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A B S T R A C T

Façade pressure coefficients are widely used to determine wind-driven ventilation potential for buildings at the
design stage. Over nine months we measured façade pressure coefficients under full-scale conditions using the 6m
Silsoe cube in isolation and in a staggered array. Results are compared against a 1:300 wind-tunnel model, a time-
dependent computational fluid dynamics (CFD) model at full-scale and to published pressure coefficients in
ventilation design guidance for a range of wind angles.

Across all wind angles, wind-tunnel, CFD and published models tended to underestimate full-scale experi-
mental pressure coefficients in magnitude but replicated trends well for a single face on the isolated cube.
Agreement was weaker for the array; pressure coefficients are asymmetric with wind direction and results sen-
sitive to model set up and measurement strategies. Differences in pressure coefficient across the building
compared well in both isolated and array cases, suggesting this is a more robust parameter for models than in-
dividual facet data.

It is recommended that building symmetry and surrounding areas should be considered when relying on
ventilation guidelines. Scale and computational models are effective to support design for more complex cases;
however, it is important to ensure measurement locations are representative and that uncertainties are quantified.
1. Introduction

Predicting ventilation potential in naturally ventilated buildings is a
key component in designing buildings that effectively support occupant
health and comfort (Wang et al., 2008). However, building geometry,
orientation, the thermal environment and local wind conditions make
ventilation calculations complex (Chiu and Etheridge, 2007). In urban
environments, where a building may be surrounded by neighbouring
buildings, the local flow fields may significantly impact the potential
effective ventilation rate. Current methods for designing wind driven
natural ventilation rely on the knowledge of pressures across the building
façade to relate external wind speed, wind angle and openings with
ventilation rates (Etheridge, 2002). As such, appropriate pressure data
for the building is necessary in order to make reliable assumptions at the
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Traditionally, during the design stage of large buildings, scale models

(including some surrounding buildings) are placed in a wind tunnel and
the pressure distributions around the building are measured for various
incident wind directions. The resulting pressure coefficients (Cp) can then
be used to calculate the flow through ventilation openings at different
locations on the façade, using the orifice equation to relate flow rate to
wind speed (CIBSE, 2018). Such approaches are also used to produce
generic Cp data for different building geometries that are published in the
design guidance (CIBSE, 2005) and can be used to carry out ventilation
calculations on simpler buildings. These scale-model approaches rely on
several assumptions and uncertainties are not always given (Chiu and
Etheridge, 2007; Chu et al., 2009). Even for a simple building geometry,
wind-induced flows can be complex and transient (Coceal et al., 2006),
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and therefore predicting ventilation rates is difficult. The relation be-
tween external and indoor airflow is still an area of much debate around
appropriate ventilation prediction strategies (Liddament, 1996) and
challenging research due to the lack of full-scale building data (Blocken,
2014). Such limitations motivated the present study.

2. Background

The pressure coefficient (Cp) is a function of the difference between
pressure measured on a building's surface and the reference static pres-
sure (Δp), the density of the oncoming air (ρ) and the reference flow
velocity (Uref):

Cp ¼ Δp
0:5 ρ U2

ref

(1)

Defining Uref is complex in an urban area as local wind velocities are
wind direction dependent and often only airport data, some distance
outside the city, are available. Defining a suitable reference static pres-
sure may also be difficult.

Three main methods are used to obtain Cp values, ventilation rates
and airflow characteristics around buildings: full-scale measurements
(e.g. Caciolo et al., 2011; Belleri et al., 2014), scale modelling (e.g.
Karava et al., 2006; Zaki et al., 2012) and more recently, the use of
Computational Fluid Dynamics (CFD) simulations (e.g. Coceal et al.,
2007; van Hooff and Blocken, 2013). Often two methods are used in
conjunction such as wind-tunnel measurements and CFD simulations
(e.g. Yang et al., 2006; Blocken et al., 2012).

The widespread dependence on scale and CFD models highlights the
lack of full-scale data available for evaluation of the results. Some fea-
tures may not be captured at smaller scales (Richards and Hoxey, 2007).
All methods have advantages and disadvantages, with full-scale and scale
measurements being costly in terms of personnel and equipment, and
CFD models limited by the computational power available, especially if
the area of interest is large. CFD and scale models need to be tested
against full-scale data to ensure that the model is representative of the
full-scale flow and captures all flow features.

Data are often representative of a specific building and may not be
applicable to other structures. With a variety of building designs, loca-
tions and research objectives, it is difficult to inter-compare data and as
such datasets are not widely utilised by industry. Different building types
have been studied, for example, stadia (van Hooff and Blocken, 2010),
hospitals (Gilkeson et al., 2013) and schools (Bak�o-Bir�o and
Clements-Croome, 2012). Large differences in flow behaviour are found
for open, sheltered and courtyard situations within close vicinity (Gao
et al., 2012), and the need to use local referencemeasurements is evident.

The urban environment provides particular challenges for predicting
the natural ventilation of a specific building, due to the large number of
influencing factors on the flow (Dobre et al., 2005), such as: the location
of the reference wind speed and direction, local wind speed and direc-
tion, wakes of neighbouring buildings, localised heating and cooling and
the relative position of neighbouring buildings.

Buildings are often simplified into arrays of cubes in order to reduce
model complexity, improve understanding of complex flow features both
within and above the cubes and to model how the morphometry of the
array affects flow (Coceal and Belcher, 2004; Coceal et al., 2007; Wood
et al., 2009; Carpentieri and Robins, 2015).

