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Abstract
In the past, efforts to prepare for the impacts of ElNiño-driven flood and drought hazards have often
relied on seasonal precipitation forecasts as a proxy for hydrological extremes, due to a lack of
hydrologically relevant information. However, precipitation forecasts are not the best indicator of
hydrological extremes. Now, two different global scale hydro-meteorological approaches for
predicting riverflow extremes are available to support flood and drought preparedness. These
approaches are statistical forecasts based on large-scale climate variability and teleconnections, and
resource-intensive dynamical forecasts using coupled ocean-atmosphere general circulationmodels.
Both have the potential to provide early warning information, and both are used to prepare for ElNiño
impacts, but which approach provides themost useful forecasts? This study uses riverflow
observations to assess and compare the ability of two recently-developed forecasts to predict high and
low riverflowduring ElNiño: statistical historical probabilities of ENSO-driven hydrological
extremes, and the dynamical seasonal riverflowoutlook of theGlobal FloodAwareness System
(GloFAS-seasonal). Ourfindings highlight regions of the globewhere each forecast is (or is not) skilful
compared to a forecast of climatology, and the advantages and disadvantages of each forecasting
approach.We conclude that in regions where extreme riverflow is predominantly driven by ElNiño,
or in regionswhereGloFAS-seasonal currently lacks skill, the historical probabilities generally provide
amore useful forecast. In areas where other teleconnections also impact riverflow,with the effect of
strengthening,mitigating or even reversing the influence of ElNiño,GloFAS-seasonal forecasts are
typicallymore useful.

1. Introduction

Global overviews of upcoming flood and drought events provide valuable information for organisations
working at the global scale, across a range of water-related sectors from agriculture to humanitarian aid.
Producing such forecasts at the global scale has only become possible in recent years due to the integration of
meteorological and hydrologicalmodelling capabilities, improvements in data, satellite observations, and
increased computer power [1–4].While several forecasting centres nowproduce operational forecasts offloods
in themedium-range, up to∼2weeks ahead [5], earlier indications,manyweeks or evenmonths in advance,
could be beneficial for water resources and disaster riskmanagement.

Broadly speaking, there are two keyways to extend the predictability of river flow and provide earlier
indications offlood hazard: statistical forecasts, typically based on large-scale climate variability and
teleconnections, and dynamical forecasts using coupled ocean-atmosphere general circulationmodels (GCMs).
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Operational seasonal forecasts, using both statistical and dynamical approaches, are widely available for
meteorological variables, but the hydrology is often not represented, particularly for large or global scales. This
means that forecasts of precipitation are often used as a proxy forflooding.However, research has shown that
the link between precipitation and floodmagnitude is nonlinear [6], and as such, precipitationmay not be the
best indicator of potentialflood hazard [7]. Recently, there has been an effort to provide the equivalent early
awareness information for hydrological variables, as exists formeteorological variables.

Global scale statistical forecasts often rely on ENSO (ElNiño SouthernOscillation) teleconnections. ENSO is
the largest signal of interannual climate variability [8]; a phenomenon inwhich sea surface temperatures (SSTs)
in the central and eastern equatorial Pacificfluctuate betweenwarm (ElNiño) and cool (LaNiña) conditions.
ENSO is known to influence various aspects of weather and climate, including river flow [9] andflooding
[10–12], worldwide. Historical probabilities, such as those provided by the International Research Institute for
Climate and Society [13] for precipitation and temperature, are an example of a statistical forecast that is often
used for ElNiño preparedness activities.

In response to a lack of hydrologically-relevant information on ENSO impacts, Emerton et al [14] estimated
historical probabilities of high and low river flowduring ElNiño and LaNiña. These historical probabilities
provide statistical forecasts of extreme river flow, based on the links between past ENSO events and river flow
across the globe.

