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Abstract
The presence of tall buildings in cities affects momentum and scalar exchange within and
above the urban canopy.Aswake effects can be important over large distances, they are crucial
for urban-flow modelling on and across different spatial scales. We explore the aerodynamic
effects of tall buildings on the microscale to local scales with a focus on the interaction
between the wake structure, canopy and roughness sublayer flow of the surroundings in a
realistic urban setting in central London. Flow experiments in a boundary-layer wind tunnel
use a 1:200 scale model with two tall buildings (81 m and 134.3 m) for two wind directions.
Large changes inmean flow, turbulence statistics and instantaneous flow structure of thewake
are evident when tall buildings are part of the complex urban canopy rather than isolated. In
the near-wake, the presence of lower buildings displaces the core of the recirculation zone
upwards, thereby reducing the vertical depth over which flow reversal occurs. This amplifies
vertical shear at the rooftop and enhances turbulent momentum exchange. In the near part of
the main wake, lateral velocity fluctuations and hence turbulence kinetic energy are reduced
compared to the isolated building case as eddies generated in the urban canopy and roughness
sublayer distribute energy down to smaller scales that dissipate more rapidly. Evaluation of
a wake model for flow past isolated buildings suggests model refinements are needed to
account for such flow-structure changes in tall-building canopies.

Keywords Tall-building environments · Urban canopy · Urban flow · Wake model · Wind
tunnel

Nomenclature
H Building (roof) height
HNoTall Mean building height (No Tall)
Have Mean building height
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Heff Effective building height
Hmax Maximum building height
L Building length (along-wind)
LWT
R Length of recirculation (cavity) region (wind tunnel)

LR Length of recirculation (cavity) region (calculated)
L f Building length (mid-faces)
Lux Turbulence integral length scale for u in the x direction
Pθ,w Occurrence frequency of θ or w

Suu 1D spectral energy density (u)
UH Velocity at roof-level
Uh Horizontal wind speed
Ui Time-mean velocity (U , V ,W ) along (x, y, z)
Uref Reference flow speed (freestream)
Wc Building width (cross-wind)
δBL–0 Boundary-layer depth (BL–0)
κ von Kármán constant (0.4)
λ f Frontal area density
λp Plan area density
σH Standard deviation of H
σi Turbulence intensity: (u

′2
i )1/2

τ Turbulence integral time scale
θ Wind direction (horizontal)
θz Wind direction (vertical)
dx,y Distance from building (in x , y)
f Frequency
k Turbulence kinetic energy
u′
i Velocity fluctuation (u′, v′, w′)

u∗ Friction velocity
ui Instantaneous velocity (u, v, w)

x, y, z Longitudinal, lateral, vertical directions
z0 Aerodynamic roughness length
zR Height of recirculation (cavity) region
zd Displacement height
z0,K z0 from Kanda et al. (2013)
zmax Height of maximum velocity difference
zd,K zd from Kanda et al. (2013)

ADMS–Build model
�y,z Cross-wind length scales
η, ξ Normalized y, z coordinates
û Velocity perturbation
Dy , Dz Eddy viscosities
g(ξ), h(η) Shape functions
x0 Virtual origin

Acronyms
BL–0 Boundary layer upwind of model
ISL Inertial sublayer
LDA Laser Doppler anemometry
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MOST Monin–Obukhov similarity theory
RSL Roughness sublayer
TKE Turbulence kinetic energy
UCL Urban canopy layer
T134 Tall building; H = 134 m
T81 Tall building; H = 81 m

1 Introduction

With increasing urban populations, cities worldwide are growing upward and outward, with
tall buildings, in isolation or as clusters, introducing complex flow interactions across scales.
Aerodynamic, thermal and radiative processes are altered locally and downwind, as are the
strength and distribution of anthropogenic emissions of heat, pollutants and moisture. Such
modifications induced by tall buildings and the interaction with the surrounding low-rise
neighbourhoods have implications for a number of urban environmental stresses, such as
wind comfort (e.g. Xu et al. 2017), heat (e.g. Yang et al. 2010; Yang and Li 2015), and
pollutant dispersion and street-canyon ventilation (Brixey et al. 2009; Heist et al. 2009; Fuka
et al. 2018).All of these aspects challenge the general applicability of current urban-modelling
concepts in high-rise cities at the local scale and mesoscale (Barlow et al. 2017).

Conceptual modelling frameworks used in micrometeorology typically treat urban pro-
cesses as a two-dimensional (2D) problem. This ranges from the representation of cities in
land-surface models as slabs or infinitely long uniform street canyons (Masson 2000; Coceal
and Belcher 2004; Grimmond et al. 2010), to the classic categorization of street-canyon flow
according to the ratio of building height to street width into skimming, wake interference or
isolated roughness regimes (Hussain and Lee 1980; Oke 1988).

Prevailing modelling concepts based on Monin–Obukhov similarity theory (MOST)
require the calculation of variables at levels well above both the urban canopy layer (UCL)
and the urban roughness sublayer (RSL), plus the presence of a fully-developed inertial
sublayer (ISL). If (very) tall buildings protrude deep into the urban boundary layer, such
requirements are unlikely to be met in either the vertical or horizontal scales of interest,
making MOST-based modelling even more questionable over cities. Hence, there is a need
to extend current modelling frameworks to account for processes in the vertical. However, to
do this, a better understanding of critical processes in tall-building environments is required.

Studies of tall-building aerodynamics (mostly for isolated structures) to a large degree
are driven by the wind-engineering community’s interest in defining building design stan-
dards (Kwon and Kareem 2013; Holmes 2014), related to pedestrian wind comfort and
safety (Blocken and Carmeliet 2004; Tominaga et al. 2008; Blocken et al. 2012) and/or
urban ventilation (Ng 2009). Studies on wind loads and wind comfort for isolated buildings
have been concerned either with existing structures (e.g. Wardlaw and Moss 1970; Li et al.
2006, 2007), idealized cuboidal obstacles (Lim et al. 2009) and recently also with towers of
various realistic shapes (Xu et al. 2017). The fact that flow around tall buildings in realistic
urban environments may be considerably different from isolated-building cases is not usually
addressed.

While the impact of the surroundings on tall buildings has been investigated previously
(e.g. Daniels et al. 2013; Elshaer et al. 2016; Le and Caracoglia 2016), the effect of a tall
building’s wake on low-lying surroundings and on the overall structure of the downwind
urban boundary layer is still not well explored. Heist et al. (2009) and Fuka et al. (2018)

123



D. Hertwig et al.

showed that tall buildings in idealized street systems considerably affect the street-canyon
flow. The downward flow on thewindward face of the tall building intensifies the vortex in the
upwind street canyon and outflow from this street is enhanced (horizontal flow divergence).
The large pressure deficit on the leeward side of the tall building results in horizontal flow
convergence and strong updrafts in the downwind street canyon.

Accounting for wake effects of buildings, whether high-rise or low-rise, is essential in
modelling urban dispersion. Different models have been developed to capture the flow char-
acteristics in the two distinct regions of the building wake: the recirculation zone in the
near-wake and the momentum-deficit region of the main wake (Appendix 1, Fig. 12). Corre-
sponding changes in pollutant pathways (downwards and inwards deflection) and turbulent
mixing need to be parametrized.

Examples are the velocity-deficit parametrization based on a shelter-model approach used
in theQUIC–Urbmodel (Pardyjak et al. 2004; Singh et al. 2006); the small-deficitwakemodel
based on constant eddy-viscosity theory implemented in the ADMS–Build model (Robins
and McHugh 2001; Robins et al. 2018) described in Appendix 1, or the building downwash
algorithm used in the AERMOD–Primemodel (Petersen et al. 2017). Thesemodels are based
on the empirical and theoretical understanding of flow around isolated, cuboid buildings of
low aspect ratios (H/

√
WcL) of building height (H ) to cross-wind width (Wc) and along-

wind length (L), for which the wake flow changes in response to the turbulence intensity of
the inflow (e.g. Castro and Robins 1977). However, it is unclear whether the wake responds
in a similar way for tall buildings with large aspect ratios and in the presence of a low-level
urban canopy.

In the present studywe explore the aerodynamic effects of tall buildings and the interaction
of their wakes with RSL and UCL turbulence on the microscale to local scales in a realistic
model of an area of central London (Fig. 1). The objectives are to investigate the impact of:
(i) building-height heterogeneity on flow within and above the UCL, (ii) tall-building wakes
on flow in the surrounding neighbourhood, and (iii) building-height variability and presence
of tall buildings for urban flow modelling.