Pressure coefficients have been measured at full-scale on individual
cubes including work using a 2.4 m cube (Maruyama et al., 2008) and the
6m Silsoe metal cube (Straw et al., 2000; Yang et al., 2006; Kasperski and
Hoxey, 2008; Richards and Hoxey, 2012). However very little work has
considered building arrays at full scale. More common is the use of
uniform arrays of blocks in a wind tunnel measuring pressure coefficients
to infer ventilation rate (Zaki et al., 2012), although non-uniform
buildings (Li et al., 2015) are also used along with scale models of real
buildings.
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This study was conducted as part of the RCC (REFRESH Cube
Campaign) project (Gough et al., 2018a) and aims to compare facade
pressure data collected at full-scale to both a 1:300 scale wind tunnel
model and transient CFD simulations for both an isolated cube and a cube
within a limited irregular nine cube array. The full-scale setting allows
for detailed investigation into external airflows and the exploration of the
influence of wind speed, wind angle and the effect of neighbouring
structures on surface façade pressures. Research into the different
ventilation measurement methods and influence of the array on cross
ventilation using the full-scale site and a CFD simulation are published
(Gough et al., 2018a, 2018b; King et al., 2017a). The RCC has also been
used to explore the effectiveness of using a GPU Lattice-Boltzmann CFD
model to simulate urban airflow (King et al., 2017b).

This is the first study to systematically compare the three different
modelling approaches across all wind angles with a comprehensive full-
scale dataset for both an idealised isolated case and urban array case. The
results are also compared with the current UK and international pre-
vailing wind pressure coefficient design guidelines published by ASH-
RAE, AIVC and CIBSE. We aim to provide a better understanding of how
to use scale and CFD modelling approaches effectively and provide
insight into the application of guidelines for real-world design.

3. Methods

3.1. Full-scale field campaign (RCC-FS)

An overview of the RCC–REFRESH cube campaign is given by Gough
et al. (2018a) and is detailed extensively in Gough (2017). Full-scale
observations were undertaken using a cubic test structure (Fig. 1)
located at Wrest Park, Silsoe, Bedfordshire, UK (52.01088 �N, Longitude
0.4121 �W). From 9th October 2014 to 10th April 2015 a staggered
asymmetric array was in place. The isolated cube was studied from 30th

May 2015 to 7th July 2015. The instrumented cube (dimensions
6m� 6m� 6m) was clad in flat, steel sheets to ensure uniform external
surfaces. The front and back faces had removable panels (0.4m wide by
1m high, centre point 3.5 m from the ground) so the cube could be both a
sealed and a ventilated structure.

Although the surroundings were not uniform there were no topo-
graphic features which uniquely affect the site conditions. To the west,
farmer's fields with crop stumps (circa 0.1m in height) were present. The
site is well-characterised (Gough et al., 2018b) and was previously
modelled both in the wind tunnel (Richards and Hoxey, 2007) and by
CFD (Yang et al., 2006; King et al., 2017a). Nearby structures include two
storage tanks (~2m high and 4m wide, black triangle, Fig. 1) and a
storage shed (black diamond, Fig. 1), which was roughly the same height
as the instrumented cube (6m) 15m wide and 25m long with a sloping
roof.

An asymmetric staggered array of eight 6m straw cubes was built
around the instrumented cube (Fig. 1). Although the sides and tops of the
cubes were not completely smooth, given the focus on mean flow trends,
this roughness is assumed to have little, if any, effect on Cp values
measured at the test cube. Within the total area of the array (1260m2)
the plan area density (λp) was 25.7% (Fig. 1). The array faced into the
expected prevailing wind direction of approximately 240�, this is
referred to as 0� hereafter (Fig. 1).

All instruments (detailed in Gough et al., 2018a) remained in the
same set-up for both the array and isolated cube observation periods to
allow for clear comparisons. Seven 3-axis Gill R3-50 sonic anemometers
were deployed: two in the cube and five outside (Fig. 1). The two sonic
anemometers closest to the instrumented cube (Front and Back, Fig. 1)
and two internal sonic anemometers were mounted on masts, with the
centre of the sonic anemometer being at 3.5 m. The Channel mast (Fig. 1)
sonic anemometer at 2.9 m was logged at 20 Hz. All sonic anemometers,
apart from the Channel Mast were logged at 10 Hz simultaneously on a
MOXA UC 7410 Plus fan-less compact computer. Post processing of the
data followed the methodology of Barlow et al. (2015) and Wood et al.



Fig. 1. RCC full-scale (RCC-FS) study site at Silsoe: a) plan view of main features
(unchanged since 2009); b) oblique view into the prevailing wind direction of
the cube array, with sonic anemometer locations (text in white background,
instruments images in black boxes), storage shed (black diamond) and sewage
tanks (black triangle); and c) plan of site with angle notation. The metal cube in
(b) and brighter square in (c) are the instrumented cube. Italic angles are
meteorological (real) wind angles, with bold angles denoting the naming
convention used in this paper. Note that the wide-angle lens distorts the pe-
riphery of images. Copyright 2016 Infoterra, Blue Sky Limited and Google Earth.
(Gough et al., 2018a,b). (For interpretation of the references to colour in this
figure legend, the reader is referred to the Web version of this article.)

Fig. 2. Location of the pressure taps during RCC on each face of the cube (T,
top; B, base) and the openings (white rectangles), when looking directly at the
cube with. 15 and 16 were the internal taps and are not shown. Spacing between
the taps (black) are shown but drawing is not to scale, (Gough et al., 2018a, b).
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(2010). The sonic anemometers were inter-compared before and after the
experiment; as no drift and minimal differences were observed, no
inter-instrument corrections are made.

The cube surface pressure was measured using pressure taps: 7mm
holes located centrally on 0.6m2 steel panels, which were mounted flush
onto the cube cladding to minimise their effect on the pressures
measured (Fig. 2). Pressure signals were transmitted pneumatically,
using 6mm internal diameter plastic tubes to transducers within the
cube. The individual transducers meant that the pressure tap measure-
ments were simultaneous at 10 Hz. Honeywell 163PC01D75 differential
pressure sensors (pressure taps 1–16) had a range of �2.5 inches of H2O
(~�498 Pa). Pressure taps 17–32 were Honeywell 163PC01D76 differ-
ential pressure sensors and had a range of �5 inches of H2O
24
(~�1245 Pa). All pressure sensors had a manufacturer stated response
time of 1ms.