The recentmove towards the development of coupled atmosphere-ocean-landmodelsmeans that it is also
nowbecoming possible to produce seasonal dynamical hydro-meteorological forecasts. Thefirst operational
global seasonal river flow forecasting systemwas implemented in 2017, as part of theGlobal FloodAwareness
System (GloFAS; [1]). GloFAS-Seasonal [15] provides openly-available dynamical forecasts of high and low river
flowout to 4months ahead by forcing a hydrological river routingmodel with seasonal forecast output from
aGCM.

Both forecast approaches have the potential to provide early warning information through provision of
hydrologically-relevant global scale forecasts, and both are used to prepare for ElNiño impacts, butmore
research is required to explore whether statistical forecasts are able to provide stronger indications of changes in
hydrological extremes than seasonal dynamical forecasts.

This study uses river flowobservations to compare the potential usefulness of these two global scale forecasts
of river flowduring ElNiño events. Both forecasts are compared to a forecast of climatology and then against
each other, using an event-based verification approach.

2. Forecasting approaches

2.1.Dynamical approach: GloFAS-Seasonal
GloFAS-Seasonal provides global scale seasonal hydro-meteorological forecasts using aGCM. Implemented in
2017, it is run by the EuropeanCentre forMedium-RangeWeather Forecasts (ECMWF) and the European
Commission Joint ResearchCentre (JRC), as part of the Copernicus EmergencyManagement Services. It uses
surface and subsurface runoff forecasts fromECMWF’s latest seasonalmeteorological forecasting system,
SEAS5 [16, 17], to drive a river routingmodel, Lisflood [18], producing forecasts of river flowout to 4months
ahead. TheGloFASwebsite (www.globalfloods.eu, seefigure 1(a) for example) provides openly available
seasonal outlooks of the likelihood of exceeding / falling below the climatological thresholds of high (80th
percentile) and low (20th percentile)weekly-averaged river flow.

For this study, wemake use of theGloFAS-Seasonal reforecasts, whichwere produced using the SEAS5
reforecasts [15, 19] initialisedwith the ERA5-R river flow reanalysis [15]. ERA5 [20] is currently still in
production, and as such, 34 years of data were available withwhich to produce the reforecasts: 1981–1983, and
1986–2016.

2.2. Statistical approach: historical probabilities
Historical Probabilities (hereafter referred to asHistProbs) provide information about typical ElNiño impacts
based on historical evidence [21, 22]. The probability of an impact is predicted based on the frequency of
occurrence during past ElNiños.

TheHistProbs of high and low river flowduring ENSO events fromEmerton et al [14] have been reproduced
in this study forweekly-averaged river flow, in order to directly compare themwithGloFAS-Seasonal. Following
themethod of Emerton et al [14], we used the ERA-20CM-R 10-member, 110-year (1901–2010) river flow
climatology to calculate the upper and lower 20th percentile of river flow for each grid point.We then calculate,
for eachweek of an ElNiño, the percentage of historical El Niños duringwhich the high or low flow threshold
was exceeded. The use of ERA-20CM-R allows formore ElNiños to be included in the calculation of the
HistProbs, with 30 ElNiños identified over the 110-year period. An ElNiño is identifiedwhen the SST anomaly
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in the central equatorial PacificOcean (Niño3.4 region; 5° S–5°N, 170°–120°W) exceeds+0.5 °C for at least five
consecutive (overlapping) three-month periods.

TheHistProbs (figure 1(b))were estimated for each grid point, through calculation of the percentage of the
30 historical ElNiños inwhich the river flow exceeded the highflow threshold, or fell below the lowflow
threshold, during the sameweek. This was repeated for each of the 10 ensemblemembers of ERA-20CM-R. The
ensemblemean probability was then interpolated from the 0.5° (∼50 km) resolution of ERA-20CM-R, to the
0.1° (∼10 km) resolution ofGloFAS-Seasonal; it is this higher-resolution ensemblemean that is used
throughout this study.

