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Abstract
Indian summer monsoon precipitation is significantly modulated by synoptic-scale tropical low pressure areas (LPAs), the 
strongest of which are known as monsoon depressions (MDs). Despite their apparent importance, previous studies attempt-
ing to constrain the fraction of monsoon precipitation for which such systems are responsible have yielded an unsatisfyingly 
wide range of estimates. Here, a variant of the DBSCAN algorithm is implemented to identify nontrivial, coherent rainfall 
structures in TRMM-3B42 precipitation data. Using theoretical considerations and an idealised model, an effective capture 
radius is computed to be 200 km, providing upper-bound attribution fractions of 57% (17%) for LPAs (MDs) over the mon-
soon core zone and 44% (12%) over all India. These results are also placed in the context of simpler attribution techniques. A 
climatology of these clusters suggests that the central Bay of Bengal (BoB) is the region of strongest synoptic organisation. 
A k-means clustering technique is used to identify four distinct partitions of LPA (and two of MD) track, and their regional 
contributions to monsoon precipitation are assessed. Most synoptic rainfall over India is attributable to short-lived LPAs 
originating at the head of the BoB, though longer-lived systems are required to bring rain to west India and east Pakistan. 
Secondary contributions from systems originating in the Arabian Sea and south BoB are shown to be important for west 
Pakistan and Sri Lanka respectively. Finally, a database of precipitating-event types is used to show that small-scale deep 
convection happens independently of MDs, whereas the density of larger-scale convective and stratiform events are sensitive 
to their presence—justifying the use of a noise-rejecting algorithm.

Keywords India · Monsoon · Depression · Precipitation

1 Introduction

Monsoon depressions (MDs) are synoptic-scale disturbances 
that typically spin up near the head of the Bay of Bengal, 
before moving northwestward over peninsular India (Sikka 
1977; Hurley and Boos 2015; Hunt et al. 2016a). While it is 
known that they are associated with both widespread (God-
bole 1977; Mooley and Shukla 1989; Stano et al. 2002; Hunt 
et al. 2016b) and heavy (Ajayamohan et al. 2010; Fletcher 
et al. 2018; Hunt et al. 2018b) precipitation in central and 
northwest India, both the fraction of total seasonal rainfall 
for which they are responsible and its spatial variation (see 

Jadhav 2002) have garnered divergent estimates: 10% over 
the Ganges basin area (Dhar and Bhattacharya 1973), 27% 
for central India (and 14% for all India; Mooley and Shukla 
1989), to as much as 50% for all India (Yoon and Chen 
2005). MDs are accompanied during the monsoon season 
by weaker, more numerous disturbances known as mon-
soon low-pressure areas (LPAs), which are also significant 
rain-bringers, though less often associated with periods of 
extreme rainfall. Attribution of monsoonal rainfall to LPAs 
was considered by Hurley and Boos (2015), who found that 
the value is sensitive to the choice of radius one uses to 
ascertain ‘association’, retrieving numbers in the monsoon 
core zone from around 40% for a radius of 500 km to over 
80% for rainfall within 1000 km of the LPA centre. Praveen 
et al. (2015) simply attributed all rainfall occurring on days 
with a LPA present and concluded that 60% of monsoon 
precipitation was due to such systems.

Recently, Hunt et al. (2016a) developed a method to 
identify and track Indian monsoon depressions in a way 
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consistent with definitions used by the India Meteorologi-
cal Department. Their tracks, along with a 20 years record 
of high quality satellite observations of tropical rainfall 
through the tropical rainfall measuring mission (TRMM) 
multisatellite precipitation analysis (Huffman et al. 2007), 
make it possible to accurately estimate the contribution of 
monsoon depressions to both mean and extreme rainfall. 
However, questions about how to best make this estimate 
remain. Rainfall around monsoon depressions tends to be 
highest to the southwest of MD centre (Roy and Roy 1930; 
Ramanathan and Ramakrishnan 1933; Pisharoty and Asnani 
1957; Rajamani and Rao 1981). If a radius of influence is 
assumed, how large should this radius be?

We approach this question in several ways, from very 
simple—assuming all rainfall on a day with an MD is caused 
by the MD—to sophisticated—identifying clusters. We pro-
duce a range of estimates with these methods and compare 
the results to previous results. We also examine the spatial 
distribution of mesoscale precipitating systems as an indica-
tor of mesoscale organisation of convection in the vicinity 
of MDs.

Section 2 describes the data we use and the clustering 
method. In Sect. 3.1 we present upper bounds on mean and 
extreme rainfall attributable to monsoon depressions using 
the most naive attribution method. In Sect. 3.2 we show our 
estimates of MD rainfall attribution using several fixed radii 
of influence. Section 3.3 shows MD rainfall attribution using 
the clustering method, and in Sect. 3.4 we explore the types 
and spatial distribution of precipitating systems associated 
with monsoon depressions.

2  Data and methodology

2.1  ERA‑interim

MD and LPA tracks were obtained using the tracking 
algorithm described in Sect. 2.3 on the European Centre 
for Medium-Range Weather Forecasting Interim Analyses 
(ERA-Interim; Dee et al. 2011).

2.2  TRMM

Our precipitation data is version 7 of the TRMM 3B42 prod-
uct (Huffman et al. 2007), a multi-satellite product using 
the TRMM/Global Precipitation Mission (GPM) constella-
tion consisting of the TRMM/GPM core precipitation radars 
and microwave imagers along with microwave and infrared 
satellites operated by a range of agencies. TRMM 3B42 is 
available at three-hourly means on a 0.25◦ grid for 1998-pre-
sent, making it ideal for statistical investigation of rainfall 
associated with synoptic scale systems in the tropics. It can 
be obtained at https ://mirad or.gsfc.nasa.gov/.

2.2.1  Database of precipitating systems from TRMM PR

One goal of this study is to characterise how monsoon 
depressions organise precipitation; we therefore require data 
that can, to some extent, measure the character and degree in 
organisation of precipitation. Houze et al. (2015) described 
a new database of precipitating systems—namely, shallow 
convective systems, convective cores, and broad-scale strati-
form regions—observed by the TRMM precipitation radar 
(PR) in the 2A25 product. These precipitating systems are 
classified by the Houze et al. (2015) algorithm according to 
their reflectivity, vertical and horizontal size, and classifica-
tion as convective or stratiform by the TRMM 2A23 prod-
uct. The database can be downloaded from the University 
of Washington Atmospheric Sciences website (trmm.atmos 
.washi ngton .edu), and we will refer to it as the UW TRMM 
database. The database includes the locations of centres of 
precipitating objects and their time of observation, along 
with information about their horizontal and vertical sizes 
and statistics of precipitation within the systems.