30 external pressure taps were used with 2 internal pressure taps, as
Straw (2000) notes that the internal pressures may vary over time. The
30 external pressure taps used were split across the four faces; four on the
roof, four in a horizontal array on the centre line across the North and
South faces and nine on the front and back faces, with five of those in a
vertical array and four in a horizontal array (Fig. 2). A reference pressure
was measured using a static pressure probe (in house, Richards and
Hoxey, 2012), with a reference dynamic pressure measured using a
directional pitot tube (in house) at 6 m (building height) alongside the
6m reference sonic anemometer (Fig. 1). Errors in pressure tap mea-
surements are discussed in Gough et al. (2018b).

3.2. Wind tunnel set up and measurement technique (WT-RCC)

Scale model experiments of the RCC (RCC-WT) were conducted in the
Environmental Flow Research Centre (EnFlo), University of Surrey ‘A’
wind tunnel (low speed open circuit). The test section is 0.6 m high,
0.9 m wide and 4.5m long and is constructed of wood and metal with
glass side panels. The roof was weighted down to ensure a proper seal
and was constructed from a combination of wood and a movable acetate
sheet.

The entire floor of the working section was lined with 6mm boards
covered in a staggered pattern of small right-angled brackets, 8mm wide
(in the spanwise direction) and 2mm high, previously used by Snyder
and Castro (2002), creating rough surface conditions similar to those of
the full-scale site. A Perspex turntable (radius 0.15m) was set into the
roughness boards and centred 2.1 m from the flow inlet (Fig. 3). The
wind tunnel angle notation follows that of Fig. 1c (bold font).

Seven 0.25m Irwin (1981) spires were used to generate the boundary
layer and the height difference between the tunnel floor and the spires
was minimised by using a small metal ramp. The boundary layer thick-
ness, measured at 5 points, was 0.15m above the turntable, with a
0.036m deep logarithmic layer. The average turbulence intensity at
building height of 19%� 1% is within this error for all tests (Fig. 4). A
longitudinal turbulence intensity of 20% at building height was specified
by Richards et al. (2001) for the full-scale cube in selected wind condi-
tions and in near neutral conditions (no uncertainty is stated). For the



Fig. 3. Wind tunnel set up of a) roughness elements, brass cube and Perspex turntable with scales marked and b) the 1:300 scale RCC-WT array.

Fig. 4. a) Average longitudinal turbulence intensity profile for the wind tunnel boundary layer and b) generated boundary layer within the wind tunnel, normalised by
cube height (20mm). Height error bars are not visible on either plot.
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full-scale site the value of turbulence intensity differs with wind direction
(Gough, 2017; Gough et al., 2018a).

The average roughness length (z0) calculated using data within the
logarithmic layer for this campaign was 3.3� 10�5 m� 1� 10�6 m
(0.033� 0.001mm). With a model scale of 1:300, this is equivalent to a
full-scale z0 of 0.0115m� 0.0003m (11.5mm� 0.3mm) suggesting
open and flat terrain with a few isolated obstacles and a combination of
grass and low crops (Stull, 1988). Given the full-scale site (Section 3.1) z0
of 0.006–0.01m (Richards and Hoxey, 2007), this is regarded as repre-
sentative despite the slightly higher wind tunnel value compared to
full-scale site. The generated boundary layer (Fig. 4) was found to be
similar (within 10%) of the boundary layer used in wind tunnel testing by
Richards and Hoxey (2007) and the full-scale measurements from by
Richards et al. (2001).

The isothermal wind tunnel simulation neither accounts for the ef-
fects of the tree avenue, nearby buildings and woodland at the full-scale
site (Fig. 1) nor does it capture the larger turbulence scales due to
changing atmospheric stability. The storage shed (Fig. 1) wasmodelled in
the wind tunnel using measurements from Richardson and Blackmore
(1995) and was included for both the isolated and array cases. More
detail on the wind tunnel experiments can be found in Gough (2017).

The 1:300 scale model of the staggered array, with the pressure
tapped cube, was centred on the turntable (Fig. 3). The test section
blockage was negligible. The remaining elements were sanded wooden
blocks of height 20mm, previously used by Cheng et al. (2007) (Fig. 3).

The 20mm pressure tapped brass cube (also used by Cheng et al.,
2007) had 42 pressure taps on two opposing sides (referred to as ‘front’
25
and ‘back’), with 3 rows of 7 pressure taps on each face (Fig. 5). The
height of these rows is different for the two faces, so the cube can be
rotated by 180� to give 42 pressure measurements on each face. Rotating
the cube by 90� allows for the pressure data to be captured for the cube
sides (‘north’ and ‘south’ in line with the full-scale orientation). The error
in the wind direction caused by this rotation was found to be�2�. Details
of the pressure tap measurement setup are included in the Appendix. The
reference static pressure was measured at x¼ 55mm (0mm is the centre
of the cube), y¼ 95mm and z¼ 300mm (behind the turntable and in the
free stream above cube height) to ensure that it did not disrupt the flow
around the array and provided a local reference pressure measurement.

3.3. CFD methodology (RCC-CFD)

A transient Navier-Stokes finite-volume simulation was used to model
the isolated cube and array at full-scale (RCC-CFD) in Ansys Fluent 17.1
(Ansys Canonsburg, PA, USA). The model used a k-ω shear stress trans-
port (SST) scale adaptive simulation (SAS) turbulence model, which is a
hybrid RANS-LES model that has shown superior results to the more
commonly applied steady state RANS model; this is described for this
purpose in King et al. (2017a,b).

