barrier compared to solid 

polystyrene materials of an equivalent size. The PEG coating of the LNC was equally 

effective in protecting the materials from mucin interactions in both PGM and CFM and this 

suggested that the hydrodynamic and steric interactions were inherently linked to the mucus 

structure. These findings can guide the design of nanomaterials for applications such as gene 

delivery where the active needs to cross the mucus barrier to reach epithelial target cells. 
43

  

Intriguingly, the data presented in the study also suggested that electrical gradients 

established during diffusion of surface charged nanomaterials through mucus barriers may 

facilitate their unidirectional transport and this provides an interesting hypothesis to peruse in 

further work. In addition, an immediate areas for future work is the delivery of the triggered 

release LNCs reported herein to the lung as a respirable aerosol. This could be achieved using 

a dual chamber device that allows the physical separation of the trigger and the LNCs, e.g. 

the prototype the ‘Duohaler®’ available from Vectura Ltd, which would allow mixing only 

upon dose actuation. 
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SUPPORTING INFORMATION 

The Supporting Information is available in Supplementary data (PDF). 
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