For this case study,weused a boundary-layerwind tunnel to generate flowdata for different
morphometric settings (building heights/densities):

1. Urban canopy with and without tall buildings;
2. Tall buildings in isolation;
3. Tall buildings surrounded by buildings of increased heights.

Effects on mean flow, turbulence and the instantaneous flow structure are investigated as
a function of the longitudinal and lateral range of influence of tall-building wakes within
and above the canopy. Measurements are compared with the ADMS–Build wake model to
identify model limitations.

2 Wind-Tunnel Model

Wind-tunnel experiments were conducted at the Environmental Flow (EnFlo) Research Cen-
tre, University of Surrey, using the EPSRC MAGIC project (www.magic-air.uk) model
domain and scale model (Song et al. 2018). With a test-section length of 20 m and a cross-
section of 3.5 m × 1.5 m, the wind tunnel is one of the largest facilities in Europe dedicated
to the investigation of urban flow and dispersion phenomena.
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Fig. 1 a Full-scale building heights for main buildings in the wind-tunnel model with the two forcing wind
directions from north (N; 0◦) and south-east (SE; 101◦). The three tallest buildings (H > 32 m) are drawn in
black. Circle indicates the turntable (700 m-diameter full scale). b Model in the horizontal plane (3D; upper
panel) and vertical cross-section along the north–south axis (2D; lower panel). c North and d south-east view
of the model in the wind tunnel in its core configuration. Triangular vortex generators and floor roughness
elements can be seen upwind of the model. The three tallest buildings are indicated

2.1 South LondonModel Domain

The model domain extends approximately 700 m around St George’s Circus (51.4987◦N,
0.1048◦W; WGS84 datum) in the London Borough of Southwark (Fig. 1a). Of the 148
buildings in the model area, 49% are low-rise residential (building height H ≤ 12 m), 39%
are mid-rise office and commercial (12 m < H ≤ 24 m) and only 17 exceed 24 m. Of those,
three are taller than 32 m (2.2Have with Have = 14.7 m as the mean block height based on
all 148 buildings in the model). The tallest building (T134; triangular footprint), with a height
of H134 = 134.3 m, is located at the south-eastern edge of the domain (Fig. 1b). The second
tallest building (T81; H81 = 81 m; hexagonal footprint) is located close to the model centre.
The third tallest (H = 36.9 m), located west of St George’s Circus, is much shorter.

2.2 Model Characteristics

The main building structures in the domain were reproduced at a scale of 1:200, sufficient
to allow both canopy-layer flow structure and tall-building wakes to be measured. Model
buildings are based on Ordnance Survey GIS data (2014, 2016) plus information on current
(2017) construction. The full-scale accuracy of these data is approximately 1 m. Buildings
are represented by idealized blocks, without small-scale façade details or courtyards. All
model buildings have flat roofs, corresponding to the height of the eaves. No other urban
features (e.g. vegetation, bus shelters) are included in the model.
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The central part of the model was mounted on a 3.48 m-diameter turntable (≈ 700 m
in full scale), allowing model orientations to be modified for different mean forcing wind
directions. The St George’s Circus intersection at the model centre (Fig. 1a) is located 14 m
downwind of the tunnel inlet.

Building outlines drawn onto the tunnel floor facilitated positioning. Model buildings
were not fixed to the turntable, permitting different geometric configurations to be readily
installed. Some buildings at the edge of the model domain, off the turntable, are aligned
manually with the aid of laser light sheets (Sect. 3.2 for alignment uncertainties). Both the
wooden buildings and parts of the turntable at the measurement sites were painted black to
reduce laser reflections from the optical measurement equipment (Sect. 3).

Two principal wind directions investigated are: north (N, 0◦; Fig. 1c) and (east-)south-east
(SE, 101◦; Fig. 1d). In both, the model spans the entire width of the tunnel. Building T134 is
removed in the north configurationwhen the focus is on buildingT81 due to tunnel limitations,
while both are present in the south-east orientation. Geometrical parameters of the two tall
buildings by wind direction (Table 1) consist of cross-wind widths (Wc,81, Wc,134), along-
wind building lengths defined by the distance between the points furthest upwind/downwind
(L81, L134) and along-wind projection between the centres of the furthest upwind/downwind
building faces (L f ,81, L f ,134). The L f length definition is used in the ADMS–Build model
(Robins et al. 2018). For the triangular T134 tower, L f ,134 is based on the projection between
the upwind building corner and the centre of the downwind face. The H/

√
WcL ratios

for both buildings are large: 3.6 (T81, north orientation) and 5.7 (T134, south-east) with
L = L f .

2.2.1 Geometry Configurations

Four geometry configurations are defined:

1. Core: All buildings included (Fig. 2a, d).
2. No Tall: Tall buildings (H > 32 m) removed (Fig. 2b, e).
3. Tall: All buildings with H < 32 m removed, except for the MAGIC target building

(H = 9 m) in the model centre (Fig. 2c, f).
4. Increased: As the Core case, but with the heights of five buildings downwind of tower

T134 increased to ≈ 30 m; south-east orientation only (Fig. 2g).

These cases allow the study of interactions between the low-rise urban canopy and wakes
of tall buildings by isolating the effects of the tall buildings (Tall cases) and the low-rise

Table 1 Full-scale geometry parameters (m) of the two tallest buildings T81 (north/south-east model orienta-
tions) and T134 (south-east only)

Flow direction Parameter T81 T134

Height H 81.0 134.3

North Cross-wind width Wc 22.82 –

Along-wind length L 28.09 –

Along-wind length (mid-face) L f 21.16 –

South-east Cross-wind width Wc 26.21 71.65

Along-wind length L 23.7 18.51

Along-wind length (mid-face) L f 21.47 27.86
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Fig. 2 Wind-tunnel geometries and measurement sites for a–c north (N) and d–g south-east (SE) model
orientations. Building heights (H ) are given in full scale; structures taller than 32 m are drawn in black.
Turntable extent (large circle) and forcing wind direction (arrow) are indicated. The longitudinal x-axis of the
flow coordinate system is always aligned with the approach-flow wind direction

canopy (No Tall cases) before combining them (Core cases). The Increased case (south-east
configuration) is designed to test whether raising the roof-level of buildings within the near-
wake of a tall building has any notable effects on the flow fields downwind. Shaped foam
blocks were placed underneath the wooden buildings to increase their heights by factors of
2 or 3 (approximately 30 m roof-level).

Building heights and measurement locations are shown in Fig. 2. Depending on site and
measurement mode (Sect. 3.1), vertical flow profiles contained up to 20 points between a
minimum full-scale height of 4.5 m and a maximum of 126 m (U–V mode) or 134.3 m
(U–W mode). The measurement height is restricted by the tunnel height and the mounting
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of the traverse system holding the measuring probe. For tower T134 velocities could not
be measured above roof-level, while for building T81 the highest measurement point is at
z/H81 = 1.66. For the south-east wind direction the T134 building is offset from the tunnel
centreline (Fig. 1d). Possible impacts of this feature on thewake structure in terms of blocking
effects are discussed in Sect. 4.3.

Time restrictions prevented repeat measurements at all sites in each configuration. Data
available for all cases are at sites distributed over the entire extent of the model at various
distances from the tall buildings (eight locations for north, 16 for south-east). Some sites
lie on longitudinal (along-wind) transects through the principal tall buildings (see site codes
in Fig. 2c, f). The longitudinal distances (dx/H ) of these sites from the centres of the tall
buildings are given in Table 2. The along-wind transect behind building T134 is slightly offset
from the building’s centre by dy/H134 = 0.07 (9.4 m full scale).

For three south-east cases (CoreSE, No TallSE, TallSE) the wake structure behind building
T134 was also measured on lateral (cross-wind) transects at three longitudinal distances from
the building: dx/H134 = 0.98 (coinciding with site S3), 2.0 (S4) and 2.86, labelled L1, L2
and L3 (Fig. 2d). For each transect the flow was measured at four heights above the low-rise
canopy: z/H134 = 0.2, 0.48 and 0.94 (U–V mode) or 1.0 (U–W mode).

2.2.2 Morphometric and Roughness Characteristics

Building height, morphometric and roughness parameters derived for the No Tall, Core and
Increased cases (Table 3) include: plan area density (λp , ratio of plan area of buildings to the
total plan area), frontal area density (λ f ; ratio of vertical area exposed in the windward direc-
tion to the total plan area), average (Have) andmaximum (Hmax) building heights and standard
deviation (σH ), displacement height (zd,K ) and aerodynamic roughness length (z0,K ). The
latter two are calculated using the morphometric method by Kanda et al. (2013) (subscript
‘K’) that directly incorporates the roughness-element height variability. Themethod has been
found to provide good estimates compared to other morphometric approaches when assessed
with anemometric data (Kent et al. 2017, 2018). The parameters in Table 3 are derived for
each model area using a 500-m radius (full scale). Differences between north and south-east
model configurations result from buildings being added or removed.