A domain based on the full-scale site of (20m� 50m� 18m) was
modelled with approximately 3H upstream and 5H downstream for the
isolated cube as described in King et al. (2017a,b). The CFD simulation
did not include openings in the cube. This bounding is a balance between
a dense mesh to maintain the spectral content and the required
computing time in order to avoid the decay of turbulent structures. A



Fig. 5. Pressure tap measurement points a) used in the wind tunnel. The cube had to be rotated in order to capture 42 points for each face, front side (triangles) and
back side (circles) of the cube, and points matching the full-scale cube are circled (Fig. 1), and b) the 20mm pressure tapped cube in the wind tunnel.
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bounding box of 12H� 168H� 6H (72m� 108m� 36m) was used to
account for the larger size of the array. Fig. 6 shows the computational
domain and mesh characteristics close to the Silsoe cube in the array
context. From mesh sensitivity analysis (King et al., 2017a) a grid sizing
of 0.01H at the cube was sufficient to resolve velocity at the side of the
isolated cube to within 5% of that measured by Hoxey and Richards
(1993). Bulk flow cell size increases up to H/10 downstream of the cubes.
Final cell counts for the isolated and array cases were ~1.8 million and
~4.3 million respectively. Yþ (a dimensionless variable based on first
cell size compared to airspeed in the first cell) requirements close to the
wall are that of URANS: a value of between 35 and 50 was obtained for a
grid wall spacing of 0.06 m at the wall.

Site velocity profile measurements are well matched by a logarithmic
profile (Richards and Hoxey, 2002):

UðzÞ ¼ u*

κ
ln
�
z
z0

�
(2)

Following Richards and Hoxey (2002), a reference velocity (Uref) of
2m s�1 at z¼ 6m and ground roughness length z0 of 0.01mwere used to
define the inlet wind condition. u* is the turbulent friction velocity
(0.13m s�1) and κ is von K�arm�an's constant (0.41) (Tu et al., 2018). Inlet
turbulence kinetic energy (k) is modelled using (Tu et al., 2018):

k ¼ u*2ffiffiffiffiffiffi
Cμ

p (3)

where Cμ is the eddy viscosity constant of 0.09. The specific dissipation
rate ε is based on the turbulent dissipation rate ω, given by standard
formulations (Richards and Hoxey, 1993):

ε ¼ u*3

κðzþ z0Þ; (4)
Fig. 6. Computational domain of a) the array at 45� in dimensionless units and b)
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ω ¼ ε

kβ*
(5)

where β* is 0.09 (van Hooff et al., 2017).
Ground roughness length is set to 0.01m. Sides and top of the domain

are modelled as free-slip walls and are far enough away not to impact the
flow around the cube. This is tested by a sensitivity analysis following
Blocken and Gualtieri (2012). The downwind outlet is 0 Pa gauge pres-
sure in all cases with zero gradient for all other variables. The modelled
approach flow velocity profile is similar to the measurements taken at the
site by Richards and Hoxey (2002), though errors were not provided.

A second-order upwind scheme is applied to convective terms and a
central differencing scheme is applied to diffusion terms. For time inte-
gration, a central bounded second-order accurate scheme is utilised. A
Courant-Friedrichs-Levy number of 0.08 is used throughout based on
Δt¼ 0.0025, Uref¼ 2m s�1 and Δx¼ 0.06m, which is within the range of
best-practice used in transient flow simulations (Nozu et al., 2008;
Tominaga et al., 2008). An initial steady state simulation is run to create a
starting point for the transient simulation using the SIMPLE
pressure-velocity coupling scheme (Tu et al., 2018). Pressure interpola-
tion, convective terms and the viscous terms of the governing equations
are solved with second order discretisation. The transient simulation,
using the PISO scheme, is run initially for the amount of time it takes a
parcel of air at the inlet to reach the outlet (1 air turn over time) (Tu et al.,
2018). The simulations are averaged for 18,000 time steps which cor-
responds to a flow time of 45 s. This is sufficient to obtain statistically
steady results, as verified by monitoring the evolution of the mean
pressure on the Silsoe cube front face using moving averages. Pressure is
measured at 10,000 points on each face. Reference pressure is measured
at the equivalent location to the reference mast in the full-scale study
(Fig. 1).
detail of computational grid close to the cubes. Cell size on the face¼H/100.
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4. Results

To ensure that the calculated pressure coefficients are unaffected by
instrument sensitivity, only full-scale 30min averages with near neutral
stability (�0.1< jz/Lj< 0.1, where z/L is the Obukhov stability param-
eter) and a reference wind speed at 6m Uref> 3m s�1 are used in line
with limitations of the pressure tap response time (Richards and Hoxey,
2012). The wind direction (θref) at 6 m is used unless otherwise stated
(Fig. 1).

Full-scale measurement errors are derived from instrument error. For
wind tunnel measurements the standard error of the averaged data is
taken and for CFD data errors are based on the standard deviation over
the sampling period of the measurement. All methods use the full-scale
field site co-ordinate system, with a perpendicular wind direction
being 0� (Fig. 1).
4.1. Comparison of CFD, wind tunnel (WT), full-scale (FS) isolated cube
Cp values and previous work

To establish whether the current work (RCC) can be considered
representative of previous work, Cp values measured and modelled for
the isolated cube for θref¼ 0� 5� are compared to: full-scale Cp values
previously measured on the Silsoe cube by Richards et al. (2001), an
isolated cube in an atmospheric boundary layer (Castro and Robins,
1977) and a 1:40 Silsoe cube model (Richards and Hoxey, 2007). The
data digitized from papers have an additional error of ~2%. CFD data are
subsampled to 100 points across the vertical line from the front to the
back of the cube.

For the front face, the vertical trend in Cp is similar for all datasets
(Fig. 7). The RCC-CFD simulation predicts the highest front face pres-
sures, which fall within the range observed at full-scale (RCC-FS), but
both are higher than RCC-WT. Richards et al. (2001) compared several
studies (both WT and FS) and found a spread in the front face Cp of 0.2,
and thus RCC-WT is in a similar range to the other studies. Suggested
causes for the spread were Reynolds number and relative roughness ef-
fects (Richards et al., 2001). For this wind direction (θref¼ 0�, Fig. 1), the
RCC-FS pressures on both the front and back faces are different to those
of Richards et al. (2001); this may be due to the small number of samples
(12 h of 10min averages for one wind direction) obtained by Richards
et al. (2001), meaning it is difficult to determine how representative the
case study is of Cp for θref¼ 0� 5�.