The UW TRMM database consists of contiguous areas 
in the 2A25 product meeting specific thresholds. The types 
of precipitating systems that we use from the UW TRMM 
database are as follows: deep convective cores (30 dBZ 
reflectivity threshold, tops above 8 km); wide convective 
cores (30 dBZ threshold over a horizontal area at least 800 
km

2 ); deep, wide cores meeting both of the previously stated 
criteria; and broad stratiform regions (contiguous regions 
designated stratiform by 2A23 at least 40,000 km2 in size). 
These are the moderate thresholds in the UW TRMM data-
base; the database also includes strong thresholds for each 
category (e.g., 40 dBZ reflectivity, 10 km height for deep 
convective cores). Houze et al. (2015) argue that moderate 
thresholds are best applied for systems over the ocean while 
strong thresholds are best applied for systems over land. 
However, strong threshold events are relatively uncommon 
in the Indian monsoon (Houze et al. 2015), making moderate 
threshold events a better choice for robust statistics.

In this study, we count the total number of each type of 
UW TRMM precipitating system per MD as a function of 
distance from MD centre. We estimate the uncertainty on 
this using the bootstrap method of Efron (1979), subsam-
pling the data to generate 10,000 datasets of the same size 
as the original, and computing the standard deviation of this.

2.3  Monsoon depression tracks

Several studies have carried out objective, automated track-
ing on monsoon depressions (Hurley and Boos 2015; Hunt 
et al. 2016a) and monsoon low-pressure systems (Praveen 
et al. 2015); in contrast to earlier works where tracking was 
done manually (e.g. Godbole 1977; Mooley and Shukla 
1989; Sikka 2006).

https://mirador.gsfc.nasa.gov/
http://trmm.atmos.washington.edu
http://trmm.atmos.washington.edu
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Here, we use the algorithm of Hunt et al. (2016a), which 
looks for positive anomalies in 850 hPa relative vorticity, as 
modified by Hunt and Turner (2017) and Hunt et al. (2018a) 
with one adjustment. It will be necessary to differentiate 
between depressions and the weaker but more common 
low-pressure systems (LPAs); to this end, we employ the 
definitions outlined by the India Meteorological Department 
(http://imd.gov.in/secti on/nhac/wxfaq .pdf). A low-pressure 
area is defined as one closed isobar in surface pressure at 
2 hPa intervals, which must be within 3◦ of the centre when 
the system is over land, or accompanied by surface winds not 
exceeding 17 knots ( 8.7m s−1 ) if over sea. A depression (for 
our purposes, this category also includes ‘deep’ depressions) 
must have two to four closed isobars in surface pressure at 
2 hPa intervals, which again must be within 3◦ of the centre 
when the system is over land, or instead accompanied by 
surface winds of 17–33 knots ( 8.7−17m s−1 ) if over sea. 
These categorisation switches are computed directly from 
the reanalysis data used to perform the tracking.

A point of definition: from hereon, ‘monsoon depression’ 
will refer to the whole track of any system that reaches at 
least depression status (as outlined above); ‘low-pressure 
area’ will refer to all parts of all tracks, including those that 
reach MD strength. Tracking is only carried out on vortices 
that meet at least the LPA criteria described in the previous 
paragraph, and only tracks (either part or whole) that occur 
in the months June to September are considered. Over the 
entire ERA-Interim archive (1979–2017), that gives us 109 
MDs (of which 46 occur during the TRMM period) and 782 
LPAs (of which 424 occur during the TRMM period).

2.4  Objective cluster identification

A core objective of this study is to identify coherent areas of 
precipitation, so that they might be linked (or not) to nearby 
synoptic activity. This requires the automated partitioning 
of precipitation footprints into an arbitrary (i.e. not preor-
dained) number of clusters. We should also like our choice of 
clustering algorithm to work in a non-Euclidean geometry, 
to allow uneven cluster sizes, and have good scalability over 
the number of points used. Given these criteria, the most 
suitable choice of algorithm is the so-called density-based 
spatial clustering of applications with noise (DBSCAN; 
Ester et al. 1996). DBSCAN is additionally advantageous in 
that it permits background noise and highly nonlinear cluster 
shapes (such as those caused by certain orography) which 
would be inadequately partitioned by other algorithms.

2.4.1  Glossary

∀�  For all members of the set �.
∈ �  Elements of the set �.

�1 ∶= �2  Replace all elements of set �1 with the elements 
of set �2.

�1 ∪ �2  The union of sets �1 and �2.
ℝ

n  An n-dimensional coordinate space.
⌊X⌋  The floor of X, that is, its value rounded down to 

the nearest integer.

2.4.2  General description of the DBSCAN algorithm

All clustering algorithms require some parameter choice by 
the user, typically the number of clusters. For DBSCAN, two 
parameters are required: � , the ‘neighbourhood radius’; and 
� , the minimum number of points to form a cluster core. The 
prescription is then:

1. Start from some random point Pi that has not already 
been assigned to some cluster ( Cj ) or as noise (N).

2. Find all points Pj≠i that are within distance � of Pi . Call 
this set of points �i.

3. Initiate a new cluster, Ci , and assign Pi as a core member 
of that cluster.

4. If |�i| ≤ � , assign Pi as noise and return to (i).
5. ∀Pj ∈ �i , if Pj ∈ N then assign Pj as an outlier member 

of Ci ; if Pj ∉ N then assign it as a core member of Ci.
6. Find all points Pk≠j,k≠i that are within distance � of Pj . 

Call this set of points �j.
7. If |�j| ≥ � then �i ∶= �i ∪�j.
8. If unassigned points remain, return to (i).

2.4.3  Application of DBSCAN to precipitation data

Some adaptation is required for this algorithm to be applica-
ble to precipitation data, which are on ℝ3 , rather than ℝ2 , as 
desired.1 As clustering ought to depend on only the spatial 
distribution of the precipitation, and not its magnitude, we 
can collapse this degree of freedom without loss of general-
ity. The method employed is as follows: consider some grid-
point (i, j), with instantaneous rainfall Rij (in mm hr

−1 ), then 
distribute ⌊Rij⌋ points in the gridbox centred on (i, j). There 
are two corollaries: firstly, we implicitly reject regions where 
rainfall is less than 1 mm hr

−1 , and secondly, we still retain 
a degree of freedom in how these points are distributed (we 
choose arbitrarily to place them at random). These choices 
have a negligible qualitative effect on the outcome.