3. Evaluation data andmethods

This study evaluates the predictability of hydrological extremes during ElNiño in bothGloFAS-Seasonal and the
HistProbs by assessing the ability of each system to predict high and low river flow,with the correct timing,

Figure 1. (a)Example of theGloFAS-Seasonal forecast website, displaying the probability of exceeding both the high (blue) and low
(orange) river flow thresholds. (b)Example of theHistProbs forecast for oneweek during an ElNiño. Themap displays the probability
of exceeding both the high (blue) and low (red) river flow thresholds.While both examples display forecasts for February during anEl
Niño event, (a) indicates themaximumprobability over the 4-month lead time for a forecast started in February, and (b) indicates the
probability for oneweek in February only.
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during an ElNiño. The ability of a forecast to predict events of the correct category is referred to as the ‘potential
usefulness’ and is of particular importance for decision-making purposes [23].

The potential usefulness is calculated using the relative operating characteristic (ROC) curve, based on ratios
of the probability of detection (POD) and the false alarm rate (FAR) [24]. These ratios are calculated by assessing
whether a forecast correctly predicted an observed event, orwhether itmissed the event or provided a false
alarm, and allow for estimation of the probability that an event will be predicted. The POD (equation (1)) and
FAR (equation (2)) are calculated as follows:

POD
hits

hits misses
1=

+
( )

FAR
false alarms

false alarms correct negatives
2=

+
( )

where a hit is definedwhen the forecast correctly predicted flow exceeding [falling below] the 80th [20th]
percentile during the sameweek that the observed river flow exceeded [fell below] the 80th [20th] percentile of
the observations at that location. It follows that amiss is definedwhen an event was observed but the forecast did
not exceed the threshold, a false alarmwhen the forecast exceeded the threshold but no event was observed, and a
correct negativewhen no event was observed and the forecast did not exceed the threshold.

The ROC curve is constructed from the FAR (horizontal axis) and POD (vertical axis) at different probability
thresholds (in this case, in 10%bins), therefore providing information on the likelihood that an event will be
predicted at a given probability threshold. The geometrical area under theROC curve (AROC; 0�AROC�1)
provides a summary statistic for the performance of a probabilistic forecast, where a forecast that correctly
predicts every observed event (with no recorded false alarms ormissed events)would have anAROCof 1. An
AROC<0.5 indicates that the skill of the forecasts is less than a forecast of climatology, which has anAROC
of 0.5.

TheAROC is used to infer the potential usefulness of the forecast; a forecast that ismore skilful than a
forecast of climatology is said to be potentially useful, whereas a forecast that is less skilful than a forecast of
climatology is not useful. This approach has previously been used in the evaluation of seasonal river flow
forecasts [15, 23]. Often, seasonal forecasts are provided in terms of the likelihood that a given variable will be
above or belownormal (based on terciles) in the comingmonths. The evaluation technique used in this study
presents a significant challenge for both forecasting systems, requiring that they predictmore extremeweekly-
averaged river flow, in the sameweek as that inwhich it was observed, several weeks tomonths ahead.

3.1.Observed data
The two forecasts are evaluated over the same 34-year period (1981–2015), using riverflowobservations
obtained from theGlobal Runoff DataCentre (GRDC; [25]), alongside observations that have beenmade
available toGloFAS [15]. To ensure a large enough sample size for the forecast evaluation, alongside the best
possible spatial coverage, the following criteria are applied to the data:

– Theweekly-averaged river flow record at each stationmust contain data for at least 50% (17 years) of the
evaluation period, in order to calculate the observed high and low flow thresholds (80th and 20th percentiles)
for each station, and for eachweek of the year.

– Theweekly-averaged river flow record at each stationmust contain at least 6 ElNiños over which to evaluate
the forecasts.

– The upstream area of the corresponding grid point in themodel river networkmust be at least 1500 km2.

Data fromhuman-influenced rivers have not been removed, as we are interested in identifying the ability of
both forecasting approaches to predict observed events, rather than their ability to represent naturalflow.Of the
2355 stations in the database,∼1250 contain enough data tomeet the above criteria and are used in this study.