The RCC-FS results show good agreement with WT data from Castro
and Robins (1977) for the front and back faces, perhaps due to the their
model including a boundary layer meant to simulate the suburban
environment, making it more representative of the conditions experi-
enced in the full-scale field for extended periods of time (Fig. 7). The
results from Castro and Robins (1977) have smaller magnitude negative
pressure coefficients on the roof of the cube, potentially because the
boundary layer and roughness elements upstream produce different wind
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shear and turbulence levels at roof height. Roof Cp values are sensitive to
the upstream turbulence and the ratio of the cube to the boundary layer
depth (Castro and Robins, 1977). For the back face (Fig. 7), the RCC-CFD
data agrees better with RCC-WT than RCC-FS data, and lies within the
spread of other results, found by (Richards et al., 2001) to be 0.4. The
RCC-FS data shows good agreement with Castro and Robins (1977).

The slightly smaller magnitude Cp values for the RCC-WT experiment
may be due to the difference in the reference pressure measurement
placement and thus the resultant pressure difference. Castro and Robins
(1977) and Richards and Hoxey (2007) measured the reference pressure
upstream whereas the reference pressure is taken adjacent to the brass
cube in the RCC-WT experiment. The reference pressure for the RCC-FS
experiment may also be sensitive to wind direction.

Overall, RCC data from all three sources agrees well with previous
data in areas where there is small spread – clearly, on the roof there is a
large difference between all studies. Bias exists for the back face, where
FS data agrees best with Castro and Robins (1977), and CFD andWT data
fall within the spread of other studies. Data included here covers a wide
range of experimental conditions, with differing turbulence intensities
and locations of reference pressure measurements.
4.2. Methodology for comparison of the different datasets

Data availability are quite different for the three data sources.
Notably the sample points per face vary between 10,000 for the CFD
(potentially unlimited), 42 for the WT and only 9 points in a cross shape
for the FS cube (Fig. 2). Thus, features may not be captured by the sparse
FS measurement distribution. It is also important to note that U and
turbulence intensity vary between the data-sets leading to associated
uncertainty in the comparisons.

For the FS front face average Cp is a 30-min arithmetic mean of the 9
pressure from taps for Uref at 6m (Gough, 2017; Gough et al., 2018a).
These are also binned and averaged in 5� sectors. Similarly, averages for
the WT and CFD data are determined for the 9 FS locations (Fig. 5a) but
are 2-min and 45 s averages, respectively. The effect of the array on the
pressure coefficient and ventilation rates are discussed in Gough et al.
(2018a). Here the focus is on the difference between modelling methods
and available data.

ASHRAE (American Society of Heating, Refrigerating and Air-
Conditioning Engineers, AIVC (Air Infiltration and Ventilation Centre),
and CIBSE (Chartered Institute of Building Services Engineers) each have
published data for the front face of an isolated building. The CIBSE
(CIBSE Guide A, 2018) values are from Liddament (1996) but corrected
from earlier editions. AIVC data are from both Liddament (1996) and
Heijmans and Wouters (2002). ASHRAE's data are based on Swami and
Chadra (1988) but has similarities to the AIVC data as both have their
origins in Wir�en (1983). AIVC use three sheltering categories, whereas
ASHRAE (Swami and Chadra, 1988) average into one value. Swami and
Chadra (1988) adjusted their data around the Cp value measured at
Fig. 7. Comparison of the measured mean pres-
sure coefficients on the cube centreline with the
wind normal to the front face for an isolated
cube. Data from this experiment the larger sym-
bols in colour whereas from previous experiments
are grey. Full-scale data (RCC-FS) is limited to
θref¼ 0� � 5�, with the median (purple dots-) and
inter-quartile range (IQR, shading) shown. Roof
data are unmeasured for the RCC-WT (diamond,
Section 3.2) and the CFD model (Section 3.3).
Two wind tunnel tests (Richards and Hoxey,
2007) for the same conditions: A (square) and B
(cross). (For interpretation of the references to
colour in this figure legend, the reader is referred
to the Web version of this article.)
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θref¼ 0� but do not provide the raw measurements before the adjust-
ments in the ASHRAE guidance. The ‘modified’ Swami and Chadra
(1988) values (ASHRAE data) treat the cube faces in isolation, whereas
Heijmans and Wouters (2002) measure the front, back and sides simul-
taneously, capturing the interacting effects of the faces. In standards,
wind direction is often split into 45� sectors (CIBSE, 2018, ASHRAE,
2009) with the predicted pressure coefficient of a surrounding building
being dependent on a sheltering factor.

Comparison of front face Cp for the array case is made with the CIBSE
0Urban sheltered building’ in the AM10 report (CIBSE, 2018). The
Shielding condition given is ‘highly sheltered (i.e. surrounded by ob-
structions equivalent to the full height of the building)’ (CIBSE, 2018).
The front and back face magnitudes are impacted by the reference
pressure location but have similar trends. Using front-back differences in
Cp mitigates this effect.
4.3. Inter-comparison of RCC full-scale (FS), wind tunnel (WT), CFD and
guidelines for the isolated and array cases under various wind directions

For the isolated cube (Fig. 8a), the 42-point RCC-WT data resembles
the FS results, with both having similar trends on the front face: a
maximum Cp for θref¼ 0�, a minimum for parallel flow (θref¼ 90�),
becoming negative for θref¼� 90–180�. The effect of the storage shed
(Fig. 1) can clearly be seen for θref¼ 90�, bringingWT results closer to the
FS measurements, although there are fewer FS data points for this wind
direction. There is a large spread of Cp (0.6–1.3) for the FS isolated cube
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when exposed to θref¼ 0� 5�. The mean Cp for this θref range is 0.85, with
99.7% of the data being within 0.85� 0.45. Using only nine points on the
wind tunnel cube face increases the calculated Cp for θref¼ 0� by 0.1 with
little, if any, change for the other measured wind directions regardless of
whether the model shed is included.

The RCC-CFD model captures the magnitude of the full-scale results
to a greater extent than the wind tunnel, however, it overestimates the
drop in front face averaged Cp from θref¼ 45–90�. The Cp values are close
to that of the 42-point RCC-WT model for θref¼ 90 and �90� (Fig. 8a).
The 9-point RCC-CFD data have a larger front face Cp for θref¼ 0–45�, but
the difference between the full and 9-point CFD datasets decrease as θref
increases. This suggests that the patterns of negative pressure occurring
on the front face for θref¼ 45–90� are much smaller in spatial extent or
weaker in magnitude in RCC-FS than the CFD or WT models.