The triangular building T134 in the CoreSE set-up modifies zd,K and z0,K compared to the
CoreN case (Fig. 2a, d) through an increase in σH . Increasing the heights of five buildings in
the vicinity of building T134 (IncreasedSE case; Fig. 2g) increased λ f to 0.25, zd,K (+3.41m)
and z0,K (+0.3 m) compared to CoreSE. Although roof heights were only raised to 30 m
(i.e. ten-storey buildings) in a small sub-domain, the effect on the roughness parameters is
large.

3 Flow Experiments

All flow experiments were conducted for neutral stability conditions. We use a Cartesian
coordinate system aligned with the principal axes of the wind tunnel (i.e. with the approach
flow), where x , y, z denote longitudinal, lateral and vertical directions. The instantaneous
velocity components along these directions are u, v, and w. Time-averaged quantities are
written in uppercase, and taking the example of the longitudinal velocity component, u =
U + u′, where u′ is the fluctuation about the mean, U .
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Table 2 Longitudinal distances dx/H of sites on along-wind transects (codes in Fig. 2c, f) from the centre of
buildings T81 (north orientation) and T134 (south-east)

North Site code N1 N2 N3 N4 N5 N6 N7 N8

dx/H81 −2.38 −1.1 0.24 0.76 1.05 2.24 3.69 4.95

dx/Wc,81 −8.45 −3.9 0.85 2.7 3.73 7.95 13.1 17.57

dx/L81 −6.86 −3.17 0.69 2.19 3.03 6.46 10.64 14.27

South-east Site code S1 S2 S3 S4 S5 S6 S7

dx/H134 0.27 0.55 0.99 2.03 2.66 3.61 4.45

dx/Wc,134 0.51 1.03 1.86 3.81 4.99 6.77 8.34

dx/L134 1.96 3.99 7.18 14.73 19.3 26.19 32.3

Negative sign used for sites upwind of the tall building

Table 3 Building height (m), morphometric and roughness (m) parameters for each model configuration
shown in Fig. 2

Case z0,K zd,K λp λ f Have Hmax σH

No TallN 0.87 17.99 0.35 0.21 13.18 30.4 5.89

CoreN 1.07 20.96 0.35 0.21 13.52 81.0 7.52

TallN – – – – – 81.0 −
No TallSE 0.98 18.39 0.34 0.21 13.51 30.4 6.20

CoreSE 2.35 28.1 0.34 0.22 14.79 134.3 12.95

IncreasedSE 2.65 31.51 0.34 0.25 17.35 134.3 13.90

TallSE – – – – – 134.3 −
Parameters are derived for a 500-m radius area around the model centre. Lengths are given in full scale

The coordinate system originates in the centre of the turntable, coinciding with the model
centre (Fig. 1a).

3.1 Velocity Measurements

Single-point velocity time series were measured with a two-component Dantec laser Doppler
anemometry (LDA) system using a FiberFlow probe with a diameter of 27 mm and a focal
length of 160 mm. The principal axis of the ellipsoidal LDA measuring volume (length:
1.57 mm) is aligned with the vertical axis of the tunnel and the secondary axes lie in the
horizontal plane (diameter: 0.074 mm). These dimensions correspond to 0.3 m and 0.015 m
in full scale.

Reflective μm-sized sugar-water droplets were introduced into the flow at the tunnel inlet
as seeding particles. In order to acquire signals of all three velocity components, the 2D LDA
probe was operated both in the U–V and U–W orientations. A small mirror oriented at 45◦
was used in theU–W mode to reach measurement locations within street canyons. The LDA
was mounted on a 3D automated traverse system covering the final 12 m of the test section.
All equipment was controlled by bespoke ‘virtual instrument’ software. The ambient lab
conditions were continuously monitored and logged.

For each sample, the tunnel freestreamflow speed,Uref , wasmeasured using an ultrasonic
anemometer at 1 m above the tunnel floor, 9 m upwind of the model centre (7.3 m from
the leading edge) and 5 m downwind of the tunnel inlet. This ensured that effects of the
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anemometer wake on flow within and above the model are negligible. The anemometer was
offset from the tunnel centreline by 1 m, but still located well outside the side-wall shear
layer. Between individual measurements the recorded freestream flow speed differed by no
more than 2% from the set value of 2 m s−1.

All measurements were undertaken only after the average seeding rate and freestream flow
were given time to settle. Themajority of velocity sampleswere taken over a duration of 120 s.
Taking into account the geometric scale reduction of the model (1:200), this corresponds to
a full-scale sampling duration of 6 h 40 min at the same reference flow speed of 2 m s−1 (or
2 h 40 min at 5 m s−1). Sampling frequencies (LDA data rates) were typically of the order of
100 Hz, but varied from site to site based on the local seeding conditions (lower data rates in
sheltered flow regions in the canopy layer; higher in the RSL above the buildings). In some
cases of low data rates longer measurement periods (240 s and 480 s) were used to ensure a
large enough sample size for statistical analyses.

All data analyzed have undergone quality-control checks with respect to measurement
duration, data rates and spike occurrences for each individual time series. Further checks
included comparisons of the U and u′2 statistics available from U–V and U–W measure-
ments. Differences for these quantities were not allowed to be greater than 10 times the
median standard error (Sect. 3.2). Since the use of a mirror can induce larger measurement
uncertainties, data from the U–W measurements were disregarded in all cases when this
criterion was not met.

3.2 Uncertainty Quantification

Statistical errors are connected to the general stochastic variability of turbulent flows that
leads to an unavoidable difference between the most likely flow state and velocity statistics
determined over a finite averaging period from a single realization of the experiment (Wyn-
gaard 1992). In our study we assess the inherent uncertainty statistically through the standard
error for each velocity statistic. For the time-averaged velocities the median standard errors
based on all samples taken within the different model configurations at all x, y, z locations
are approximately 1% (U ), 11% (V ) and 8.5% (W ) of the mean. The corresponding values
for the velocity variances are 7% (u′2), 5.2% (v′2) and 5% (w′2). Velocity covariances on
average have higher relative uncertainties of 14% (u′w′) and 34% (u′v′).

Systematic errors arise from uncertainties regarding the exact boundary conditions of the
experiment and overall experimental uncertainty.We assess that themain sources are (lengths
given in the wind-tunnel scale):

1. Overall accuracy of model buildings (±0.5 mm).
2. Positioning uncertainty of the LDA probe relative to the buildings due to

– Horizontal positioning accuracy of model buildings (±1–2 mm). As buildings were
manuallymoved on and off the turntable to configure the different test cases, accuracy
may vary between runs.

– Variability of the elevation of the tunnel floor across themain test section (±1–2mm).
– Positioning accuracy relative to the buildings provided by the traverse system holding

the LDA (±0.1 mm).
– Alignment accuracyof theLDAmeasuringvolume relative to the tunnel axes (±0.1◦).
– Orientation accuracy of the turntablewith respect to the principal tunnel axis (±0.1◦),

resulting in an uncertainty in y direction of 3 mm (0.6 m full scale) from the centre
to the edge of the turntable.

123



Wake Characteristics of Tall Buildings in a Realistic Urban…

3. Spatial accuracy of the LDA associated with the measurement volume. Seeding particles
can go through the volume over a vertical depth of about 0.3 m full scale. Hence, velocity
statistics are also space-averages, which is important in regions with very large flow
gradients.

Great care was taken to minimize these uncertainties where possible. The comparatively
large scale of the model has the benefit that spatial inaccuracies are proportionally small in
full scale.

3.3 Approach-Flow Boundary Layer

In the flow-development section upwind of the model a fully rough boundary-layer flow
(labelled BL–0) was physically modelled (Appendix 2, overview of parameters in Table 5).
After passing through the flow straightener at the tunnel inlet, the boundary layerwas initiated
by a set of five Irwin spires (Fig. 1c, d). The flow developed further by passing over a sparse
(240 mm spacing in x, y; i.e. 48 m in full scale) staggered array of floor roughness elements
comprised of sharp, thin metal plates (length: 80 mm, height: 20 mm; i.e. 16 m and 4 m in
full scale).

The horizontal homogeneity of the approach flow was tested at a distance of 12 m from
the tunnel inlet. Lateral transects (y = ±600 mm, i.e. ±120 m full-scale, from the tunnel
centre) show that horizontal variations of mean flow and turbulence statistics (U–W mode;
full-scale heights of 81m and 134.3m) are smaller than the corresponding statistical standard
errors (Sect. 3.2).

