
TLS/PKI Challenges and certificate
pinning techniques for IoT and M2M
secure communications
Article

Published Version

Díaz-Sánchez, D., Marín-Lopez, A., Almenarez, F., Arias, P.
and Sherratt, S. R. ORCID: https://orcid.org/0000-0001-7899-
4445 (2019) TLS/PKI Challenges and certificate pinning
techniques for IoT and M2M secure communications. IEEE
Communications Surveys & Tutorials, 21 (4). pp. 3502-3531.
ISSN 1553-877X doi: 10.1109/COMST.2019.2914453
Available at https://centaur.reading.ac.uk/83566/

It is advisable to refer to the publisher’s version if you intend to cite from the
work. See Guidance on citing .

To link to this article DOI: http://dx.doi.org/10.1109/COMST.2019.2914453

Publisher: IEEE

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement .

www.reading.ac.uk/centaur

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence

CentAUR

Central Archive at the University of Reading
Reading’s research outputs online

IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, VOL. V, NO. N, MONTH YEAR 1

TLS/PKI Challenges and Certificate Pinning
Techniques for IoT and M2M Secure

Communications
Daniel Díaz-Sánchez, Senior Member, IEEE, Andrés Marín-Lopez, Member, IEEE,

Florina Almenarez, Member, IEEE, Patricia Arias, Member, IEEE, and R. Simon Sherratt, Fellow, IEEE

Abstract—Transport Layer Security is becoming the de facto
standard to provide end-to-end security in the current Internet.
IoT and M2M scenarios are not an exception since TLS is also
being adopted there. The ability of TLS for negotiating any
security parameter, its flexibility and extensibility are responsible
for its wide adoption but also for several attacks. Moreover, as
it relies on Public Key Infrastructure (PKI) for authentication,
it is also affected by PKI problems. Considering the advent
of IoT/M2M scenarios and their particularities, it is necessary
to have a closer look at TLS history to evaluate the potential
challenges of using TLS and PKI in these scenarios. According
to this, the article provides a deep revision of several security
aspects of TLS and PKI, with a particular focus on current
Certificate Pinning solutions in order to illustrate the potential
problems that should be addressed.

Index Terms—Transport Layer Security, DTLS, Public Key
Infrastructure, Trusted Third Party, Certificate Pinning, Internet
of Things, Machine to Machine

I. INTRODUCTION

IN many senses IoT/M2M technology is mature, but there
is a lack of technical [1] and regulatory [2] consensus

concerning security. Concerned by this lack of security and
the increasing population of devices, the US Federal Trade
Commission (FTC) organized a workshop in November 2013
and reported in January 2015 [3] on the major concerns on
device security: APIs, authentication, and update processes. As
discussed in the report, IoT devices have different sizes, shapes
and purposes, but they share a set of differentiating attributes
from other technologies that demand special attention from a
security perspective. The majority of IoT devices are furnished
with more or less limited processing power that, considering
economies of scale, is managed by a similarly constrained
operating system. The operating system, typically Linux, can
be reprogrammed to overstep the original device purpose.

This work has been partially funded by projects MAGOS TEC2017-
84197-C4-1-R, INRISCO TEC2014- 54335-C4-2-R. This work has been also
supported by the Comunidad de Madrid (Spain) under the project CYNAMON
(P2018/TCS-4566), co-financed by European Structural Funds (ESF and
FEDER) and the Alexander von Humboldt Post-Doctoral program (Patricia
Arias Cabarcos)

Daniel Díaz-Sánchez, Andrés Marín-Lopez, Florina Almenarez and Patri-
cia Arias are with the Department of Telematic Engineering, Universidad Car-
los III de Madrid, Avda. de la Universidad 30, Leganés, 28911, Madrid, Spain
e-mail: {dds,amarin,florina,ariasp}@it.uc3m.es (see http://www.it.uc3m.es).

R. Simon Sherratt is with the Department of Biomedical Engi-
neering, University of Reading, Reading, RG6 6AH, United Kingdom,
email:r.s.sherratt@reading.ac.uk.