The Cp values for the FS isolated cube are higher, and fall within the
80% bounds set by Swami and Chadra (1988) (ASHRAE) only for some
directions between �180< θref<�90�. Both the AIVC/CIBSE and
ASHRAE results are in good agreement with the RCC-WT results. The Cp
minimum is predicted by the AIVC model to occur at θref¼�90�, when
the oncoming flow is parallel. The ASHRAE (Swami and Chadra, 1988)
model predicts the minimum value of Cp to occur at θref¼ 115�, when the
flow is impacting on the back face. The minimum binned value for the
isolated Silsoe cube occurs around θref¼ - 90� and 115�.

For the array case (Fig. 8b) the front face Cp averages for RCC-WT
agree best with RCC-FS data near θref¼ 0� and 170� but show distinctly
different patterns with changing θref, notably remaining negative for all
Fig. 8. Comparison of the RCC full-scale (FS)
data and 5� bins containing at least 5 samples,
wind tunnel (WT), CFD and model guidelines for
the cube front face for the a) isolated and b) array
cases. WT and CFD 9-point measurements are
subsampled to match the locations of the FS
measurements. WT and CFD wind directions use
the FS notation (Fig. 1). Note absence of isolated
cube WT data for θref¼ 45�. Ventilation design
guidelines: ASHRAE (Swami and Chadra, 1988)
and AIVC/CIBSE (Heijmans and Wouters, 2002;
CIBSE Guide A, 2018). Error bars are the standard
error. ASHRAE data are subject to 2% digitisation
error. For ease of comparison the ventilation
design guidelines model data points are joined.
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other angles. Within RCC-WT (cf. to RCC-FS) the trend with θref is almost
a mirror image, showing that local wind patterns causing suction on the
cube are very sensitive to the differences between full-scale and wind
tunnel flows. For the array case the inclusion of the storage shed (Fig. 1)
in the wind tunnel model has less impact than for the isolated case, the
largest change being less than 0.1 around θref¼ 90�.

The RCC-CFD data with all sampled points lies mostly within the
scatter of the FS data for �90� < θref< 45�, though it is notable how
sensitive this result is to sampling: the 9 point CFD data switches sign,
and is closer to the wind tunnel results from θref¼�10� to - 60. This
implies that the pressure pattern for �90� < θref< 0� is broadly correctly
simulated by the CFD, but the detail of the pattern, when sampled at only
9 points, is displaced, or gradients are sharper than at FS. In the CFD and
WT models the tree avenue in this sector (Fig. 1) is not included which
could introduce higher roughness and more variability in wind direction
that “smears” out sharp pressure gradients in 30min averaged FS data.
For θref¼�90�, �45� and 90� there is agreement between the wind
tunnel and the 9-point CFD model. The large negative deviation of RCC-
CFD with all datapoints for 60� and 80� suggests that there is large
suction towards the corners of the cube that is unrealistic – the 9-point
sub-sampling agrees better with FS or WT data.

The RCC-FS and RCC-WT difference for the back face of the isolated
cube (Fig. 9a) is likely related to the differing positions of the reference
pressure between techniques. A more reduced pressure on the front face
corresponds to a lower (i.e. more negative) pressure on the back face,
causing an offset for each method. The peak in RCC-WT of 0.5 that occurs
at θref¼ 180� is similar in magnitude to the front face at θref¼ 0�
Fig. 9. As Fig. 8, but for

29
(Fig. 7a). The full-scale site is also affected by the varying terrain and
upstream roughness elements not modelled in the wind tunnel, leading to
the clear asymmetry (Fig. 7a). Using 9-point sub-sampled WT data, the
back-face Cp for θref¼ 180� increases by 0.1, as seen for the front face at
θref¼ 0�, and Cp decreases by 0.2 for θref¼ 100� (Fig. 9a). Otherwise the
results remain similar. RCC-CFD follows the wind tunnel results for the
isolated back face, tending to underpredict by 0.05–0.1, though this
difference increases to 0.25 for θref¼ 75� and �75� likely due to mesh
limitations at this angle (Figs. 9a and 6). It is thought that using an
adaptive mesh may resolve this and is part of the future work planned
with this dataset. CIBSE pressure coefficients for the back face are similar
to WT and CFD for θref¼ 0� � 90� and θref¼ 180� for the isolated cube,
with the guidelines capturing a similar trend to bothWT and CFD, but not
FS.

The results of the back face for the array for all methods (Fig. 9b) are
similar to the back face of the isolated cube (Fig. 9a). This might be ex-
pected as back face of the cube is always on the edge of the array, and
thus less affected by the presence of other cubes. The effect of the storage
shed on the WT results is less pronounced for the array than for the
isolated case, similar to the front face. The RCC-WT and RCC-CFD back
face data agree better with RCC-FS than for the front face (Fig. 8b). The 9-
point average WT Cp is larger by up to 0.05 for all wind directions but
shape of the curve remains the same. Similarly, sub-sampling the CFD
data makes only small differences, suggesting that there might be weaker
pressure gradients across the back face.

WT and CFD diverge at θref¼ 90�. This may be related to the storage
shed being not in the CFDmodel. For the array case the spike in CFD Cp at
the cube back-face.
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θref¼ 45�, is thought to be caused by the mesh size being too large at the
point of flow impact, thus changing the wake and the back face Cp (Figs. 6
and 8). Data from CIBSE (2018) for the sheltered case predicts similar
trends to the WT and CFD, like for the isolated case, though magnitudes
diverge at θref¼ 180�.