The flow in the BL–0 case is typical of low-rise urban areas and less rough than would
be expected in the densely built-up and often high-rise parts of central London close to the
model domain. From the analysis of the extent of the logarithmic region of the vertical profile
ofU (Fig. 13a), the extent of the modelled ISL was estimated as 9 m≤ z ≤ 60m in full scale,
corresponding to about 3.8HNoTall (HNoTall = 13.4 m: mean Have of the No TallN,SE cases;
Table 3). A friction velocity (u∗) of 0.11 m s−1 (i.e. 0.056Uref ) is derived from averaging
the vertical turbulent momentum flux, −u′w′, over the ISL extent determined from theU (z)
profile. Aerodynamic roughness parameters, z0 = 0.16m and zd = 3.4m,were derived from
a fit to the logarithmic wind profile in the ISL,U (z) = (u∗/κ) ln((z−zd)/z0), where κ = 0.4
is the von Kármán constant. At z = 134.3 m,U ≈ Uref so that this height specifies the depth
of the modelled boundary layer (δBL−0). Hence, the boundary layer of the approach flow is
relatively shallow compared to the tall buildings in the model domain (δBL−0/H81 = 1.7 and
δBL−0/H134 = 1). For the No Tall configuration the ratio increases to δBL−0/HNoTall = 10.

4 Results

4.1 Low Height Variability

The No Tall cases are considered as a reference state of RSL and ISL flow characteristics.
Median vertical flow profiles of all No TallN,SE sites (Fig. 2b, e) are shown in Fig. 3 together
with the BL–0 approach-flow conditions. For both model orientations, the variability in
building heights for the No Tall cases is approximately 6 m (Table 3), with HNoTall = 13.4 m.
Minor differences in morphometric parameters are due to buildings being removed between
the two model orientations.
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Fig. 3 Vertical profiles in the No TallN,SE cases and the horizontally homogeneous approach flow (BL–0) of a
mean longitudinal velocity component (U ; y-axis logarithmic), b vertical turbulent momentum flux (−u′w′),
c turbulence kinetic energy (k), and d standard deviation of the horizontal wind direction (σθ ). The No Tall
case profiles are medians of all sites (Fig. 2b, e), with interquartile range (shading)

The profiles of the longitudinal velocity component (U ; Fig. 3a) show logarithmic
behaviour and relatively small spatial variations (narrow interquartile range) above a height
of 3HNoTall (40.2 m), which can be considered the upper limit of the RSL (i.e. the blend-
ing height) without tall buildings included. Expectedly, values of U in the RSL and UCL
show large site-to-site variability. The logarithmic part of the upwind boundary layer (BL–0)
occurs closer to the surface between 1 and 4.5HNoTall (Sect. 3.3).

There is a distinct increase in turbulence levels in response to the roughness change
between the flow-development section and the model. For the No Tall cases, the vertical
turbulent momentum flux (−u′w′; Fig. 3b) and turbulence kinetic energy (TKE, k = 1

2 (u
′2+

v′2+w′2); Fig. 3c) peak around a height of 2HNoTall (26.8 m full scale). Differences between
the median No Tall profiles are linked to different local effects on individual profiles and
different sample sizes. Profiles of the standard deviation of the horizontal wind direction (σθ ;
Fig. 3d) are shown above the level of maximum −u′w′. Below that, in the lower parts of
the RSL and within the urban canopy, the horizontal flow may not have a single ‘preferred’
direction. The turbulence characteristics (Fig. 3b–d) converge back to the BL–0 state at
around 6 to 7HNoTall. Note that the tall building rooftops are located at heights of around
6HNoTall (building T81) and 10HNoTall (building T134).

4.2 Wake-Roughness Interaction

The momentum deficit in the wake of a building is traditionally assessed by the velocity
difference (�U ) to the upwind (or ambient) flow.We use velocity differences to study effects
of, (i) tall buildings in an urban canopy (Core–No Tall cases), (ii) tall buildings in isolation
(Tall–BL–0), (iii) an urban canopy surrounding tall buildings (Core–Tall), and (iv) increased
building heights in the near-wake of a tall building (Increased–Tall).

Figures 4 and 5 show vertical profiles of U and differences �U between model con-
figurations for sites on longitudinal transects through buildings T81 and T134 (site codes as
in Fig. 2c, f). Results from the ADMS–Build wake model (Appendix 1) are shown for the
Tall and Core configurations (Figs. 4a, b and 5a, b) at sites in the main wake (discussion in
Sect. 4.2.2).
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Fig. 4 Vertical profiles of U for sites on a longitudinal transect through building T81 (north orientation) for
the, a Core, and b Tall cases; and profiles of the velocity difference �U (note different x-axis scales) for c
Core–No Tall, and d Core–Tall (site codes in Fig. 2c). Wind-tunnel data shown as symbols. Triangle: site
upwind of the tall building, circle: near-wake site, square: main-wake site. ADMS–Build model results (thick
solid lines) in the main wake shown in (a, b). Shading indicates Have + σH for No TallN (Table 3)
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Fig. 5 As Fig. 4, but for sites on a longitudinal transect through building T134 (south-east orientation) plus (c,
f) the Increased case (site codes in Fig. 2f). ADMS–Build model results (thick solid lines) at main-wake sites
shown for the a Core, and b Tall cases. Shading indicates Have + σH for No TallSE (Table 3)

4.2.1 Flow in the Near-Wake

In all geometries including the tall buildings, sites N3 (T81 building, Fig. 4a, b) and S1–S3
(T134 building, Fig. 5a–c) are located in the near-wake region that is characterized by flow
reversal (U < 0) over at least parts of the velocity profile in the cavity region on the leeward
side of the tall buildings. The along-wind extent of the near-wake (or cavity zone) observed in
thewind tunnel, LWT

R (Table 4), for building T81 iswithin the range 0.1H81 < LWT
R < 0.6H81
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Table 4 Effective building heights (Heff) and cavity lengths based on the ADMS–Build model approach (LR ;
Eq. 2) and wind-tunnel measurements (LWT

R ) for the Tall and Core configurations

T81 (north) T134 (south-east)

Tall LWT
R 0.1 < LWT

R /H81 < 0.6 0.9 < LWT
R /H134 < 1.9

LR 0.68H81 1.22H134

Core Heff (m) 62.7 115.2

LWT
R 0.13 < LWT

R /H81,eff < 0.78 1.1 < LWT
R /H134,eff < 2.2

LR 0.82H81,eff 1.4H134,eff

(i.e. between sites N3 and N4; Fig. 2c) and 0.9H134 < LWT
R < 1.9H134 (i.e. between S3 and

S4; Fig. 2f) for building T134. Note that LWT
R is measured from the downwind building face,

not the centre.
In the ADMS–Build wake model the cavity length LR is derived from the building geom-

etry (Eq. 2 with L = L f , Table 1). When surrounded by the low-rise canopy we define the
effective (reduced) height of the tall buildings in theCore cases as Heff = H−(z0,K +zd,K ) to
account for the vertical displacement of the flow profiles above the canopy and the roughness
variability of the surroundings. This is consistent with the definition of the inflow profiles
for the ADMS–Build model for the Core configurations (Appendix 1). Using the roughness
length and displacement height of the No Tall cases (Table 3) this results in H81,eff = 62.7 m
(T81; CoreN) and H134,eff = 115.2 m (T134; CoreSE). The calculated LR values fall within
the ranges determined in the experiment for building T134, and are only slightly larger for
T81 (Table 4). As LR/H ∝ Wc/H , the reduced near-wake extent for the T81 tower is related
to the smaller building aspect ratio (Wc/H ) compared to T134.

In the near-wake region of the isolated buildings (Tall configuration),U is almost uniform
with height over large portions of the wake before increasing monotonically: for building
T81 up to z/H81 ≈ 0.8 (site N3; Fig. 4b); for T134 up to z/H134 ≈ 0.8 (site S1) and 0.5
(sites S2/S3; Fig. 5b). When surrounded by the low-rise canopy the tall-building wakes show
a reduction in the strength of flow reversal in the recirculation region above z0,K + zd,K

(Figs. 4a, 5a). For building T134 this occurs up to 0.5H134 in the Core case (Fig. 5e) and
0.6H134 for the Increased geometry (Fig. 5f). In the lee of the T81 tower, flow reversal at site
N3 is reduced over nearly the entire building height (Fig. 4d) with U > 0 between 0.3 and
0.6H81 (Fig. 4a). The structure of the cavity zone is noticeably altered from the Tall to Core
to Increased configurations in response to the presence of the urban canopy and interaction
with RSL turbulence. Similar changes of the near-wake structure, notably a reduction in the
cavity length with increasing turbulence intensity of the ambient flow, occur for isolated
buildings (Ogawa et al. 1983).