3.2. Calculating potential usefulness of GloFAS-Seasonal
To evaluate the potential usefulness of GloFAS-Seasonal we calculate the AROC for each season during an El
Niño using the observations as a benchmark. TheAROC for a season is calculated by grouping together forecasts
for everyweek during the season for all 11 ElNiño events between 1981 and 2015.

TheAROC is also calculated for lead times of 1–4months ahead, by selecting theGloFAS-Seasonal weekly-
averaged river flow forecast that would have been available 1, 2, 3 and 4months ahead of eachweek of the El
Niño event. For example, for the fourthweek in January the forecast available onemonth aheadwould be the
fourthweek of the forecast produced at the start of January, the forecast available twomonths aheadwould be
the 8thweek of the forecast produced inDecember, and threemonths ahead the 12thweek of the forecast
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produced inNovember. Following the samemethod, for the secondweek inDecember, the forecast available
onemonth ahead for that week, would be the 6thweek of the forecast produced inNovember. This is necessary
becausewhileGloFAS-Seasonal predicts weekly-averaged river flow, the forecasts are updated just once per
month.

3.3. Calculating potential usefulness of the historical probabilities
To evaluate the potential usefulness of theHistProbs we calculate the AROC for each season during an ElNiño
event using the observations as a benchmark.

TheHistProbs are a ‘static’ forecast, that is, the forecasts do not changewith lead time and there is just one
probability for high or low river flowduring eachweek of an ElNiño. As such, the AROC is calculated by
comparing the river flow in eachweek of the 11 ElNiño events in the observations, with theHistProb of high or
low river flow for the corresponding week of the year. TheAROC for a season is calculated by grouping together
forecasts for everyweek during the season, for all 11 ElNiño events between 1981 and 2015.

4. Results

The results presented in this section compare the ‘potential usefulness’ of bothGloFAS-Seasonal and the
HistProbs during an ElNiño. The following criteria are used to define the ‘most useful’ forecast, based on the
null hypothesis that the potential usefulness of the two forecasts is not significantly different:

– If GloFAS-Seasonal has anAROC>0.5 and theHistProbs<0.5, or both exceed 0.5 but GloFAS-Seasonal
has anAROC>0.1 larger than theHistProbs,GloFAS-Seasonal ismost useful

– If theHistProbs have anAROC>0.5, andGloFAS-Seasonal<0.5, or both exceed 0.5 but theHistProbs
have anAROC>0.1 larger thanGloFAS-Seasonal, theHistProbs aremost useful

– If both forecasts have anAROC>0.5, andwithin 0.1 of each other, both are useful and similar

– If both forecasts have anAROC<0.5, neither are useful

The statistical significance of the difference inAROCbetween the two forecasts was investigated using a
bootstrap procedure. For each season and each observation location, all available forecasts for bothGloFAS-
Seasonal (132 forecasts per season across the 11 ElNiño events, at each lead time of 1–4months ahead) and the
HistProbs (143 forecasts per season, providing an independent probability for eachweek of the season, but the
same probability for a givenweek across all 11 ElNiño events), were resampledwith replacement, and the
resultingAROCwas calculated. This process was repeated 1000 times.

Figure 2 displays box plots of the global bootstrappedAROCdifferences (GloFAS-Seasonal -HistProbs) at
lead times of 1 and 3months ahead for high and low river flow inMAMduring an ElNiño. These results indicate
that, aggregated globally, there is evidence that GloFAS-Seasonal provides an improvedAROC for forecasts of
both high and low river flow, however, this is not statistically significant. For high [low]flow 3months ahead, the
medianAROCdifference is 0.32 [0.18], across all stations where at least one of the two forecasts is potentially
useful (AROC>0.5). Further assessment of the bootstrappedAROCdifferences for each individual station
indicates that at∼95.5%of the locationswhere themedian AROCdifference of the 1000-bootstrapped sample
exceeds±0.1, the choice of themost useful forecast is statistically significant to the 95% confidence level
(at∼4.5%of stations, this is not the case, and using a threshold of±0.1 does not provide a statistically
significant result). At locationswhere themedianAROCdifference is<0.1, choosing a ‘most useful’ forecast
would not provide a statistically significant result, and therefore it is reasonable to class the forecasts as ‘similar’
(or ‘not useful’ depending on the AROCvalues).