For both the isolated (Fig. 9a) and array (Fig. 9b) back faces the WT
model gives symmetrical results with θref, unlike the FS results which are
impacted by the changing roughness with wind direction from obstacles
not modelled within the wind tunnel (Section 3.2). The CFD results do
not show symmetry for the array back face (Fig. 9b) and capture the trend
in FS for more negative values for positive θref. The CIBSE sheltered Cp
values predict similar trends to the WT and CFD for the array case and
like for the isolated back face, the magnitudes diverge at θref¼ 180�.
Overall, it is harder to obtain agreement between all three methods for
the Cp front and back face averages for a cube in an array, due to greater
sensitivity of pressure patterns to inevitable differences in flow detail.

The difference between face averaged front and back Cp (Fig. 10) is
widely used to predict ventilation rate through openings. Note that this
form of presentation is independent of the choice of reference pressure.
For the isolated cube the difference is underpredicted by RCC-WT data,
though adding the shed improves agreement around 90� and using only
nine points increases the similarity with RCC-FS data for θref¼ 0 and
120� (Fig. 10a). CIBSE 2018 data agrees most with the RCC-WT 9-point
data in magnitude and trend. There is little FS data for θref¼�180� but
the wind tunnel data seems to overestimate the peak. Large scatter in the
FS results are likely associated with the variable wind directions within
the averaging times for both the isolated (Fig. 9a) and array (Fig. 10b) Cp
differences. The CFD results lie within the FS scatter from �20 <
Fig. 10. Difference between the front and back face a
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θref< 90�, and sub-sampling to 9 points improves this agreement. The
CFD data shows a symmetrical trend rather than the slight asymmetry
seen in the FS data, which is consistent with increased roughness due to
the tree avenue decreasing the pressure drop on the cube for �70 <

θref<�20�.
For the array case, for �45 < θref< 90� the WT results underestimate

ΔCp, only capturing some of the lower FS measurements and showing
poor agreement at θref¼�180� (Fig. 10b). The CFD results show more
variability and sub-sampling the data reverses the trend with direction,
suggesting again that there are sharp gradients in the pressure patterns.
The lack of agreement around θref¼�90� with FS data for both WT and
CFD shows a local flow at FS that reverses the sign of the pressure dif-
ference. However, for θref¼ 0� � 45�, the CIBSE sheltering data best
agrees with the FS data, before following the trends of the WT and CFD
for θref< -90� and θref> 90�. Overall, there is better agreement for ΔCp
than for individual facets.

5. Discussion

Uniquely, RCC provides a very thorough case study of both isolated
and array configurations with three methods from which several impli-
cations emerge. The study shows that representing an isolated building as
a cube can lead to good agreement (within 25%) between FS, WT and
CFDmethods to determine pressures across the façade of the building. All
three methods show the same trends, and differences are explained by
assumptions about boundary conditions, data sampling, and domain
limitations. Comparison between the three methods in the array case
shows much more mixed results, and the model set up and sampling
veraged Cp for the a) isolated and b) array case.
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strategies have a much more significant influence on the results (differ-
ence in values range from 20% to over 200%, especially for oblique
angles).

Differences between the three methods (FS, WT, CFD) can be influ-
enced by the number and location of measurement points (C�ostola et al.,
2009). For example, close to cube edges measurement points were ab-
sent at FS but present in the WT and CFD models. For the isolated case,
using the 9-point sub-sampling with the WT and CFD model data
showed greater similarity (difference reduced by ~10%) to the full-scale
results for the front face. This suggests that for better agreement be-
tween methods, matching the locations of measurement points is
important (Figs. 8 and 9). However, for the array case, sub-sampling
data on individual facets for CFD showed mixed results, with the
9-point sampling agreeing with the WT results but the full CFD data set
showing better comparison to FS under certain wind angles. Where WT
or CFD models are created to aid interpretation of full-scale data, care
must be taken to compare pressure patterns as well as point measure-
ments, otherwise they risk becoming misleading, e.g. right pattern,
wrong location.

FS results for both the isolated cube and the array show some
asymmetry (Fig. 7). This may be caused by the tree avenue (Fig. 1) acting
as a windbreak to the oncoming flow, reducing overall wind speed and
increasing the turbulence intensity for this wind.

Some differences between the three data sets can be related to up-
stream boundary conditions, flow profile and turbulence intensity. The
addition of a nearby obstacle in the WT and CFD models generally
improved Cp values (reduction of 5–15% in the difference in methods)
compared to FS. Domain size limitations preclude inclusion of larger
obstacles or changes in surface roughness further away. The results imply
that cube pressures are sensitive to the correct choice of upstream wind
profile even for the array. There is evidence that variability from large
scales of turbulence (10%–100%) at FS cause “smearing out” of pressure
patterns that are hard to match with WT and CFD models as they
generally assume lower turbulence intensity (~20%). As the CFD tur-
bulence generator is not truly random some of the pressure variation may
be caused by vortex generation rather than a cascade of eddies. For both
WT and CFD, the size of the eddies is limited by the domain dimensions.
These results imply that future studies should focus on building pressure
patterns when exposed to lateral fluctuations or high turbulence intensity
as these are more representative of urban flows.

Individual facet pressure patterns are very hard to match between
methods due to great sensitivity of WT and CFD models to details of local
flow and boundary conditions. However, the total pressure drop across
the cube, ΔCp, for both WT and CFD is better matched in trend and
magnitude to the full-scale data compared to face averaged Cp. In terms
of designing ventilation for real buildings in urban areas, comparison of
an individual facet with guideline datasets are reasonable for isolated but
poor for the array case, but much improved (reduction of up to 75% of
the difference depending on wind angle) when considering ΔCp. As a
practical conclusion, guidelines might advise that this variable be used to
estimate the magnitude of pressure drop, and local building layouts with
respect to the prevailing wind direction assessed to determine the likely
sign on each building facet; i.e. if a building wall faces into the local
prevailing wind direction in a neighbourhood it is likely to experience
positive pressures.