Manuscript received April 23, 2018

Moreover, this can happen without user knowledge or consent
since rarely these devices have a monitoring system that helps
to realize changes in software or network configuration and
unusual connections.

The re-use of hardware platforms, drivers and development
environments allows a vulnerability found in a device, that can
be easily tampered with, i.e., a smart wristband, to be exploited
in a big population of devices using similar hardware or
software as, for instance, a car with some kind of infotainment.
Insufficient security analysis for IoT devices and apps may
lead to security risks for unexpected use cases1. Additionally,
the decrease in hardware, software, development and produc-
tion costs may motivate companies with no previous security
experience, to introduce potentially vulnerable devices in the
market. It should be also considered that re-using hardware
and software should not be a problem, but a benefit, on its
own, since vulnerabilities in components can be detected and
fixed in less time. However, there is an enormous disparity
regarding the support and update of IoT devices.Thus, support
and update are critical in IoT/M2M as outdated devices can be
the way in to million of homes, companies, critical facilities,
and other devices.

The micro-services architecture [4] has been proposed over
time to alleviate updates. It is an architectural style that
structures any application as a collection of loosely coupled
services implementing the application functionality. Beyond
its ability to split a complex application into small pieces and
put all together when needed, the goal of micro-services is
that every component can be independently instantiated and
updated. This favours continuous delivery [5] and continuous
deployment of complex distributed applications. Basically, it
eases maintenance and development operations [6] as well as
it improves agile development [7].

Fog computing or Fog, is an evolution of the cloud com-
puting model [8], in which resources are moved to the edge
of the network or beyond [9]. The advent of Fog technology,
and Mobile Edge Computing, allows extending the concepts
of Cloud Computing to the network edge. Also Network Func-
tion Virtualization (NFV) and other embodiments [10] share
similar objectives. Nevertheless, the geographic distribution,
proximity to consumers and support for high mobility rates,
are fundamental features of Fog/Edge computing needed for

1Fitness tracking app Strava gives away location of secret US army bases,
The Guardian, World edition, 28th jan 2018

IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, VOL. V, NO. N, MONTH YEAR 2

a consistent IoT/M2M development. Conservative estimations
calculate that IoT/M2M ecosystem will contribute with more
than 50 billion devices [11] considering personal devices,
sensors and actors to give support to concepts as Smart Cities,
Smart Metering [12], Wereable Computing [13] and Crowd
Sensing, among others.

IoT/M2M applications can benefit from the use of micro-
services. Declarative and asymptotic strategies [14] would
allow these devices to have a minimum operating system and
perform a declaration to request near computing resources,
as Fog, to instantiate certain micro-services. Since micro-
services are software components in constant development
and revision from manufacturers and published in repositories,
devices could get the most recent images of the micro-services
ready at run time. In this way, update problems would be
minimized.

As discussed, IoT/M2M presents several security problems
that should be addressed and that can be sometimes re-
duced by means of micro-services. However, IoT devices will
have constant communication with Cloud Computing, Edge
Computing, or Fog Computing infrastructures depending on
the purpose of the communication. Among these purposes,
it is possible to find communications between components
of distributed applications or just communications serving
different data-to-cloud strategies. In most of the cases, the
biggest amount of traffic is expected to be concentrated in
the vicinity of the devices, fruit of the cooperation among
application components (micro-services) and/or devices and
between devices and Fog/Edge/Cloud Computing backends.
However, despite less numerous, interactions between devices
and backends for data consolidation will be frequent.

The traffic generated among devices and services that will
be transported by these protocols, may contain personal or
critical information and should be adequately protected. In
fact, these protocols are required to support, at least, service
authentication and confidentiality. Moreover, it may also be
critical to provide support for micro-service dynamic authen-
tication, since many of these services will be instantiated on
application request.

Considering the scale of the problem, it is necessary to
provide adequate protocols that let devices fulfil their purpose
securely, requiring no centralized management.