More important is the selection of the clustering param-
eters, � and � . There are objective approaches that can be 
taken to decide these, most commonly used among cluster-
ing applications is the silhouette score, defined thus:

(1)S =
1

N

∑

i

Si,

1 That is to say the points are not only distributed in two dimensions 
but contain magnitude information.

http://imd.gov.in/section/nhac/wxfaq.pdf
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where N is the total number of points, and

where Li is the mean distance between Pi and other members 
of its cluster, and �i is the mean distance between Pi and the 
nearest cluster of which it is not a member. This is a simple 
way to compare cohesion (how close points are to members 
of their own cluster) and separation (how close they are to 
members of other clusters), and works particularly well for 
cases where noise is low.

We computed the mean silhouette score for twenty-four 
case studies that represented both MD days and non-MD 
days, representing different points in the monsoon season 
and diurnal cycle, across a selection of � and � . The com-
puted optimum values were � = 100 and � = 60 km.2 These 
are the parameters used for the example in Fig. 1b.

3  Results

3.1  Upper bound on rainfall attributed to MDs

We begin with the most naive approach by attributing all 
rainfall on days with an MD in a given domain to the MD 
itself—this is also an upper bound on the rainfall attribut-
able to MDs. In order to do this we must identify dates when 
MDs are near enough to South Asia to influence rainfall 

(2)Si =
�i − Li

max
{�i, Li},

there. Indian MDs usually form in the Bay of Bengal, make 
landfall in northeast India, and propagate toward northwest 
India (e.g. Hunt et al. 2016b), i.e., across the monsoon core 
zone of Rajeevan et al. (2010). We therefore test the effect 
of MDs on all of South Asia as well as on the monsoon core 
zone (Fig. 2).

(a) (b)

Fig. 1  Case study application for the clustering algorithm, using 
TRMM 3B42 precipitation data for a nascent depression on 2007-08-
06 00UTC, whose centre is marked with a green cross in each figure. 

a Instantaneous surface precipitation ( mm hr−1 ); b designated clus-
ters demarcated by colour with assigned noise given in black, and the 
number of pixels in each cluster given in the legend

Fig. 2  Green colours indicate regions identified as South Asia, blue 
colours indicate the Monsoon Core Zone. MDs with centres north-
west of the solid green (dashed blue) lines are counted toward MD 
days for South Asia (MCZ) in the analysis in Sect. 3.1

2 Given our usage of a spherical surface distance metric, this is a 
great-circle distance.
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We use the Indian monsoon depression tracks of Hunt 
et al. (2016b) and classify MD days and non MD days 
according to the following: if the tracking algorithm iden-
tifies an MD north of 12◦N or west of 90◦E at least once on 
a given date, the day is classified as an MD day for South 
Asia. If the algorithm identifies an MD north of 12◦N , the 
day is classified at an MD day for the monsoon core zone. 
These boundaries are indicated in Fig. 2. This provides 
an extreme upper bound on the total rainfall that can be 
attributed to monsoon depressions.

The mean rainfall from TRMM 3B42 on MD days and 
non MD days is shown in Table 1 for South Asia and the 
monsoon core zone. In both domains, mean rainfall is higher 
on MD days than non-MD days—almost twice as high in the 
MCZ. As expected, MDs have greater impact on the MCZ 
than on South Asia as a whole, as the MCZ corresponds 
closely to their typical track (e.g. Hunt et al. 2016b). How-
ever, in both regions and for both MD and non-MD days, the 
standard deviation in rainfall is much greater than the differ-
ence between the means. In other words, while on average 
rainfall is much higher on MD days, the presence or absence 
of an MD is not a strong predictor of rainfall over even the 
MCZ, given the large variability in monsoon rainfall. Sub-
sequent results in this section will mostly focus on the MCZ 
since that is the region where MDs have the greatest effect.

The spatial pattern of mean rainfall on MD days and 
non MD days is shown in the upper panels of Fig. 3. In the 
monsoon core zone and the Bay of Bengal, as well as the 
northern end of the peninsular west coast, MD days have 

Table 1  Mean rainfall ( mm hr−1 ) on MD and non-MD days in South 
Asia and monsoon core zone (see Fig. 2)

Errors indicate one standard deviation

MD days non-MD days

South Asia 0.36 ± 1.6 0.29 ± 1.4
MCZ 0.47 ± 1.9 0.28 ± 1.4

Fig. 3  a Mean June–September rainfall on non MD days ( mm day−1 ); 
b mean June–September rainfall on all MD days; c fraction of total 
June–September rainfall that occurred on MD days; d fraction of 

total June–September rainfall that occurred on days with low pressure 
areas. The yellow contour in c indicates 50% of rainfall occurred on 
MD days
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considerably higher mean rain rates. However, the total con-
tribution of MDs to rainfall in South Asia is usually less than 
20% (Fig. 3c). This is because MDs, as classified by the 
IMD, are rare, occurring on average three times per mon-
soon season (e.g., Sikka 1977). The notable exception to this 
is in the far northwestern region, in the mountain range west 
of the Indus river in southern Pakistan. In this region MDs 
contribute around half of the June to September rainfall. 
Figure 3c suggests that many estimates of the contribution 
of MD rainfall to total rainfall in India, or various regions 
within India, are probably too high. Some of these estimates 
(e.g., Hurley and Boos 2015) included weaker but more fre-
quently occurring monsoon low pressure areas—when all 
such systems are included (Fig 3d), the maximum rainfall 
attributable is much higher.

3.2  Assuming a fixed radius of influence

A simple way to compute precipitation attribution is to 
assign a fixed radius of influence to the systems, and assume 
that all precipitation occurring within that radius is caused 
by the system.3 There are two sources of uncertainty here: 
firstly, tropical convection is present in the background 
regardless of cyclone passage, and it is unreasonable to 
assert that, for example, an isolated convective cell hundreds 
of kilometres from the centre has been triggered by the sys-
tem; secondly, determining the correct (or effective) radius 
of influence is not trivial. That having been said, it provides 
a useful benchmark given a sensible estimate for the radius 

of influence, and has been used in previous studies (Hurley 
and Boos 2015; Hunt et al. 2018c).