Comparisons to the guideline data were limited by lack of collection
and analysis details. Guidance data needs to be accompanied by more
information on how it was created, so that the user can assess its appli-
cability, or presented with likely error margins as done in the ASHRAE
guidelines. Much of the guideline data are from wind tunnel experiments
so lack variable wind conditions of full-scale measurements. It is
important to capture the range of variability in pressure coefficients from
different building layouts, neighbourhood densities, etc. This could be
tackled by systematic experiments (e.g. Hall and Spanton, 2012).
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6. Conclusions

Current methods for designing wind-driven natural ventilation rely
on the knowledge of pressures across the building façade. As part of the
REFRESH Cube Campaign (RCC) project (Gough et al., 2018a), facade
pressure data collected at full-scale over a full range of wind conditions
are compared to a 1:300 scale wind tunnel model and CFD simulations
for both an idealised isolated cube and a cube array representing an
urban neighbourhood. This is the first study to systematically compare
different modelling approaches using a very comprehensive full-scale
dataset. From this thorough case study, several implications emerge for
modelling and design guidelines.

Within the full-scale dataset there is a large amount of variability in
Cp that is not currently seen in the other methods. The wind tunnel (WT),
CFD and full-scale (FS) pressure coefficients (Cp) of the isolated RCC cube
agree well (within 25% difference) with previous FS (Richards et al.,
2001) andWT data (Castro and Robins, 1977; Richards and Hoxey, 2007)
measured with the wind normal to the cube. There is good agreement
within scatter for the front face (Cp difference of 0.2–0.7), whilst there
are large but understood differences amongst all studies for the roof
(range of 0.7 for Cp values). Bias exists for the back face, where FS data
agrees best with Castro and Robins (1977), and CFD and WT data fall
within the spread of other studies. The differences in sampling Uref and
Pref also contribute to differences between methods.

RCC Cp from WT, CFD and FS are compared for isolated and array
cases across the full range of wind angles. Agreement is best for the
isolated cube front face, and weaker for the back face (isolated, array)
and front face in the array case. For the isolated case, sub-sampling of WT
and CFD pressure data to match the location of the 9 taps at FS leads to a
reduction of 10% of the difference in Cp for the front face and made little
difference for the back face. For the array case, sub-sampling of CFD data
for the front face leads to different results. These results suggest that
matching measured data points is important when comparing methods,
but pressure patterns should be compared as well as individual points,
especially when they are placed near strong gradients. Adding nearby
obstacles caused a reduction of 5–15% in the difference between FS and
WT Cp and differences between data for certain wind directions suggest
that matching upstream FS wind profiles and turbulence intensity is
important, even for the array case.

The difference between front and back, ΔCp, is compared as this is
used in practice to predict cross ventilation rate. For the isolated cube
agreement between methods is good for a range of oncoming wind di-
rections, with WT and CFD only overestimating values in a wind direc-
tion sector known to have increased roughness at FS. For the array case
WT and CFD data are in much better agreement but slightly underesti-
mate FS values. This suggests that whilst individual façade pressures may
be biased by details of WT or CFD modelling set-up, ΔCp is a more robust
variable to compare for both isolated and array cases.

Comparison of front face Cp for all RCC methods with ASHRAE, AIVC
and CIBSE guideline data has good trend agreement for the isolated cube,
with most WT and CFD datapoints lying within the 80% bounds set by
Swami and Chadra (1988) (ASHRAE) and FS data being mostly higher
than the guideline data. For the array case there is poor trend agreement
as the guideline data are derived using a sheltering factor and do not
account for asymmetrical arrays. However, the CIBSE 2018 data capture
the magnitude of ΔCp well for both the isolated and array cases. Our
results suggest that representing a general building in an urban neigh-
bourhood through a single pressure data set is not appropriate as the real
building orientation, neighbourhood density and height will have a
considerable influence on the actual pressures experienced on the façade.
Guideline data for buildings within a neighbourhood cannot be “one size
fits all”, and the range of variability in pressure coefficients caused by
different building layouts, neighbourhood densities, etc. needs to be
developed based on systematic experiments such as the current study.
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Impact

Façade pressure coefficients in a staggered array are dependent on
wind direction and are asymetrical due to sheltering effects. This is not
captured in current ventilation design guidelines. An extensive dataset
comprising full-scale, wind tunnel and Computational Fluid Dynamics
modelling results is described for an isolated cube and a cube within an
array.
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Appendix. Details of the pressure acquisition system used in the wind tunnel

The wind tunnel pressure measurement system (Section 3.2) could acquire up to 64 (48 used) simultaneously sampled differential pressures at up to
2 kHz. This is an improvement on the analogue system previously used by Cheng et al. (2007).

An on-board environmental sensor measures the ambient atmospheric pressure, temperature and relative humidity. A 6-axis inertial measurement
unit ascertains the unit's orientation and motion/vibration – a factor for very low range pressure transducers. The system comprises eight banks of up to
eight sensors per card (Fig. 11). An EEPROM chip on each card contains information on the pressure transducer present on the card, allowing a single
card to contain sensors with a variety of pressure ranges and for cards to be quickly swapped without user configuration. The system is designed to be
used with Honeywell TruStability® family of board mount pressure sensors; piezoresistive pressure sensors with digital output fully calibrated and
temperature compensated between 0 and 50 �C for sensor offset, sensitivity, temperature effects, and non-linearity using an on-board application
specific integrated circuit. For the lowest range of �160 Pa (used in this work) the total error band is �2.5% full scale span, reducing to �1.75% after
auto-zero. The long-term stability after 1000 h at constant temperature is �0.5%. Upon power-up, the system performs a self-test of each sensor and all
subsystems, returning the system state to the user.

All negative ports on the differential sensors are commoned together to a tunnel reference static tapping. A Scanivalve 48-D circular connector is
used to easily connect the system to the pressure tapped cube (Fig. 11). All tubing was 1.0 mm ID� 3.0mm OD silicone, with equal lengths going from
the connector to each sensor. Since only the time-averaged pressures were required in this work, spectral de-convolution corrections for tubing length
and diameter were not implemented.

Associated software written in National Instruments LabVIEW is used to handle the data acquisition and recording, either as a standalone application
or as a plug-in for use in combination with other software.

Fig. 11. Overview of the 64-channel pressure tapping system used during this work.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jweia.2019.03.011.
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