The vast majority of proposed IoT/M2M protocols focus
on solving concrete problems aside from security. IoT and
M2M have inherited the use of web services or APIs according
to the Representational State Transfer (REST) [15] architec-
ture. However, HTTP and TCP are not suitable for resource
constrained (limited) devices as they require keeping state in
both endpoints and HTTP presents a significant overhead.
For that reason, the activity of the Constrained RESTful
Environments (CoRE) IETF team concentrates on providing an
adequate RESTful architecture proposing 6LoWPAN [16] and
Constrained Application Protocol (CoAP) [17] [18]. Thus, the
major goal of 6LoWPAN is to allow constrained devices to use
IPv6 by simplifying the device requirements, whereas allows
them using an immense address space for a better adoption of
IoT/M2M.

CoAP allows both unicast and multicast restful communica-

tions for IoT/M2M. CoAP relies on UDP as transport protocol
permitting asynchronous message oriented interactions with
a very low overhead and supporting proxies and caches. It
defines a messaging model over UDP with a very small header
providing TCP-like reliability with optional message confir-
mation. For the supported communication patterns, which can
be one to one or one to many, CoAP allows applications to
enable Automatic Repeat-reQuest according to the conditions
but provides transaction identifiers independent from message
identifiers for an improved flexibility.

When it comes to security, these protocols usually rely on
Transport Layer Security (TLS) [19], or its datagram version
(DTLS) [20]. In fact, HTTP, CoAP, Quick UDP Internet
Connections (QUIC) [21], among other applicable protocols
in the context of IoT/M2M [22] use TLS or DTLS for
confidentiality and authentication [23].

Since TLS relies on Public Key Infrastructure (PKI) [24]
[25] for authentication, it is necessary to have a closer look
at the history of TLS/DTLS to evaluate the challenges of
using TLS and PKI in IoT/M2M environments. Therefore, this
article revises several aspects of TLS/DTLS and PKI, with a
particular focus on Certificate Pinning to illustrate the potential
problems that should be addressed for a secure inclusion of
IoT and M2M for our daily lives.

A. Article Organization

Considering the need of evaluating the challenges and also
considering the dependency of IoT/M2M end-to-end protocols
on TLS, this article performs such a evaluation as follows.

This article describes the evolution of the TLS protocol
in detail in section II, addressing: TLS handshake and its
latency in sections II-A and II-B; problems TLS has faced due
to protocol, cypher suite or compression mechanism design
attacks in section II-C. Since PKI is, nowadays, one of the
cornerstones of TLS, this article makes a deep revision of the
current trust problems of PKI that can affect TLS in section III
and the evolution of the TLS security over the time in section
III-B considering both PKI and vulnerability related problems.

The need for certificate pinning is reasoned in section IV.
Despite some research has already coped with security in
IoT and M2M [26]–[28] and performed Certificate Pinning
techniques comparisons [29], [30], this article not only ex-
plores current solutions to the problems of trust, impersonation
attacks [31], and lack of auditing, but also focuses on their
use in IoT/M2M scenarios. Certificate Pinning techniques are
described in sections IV-A to IV-F and compared in section V
discussing their viability for IoT/M2M scenarios. Finally, open
challenges and research directions are discussed in section VI
and conclusions in section VII.

II. TRANSPORT LAYER SECURITY

This section discusses the interest of TLS [19] for end-to-
end protection in IoT.

TLS was designed to provide confidentiality and integrity to
end-to-end communication. IPSEC [32] is also a remarkable
end-to-end security protocol due to its penetration in security
solutions. IPSEC can provide confidentiality among network

IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, VOL. V, NO. N, MONTH YEAR 3

nodes relying on key exchange [33], or using pre-shared
keys. It can also be used as authentication protocol by means
of the “Authentication Header” providing end-to-end security
equivalent to TLS, in fact, this is the default mechanism in
IPv6.