Figure 4 shows the fraction of summer (June–Septem-
ber) precipitation for which (a) monsoon depressions and (b) 
monsoon LPAs are responsible, assuming a fixed radius of 
influence of 800 km. In each case, the tracks have been sepa-
rated into clusters using a k-means method, the aim being to 
produce as many clusters as possible subject to the criterion 
that they were significantly different from each other. There 
were 109 tracked depressions in the period 1979–2016, of 
which 46 existed in the TRMM period (1998–2016). The 
attribution fraction peaks over the head of the Bay of Bengal, 
and along coastal areas of Odisha and West Bengal, where 
it averages about 25% (as much as a third in some places). 
The fraction diminishes but remains significant over most of 
the monsoon core zone, and is still over 15% as far west as 
Gujarat. The depression tracks are separated into two dis-
tinct categories by k-means, each of which populate about 
half the catalogue: both originate at the head of the Bay 
of Bengal; one type then propagates an average of 800 km 
inland (this type is more prevalent earlier in the season), the 
other, 1700 km. Both types are significant contributors to 
the precipitation.

Comparing Fig. 3c with Fig. 4 a reveals an intriguing 
result: the majority of rainfall over the mountains and pla-
teau of southwestern Pakistan falls on MD days. Though a 
fraction of MD and LPA tracks do propagate this far, we 
cannot rule out a more remote influence of monsoon depres-
sions on rainfall in South Asia’s arid northwest, which will 
be examined in future work.

Low pressure areas are considerably more numerous: 
of the 782 tracked in ERA-Interim (1979–2016), 424 were 
during the TRMM period (1998–2016). Their 800  km 
fixed radius contribution to monsoon precipitation is given 

(a) Monsoon depressions (b) Monsoon low-pressure areas

Fig. 4  Fraction of monsoon precipitation attributed to a depressions, 
b low-pressure areas using an 800 km radius of influence. For each 
type of system, k-means clustering was used to separate the tracks 

into statistically significant clusters, whose mean path and population 
frequency are also shown

3 The ‘centre’ of a system is here defined as the centroid of its 
850 hPa relative vorticity.
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in Fig. 4b. According to this method, approximately 60% 
of rainfall in the monsoon core zone can be attributed to 
these LPAs. This fraction reaches almost 80% for a siz-
able area over parts of northwest peninsular India and the 
Bay of Bengal. The footprint is similar to that of Fig. 4a, 
although the magnitude is somewhat greater; one key dif-
ference, however, is the contribution of precipitation over 
Pakistan and the Arabian Sea from systems off the west 
coast of India. Though noisy, some of the values in this area 
exceed 80%. There are four distinct types of monsoon LPA: 
two of them, in blue and orange, are analogous to the two 
types of depression, and comprise more than three quarters 
of the population. The other two are relatively short-lived 
and slow-moving systems existing over the east coast of Sri 
Lanka and in the east Arabian Sea respectively. We have 
already mentioned the contribution of the latter, but it seems 
that the former contributes little, if any, precipitation to the 
monsoon.

3.3  Clustering

The clustering algorithm outlined in Sect. 2 was applied 
to 19 years of gridded precipitation data (TRMM 3B42, 
1998–2016, 0.25◦ resolution), selected summer climatolo-
gies from which are shown in Fig. 5. Figure 5a shows, for 
June–September, the fraction of time for which an identified 
cluster is present. We note that the broad structure is quite 
similar to that of mean summer rainfall (e.g. Sperber et al. 
2013): there are maxima upstream of the Western Ghats 
(India) and the Arakan and Tenasserim ranges (Myanmar), 
weaker maxima along the Himalayan foothills and in the 
monsoon core zone, and minima in the south peninsula rain 
shadow and towards the arid northwest.

Figure 5b shows the climatological median cluster size4 
over the same period. These are most simply interpreted as 
a metric of the characteristic scale of precipitation organisa-
tion at a given point. There are two significant maxima—the 
larger of which is centered over the Bay of Bengal, spread-
ing over much of central India, and the smaller of which is 
located in the Arabian Sea.

These clusters provide us with coherent mesoscale to syn-
optic-scale areas of related precipitation; we assume that it 
is probable that all precipitation in a given cluster is caused 
by the same mechanism (e.g. orography, cyclone, or MCS). 
Now, armed with a database of these precipitation clusters, 
we can attempt to assign them to depressions and LPAs to 
determine attribution.

It is not immediately clear how to approach this, so let 
us examine the relationship between radius-of-influence 
and attributable fraction for some idealised cases. For 
each scenario, the mean of 1000 runs is used. Consider 
a simplified monsoon core zone ( 15−25◦N, 70−85◦E ), 
into which a ‘depression’ centre is randomly placed. In 
the simplest case, we set rainfall to be homogeneous: 10 
units per pixel inside the hypothetical depression, and 1 
unit per pixel outside; we also hold the depression radius 
constant at 300 km. Then, we apply the fixed radius-of-
influence technique used in the previous subsection, across 
a range of radii, computing the attribution fraction that 
each radius-of-influence gives. This is given by the solid 
green line in Fig. 6. It grows quadratically with radius, 
as expected, until a gradient discontinuity at the depres-
sion radius (300 km); thereafter it grows as a much slower 

(a) Mean cluster frequency (b) Median cluster size

Fig. 5  Climatological precipitation cluster statistics for June–Septem-
ber: a fraction of time that a given pixel can be found in an identified 
precipitation cluster; b median cluster size (total number of 0.25◦ pix-

els). Data are 3-hourly from TRMM 3B42, 1998–2016. Please refer 
to the text for details of the cluster identification algorithm

4 This is given in units of in-cluster pixels, which have an area of 
0.25◦ × 0.25◦ here.
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quadratic, slowly becoming linear (and eventually asymp-
totic to 1) as boundary effects become appreciable. The 
correct attribution fraction, ∼ 0.6 , which can be read off 
the right-hand limit of the perfect-cluster line, is at the 
discontinuity, which here is also the prescribed depres-
sion radius. Let us now add an element of complexity, by 
allowing the depression radius to randomly vary between 
200 and 400 km. The resulting change is given by the 
dashed green line in Fig. 6, and is slight: the only sig-
nificant change is a smoothing of the discontinuity of the 
constant-radius case. Again, for reasons that should now 
be clear, the correct attribution fraction (which is slightly 
higher than the previous case) is found at the minimum of 
the second derivative, the knee of the curve.