The low-rise buildingsmodify the shape of the Core-caseU profiles in twoways compared
to the Tall cases: (i) the sheltering effect of the urban canopy reduces the magnitude of the
longitudinal velocity below z0,K + zd,K (No Tall case), and (ii) larger vertical mean-flow
gradients, ∂zU , occur throughout the wake and at roof-level of the towers (Figs. 4a, 5a, c).
The low-level buildings reduce the effective vertical depth, zR , over which flow reversal
occurs in the lee of the tall building above the canopy as the centre of the recirculation
zone is displaced upwards. At site S2 (dx/H134 = 0.55), for example, distinct peaks in the
magnitude of backflow are evident at heights of z/H134 ≈ 0.6 (Core case) and z/H134 ≈ 0.75
(Increased case), at which flow speeds in the Tall case already start to increase. In the Tall
set-up, the vertical extent of the flow recirculation region, zR/H134, is approximately 0.82,

123



D. Hertwig et al.

0.8 and 0.76 at sites S1, S2 and S3 (Fig. 5b), respectively. For the Core geometry the extent
reduces to 0.63, 0.59, 0.56 (Fig. 5a) and for the Increased case to 0.62, 0.45, 0.5 (Fig. 5c) at
the same locations.

For building T81, the large ∂zU at rooftop for both the Tall and Core set-ups (site N3;
Fig. 4a, b) suggests shear-layer separation at the trailing edge of the roof, i.e. re-attachment
to the roof occurred after the initial separation at the leading edge. This is accompanied by a
small momentum excess above roof-level (≈ 0.05Uref at z/H81 = 1.1, Fig. 4c). This is in
agreement with near-wake specifications in the ADMS–Build model, in which re-attachment
is assumed to occur if L ≥ min(H , 0.5Wc). However, re-attachment is not only controlled
by the building’s geometry, but also by the nature of the ambient flow and the turbulence
structure at roof-level (Fackrell 1984). Based on pressure measurements on the roof of an
isolated cubic building (Castro and Robins 1977), permanent re-attachment occurs if the
ratio of upwind boundary-layer depth to building height is > 1.4 (TallN: δBL−0/H81 = 1.7,
Sect. 3.3) and intermittent or absent re-attachment if it is < 1.4 (TallSE: δBL−0/H134 = 1).
Furthermore, higher turbulence intensity in the ambient flow promotes re-attachment to the
top and sides of the building (Castro and Robins 1977).

The orientation of the triangular tower T134 to the south-easterly approach flow creates a
set of strong roof vortices for which re-attachment can be expected (Hunt 1971; Hunt et al.
1978). Although no measurements are available above roof-level to confirm this, the flow
structure in the Tall case closest to the building (S1) suggests that re-attachment may be
intermittent as the velocity deficit is still large at z/H134 = 1 (Fig. 5b). In the Core and
Increased configurations, however, ∂zU near roof-level is larger (Fig. 5a, c), which implies a
more stable re-attachment of the shear layer.

4.2.2 Flow in the Main Wake

In the main-wake region, flow reversal ceases and the wake is characterized by a momentum
deficit. The impact of the tall building on the ambient flow decays with longitudinal distance
(dx/H ; Fig. 6). The velocity deficit (�U ) for the Tall configurations (Fig. 6a, c) is assessed
by the Tall–BL–0 difference (U (z) for BL–0 as in Fig. 13a) and for the Core and Increased
cases as the difference to the No Tall reference state (Fig. 6b, d, e). Assuming the velocity
difference decays as (dx/H)−p (e.g. Hosker 1983), the fits in Fig. 6 indicate different flow-
recovery behaviours in the different configurations (fit parameters for all curves are given
in the Online Resource, Table ESM_1). For the Tall cases (Fig. 6a, c), for which the decay
rates are quite homogeneous with height, p ≈ 1.5 on average for building T81 and ≈2.0
for T134. Hence �U in the wake of the higher and wider T134 building decays more rapidly
with downwind distance, which could result from the stronger lateral fanning of the wake
compared to the slender hexagonal T81.

The specifications in the ADMS–Build model define the decay of the velocity deficit �U
with downwind distance at the building centreline (y = 0) as

�U ∝ �−1
y �−3

z z exp
(−z2�−2

z

)
(1)

following Eq. 3 in Appendix 1, where ξ = z/�z , and the length scales �y,z ∝ x1/2 (Eq. 6,
setting x0 = 0). Hence, �U ∝ x−2 exp (−z2x−1). For small z2x−1, �U ∝ x−2 after which
the decay rate along x decreases considerably with increasing height unlike in the experiment
(Tall cases).

For both buildings, the wake structure and decay rates vary more strongly with height if
the tall building is embedded in an urban canopy (Fig. 6b, d, e). For the Core cases, in the
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Fig. 6 Velocity deficit �U with dx/H for different heights in the main wake of (a, b) building T81 (sites
N4–N8, Fig. 2c); (c–e) building T134 (sites S4–S7, Fig. 2f).�U is obtained from the difference between (a, c)
Tall–BL–0, (b, d) Core–No Tall, and (e) Increased-No Tall. Solid lines show fits of the form f (x) = a+bx−p

peak region of TKE and vertical turbulent momentum transport of the No Tall case RSL
(Fig. 3b, c) the wake decay is rapid initially, but further downwind �U varies little with dx
(building T81 at z/H81 = 0.33, Fig. 6b; T134 at z/H134 = 0.20, Fig. 6d).

Compared to the Tall-case profiles, for building T134 velocities are further reduced in the
main wake in the Core configuration at all heights, even well above the RSL (Core–Tall < 0;
Fig. 5e). For building T81, however, the nature of the Core–Tall difference is more com-
plex at sites N4 and N5 that are closest to the near-wake (Fig. 4d): the Core-case wake is
weaker compared to Tall below z/H81 ≈ 0.7 and noticeably enhanced above, reflecting the
differences in the height zmax associated with min(U ) above the RSL (Fig. 4a, b). Although
no flow reversal occurred at sites N4/N5, qualitatively this behaviour is very similar to that
observed at the near-wake sites S1–S3 behind building T134 (Fig. 5e). Further downwind of
building T81 (sites N6–N8), the wake in the Core set-up is amplified at all levels above the
canopy, as found for building T134 at similar distances.

Interestingly, increasing the height of the canopy in the near-wake region of building
T134 reduces the velocity deficit in the main wake. The Increased–Tall differences are small
between 0.5H134 < z ≤ 1 (Fig. 5f) and the difference between the Core and Increased cases
is negative throughout the main wake above z0,K + zd,K (see profiles in Fig. 5a, c). This is
also apparent in the along-wind decay of�U (Fig. 6e), particularly close to roof-level, where
�U ≈ 0 at z/H134 = 0.94 (dx/H134 = 4.45) as in the Tall case (Fig. 6c). This behaviourmay
be related to strong damping of flow reversal over larger parts of the near-wake compared
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to the Core set-up (sites S1–S3; Fig. 5c), which results in reduced initial velocity defects
at the start of the main wake (Fig. 6d, e). In addition to that, sites S4–S7 are affected by
secondary wake effects downwind of the increased buildings, leading to enhanced turbulent
mixing that can contribute to a reduced velocity deficit, in agreement with theoretical and
empirical considerations (Castro and Robins 1977). Furthermore, since tower T134 is located
at the model edge, the displacement of the BL–0 approach flow locally leads to an increase
in the vertical flow component. This is expected to be further enhanced in the Increased
configuration and results may be different if building T134 were embedded further downwind
in the model.

TheADMS–Buildwakemodel shows remarkably good agreementwith themeasuredTall-
case profiles for building T81 throughout the main wake (Fig. 4b). However, the observed
upward shift in zmax for the Core case at sites N4/N5 is not represented (Fig. 4a). While
accounting for the reduction of the effective building height in the Core case improves the
results for building T81, this measure is not sufficient to represent the structural changes of
the wake if the tower is embedded in an urban canopy. Overall larger differences between
model and experiment are evident in the wake of the triangular building T134, even when
considered in isolation, as the enhanced wake decay rate is not captured. Using Heff for the
Core-configuration modelling in this case did not result in an improved representation of
the wake. Since the model was neither designed to represent the impact of an urban canopy
surrounding the tall building nor the flow response to non-cuboid building shapes, the results
are not surprising, but help to identify model development needs.