IPSEC, despite relegated in practice to the establishment of
tunnels and Virtual Private Networks (VPN), is an excellent
protection mechanism that can provide the same services
than TLS provides, or complement other protocols bringing
better security. It should be considered, that despite end-to-end
security is a necessary requirement for secure communications,
it is not the only one. Behringer [34] argued that the end-
to-end security provided by TLS is perceived as enough
in general, but network security is also necessary and thus
IPSEC, among others. Controlling malicious activities from
endpoints, monitor and cryptographically isolate certain links,
and protect against IP spoofing are several tasks that should
be considered beyond end-to-end security.

Other protocols, e.g., Kerberos, do not provide authentica-
tion on their own, but communicate authorization decisions
generated by other services as SAML [35] [36]. This also
requires applications to be designed considering the protocol.
There are many other protocols that allow mutual authenti-
cation [37]–[39], including TLS, that require at least one of
the parties involved in the transaction, typically the server, to
disclose its identity, so they do not provide full privacy to
participants.

Thus, being conscious that there are many other protocols
that enable authentication in distributed environments, even
providing full privacy, this article deals with the current state of
TLS and the involved PKI usage for accessing online services
by IoT devices. The reason for analysing TLS is that this is
the only end-to-end protocol that can be considered globally
accepted and typically requires the authentication of one of the
endpoints, thus the lack of server privacy is not considered.

TLS is an excellent tool for establishing secure connections
in IoT environments considering that many of the connections
will be opportunistic such as those concerning service discov-
ery or name resolution, needed for accessing local computing
resources [23]. Despite TLS used in combination with PKI
requires IoT devices to handle PKI certificates, which can be
resource consuming, it provides a good versatility. TLS pro-
vides confidentiality, authentication and allows the negotiation
of almost every security parameter. Both the client application
and the service can actively participate in the negotiation
using user space libraries. Due to these reasons, TLS has been
adopted by several transport protocols as mentioned before.

TLS was originally designed to work on top of a TCP/IP
stack and thus, it is connection oriented. However, TLS has
been complemented with versions that, using the same security
negotiation mechanism, work over UDP [20], and even SCTP
[40].

Moreover, the specification of TLS describes an extension
mechanism [41]–[43] to support new functionalities. TLS ex-
tensions are the preferred mechanisms to add new functionality
that were not initially considered by the protocol. Extensions
add additional information to the handshake messages aug-
menting the negotiation capabilities of the protocol whereas

keeping compatibility with older versions. To achieve that
goal, TLS endpoints ignore extensions they do not understand.

The following sections will discuss the recent versions of
TLS [19] and DTLS [20]. DTLS re-uses TLS sub-protocols
and handshake messages. It just adds the necessary resiliency
to UDP (loss and duplicate datagram management) to serve
as a secure UDP transport for other protocols like TLS does
over TCP. For that reason, the rest of the article will make no
distinction among them unless necessary.

A. Handshake in TLS

TLS provides a secure connection over transport protocols
with optional server-only or mutual authentication. To create
the secure channel, TLS performs a key exchange during the
handshake to derive a secret key to protect the channel. RSA
static is the oldest and simpler mechanism for key exchange.
It has been available since the earliest versions of SSL. In this
key exchange mechanism, shown in Fig. 1, the client generates
a “pre-master” key, encrypts it with the public key of the server
(whose certificate has been previously delivered to the client
using the “Certificate” message), and then sends the encrypted
“pre-master” key to the server using the “ClientKeyExchange”
message. In this way, the protocol manages to exchange a key
with the server in a secure way. The server decrypts the “pre-
master” using its private key. This proof of possession of the
private key provides the server authentication.

The exchange of the “Finished” message triggers the verifi-
cation of the integrity of previously exchanged messages that
would fail if the server could not decrypt the “ClientKeyEx-
change” message.