Of course, precipitation is not homogeneous, if it were we 
would not be able to cluster it. Therefore, we next replace 
our flat rainfall with some simple heterogeneous blobs, pre-
scribed as follows: two ‘stratiform’ blobs of radius 100 km 
and rain rate 5 units per pixel with centres inside the depres-
sion radius; and ten ‘convective’ blobs of radius 10 km with 
rain rates of 10 units per pixel, placed randomly in the 
domain. This was subject to the same computation as for 
homogeneous rainfall, and is given by the solid (constant 
depression radius) and dashed (variable radius) magenta 
lines in Fig. 6. In this case, variance of the depression radius 
no longer exhibits any significant control on the attribution 
function because the area-integrated rainfall is fixed in the 
setup. The correct attribution fraction in this example is 
about 0.71, but there is no way to extract this value from the 
naïve attribution function: using the second derivative as we 
did before now produces an overestimate, even knowing the 
depression radius is not useful—the two lines intersect the 

correct fraction at radii of 332 km and 351 km respectively. 
This naïve method is clearly inadequate for heterogeneous 
rainfall.

So, how does the more ‘intelligent’ clustering algorithm 
fare at attribution? Firstly, each individual cluster is tagged, 
and if any part of any cluster falls within the radius of influ-
ence, then the whole cluster is attributed. This calcula-
tion is given by the grey line in Fig. 6. Secondly, a slight 
change—only those clusters with a large area are attributed, 
the smaller ‘convective’ blobs are not, mimicking a perfect 
noise-removing cluster technique (as discussed in Sect. 2.4), 
this is given by the black line. The imperfect clustering 
technique outperforms the naïve method, estimation of the 
attribution function from the knee of the curve yields a 2% 
overestimate, an improvement on the earlier 6%. However, 
linear growth persists for overly large radii of influence. The 
perfect clustering method, by definition, is asymptotic to 
the correct attribution fraction; the extremum of its second 
derivative is therefore a slight underestimate ( ∼ 2% ). In real-
ity, our clustering algorithm falls somewhere in between the 
two (more likely closer to the imperfect regime than not), 
but in the case of heterogeneous rainfall, will outperform the 
fixed radius of influence method.

Now that we can correctly interpret these attribution 
functions, let us compare them using real data for monsoon 
LPAs and depressions. Figure 7 shows the mean attributable 
fraction in the monsoon core zone for both LPAs (blue) and 
depressions (red) at a range of radii of influence. Monsoon 
rainfall in general is extremely heterogeneous, and during 
periods of synoptic activity, also embedded in large clus-
ters. This is clear in the difference between the fixed radius 
and cluster attribution methods for each type of system, and 

Fig. 6  Attribution fraction as a function of radius of influence for the 
naïve fixed-radius and cluster-based attribution techniques applied to 
selected idealised cases. Details of the algorithms, idealisations, and 
applications are given in Sect. 3.3

Fig. 7  Comparison of mean values of attributable fraction of rainfall 
in the monsoon core zone (June–September) for MDs (red) and LPAs 
(blue), and cluster-based (cross) and fixed-radius (circle), for a range 
of capture radii
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indicates that the naïve fixed radius technique could produce 
quite poor estimates of precipitation attribution fraction.

Using the analysis from Fig. 6, we can read off the radii-
of-influence for depressions and low pressure areas in Fig. 7. 
Doing so, we retrieve a fairly conservative value of 200 km 
and hence attribution fractions over the monsoon core zone 
of 17% and 56%; these are necessarily upper bounds. This 
intuitively seems like a small radius-of-influence, but we 
recall that once any part of a labelled precipitation cluster 
falls within this radius, the whole cluster is attributed. Thus, 
it is best to interpret this figure in the context of Fig. 5b—
for example the mean cluster size over the BoB and MCZ 
is about 800 quarter-degree pixels, which corresponds to a 
length scale of ∼ 780 km . Adding this number in quadrature 
with the stated 200 km returns the 800 km value suggested 
by the fixed-radius method.

Figure 8 shows how the attribution is distributed spatially 
for each type of system, along with the main track types for 
each system (see text associated with Fig. 4 for discussion 
on these). Spatially, the pattern is similar to that retrieved 
with the fixed radius-of-influence method, though slightly 
noisier, slightly lower in magnitude, and with smaller gradi-
ent. The last is a result of removing (or at least, mitigating) 

the effect of convolution with the track density function. In 
the case of depressions, the maximum, at the head of the Bay 
of Bengal, reaches a little over 30%; for LPAs, the maximum 
also extends reasonably far inland and across the peninsula, 
where its value is about 70%.

Mean values of the LPA and MD attribution fractions for 
a selection of domain choices are given in Table 2, for both 
the fixed-radius and cluster methods. These are given pri-
marily as precipitation-weighted means (indicating the frac-
tion of total precipitation in the domain that is attributable) 
as well as just an area-average attribution fraction (which 

(a) Monsoon depressions (b) Monsoon low-pressure areas

Fig. 8  As Fig. 4, but determining attribution using the clustered precipitation method. All clusters that come within 200 km of the system centre 
are attributed. Note that the colour scales differ between figures

Table 2  Precipitation-weighted mean attribution fractions for LPAs 
and MDs in three domains (the monsoon core zone, all India, and the 
domain) computed using both the fixed-radius and cluster methods

Values in square brackets indicate area-averaged fractions (i.e. no 
weighting)

MCZ All-India Full dom.

LPA (fix. 800 km) 0.524 (0.486) 0.371 (0.338) 0.222 (0.158)
LPA (clust. 200 km) 0.572 (0.561) 0.444 (0.425) 0.316 (0.224)
MD (fix. 800 km) 0.154 (0.145) 0.100 (0.093) 0.052 (0.029)
MD (clust. 200 km) 0.172 (0.169) 0.119 (0.115) 0.077 (0.048)

Fig. 9  Regions coloured by the LPA type responsible for the most 
precipitation. White stippling indicates where more than half the 
monsoon precipitation is attributed to LPAs; the white area indicates 
where no monsoon precipitation is attributed to LPAs
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has less physical meaning). The cluster-based attribution 
method indicates that over 90% of monsoonal precipitation 
in the MCZ is caused by LPAs (30% of which is caused by 
MDs); whereas 65% of monsoon rainfall over all India is 
caused by LPAs (25% of which is caused by MDs). These 
values are comparable to the bounds computed in earlier 
work (Hurley and Boos 2015; Praveen et al. 2015). Table 3 
provides a state-by-state, cluster-by-cluster breakdown of 
the attribution values.