4.2.3 Vertical Mean Flow Characteristics

Figure 7 shows profiles of W/Uh , where Uh = √
U 2 + V 2 is the horizontal wind speed,

together with the flow angle in the vertical plane, θz = arctan(W/Uh), for the three sites
closest to the tall buildings.

Qualitative and quantitative changes in the patterns of updrafts and downdrafts for the
different test geometries are evident. For buildingT81 there is a large amplification of the char-
acteristic updrafts on the leeward building side at site N3 in theCore case (max(W/Uh) ≈ 10;
Fig. 7a). The much stronger upward flow deflection (50◦ < θz < 90◦ for 0.3 < z/H81 < 1)
is linked to the initial confinement of the horizontal flow in the street canyon between building
T81 and the downwind 24-m tall neighbouring building (Fig. 2a). Once the updraft clears
the height of the downstream neighbour most of the air initially escapes in the longitudinal
direction. This is consistent with the local increase ofU to positive values above the low-level
canopy at site N3 (Fig. 4a) and S1 (Fig. 5a, c), before backflow in the displaced recirculation
zone of the tall building becomes dominant. Drastic effects of the underlying buildings are
also evident at main-wake sites N4 and N5 (Fig. 7b, c). While for the Core geometry W
remains positive between 0.4 ≤ z/H81 ≤ 0.8 and negative at the top of the low-level canopy,
the Tall-case profiles have upward then downward flow.

For building T134, qualitative differences mainly occur at S1, closest to the building
(dx/H134 = 0.27; Fig. 7d). While the Tall case has strong upward flow at all levels, this
is only the case above z/H134 ≈ 0.6 for the Core and Increased cases.

4.2.4 Wake Turbulence

Figure 8 shows profiles of TKE (k), vertical turbulent momentum transport (−u′w′) and
integral turbulence time scale (τu) of the u-component for building T81 (Tall and Core cases)
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Fig. 7 Mean vertical velocitiesW (normalized by horizontal wind speedUh ) and the flow angle in the vertical
plane (θz ∈ [−90◦,+90◦]; top axis, blue symbols), at sites closest to a–c building T81 (north orientation),
and d–f building T134 (south-east)

for the same sites as in Fig. 4. τu is determined by integrating over the 1D temporal autocor-
relation of u′ down to a cut-off point of 0.25. An empirically determined correction factor of
1.336 is then applied to compensate for not integrating down to zero.

Turbulence characteristics are qualitatively similar for building T134 (Online Resource:
Figs. ESM_2, ESM_3). Compared to the N1/N2 locations upwind of building T81, at the
downwind sites k is enhanced by up to a factor of 10 (e.g. site N4 in the Tall case at z/H81 =
0.7). In both geometries, at siteN3 the peakof k at z/H81 = 1 is causedby strong contributions
of u′2 in the shear layer (u′2 : v′2 : w′2 as 1 : 0.5 : 0.5 at z/H81 = 1; Online Resource:
Fig. ESM_4). While above building T81’s roof k in the Tall case rapidly converges back to
the upwind flow conditions at any longitudinal distance in the wake, in the Core geometry
it remains enhanced slightly longer. The larger peak of k closest to the building and the
larger amount of shear developed in the Core case could indicate structural differences of
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Fig. 8 Vertical profiles of a, d turbulence kinetic energy, b, e vertical turbulent momentum flux, and c, f
turbulence integral time scales of the u-component on a longitudinal transect through building T81 (north
orientation) in the a–c Tall and d–f Core set-ups. Symbols as in Fig. 4

the roof vortex compared to the Tall set-up and reflects the fact that the region of maximum
velocity deficit in the Core geometry lies closer to the roof of the tower. Likewise, the
different heights of max(k) in the main wake (sites N4–N8, Tall case: z/H81 ≈ 0.7; Core
case: 0.9) can be attributed to the displacement of the Core-case profiles above the canopy
((z0,K + zd,K )/H81 ≈ 0.25). Greater TKE values at sites N4/N5 (upwind part of the main-
wake) for the Tall case throughout the vertical extent of the wake are associated with large
variances of the lateral velocity component (v′2), with max(v′2) being larger by a factor of
≈1.5 at both sites compared to the Core geometry (Online Resource: Fig. ESM_4).

In both configurations,−u′w′ changes sign in response to the sign change of ∂zU between
0.4 < z/H81 < 1 (sites N1–N3; Fig. 4a, b). In the Core set-up at sites N4/N5 there are notable
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peaks of −u′w′ > 0 (downward momentum transfer) at the top of the low-level canopy
(Fig. 8e), while in the Tall configuration in that region the transfer is oriented upwards
(−u′w′ < 0; Fig. 8b). Momentum exchange in the Core configuration is also enhanced at the
roof-level of building T81, where fluxes at sites N3–N5 exceed the Tall-case values by factors
of 1.5–2. At roof-level of building T134, fluxes are enhanced even more strongly at site S1
by factors of 2.5 for the Core case and 3 for Increased (Online Resource: Fig. ESM_3). The
large momentum exchange at roof-level compared to the isolated building case is associated
with larger ∂zU , u′2 and w′2, contributing to the reduction of the recirculation intensity. This
has also been observed for isolated buildings in highly turbulent boundary layers (e.g. Becker
et al. 2002).

Upwind of building T81, k and −u′w′ (sites N1/N2; Fig. 8d, e) are locally enhanced in
the Core case due to the presence of some taller buildings with heights between 24 and
28 m (Fig. 2a), while downwind of location N3 the surrounding structures are notably lower
(H < 12 m). Changes of wake turbulence in the Core geometry are accompanied by a
reduction of τu below z/H81 = 0.9 in the main wake (Fig. 8c, f), reflecting the reduction of
length scales of the energy-containing eddies generated in the RSL and UCL compared to
the conditions in BL–0 approaching the isolated tall building.

4.2.5 Instantaneous Flow Structure

To understand better the observed response of mean flow and turbulence to changes
in geometry, the flow structure is evaluated in terms of frequency distributions of
the instantaneous vertical velocity component (w) and horizontal wind direction (θ =
arctan(v/u)).

In the Tall case for building T81 (Fig. 9, near-wake) the recirculation pattern is quite
symmetric at site N3 (θ peaks at ±180◦), while it is absent in the Core case below z/H81 =
0.5,where the flow initially has a preferred channelling direction. Only at higher elevations do
the histograms start to converge.While for the Core configuration at site N3 the instantaneous
vertical velocity remains mostly positive up to z/H81 ≈ 0.7, for the Tall set-up there are
notable fractions of downdrafts at lower elevations that contribute to the overall low mean
value, W (Fig. 7a). This pattern is perhaps associated with vortex shedding from the roof
of building T81, which affects the near-wake more strongly if the incident flow has lower
turbulence intensity (Becker et al. 2002).

In the main wake of T81 (site N4), the occurrence frequency Pθ exhibits a distinct double
peak in the Tall geometry. This pattern also occurs at site N5 (not shown) and may be linked
to large vortices generated at the building sides, explaining the large amplitudes of v′2 and
hence k (Fig. 8a). Huber (1988) used wind-tunnel flow experiments for isolated buildings
to show that the length scales of such vortices in the wake centre are of the order of 1 to 2
times the building height. For the Core case, bimodal patterns of Pθ are absent; instead the
histograms show mirrored tails between z/H81 = 0.45 and 0.68. Again this change in the
wake structure can in part be related to the impact of smaller scale, less organized eddies
created by the low-level canopy. The effect is to cascade the energy of large (‘coherent’)
vortices down to smaller eddies that dissipate more quickly, which affects the intensity of
vortex shedding (Khanduri et al. 1998).

Similar conclusions can be drawn for building T134 (Online Resource: Fig. ESM_5).
Although the shapes of the two tall buildings are rather different, the flow response is very
similar in terms of changes in flow recirculation and the bimodality of Pθ , affecting the
magnitude of v′2.
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Fig. 9 Frequency distributions of instantaneous values of horizontal wind direction θ (solid lines) and vertical
velocity w (dashed lines) at sites N3 (near-wake) and N4 (main wake) downwind of building T81 (north
orientation) at four heights for the No Tall, Tall and Core geometries

4.3 LateralWake Characteristics

The lateral structure of building T134’s wake is investigated on three cross-wind transects
(L1–L3) in the Core, Tall and No Tall configurations (Fig. 2d, e, f). Figure 10 shows the
evolution of the velocity difference �U with lateral distance (dy/H134) from the build-
ing centreline for Core–No Tall and Tall–BL–0. For the same sites, Fig. 11 shows lateral
changes in the mean vertical velocity, W , in the Core and Tall geometries. The x locations
of transects L1 and L2 match those of the vertical profile sites S3 and S4, located in the
near-wake and main wake. At transect L3, the near-wake of building T81 is overlapping with
the main wake of T134. ADMS–Build model results are shown for the main-wake transect
L2.