4.1. Probability of highflow
Figure 3(a) indicates that for forecasts of high river flow 3months ahead, forMAMduring an ElNiño, themost
useful forecast varies by region, and there aremany locationswhere neither forecast ismore skilful than a
forecast of climatology (grey dots).

Acrossmuch ofNorth America, theHistProbs provide amore useful forecast of high river flow than
GloFAS-Seasonal, except along the east coast, whereGloFAS-Seasonal forecasts aremore skilful. In the regions
of SouthAmerica that aremore likely to see highflowduring an ElNiño, GloFAS-Seasonal ismore useful at
several locations, particularly in northern Peru, while theHistProbs aremore useful in southern Brazil. In
Europe, theHistProbs aremore useful in thewest, andGloFAS-Seasonal ismore useful in the east.
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Figure 2.Box plots of the AROCdifferences (GloFAS -HistProbs) at lead times of (a) 1, and (b) 3months ahead for both high (blue)
and low (orange) riverflow inMAMglobally (for stationswhere at least one of the forecasts has anAROC>0.5), calculated from a
bootstrap procedure that was repeated 1000 times using resampling of the 132 [144]GloFAS-Seasonal [HistProbs] forecasts, with
replacement. The bottom and top of the boxes correspond to the 25th and 75th percentiles, respectively. The notch represents the
95% confidence interval around themedian from a 1000-bootstrapped sample.

Figure 3.Maps indicating themost potentially useful forecast 3months ahead for (a) high riverflow (>80th percentile of climatology)
and (b) low riverflow (<20th percentile of climatology) inMAM, at each observation location.
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Figure 4.Maps indicating (a) the AROCof theHistProbs for both high river flow (>80th percentile of climatology, blue) and low river
flow (<20th percentile of climatology, red) inMAM, (b) the AROCofGloFAS-Seasonal 3months ahead for high river flow inMAM,
and (c) the AROCofGloFAS-Seasonal 3months ahead for low river flow inMAM.On all 3maps, the darker the colour, the higher the
skill (and potential usefulness) of the forecast. Grey dots indicate that the forecast is not useful at that location; i.e. the forecast has an
AROC�0.5.
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Figure 4 shows the AROCvalues for each forecast at locationswhere they aremore skilful than climatology.
Generally, the AROC for theHistProbs lies in the 0.5–0.6 range,meaning they are onlymarginallymore skilful
than climatology, except in some small regions, such as north-west USAwhere the AROC reaches 0.7–0.8. There
are also regionswhereGloFAS-Seasonal forecasts are onlymarginallymore skilful than climatology, such as the
east coast ofNorthAmerica, but themajority of locations show anAROCof 0.6–0.8.

Results for all seasons and lead times are provided in the supplementarymaterial. In general, the results tend
to be consistent with lead time, although asmay be expected, the skill of GloFAS-Seasonal is reduced at longer
lead times in some locations. The skill of both forecasts variesmore significantly with season thanwith lead time.
Figure S1 (available online at stacks.iop.org/ERC/1/031002/mmedia) shows that areaswhere neither is useful
aremorewidespread in JJA, whenElNiño typically begins to develop, and both becomemorewidely skilful
through SONandDJF as ElNiño intensifies. The timing of ElNiño onset varies fromone event to the next,
which results inmore uncertainty in theHistProbs for JJA than for other seasons. ForGloFAS-Seasonal,
forecastsmade ahead of JJA are likely to bemore uncertain due to uncertainty in forecasting the timing and
magnitude of ElNiño. Forecasts of ElNiño produced before and during spring tend to bemuch less successful
(the infamous ‘spring predictability barrier’), although the cause of this remains controversial [26–29].