We finalise this discussion by looking at the relative 
importance of the type of LPA in monsoon precipitation. 
Using the track types outlined in Fig. 4b, which we shall 
refer to by their genesis basin (i.e. Sri Lankan, BoB long, 
BoB short, and Arabian Sea), Fig. 9 identifies the category 
of LPA reponsible for bringing the most precipitation to 
each region. For reference, these values are tabulated in the 
“Appendix” section. The resulting partitions are intuitive: 
the short-lived Sri Lankan LPAs dominate the synoptic rain-
fall over Sri Lanka and parts of Tamil Nadu; the Arabian Sea 
systems are the major source of synoptic precipitation over 
almost the entirety of the Arabian Sea, as well as much of 
southwest Pakistan and Afghanistan, where they are respon-
sible for over half of all precipitation; the common, short-
lived BoB systems are associated with most precipitation 
across central and north India, as well as over the head of the 
Bay of Bengal; however, the less common but longer lived 
Bay of Bengal systems deliver the majority of rainfall to 
northwest India. While it has been commonplace in previous 
studies to separate systems by their genesis basin (i.e. Bay 
of Bengal, Arabian Sea, or land), we have not pursued that 
here as there is no evidence to suggest that genesis loca-
tion is a better predictor for rainfall than the whole track. 
For the curious reader, however, we give the fractions of 
each cluster whose tracks have geneses over land: Sri Lan-
kan—40.5%; BoB long—67.2%; BoB short—38.6%; Ara-
bian Sea—24.1%.

3.4  Characteristics of precipitating systems 
around MDs

The heavy rainfall associated with monsoon depressions 
suggests that the synoptic forcing within depressions organ-
ises deep convection. One therefore might expect more 
organised convection within the radius of influence of MDs. 
We use the UW TRMM database of precipitating systems as 
seen by the TRMM PR as a rough objective identification 
of convective organisation. In particular, we expect broad 
stratiform regions to occur more frequently where synop-
tic and mesoscale flows have organised convection. Deep 
convective cores are expected to occur both as disorganised 
‘popcorn’ convection and embedded within mesoscale con-
vective systems.

Figure 10 shows the number density of precipitating sys-
tem types within a range of distances from MD centre. The 
TRMM PR had a swath width of 247 km, meaning that many 
events are missed; the reader should therefore focus on the 
change in the number with radius rather than the values on 
the y axis. For all radii, deep convective cores are most com-
mon and broad stratiform regions are least common. For a 
radius of 100 km, few precipitating systems of any category 
are observed, and most categories have the highest density 
within about 400 km of MD centre, slightly further than 
the conservative radius of influence determined in Sect. 3.3.

The density of deep convective cores changes little with 
radius beyond 100 km, suggesting that these types occur 
under a range of synoptic conditions and contribute to the 
noise which is filtered out in the clustering algorithm. The 
density of BSRs—the type most likely to be associated with 
organised convection—is highest at about 300 or 400 km 
distance and drops off with increasing radii after that. This 
is consistent with the expectation that monsoon depressions 
will organise convection near—but not at—MD centre. The 
density of wide convective cores also decreases with radius, 
but with larger uncertainty.

4  Discussion

Monsoon depressions (MDs) and their weaker—but more 
numerous—counterparts, monsoon low-pressure areas 
(LPAs) are the canonical rain-bringers of the Indian sum-
mer monsoon. Despite several previous efforts to quantify 
the fraction of monsoonal precipitation for which the for-
mer are responsible, there has been a failure to reach con-
sensus, with estimates ranging from 15–50%. The singular 

Fig. 10  Number of UW TRMM precipitating system types within a 
given distance from MD centre, separated by type, per 10,000 km2 . 
See Sect. 2.2.1 for descriptions of types. All types identified occurred 
within three hours of the time at which the MD location was identi-
fied. Confidence intervals calculated by bootstrapping
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study attempting to quantify the latter found only that the 
result was dependent on the selected ‘radius of influence’, 
an unknown quantity.

In this study, we started with the premise that the radius 
of influence must also be a sought quantity, before exploring 
a number of different attribution techniques to determine 
bounds on the actual fraction of monsoon rainfall that can 
be attributed to both MDs and LPAs. Using a database of 
109 MDs and 782 LPAs, we first approached a solution to 
the upper bound by making the approximation that all pre-
cipitation that falls while a system is active in the domain is 
caused by that system. The resulting spatial maps of attri-
bution fraction for MDs (LPAs) revealed substantial inho-
mogeneity: a maximum of almost 20% (80%) in the Bay of 
Bengal, between 10 and 20% (60–80%) over much of the 
monsoon core zone (MCZ); and despite being negligible 
almost everywhere else, was in excess of 50% over parts of 
Pakistan.

We then refined this estimate by imposing a fixed radius-
of-influence, assuming that all precipitation occurring within 
that distance from a system centre is attributable to that sys-
tem. Using theoretical considerations, we showed that an 
appropriate choice of radius is ∼ 800 km , which suggests 
that MDs and LPAs are responsible for 15% and 52% of all 
monsoonal precipitation in the MCZ respectively, and 10% 
and 37% over all India, respectively.

The fixed-radius method is subject to substantial noise 
from unrelated small-scale convective events and orographic 
precipitation, as well as potential under-counting where 
large-scale features extend beyond the chosen radius-of-
influence. To mitigate against these sources of uncertainty, 
we introduced a precipitation clustering technique that 
groups together contiguous and almost-contiguous areas of 
rainfall, while rejecting smaller scale features that are typi-
cally not caused by synoptic-scale circulations. A climatol-
ogy of these clusters revealed that the region in which they 
are largest (and thus, presumably, where synoptic organisa-
tion has the largest effect) is in the central Bay of Bengal, 
with a secondary maximum over the Arabian Sea, where 
the typical radii were ∼ 400 km and ∼ 350 km respectively.

This technique also required a choice of radius-of-influ-
ence—differing from the previous case in that if any part of 
a precipitation cluster falls within the radius, the whole clus-
ter is attributed. We found that an appropriate radius, which 
provided an upper bound for attributable precipitation, was 
200 km, whose selection has substantially less error than for 
the fixed-radius technique. This clustering method indicated 
that MDs and LPAs are responsible for 17% and 57% of all 

monsoonal precipitation in the MCZ respectively, and 12% 
and 44% over all India, respectively.

To more clearly highlight regional contributions, we 
employed a k-means partitioning technique to separate mon-
soon LPA tracks into four distinct categories. Short-lived but 
numerous systems originating in the Bay of Bengal domi-
nate the contribution over almost the entire Indian peninsula, 
distinct longer-lived systems whose genesis is also in the 
Bay of Bengal are the major precipitation source over north-
west India; whereas systems arising in the Arabian Sea are 
only of particular importance over south Pakistan, and those 
with genesis near Sri Lanka produce a moderate contribution 
to rainfall only there and over some parts of Tamil Nadu. For 
a full inventory, the reader is encouraged to refer to the table 
in the Appendix.