Fig. 1. TLS handshake with RSA Static. The client sends a “ClientHello”
message containing a list of the supported key exchange, cipher suites
and compression mechanisms so the server can enforce its selection with
the “ServerHello” message. The server delivers the server certificate and
finishes the negotiation using “Certificate” and “ServerHelloDone” messages
respectively. The “ClientKeyExchange” message contains the “pre-master”
key encrypted with the server public key so only the server can decrypt
the “pre-master” key and derive the master key. The client also delivers
“ChangeCipherSpec” and “Finished” messages indicating it has derived the
master key from the “pre-master” key and forthcoming traffic must be
protected with the master key, and so acknowledges the server by delivering
“ChangeCipherSpec” and “Finished” messages.

IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, VOL. V, NO. N, MONTH YEAR 4

The major concern with RSA Static is that it cannot
guarantee the concept of “forward secrecy” [44], thus it cannot
guarantee past communications will be confidential in the
future [45]. This happens with any key exchange mechanism in
which the long-term secret used to protect the communication
is a shared key that, despite encrypted, is delivered through the
network. Basically, a passive attacker can store the encrypted
key exchange together with the encrypted traffic waiting to
break or steal the server private key. If the attacker manages
to get the key, he can decrypt every previously recorded and
every forthcoming session protected with that private key.

Diffie Hellman [45] (DH) provides forward secrecy and can
be applied to TLS as shown in Fig. 2. In DH, the server sends
a “ServerKeyExchange” message after the server certificate,
that contains the DH parameters or an elliptic curve calculated
by the server. This information is paired with an ephemeral
public key generated by the server. The client generates also
an ephemeral key compatible with the server key and delivers
it to the server. In this way, both endpoints can derive a
long-term shared secret avoiding this shared secret to be
encrypted and sent over the network. Beyond key exchange,
the authentication is achieved in this case with the server
signature over the parameters in the “ServerKeyExchange”
message, thus the client can verify the signature against the
server certificate.

Fig. 2. TLS handshake with Elliptic Curve Diffie Hellman (ECDH). After
the negotiation with the hello messages, the server delivers its certificate. The
key exchange is then initiated by the server with the “ServerKeyExchange”
message that contains the ECDH key material, so the client can derive an
ephemeral key. The “ServerKeyExchange” contains also a signature with
the server key that verifies with the certificate delivered in the “Certificate”
message. The client can derive an ephemeral key and deliver it to the server
using the “ClientKeyExchange” so both endpoints can derive a master key
according to DH. Alike the handshake presented in Fig. 1, no encrypted key
is delivered during the handshake enabling forward secrecy.

B. Improvements in TLS Handshake Latency
The TLS handshake requires two Round Trip Time (RTT)

delays to finish. From Fig. 1 and Fig. 2, the reader should
note the number of TLS messages to be exchanged among
endpoints does not depend on the key exchange or authentica-
tion mechanism. This handshake time, together with the TCP

handshake (do not apply to DTLS), can be a considerable
long time for devices that demand a fast interaction, as those
delivering bursts of data while moving. This may happen fre-
quently in several scenarios in IoT and vehicular networks. To
improve the protocol agility, some specifications define abbre-
viated “session resumption”, so devices can resume previously
established sessions with TLS. The originally abbreviated
handshake specification [19] used session identifiers managed
by the server. Other specifications allow the client to store
“session tickets” that can be redeemed later [46] preventing
the server from storing client state.

Nevertheless, negotiation in TLS can have an important
impact on protocol efficiency depending on the transport
protocol and the selected cipher suites. For instance, IoT/M2M
devices, especially those using constrained radio interfaces,
should observe that packets larger than the Maximum Transfer
Unit (MTU) are fragmented increasing latency and energy
expenditure. There are several attacks that can force devices
to fragment data under certain circumstances [47]. Moreover,
besides cipher suite selection, the negotiation of compression
can be also critical to avoid attacks, as will be discussed in
section II-C, but also to improve efficiency [48].