4.2. Probability of lowflow
Figure 3(b) provides the same results for forecasts of low river flow. Locations where neither forecast ismore
skilful than climatology aremorewidespread.However, some of these regions, such as theUSA, aremore likely
to see high river flowduring an ElNiño.

In the lowflow regions in theUSA, SouthAmerica, Africa andAustralia, there are locations at which the
HistProbs are potentially useful (see figures 2(b) and 3(a)), but the variability fromone location to the next is
much higher than for forecasts of high river flow. The skill of theHistProbs increases during and after the peak of
ElNiño, inDJF andMAM.This is likely due to the delayed response of river flow to the ElNiño-driven
precipitation, which ismore prominent for lowflow and drought, than for highflow andflooding. This is also
reflected in theHistProbs themselves (not shown), which highlight the lagged response of river flow to ElNiño,
and that the influence on rivers can continue beyond the return to neutral ENSO conditions.

In general, GloFAS-Seasonal is themost useful forecast for low river flow in the same regions as for high flow,
while theHistProbs aremore useful over the Amazon basin and north-west USA, particularly inDJF andMAM.
Interestingly, figure 4 indicates that for low river flow, the AROCvalues for the two forecasts tend to be very
similar; within±0.2. TheGloFAS-Seasonal AROCvalues are similar to those for high river flow, reaching
0.6–0.8 inmany locations, butwhere theHistProbs are potentially useful, the AROC can also reach 0.6–0.7, and
0.8 at some locations. Aswith the forecasts for high river flow, some variations in the results are seenwith lead
time, but these are less significant than the variations fromone season to the next. Additional results for all
seasons and lead times are provided in the supplementarymaterial.

4.3.Discussion
The results presented in sections 4.1 and 4.2 highlight areas of the globewhere potentially useful forecasts of
hydrological extremes during ElNiño are available, and indicate that the skill of both forecasts varies by region
and season, and to some extent with lead time.

Overall, where there is a strong ElNiño influence on river flow theHistProbs are able to provide a potentially
useful forecast of high flow in regionswhereGloFAS-Seasonal lacks skill. TheHistProbs presented here are
estimated based only on SSTs in theNiño3.4 region in the central Pacific, and therefore are not able to reflect
ENSOdiversity. For example, flooding in Peru is known to be driven by ElNiñoswhich exhibit larger SST
anomalies in the eastern Pacific than the central Pacific.

In fact, the impact of ENSOdiversity provides some indication as towhyGloFAS-Seasonal ismore useful
than theHistProbs in specific regions (e.g. northern Peru, east coast ofNorth America, southernAfrica, eastern
Europe andAustralia). All of these regions are similarly, if notmore strongly, influenced by othermodes of
climate variability on seasonal to decadal timescales, such as the IndianOceanDipole (IOD), North Atlantic
Oscillation (NAO) and PacificDecadal Oscillation (PDO). AGCM, by design, should be able to better represent
the impact of these othermodes of variability onweather patterns, whereas theHistProbs are conditioned only
onwhether an ElNiñowas present in the historical record, and not the interactionwith any othermodes of
climate variability.

Wang et al [30] show that generally, an ElNiño combinedwith awarmphase PDOgives a similar, but
stronger, pattern of influence onwet-dry anomalies. However, in some regions thewet-dry anomaly during El
Niño is reversedwhen combinedwith a cold phase PDO. In regionswhere the impact is similar regardless of the
PDOphase, theHistProbs are generallymore useful thanGloFAS-Seasonal, particularly for highflow. Regions
where thewet-dry anomaly is reversed depending on the PDOphase, tend to correspond to thosewhere
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GloFAS-Seasonal ismore useful. There are some exceptions, however, such as high latitudeCanada and Siberia,
where theHistProbs aremore useful. These correspond to regionswhereGloFAS-Seasonal has been shown to
generally be less skilful than climatology [15]. As the PDO is a decadal oscillation varying onmuch longer
timescales than ENSO, it is likely to influence ElNiño impacts over several events in turn. It is therefore a
potential source of uncertainty in theHistProbs (see [14]), as they are conditioned only on ENSO, and a change
in the PDOmay represent a change in the climate state from the period overwhich theHistProbs are estimated.
The state of the PDO, however, is accounted forwithin a dynamical seasonal forecasting system.