In both configurations the maximum velocity deficit at L1 is slightly offset from the
building centreline at all heights as a result of the angle between the triangular tower T134

and the oncoming flow (Fig. 10a, b). At the downwind edge of the near-wake (transect L1),
the variability of �U near the rooftop (z/H134 = 0.94 and 1) confirms the large gradients
in that flow region. At this height, �U in the Core and Tall cases shows distinct minima
near the edges of the tower and rises towards the centre of the wake. This is accompanied by
peaks of the velocity variances (Online Resource: Figs. ESM_6–8) and probably indicates
the existence of counter-rotating vortices curling up from the building sides. The low spatial
resolution of the L3 transect relative to the building width of building T81 does not permit
to assess the existence of similar patterns for this case. Strong downdrafts near roof-level of
building T134 (Fig. 11a, b) exist in both configurations, but in the near-wake of the Core set-up
(L1 transect) downward flow is confined to the upper levels of the wake (z/H134 > 0.6),
while in the lower half strong updrafts up to 0.4Uref exist. Updrafts are also enhanced in the
near-wake of building T81 (Core case; Fig. 11e) by up to a factor of 4 compared the values
in the Tall case (Fig. 11f) at z/H81 = 0.33 and 0.8.
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Fig. 10 Lateral profiles of the velocity deficit �U in the wake of building T134 for (a, c, e) Core–No Tall and
b, d, f Tall–BL–0. Transects are located at dx/H134 = 0.98, 2.0 and 2.86 (L1, L2, L3; Fig. 2f). Distances
dy/H134 < 0 are for sites north of the building centreline. c, d ADMS–Build model results (thick solid lines)
at transect L2. Vertical shading shows the width of the T134 and T81 buildings. Dashed vertical lines indicate
where �U decreased below 10% of Uref at z/H134 = 0.48 on either side of the wake

It is noticeable that theW values at roof-level of building T134 do not converge back to the
ambient W ≈ 0, but remain negative on the dy > 0 side of the wake (Fig. 11). In the Core
configuration this is also occurring at z/H134 = 0.48. This asymmetry is likely a response
to blockage effects and the corresponding pressure distribution around building T134, which
is not aligned with the tunnel centreline (Fig 1d).

Close to the low-level canopy (z/H134 = 0.2), the Core-case transects show a super-
position of wake characteristics of building T134 and local features of the RSL. On the L1
transect, for instance, the wake of a 30-m tall building located upwind (Fig. 2d) is captured
at dy/H134 = −1. The negative �U (Fig. 10a) indicates that the wake of this lower building
is amplified by the presence of the tall building T134 compared to the No Tall reference state.
Near the corners of T134 (Fig. 10b) and T81 (Fig. 10f) in the Tall set-up there is a speed-up
of U compared to the background state as the flow is deflected around the buildings. The
presence of the urban canopy can locally enhance or reverse this feature, as seen on transect
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Fig. 11 As Fig. 10, but for the mean vertical velocity W in the a, c, e Core and b, d, f Tall cases

L1 on either side of building T134 (Fig. 10a; z/H134 = 0.2) or on transect L3 near building
T81 (Fig. 10e; z/H81 = 0.33).

In the main wake of building T134 (transects L2/L3), the �U profiles in the Core and
Tall configurations show the expected bell shape (e.g. Castro and Robins 1977) at suffi-
cient distance from the low-level canopy. As in classic wake theory this is associated with
a fast decay of the velocity deficit with dy , accompanied by W < 0. The magnitude of
change of �U with dy decreases with height and with downwind distance (dx ) from the tall
building. The wake width, here defined as the extent of the region where the magnitude of
�U is larger than 10% of Uref , for the Core/Tall geometries is 0.98/1.1H134 (L1 transect),
1.1/1.27H134 (L2) and 1.27H134 (L3; Core case only). While the lateral growth of the wake
is slightly greater in the Tall configuration, the magnitude of �U is enhanced in the Core
case. When assessed through the disturbance of the velocity variances, the wake is notice-
ably wider below the rooftop of building T134 (up to a factor of 2 at z/H134 = 0.48 in
both configurations) compared to the mean-flow wake (Online Resource: Figs. ESM_6–8).
Differences between the two geometries are more strongly reflected in the variances. The
roof-level turbulence for tower T134 is enhanced over a wider lateral extent in the Core set-
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up, whereas below rooftop the variances show larger magnitudes in the isolated building
case.

In the ADMS–Build wake model, similar to Eq. 1 but now at constant z, �U ∝ e−y2/x

(Eqs. 3, 7). Hence,�U ∝ 1− y2/x for y2/x � 1, whereas for large y2/x the change in�U
becomes slower and the profiles gradually converge back to the ambient flow. In between these
limits, the lateral flow profiles exhibit a nearly linear portion (�U ∝ y/x). Experimental
and model results show very good agreement for the isolated building case (Fig. 10d) with
respect to the overall magnitude of�U and the profile shape. Considering that themodel does
not reproduce the asymmetry of the wake caused by the oblique flow angle, the agreement
between the wake widths is very good. While not capturing the magnitudes of W well for
this configuration, the model shows the same small vertical gradients in the Tall case as in
the experiment (Fig. 11d). In agreement with the vertical flow structure in the Core set-up
(Fig. 5a), U is significantly overestimated at z/H134 = 0.48, leading to a much smaller
velocity deficit (Fig. 10c), while better predicted at roof-level. Similar conclusions can be
drawn from the comparison ofW (Fig. 11c), where the model underestimates the increase of
downdrafts with increasing height, resulting in larger differences at z/H134 = 1 compared
to 0.48.

5 Conclusions

Current knowledge about building wakes, forming the basis of many empirical-analytical
wake models, is mostly derived from flow past isolated structures in horizontally homo-
geneous turbulent boundary layers. However, the structure of the wake of tall buildings
surrounded by a realistic urban canopy is different in many respects.

In this case study, the main changes in the wake flow structure in the canopy-interaction
cases (Core/Increased) compared to the isolated building case (Tall) are:

Changes in the Near-Wake (Core v Tall Configurations)

– The sheltering effect of the low-level buildings in the Core geometries reducesU values
in the canopy and roughness sublayer, thereby limiting the vertical depth over which
flow reversal occurs on the leeward side of the tall buildings and displacing the centre of
the recirculation zone upwards. This creates larger shear (∂zU ) at the rooftop of the tall
buildings and enhances velocity variances.

– Vertical momentum exchange (−u′w′) for the Core cases is enhanced by factors of 1.5
to 3 at rooftop of the tall buildings compared to Tall, and has a secondary peak at the top
of the low-level canopy (z = z0,K + zd,K ), reducing the recirculation intensity in the
near-wake.

– Above the low-level canopy, in the Core cases U initially is positive over a depth of 0.1
to 0.2 times the tall-building height. Higher up, small-scale, diffusive eddies generated
in the UCL and RSL reduce the strength of flow reversal over a large portion of the wake.

– Vertical velocities (e.g. updrafts on the leeward side of the tower in the near-wake) and
horizontal flow directions above the canopy are strongly amplified in response to the
local structure and orientation of the buildings and street systems underneath the wake.
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Changes in the Main-Wake (Core v Tall Configurations)

– The velocity difference (�U ) relative to the ambient flow is amplified in the Core set-ups
over the entire depth of the wake. Further increasing the building heights in the near-wake
of the tower (Increased case), however, in the current scenario reduces �U as a result
of strongly reduced flow reversal over larger portions of the near-wake and enhanced
turbulent mixing downwind of the higher canopy.

– �U decays as (dx/H)−p , but for the Core cases the rate of decay (measured by p)
varies more strongly with height and in response to the characteristics of the underlying
roughness.

– The lateral wake extent based on the characteristics of �U and its growth with dx/H is
similar in the Tall and Core geometries. For both, the classic relation of �U ∝ e−y2/x

used in the ADMS–Build wake model holds.
– At half the tall-building height (T134), the turbulent wake is wider than the mean-flow

wake by up to a factor of 2 (Tall and Core cases; Online Resource: Figs. ESM_6–8).
Velocity variances at roof-level are enhanced over a larger lateral extent in the Core
geometries, while below rooftop all variance components have larger magnitudes in the
Tall cases.