Finally, we used the University of Washington TRMM 
database of precipitating events to ascertain how rainfall 
is organised around MDs; the density of deep convective 
cores were found to vary little with radial distance from 
the MD centre, suggesting that they likely exist regard-
less of the presence of an MD. Conversely, the densities 
of wide convective cores, deep and wide convective cores, 
and especially broad stratiform regions were found to vary 
significantly with radius, suggesting that these are synopti-
cally organised. This lends further observational evidence 
to support the clustering attribution method.

Future work will look at, in particular, the manner in 
which low-pressure areas can remotely trigger precipitation 
over arid areas of Pakistan and Afghanistan; as well as how 
the results presented here change in the context of extreme 
precipitation.

Acknowledgements KMRH is funded by the JPI-Climate and Bel-
mont Forum Climate Predictability and Inter-Regional Linkages Col-
laborative Research Action via NERC Grant NE/ P006795/1. JKF is 
supported by NERC INCOMPASS Grant NE/L013843/1 and GCRF 
African SWIFT NE/P021077/1.

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat iveco 
mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.

Appendix: Table of attribution by system/
region

See Table 3.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


 K. M. R. Hunt, J. K. Fletcher 

1 3

References

Ajayamohan RS, Merryfield WJ, Kharin VV (2010) Increasing trend 
of synoptic activity and its relationship with extreme rain events 
over central India. J Climate 23(4):1004–1013

Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi 
S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, 
Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, 

Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hers-
bach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi 
M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey 
C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The 
ERA-Interim reanalysis: configuration and performance of the 
data assimilation system. Q J R Meteorol Soc 137(656):553–597. 
https ://doi.org/10.1002/qj.828

Dhar ON, Bhattacharya BK (1973) Contribution of tropical distur-
bances to the water resources of Ganga basin. Vayu Mandal 
3:76–79

Efron B (1979) Bootstrap methods: another look at the jackknife. Ann 
Stat 7:1–26. https ://doi.org/10.1214/aos/11763 44552 

Ester M, Kriegel HP, Sander J, Xu X et al (1996) A density-based 
algorithm for discovering clusters in large spatial databases with 
noise. Kdd 96:226–231

Fletcher JK, Parker DJ, Hunt KMR, Vishwanathan G, Govindan-
kutty M (2018) The interaction of Indian monsoon depressions 
with northwesterly midlevel dry intrusions. Mon Weather Rev 
146(3):679–693

Godbole RV (1977) The composite structure of the monsoon depres-
sion. Tellus 29:25–40. https ://doi.org/10.1111/j.2153-3490.1977.
tb007 06.x

Houze RA, Rasmussen KL, Zuluaga MD, Brodzik SR (2015) The vari-
able nature of convection in the tropics and subtropics: a legacy 
of 16 years of the Tropical Rainfall Measuring Mission satellite. 
Rev Geophys 53(3):994–1021

Huffman GJ, Bolvin DT, Nelkin EJ, Wolff DB, Adler RF, Gu G, Hong 
Y, Bowman KP, Stocker EF (2007) The TRMM multisatellite pre-
cipitation analysis (TMPA): quasi-global, multiyear, combined-
sensor precipitation estimates at fine scales. J Hydrometeorol 
8:38–55. https ://doi.org/10.1175/JHM56 0.1

Hunt KMR, Turner AG (2017) The representation of Indian mon-
soon depressions at different horizontal resolutions in the met 
office unied model. J Climate 143(705):1756–1771. https ://doi.
org/10.1002/qj.3030

Hunt KMR, Turner AG, Inness PM, Parker DE, Levine RC (2016a) 
On the structure and dynamics of Indian monsoon depressions. 
Mon Weather Rev 144(9):3391–3416. https ://doi.org/10.1175/
MWR-D-15-0138.1

Hunt KMR, Turner AG, Parker DE (2016b) The spatiotemporal struc-
ture of precipitation in Indian monsoon depressions. Q J R Mete-
orol Soc 142(701):3195–3210. https ://doi.org/10.1002/qj.2901

Hunt KMR, Turner AG, Shaffrey LC (2018a) The evolution, season-
ality, and impacts of western disturbances. Q J R Meteorol Soc 
144(710):278–290. https ://doi.org/10.1002/qj.3200

Hunt KMR, Turner AG, Shaffrey LC (2018b) Extreme daily rainfall 
in Pakistan and north India: scale-interactions, mechanisms, and 
precursors. Mon Weather Rev 146(4):1005–1022

Hunt KMR, Turner AG, Shaffrey LC (2018c) Representation of 
western disturbances in CMIP5 models. J Climate. https ://doi.
org/10.1175/JCLI-D-18-0420.1

Hurley JV, Boos WR (2015) A global climatology of monsoon low 
pressure systems. Q J R Meteorol Soc 141:1049–1064. https ://
doi.org/10.1002/qj.2447

Jadhav SK (2002) Summer monsoon low pressure systems over the 
Indian region and their relationship with the sub-divisional rain-
fall. Mausam 53(2):177–186

Mooley DA, Shukla J (1989) Main features of the westward-moving 
low pressure systems which form over the Indian region during 
the summer monsoon season and their relation to the monsoon 
rainfall. Mausam 40(2):137–152

Pisharoty PR, Asnani GC (1957) Rainfall around monsoon depressions 
over India. Indian J Meteorol Geophys 8:15–20

Praveen V, Sandeep S, Ajayamohan RS (2015) On the relationship 
between mean monsoon precipitation and low pressure systems 

Table 3  Precipitation-weighted mean attribution fractions by region/
country and system type, computed using the clustering method and a 
200 km radius-of-influence

Region/country MD LPA L1 L2 L3 L4
Andaman & Nicobar .079 .332 .009 .060 .230 .013

Andhra Pradesh .131 .466 .025 .115 .306 .036
Arunachal Pradesh .040 .256 .003 .047 .195 .004

Assam .052 .282 .004 .063 .205 .008
Bihar .081 .407 .006 .110 .281 .007

Chandigarh .078 .274 .002 .131 .132 .019
Chhattisgarh .162 .597 .012 .183 .390 .035

Dadra & Nagar Haveli .211 .469 .016 .207 .189 .079
Daman & Diu .180 .447 .011 .209 .158 .097