Further regionswhereGloFAS-Seasonal tends to provide amore useful forecast, for both high and low river
flow, include southernAfrica andAustralia, which are known to be influenced by the IOD [31–34]. Saji and
Yamagata [35] show that the IOD impacts African rain variability regardless of the ENSOphase, but ENSOonly
has an impact when combinedwith an IOD event. Asmentioned previously, the skill can vary significantly by
season, and recent research [36] has also shown that SEAS5, themeteorological forecast input of GloFAS-
Seasonal, ismore skilful at predicting short rains (OND) than long rains (MAM) in east Africa, as the short rains
havemuch stronger teleconnections with ENSOand the IOD than the long rains. InAustralia and south-east
Asia, the IOD increases [decreases] the chance of rainfall during its negative [positive]phase [37]. Additionally,
theNAOhas been shown to influenceflood occurrence in Europe, with extreme rainfallmore likely in parts of
eastern Europe during the positive phase of theNAO [38].

While theHistProbs are able to, in general, provide amore skilful forecast than climatology in themajority of
regions influenced by ElNiño, there are locationswhereGloFAS-Seasonal is less skilful than climatology in all
seasons and at all lead times. In these locations, GloFAS-Seasonal is unable to correctly predict themagnitude,
and/or the timing, of the observed events. A study byHirpa et al [39] identifies regions of bias inGloFAS river
flow simulations. Regions of negative bias generally correspond to thosewhereGloFAS-Seasonal is not skilful in
this study. Futurework should determinewhether calibration ofGloFAS, such as that presented byHirpa et al
[39] for themedium-rangeGloFAS forecasts, could improve the skill of the seasonal forecasts. AsGloFAS-
Seasonal is further developed, it will also be important to consider awider range of skillmetrics for verification,
taking into account both the skill and the value of the forecasting system [40]. The evaluation technique used in
this study presents a significant challenge for both forecasting systems, requiring that they predict high or low
weekly-averaged river flow, in the sameweek as that inwhich it was observed, several weeks tomonths ahead.

Prediction of ElNiño events is also key for both types of forecast. As a dynamicalmodel, GloFAS-Seasonal
incorporates forecasts of SSTs and therefore ENSO.Decision-makers often rely on forecasts of ElNiño before
consulting forecasts such as theHistProbs, when an ElNiño event is forecast or developing. ECMWF’s seasonal
forecasts of ENSO events are world-leading [19, 28], and SEAS5 represents an improvement in the skill of these
forecasts over the previous version of the forecasting system, S4.However, there is a decrease in the skill of the
IOD in SEAS5, with forecasts producing cold events that are too large and too frequent, alongside a slight
deterioration in the skill of upper level winds [19], which are important for representing teleconnections across
the globe.While dynamicalmodels are better able to represent the complex interactions between the various
modes of climate variability and their associated teleconnections by design, it is still possible that the evolution of
ElNiñomay be uncertain or incorrectly predicted, or that even a perfect forecast of ElNiño evolutionmay
poorly simulate the teleconnections due to the nonlinearity of the teleconnections and their impacts. This can
have important implications for seasonal predictability of ENSO teleconnections usingGCMs [41].

A further point of consideration is that while this studymakes use of>1200 river flowobservation stations
around the globe, there are large areas of theworld, including some that are significantly impacted by ElNiño,
where there is very sparse to no data coverage. Atmany of the stations used,management of water resources will
be evident in the river flow records, particularly during periods of lowflow conditions, and this is likely to affect
the evaluation results.