The aforementioned abbreviated handshake alleviates the
problem of resuming a secure channel between entities in IoT.
For instance, several applications require devices to update a
given resource or to get information periodically. However,
several other applications in IoT/M2M may require to perform
requests to resources that will not repeat again during a
reasonable period of time. Thus, the ability of resuming
previous sessions adds no benefit to these applications. For
that reason, there is a need for optimizing TLS handshake by
reducing its latency in any case.

Recent TLS versions incorporate several improvements [49]
as removing the use of RSA Static to improve forward secrecy,
and reducing the handshake to 1RTT or even 0RTT, depending
on the case. TLS has several layered sub-protocols that man-
age TLS functionality internally. The “ChangeCipherSpec”
sub-protocol was in charge of signaling the other part the
forthcoming messages should be delivered encrypted with the
session key. This sub-protocol triggered the verification of the
handshake messages to verify integrity. This sub-protocol can
close the connection if handshake messages were manipulated,
thus there is a chance to perform a Denial of Service attack.
Basically, it is necessary to wait until the “ChangeCipher-
Spec”, several RTTs after the start of the handshake, to realize
the attack. Due to that, this sub-protocol has been removed so
any message after “ServerHello” should be encrypted. In this
way, active adversaries, manipulating handshake messages,
can be blocked sooner.

Moreover, “ServerKeyExchange” and “ClientKeyEx-
change” have been substituted by the extension “KeyShare”
for key exchange in recent TLS versions, as shown in Fig. 3.
The rest of the messages are kept in the same order as the
original protocol, and the server authentication is performed
by signing the previous handshake messages. The signature
is placed in the message “CertificateVerify” to keep TLS
backwardly compatible.

Recent TLS versions also propose the 0RTTs handshake,

IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, VOL. V, NO. N, MONTH YEAR 5

Fig. 3. TLS 1.3 handshake 1RTT. In this simplified TLS handshake,
“ServerKeyExchange” and “ClientKeyExchange” messages have been re-
moved, so DH parameters for key exchange, public keys and pre-shared
key labels are delivered in a extension called “key_share”. More precisely,
if (EC)DHE key establishment is in use, the client sends a list of named DH
groups within the extension and the server should be in one of the groups of
the client share. If so, after the “ServerHello” message, the server delivers also
a “key_share” containing the server’s ephemeral key. “EncryptedExtensions”
and “CertificateRequest” contains responses to client extensions (if any)
and a request for client authentication (if mutual authentication is enabled)
respectively. Also, a new message called “CertificateVerify” is used for
server authentication that contains a signature over the handshake messages
exchanged so far.

presented in Fig. 4, that is equivalent to the standard hand-
shake, shown in Fig. 3, with the exception it delivers client
data in a extension called “early_data”. In such a way, the
application protocol over TLS, can use that extension to push
the request to the server during the handshake, so once the
TLS secure channel is created the response can be sent. Older
versions needed to wait until the handshake has finished to
send the request to the server, increasing the latency. This
reduced handshake enforces every message after “ClientHello”
to be encrypted with a secret derived from the client secret in a
“keyShareEntry” (an entry of the “key_share” extension), and
requires the server to advertise DH semi-static parameters.

It should be noted that despite the upper protocol requests
can be delivered directly as part of the handshake, the security
properties of TLS are reduced with the 0RTT handshake [50].
Reply attacks are possible since the server should incorporate
random data to avoid these kind of attacks in the first message,
but in this case, they are delivered after the “ServerHello”
message. Moreover, the use of semi-static DH parameters by
the server dare the principle of “forward secrecy” since, at
least, 1RTT is necessary to establish the ephemeral secret.
Thus, the first client message may not meet that principle.
Server DH semi-static parameters should be known to the
client before the handshake, due to previous interactions or
by any other means, as discovery protocols [51]. In any case,
it is recommended to limit their validity to a week, so any
related attack window of opportunity is reduced.

Fig. 4. TLS 1.3 handshake 0RTT. If client and server share a PSK (from a
previous handshake or by other means), clients can deliver encrypted data in
the first message using the “early_data” extension.