Goa .085 .352 .017 .083 .199 .062
Gujarat .193 .549 .009 .298 .171 .111
Haryana .101 .370 .003 .175 .174 .047

Himachal Pradesh .061 .222 .001 .106 .109 .016
Jammu & Kashmir .044 .124 .001 .057 .052 .023

Jharkhand .126 .549 .011 .164 .367 .017
Karnataka .064 .310 .041 .067 .164 .042

Kerala .039 .228 .039 .043 .102 .049
Lakshadweep .021 .178 .024 .020 .063 .072

Madhya Pradesh .174 .589 .007 .262 .310 .035
Maharashtra .157 .484 .018 .170 .255 .064

Manipur .071 .313 .006 .065 .226 .010
Meghalaya .057 .348 .004 .069 .266 .006
Mizoram .096 .369 .007 .084 .254 .022
Nagaland .054 .287 .006 .065 .204 .009

NCT (Delhi) .105 .432 .000 .220 .184 .057
Orissa .190 .617 .009 .191 .409 .027

Pondicherry .050 .293 .040 .046 .172 .034
Punjab .067 .268 .001 .112 .135 .040

Rajasthan .151 .526 .005 .267 .230 .060
Sikkim .068 .321 .003 .089 .218 .008

Tamil Nadu .019 .212 .065 .032 .091 .022
Tripura .097 .365 .007 .081 .258 .022

Uttar Pradesh .091 .441 .007 .177 .251 .016
Uttarakhand .071 .314 .004 .141 .164 .015
West Bengal .101 .436 .006 .113 .299 .011
Bangladesh .088 .379 .005 .085 .272 .012

Bhutan .054 .313 .006 .067 .229 .008
India .120 .448 .013 .156 .258 .035

Maldives .006 .116 .036 .014 .031 .031
Myanmar .083 .332 .006 .075 .222 .010

Nepal .065 .315 .003 .099 .205 .009
Pakistan .055 .203 .001 .107 .072 .043
Sri Lanka .011 .223 .122 .025 .049 .031

Here L1–4 refer to the LPA types: Sri Lankan, BoB long, BoB short, 
and Arabian Sea respectively (as defined in Fig. 9). Red and orange 
text indicate the most and secondmost attribution fractions by LPA 
type, grey boxes indicate where the attribution fraction is less than 
5%, and green where it is more than 40%

https://doi.org/10.1002/qj.828
https://doi.org/10.1214/aos/1176344552
https://doi.org/10.1111/j.2153-3490.1977.tb00706.x
https://doi.org/10.1111/j.2153-3490.1977.tb00706.x
https://doi.org/10.1175/JHM560.1
https://doi.org/10.1002/qj.3030
https://doi.org/10.1002/qj.3030
https://doi.org/10.1175/MWR-D-15-0138.1
https://doi.org/10.1175/MWR-D-15-0138.1
https://doi.org/10.1002/qj.2901
https://doi.org/10.1002/qj.3200
https://doi.org/10.1175/JCLI-D-18-0420.1
https://doi.org/10.1175/JCLI-D-18-0420.1
https://doi.org/10.1002/qj.2447
https://doi.org/10.1002/qj.2447


The relationship between Indian monsoon rainfall and low-pressure systems  

1 3

in climate model simulations. J Climate 28(13):5305–5324. https 
://doi.org/10.1175/JCLI-D-14-00415 .1

Rajamani S, Rao KV (1981) On the occurrence of rainfall over south-
west sector of monsoon depression. Mausam 32:215–220

Rajeevan M, Gadgil S, Bhate J (2010) Active and break spells of the 
Indian summer monsoon. J Earth Syst Sci 119(3):229–247

Ramanathan KR, Ramakrishnan KP (1933) The Indian southwest mon-
soon and the structure of depressions associated with it. Mem Ind 
Meteorol Dept 26:13–36

Roy SC, Roy AK (1930) Structure and movement of cyclones in the 
Indian seas. Beitr Phys Atm 26:224–234

Sikka DR (1977) Some aspects of the life history, structure and move-
ment of monsoon depressions. Pure Appl Geophys 115:1501–
1529. https ://doi.org/10.1007/BF008 74421 

Sikka DR (2006) A study on the monsoon low pressure systems over 
the Indian region and their relationship with drought and excess 
monsoon seasonal rainfall. Center for Ocean-Land-Atmos-
phere Studies, Center for the Application of Research on the 
Environment

Sperber KR, Annamalai H, Kang IS, Kitoh A, Moise A, Turner AG, 
Wang B, Zhou T (2013) The Asian summer monsoon: an inter-
comparison of CMIP5 vs. CMIP3 simulations of the late 20th cen-
tury. Climate Dyn 41(9–10):2711–2744. https ://doi.org/10.1007/
s0038 2-012-1607-6

Stano G, Krishnamurti TN, Vijaya Kumar TSV, Chakraborty A (2002) 
Hydrometeor structure of a composite monsoon depression using 
the TRMM radar. Tellus A 54:370–381. https ://doi.org/10.103
4/j.1600-0870.2002.01330 .x

Yoon JH, Chen TC (2005) Water vapor budget of the Indian mon-
soon depression. Tellus A 57(5):770–782. https ://doi.org/10.111
1/j.1600-0870.2005.00145 .x

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1175/JCLI-D-14-00415.1
https://doi.org/10.1175/JCLI-D-14-00415.1
https://doi.org/10.1007/BF00874421
https://doi.org/10.1007/s00382-012-1607-6
https://doi.org/10.1007/s00382-012-1607-6
https://doi.org/10.1034/j.1600-0870.2002.01330.x
https://doi.org/10.1034/j.1600-0870.2002.01330.x
https://doi.org/10.1111/j.1600-0870.2005.00145.x
https://doi.org/10.1111/j.1600-0870.2005.00145.x

	The relationship between Indian monsoon rainfall and low-pressure systems
	Abstract
	1 Introduction
	2 Data and methodology
	2.1 ERA-interim
	2.2 TRMM
	2.2.1 Database of precipitating systems from TRMM PR

	2.3 Monsoon depression tracks
	2.4 Objective cluster identification
	2.4.1 Glossary
	2.4.2 General description of the DBSCAN algorithm
	2.4.3 Application of DBSCAN to precipitation data


	3 Results
	3.1 Upper bound on rainfall attributed to MDs
	3.2 Assuming a fixed radius of influence
	3.3 Clustering
	3.4 Characteristics of precipitating systems around MDs

	4 Discussion
	Acknowledgements 
	References