Statistical forecasts such as theHistProbs are limited in that they can only forecast the response to events
whichwe have previously observed.With recent research suggesting that the frequency of extreme ElNiño
events, such as those in 1982–83, 1997–98 and 2015–16, is likely to increase with future climate change [42, 43],
this limitation could becomemore andmore relevant. TheHistProbswere also estimated using the longer ERA-
20CM-Rdataset. This dataset providesmore ElNiños over which to calculate the probabilities, and has been
shown to represent ENSO teleconnections, but is unable to reproduce synoptic situations as no atmospheric
observationswere assimilated [44]. Futurework should explore whether the skill of statistical forecasts such as
theHistProbs could be improved using different reanalysis products, such as ERA5.

While currently there are areas of the globewhereGloFAS-Seasonal is less skilful than climatology, this is the
just the first version of the first global scale operational seasonal riverflow forecasting system. Future
improvements to the input datasets (e.g. topography, river flowobservations, lakes and reservoirs), seasonal
precipitation forecasts and hydrologicalmodels could result in a dynamical forecasting system that consistently
provides amore useful forecast of hydrological extremes, with the benefit that such dynamical forecasts are not
constrained to periods of timewhen there is an ElNiño. A third approach, not considered in this study, could be

9

Environ. Res. Commun. 1 (2019) 031002



to combine statistical and dynamical forecasts to produce a hybrid system; recent studies suggest this approach
could enhance prediction skill at seasonal timescales [45, 46]. Research shows that seasonal hydrological
forecasts are able to inform local decisions and actions, and that while uncertainty is not necessarily a barrier to
the use of such forecasts, a range of information, including forecast skill, different forecast types and local
knowledge are important, alongside a need for higher resolutions to aid local decision-making [47].

5. Conclusions

This paper has evaluated the ability of two different seasonal forecasting approaches, statistical historical
probabilities and the dynamical GloFAS-Seasonal, to predict both high and low river flowduring ElNiño, with
the correct timing. Previous research has highlighted the importance of considering the hydrology in addition to
meteorological variables, with precipitation often used by decision-makers as a proxy for river flow. These
recently-developed forecasts, both of which are used for ElNiño preparedness activities, aim to provide
hydrologically relevant predictions of hydrological extremes.

While the results presented indicate that the skill of both forecasts varies by location, season and lead time,
and it is important to remember that both approaches have uncertainties associatedwith them and regions
where they lack skill, we are able to draw the following conclusions, to answer the question: what is themost
useful approach for forecasting hydrological extremes during ElNiño?

1. In regions that are strongly influenced by central Pacific El Niños, and in those where GloFAS-Seasonal
forecasts currently lack skill, Historical Probabilities generally provide amore useful forecast.

2. In regions where river flow is also influenced by other teleconnections, GloFAS-Seasonal forecasts are
typicallymore useful, as they are better able to account for the characteristics of each ElNiño, including the
location, timing andmagnitude of the SST anomalies, and simulate the response to othermodes of climate
variability coincidingwith ElNiño. For example, the phase of the PDO, IOD,NAO, can act to strengthen,
mitigate or even reverse the river flow response to ElNiño at a regional scale.

3. At lead times of a season ahead, dynamical seasonal forecasts, such as the GloFAS-Seasonal river flow
forecasts and seasonal precipitation forecasts, are better able to account for the interaction between various
modes of climate variability.Historical Probabilities are, however, available at even earlier lead times, when
an ElNiño isfirst forecast or begins to develop.

We further emphasise that while there is often significant interest in the impacts of ElNiño due to its global
teleconnections, in some regions, it is important to consider that othermodes of climate variability can play a
key role in addition to ENSO, ormay be able to provide added predictability over the use of ENSOas a predictor
of hydrological extremes. Asmore global scale seasonal hydro-meteorological forecasting systems are developed
and forecasts are improved, it will be important to revisit the question of which approach ismore useful for
forecasting hydrological extremes. To forecast high and low river flowon seasonal timescales, andwith the
correct timing, is a challenging endeavour. That either or both of these forecasts has some ability to predict these
events, several weeks tomonths in advance, provides optimism for the future of seasonal hydro-meteorological
forecasting and its use in decision-making acrossmanywater-related sectors.
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