– In the near part of the main wake, the bimodality in the frequency distributions of hori-
zontal wind directions (likely associated with vortex shedding from the building sides) is
suppressed in theCore cases. This is accompanied by a reduction ofmagnitudes of v′2 and
k due to the down-scale transport of TKE to less-organized, smaller-scale canopy-layer
eddies, which then dissipate more quickly.

– Turbulence integral time scales of the longitudinal velocity component associated with
the energy containing eddies are reduced throughout themainwake in the Core scenarios.

While some of the changes in the wake behaviour are also observed for isolated tall build-
ings in boundary-layer flows with high turbulence intensity (e.g. reduction of recirculation
intensity and vortex shedding), the interaction with mean flow and turbulence patterns gener-
ated in the low-level building canopy induces further structural changes of the wake on local
to neighbourhood scales. The different flow response for CoreSE and IncreasedSE showed
that very confined changes in the morphometric characteristics of the low-rise structures in
the near-wake region of a tall building can have non-local effects, which need to be further
investigated in configurations where the tall building is located in the centre of the domain
(i.e. farther away from the model edge).

Comparisonswith theADMS–Buildwakemodel showed that coremodelling assumptions
regarding the change of velocity with longitudinal and lateral distance from the tall building
still are generally valid when the building is part of an urban canopy. However, the strong
modifications of the vertical structure of the wake caused by the interaction with RSL and
UCL turbulence cannot be accounted for by adjusting currentmodel parameters (e.g. reducing
the effective height of the building). It needs to be exploredwhether simple and genericmodel
refinements can be made to capture such effects.

To achieve this, further investigations need to focus on the wake response to urban settings
of different geometrical characteristics (λ f , λp) and building height variability (σH ), ideally
also considering effects of atmospheric thermal stratification. Similarly, the interaction of
wakes of tall buildings and the behaviour of wakes produced by building clusters need to be
investigated in realistic urban settings.Understanding andquantifying tall building impacts on
the inertial sublayer over cities (and above) is essential to identify needs formodel refinements
in urban land-surface models used in mesoscale and microscale atmospheric modelling as
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the increasing spatial resolution of such models (O(100 m)) means that tall-building wakes
no longer are subgrid-scale phenomena, but have an impact at the grid scale.
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Appendix 1: ADMS–BuildWakeModel

Comparisons of observed wake characteristics are made with the ADMS–Build wake model
(Robins et al. 2018) that is part of the urbanized version of the Gaussian plume-dispersion
model ADMS (ADMS-Urban; Robins and McHugh 2001).

A small-deficit wakemodel represents themean 3Dflow structure in themomentumdeficit
region (main wake) of an isolated, cuboid-shaped building (Fig. 12). The model is applicable
only where U > 0, i.e. downwind of the near-wake cavity zone (recirculation region) where
x is larger than the cavity length LR . The latter is determined from the height, cross-wind
width and along-wind length (H , Wc, L = L f ) of the building as

LR = AWc

1 + BWc/H
, (2)

with A = 1.8(L/H)−0.3 and B = 0.24. If L/H < 0.3 then A = 2.58 and if L/H > 3.0
then A = 1.3. Note that if Wc/H is small, LR ≈ AWc.

The model is a 3D extension of the original 2Dmodel of Counihan et al. (1974) and based
on constant eddy-viscosity wake theory. The mean flow components are

U = UH

[

1 − û

(
Wc

2�y

) (
H

�z

)2

g(ξ)h(η)

]

, (3)

V = −UH û

(
Wc

2(x − x0)

) (
H

�z

)2

g(ξ)
η

2
h(η), (4)

W = −UH û

(
H

(x − x0)

)(
Wc

2�y

)(
H

�z

) [
g′(0) − g′(ξ)

]
h(η), (5)

where UH is the mean longitudinal velocity component of the ambient flow at roof-level
(z = H ) and g′ in Eq. 5 denotes a derivative with respect to ξ . To match the inflow conditions
of thewind tunnel, we use vertically-varying inflowprofilesU (z) in Eqs. 3–5. For the TallN,SE
cases, the inflow is given by U (z) in the approach flow (BL–0), while for the CoreN,SE
geometries U (z) is given by the No TallN,SE profiles (Fig. 3a).
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Fig. 12 Near-wake and main-wake flow regions in the ADMS–Build model in a the x–y plane and b x–z
plane. Adapted from Robins et al. (2018)

The normalized cross-wind dimensions are η = y/�y and ξ = z/�z , with the length scales
being a function of longitudinal distance,

�y,z(x) =
√

Dy,z(x − x0)

UH
, (6)

where Dy = κu∗H and Dz = 2κu∗H are expressions for the constant eddy viscosities
under neutral conditions. For the Tall cases, u∗ = 0.11 m s−1 of the BL–0 configuration
is used (Sect. 3.3). For the No Tall configurations, u∗ is derived from the peak value of the
vertical turbulent momentum flux in the RSL (Fig. 3b); resulting in u∗ = 0.14 m s−1 (north
orientation) and 0.16 m s−1 (south-east). In the Core set-ups, the building height H is set to
Heff (Table 4). The virtual origin x0 used in Eq. 6 is specified so that U > 0 throughout the
main wake. The dimensionless velocity perturbation parameter û is set to the default model
value of 0.45.

The shape functions g(ξ) and h(η) used in Eqs. 3–5 are defined as

g(ξ) = ξ

2
exp

(
−ξ2

4

)
and h(η) = 1

2
√

π
exp

(
−η2

4

)
. (7)

Appendix 2: Approach-Flow Characteristics

To characterize the boundary-layer flow upwind of the model (BL–0), vertical profiles of
mean flow (Fig. 13a) and turbulence statistics (Figs. 13b, c and 14) were analyzed just after
the last row of roughness elements (Table 5 and Sect. 3.3). The data are spatially-averaged
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Fig. 13 Approach-flow profiles (BL–0 case) of a mean longitudinal velocity U , b turbulence intensities (σi )
scaled by u∗, and c ratios of turbulence intensities. Solid lines in b, c show a polynomial fit of the profiles
with an extrapolation to the height of the roughness elements (dashed line). Shading indicates the height of
the floor-roughness elements

Fig. 14 a 1D energy-density spectrum of the longitudinal velocity component in the frequency ( f ) domain at
z = 27 m for the BL–0 case together with empirical relations (Kaimal et al. 1972; Simiu and Scanlan 1986).
bVertical profile of integral length scales in the x direction associated with the u-component in the BL–0 case
together with Counihan’s (1975) empirical margins for different roughness regimes

time-mean statistics over three vertical profiles taken at y = −600 mm, 0, +600 mm (wind-
tunnel scale).

Mean flow and turbulence statistics (Fig. 13) show typical ISL characteristics in the region

9 m ≤ z ≤ 60 m. The ratios of turbulence intensity σi = u′2
i

1/2
to friction velocity (σi/u∗)

approach values of 2.5, 1.73 and 1.3 for fluctuations of u, v and w above the roughness
elements (Fig. 13b), in agreement with the classic Counihan (1975) relations. The ratios of
velocity fluctuations approach values of σv/σu = 0.7 and σw/σu = 0.49 (Fig. 13c).

Based on the aerodynamic roughness parameters and turbulence intensities, the approach
flow is consistent with moderately rough surface conditions based on the roughness regimes
defined in the ESDU (1985) and VDI (2000) wind-tunnel modelling guidelines. Eddy statis-
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Table 5 Overview of the flow
and roughness characteristics in
the BL–0 configuration. All
values are given in full-scale for a
reference wind speed
Uref = 2 m s−1

Roughness u∗ (m s−1) z0 (m) zd (m) κ

0.11 0.16 3.4 0.4

Turbulence σu/u∗ σv/u∗ σw/u∗ σv/σu σw/σu

2.5 1.75 1.3 0.7 0.49

Depths δBL−0 (m) δI SL (m)

134 51

tics in terms of the energy-density spectrum (Fig. 14a) and integral length scales (Fig. 14b)
support this assessment and agree well with empirical relations. The energy spectrum shows
the characteristic rate of decay in the inertial sub-range and a well-established energy peak
at a dimensionless frequency of z f U−1 ≈ 0.03.

The turbulence integral length scales (Lux ) in the longitudinal direction were determined
from the integral time scales, τu , associated with the u-component, using Taylor’s frozen
turbulence assumption: Lux = τuU . In the ISL, Lux falls within the empirically determined
regime envelope for a moderately rough boundary layer in agreement with turbulence and
mean-flow parameters, showing that a physically consistent boundary-layer flow was mod-
elled.
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