C. Security Considerations

TLS and its predecessors (SSL) have suffered two different
kind of attacks. The first is based on the protocol conceptual-
ization and its structure. The second, based on the Public Key
Infrastructure, is not directly attributable to the protocol but
affects it since PKI is an important part of TLS. The problems
PKI brings into TLS are explained in section III and the current
solutions are also explained in later sections.

TLS not only provides confidentiality and optional authen-
tication, but also protects against downgrade attacks willing
to enforce previous (non secure) TLS versions or the use of a
weak protocol. Moreover, TLS provides message authentica-
tion and integrity. This section describes the most important
attacks related to TLS conceptualization, implementation and
structure. Some of them are documented by the IETF [52] and
others are individually described in the literature. A sample of
the most relevant attacks will now be presented.

The re-negotiation attack was discovered in 2009. It allowed
to perform a plain text injection in SSL 3.0 using the protocol
re-negotiation. Basically, the attacker was not able to decrypt
messages but to inject its own requests at the beginning [53]. It
was solved including a handshake message verification during
re-negotiation [54].

Browser Exploit Against SSL/TLS (BEAST) [55], discov-
ered in 2011, allowed an attacker to circumvent the same
origin policy (prevents a page script to contact different pages
except both are from the same domain) in TLS 1.0. It was
solved in the following TLS version. During the meantime,
its was proposed to use RC4 as stream cypher since was
immune to BEAST. Unfortunately, in 2013 a vulnerability was
discovered advising implementers against using RC4.

RC4 was not free of attacks before. It was immune to
BEAST since TLS allowed using RC4 only under certain
circumstances that limited its use. The RC4 vulnerabilities of
2013, found statistical deviations in the algorithm that made it
inadvisable for preventing BEAST [56]. Later on, it was dis-

IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, VOL. V, NO. N, MONTH YEAR 6

covered the possibility to recover plain text after observing big
TLS traffic and due to that, RC4 was permanently forbidden
in TLS [57].

Compression Ratio Info-leak Made Easy (CRIME) [58],
discovered in 2012, allowed an attacker to find plain text
messages exploiting padding and compression, thus it was
possible to steal authentication cookies. This attack did not
affect TLS exclusively, but affected also SPDY, HTTP and
others. Browser Reconnaissance and Exfiltration via Adaptive
Compression of Hypertext (BREACH) [59], that was based on
CRIME, was presented in 2013. BREACH permitted attackers
to extract sensitive information, including authentication in-
formation, after observing certain data. That allowed attackers
to redirect the victim to malicious sites or even inject con-
tent in the web pages being accessed through the encrypted
channel. Whereas the protection against CRIME was possible
eliminating TLS compression and SPDY headers, current TLS
implementations are still vulnerable to BREACH, since it
is not feasible to eliminate compression from application
protocols.

In 2013, an attack was presented that enabled attackers
to block logout messages by injecting a TCP termination
message (TCP FIN) without the knowledge of the victim [60].
To achieve the result it was not necessary to infect the user
machine but to compromise a hotspot or any other network
element in the path.

The first versions of SSL were vulnerable to the “padding
oracle attack” discovered in 2002, that allowed using a server
(oracle) to find out if padding was correct or not, allowing to
decrypt messages with the server key without its knowledge.
The attack was feasible using CBC. In 2013, a variant of the
padding attack, called Lucky Thirteen [61], allowed breaking
the message authentication in TLS analysing the time spent
in encryption (timing side-channel attack). It was solved with
an extension to the TLS specification [62]. Padding Oracle
On Downgraded Legacy Encryption (Poodle) was presented in
2014, showing how Cipher Block Chaining (CBC) in SSL3.0
is vulnerable to padding attacks. Despite the majority of the
servers use, at least, TLS 1.0, the attack required forcing the
use of SSL3.0 as a fall-back, frequently supported until 2015
[63].

In 2014 and 2015 two critical vulnerabilities, known as
HeartBleed and BERSerk, that affected OpenSSL and other
widely adopted implementations, were presented. Heartbleed
allowed attackers to exploit a bug for extracting data from
servers; BERSerk exploited a bug in ASN.1 that permitted
man-in-the-middle attacks in several implementations.

Factoring RSA Export Keys (FREAK), identified in 2015,
exploits an old restriction to SSL/TLS exportation introduced
by the government of the United States. This restriction limited
the size of RSA keys to 512 bits. In 2010 it was demonstrated
that breaking short RSA keys was simple enough to become
a problem. FREAK relied on a downgrade attack. It forced
the victim to use an old abandoned version of SSL supporting
the restriction. The attack consisted on influencing the cipher
suite negotiation to enforce the use of weak algorithms [64].
Logjam, also from 2015, was similar to FREAK but enforcing
an old restriction related to Diffie Hellman.

Decrypting RSA with Obsolete and Weakened eNcryption
(DROWN) [65], announced in 2016, could be used to attack
servers using a combination of versions instead of a concrete
one. It used an adaptive-chosen-cipher text attack combined
with a downgrade to SSLv2 (that was still supported by many
servers). The attack was helpful in reducing the effort needed
for a man-in-the-middle attack. It could be estimated that the
33% of the servers in 2016 were affected.

III. TLS/PKI PROBLEMS AND SECURITY EVOLUTION

TLS is becoming the preferred security protocol in modern
IoT/M2M protocols to authenticate services and protect the
communication with them. TLS supports several authenti-
cation mechanisms beyond PKI, as pre-shared keys, but in
general services rely on PKI. Thus, services are bound to
domain names and those domain names are tied to an X.509
certificate to authenticate the service. In few words, we expect
an X.509 certificate that bounds a domain name to a public key
pair, to be issued by a trusted certificate authority. In practice,
PKI certificates contain a extension (“SubjectAltNames”) [25]
with the domain name(s) in which this certificate can be used.

The major concern with x509 certificates is that they were
not designed for the concrete purpose of authenticating domain
names. Due to that, the subject field (the entity to whom it is
issued) is an X.500 directory name [66] [67] and not a domain
name.

X.500 [68] [69] and X.509 [70] are related so services,
people and other entities are described in directories and
certificates are bound to directory entries. Thus, directories can
be used to find entities that will be eventually authenticated
using an X.509 certificate with the appropriate subject name.
Moreover, certificates could be fetched from directories. So
within an organization, directory entries and certificates have
a univocal relation.

This distinctive feature in X.509 certificates names creates
two fundamental problems [71] that affect certificate validation
during a TLS handshake. First, PKI defines a hierarchy but
there is no single root under every certificate can be validated.
In contrast, there are several independent roots available
with their own hierarchy. In such a way, well-known root
Certification Authorities (CAs) are incorporated to the client
application by the software manufacturer or are kept as part
of the operating system. That list should be updated regularly
in order to include new CAs or remove those compromised
or ceased. Nowadays, CA lists are quite similar regardless the
software manufacturer but have subtle differences. Since there
is no PKI root authority, the composition and distribution of
the lists is the responsibility of the manufacturer of a particular
software. However, users are allowed to add certificates that
were not originally in the list despite they can be hard to
remove afterwards [72].

Second, every CA included in the list, thus trusted in
advance, can issue certificates for any domain name, being
the owner of that domain name unaware of that. This is an
antagonist behaviour compared to DNS, that does not allow
those changes. In DNS, every DNS zone is sovereign of its
sub-domains and only the root, that is unique, is free to behave

IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, VOL. V, NO. N, MONTH YEAR 7

with impunity, but fortunately managed by trustworthy entities.
X.509 certificates, when used for authenticating domain names
in TLS, use a certificate extension called subjectAltName
[25] that allows a certificate to reference alternative names
irrespectively of the certificate subject field. Among these
alternative names, domain names are considered. In this way,
PKI certificates define a 1 to N relation between the certificate
and the N domain names the certificate authenticates. This
relation is unidirectional since the domain owner cannot point
out which certificate should be used for a given domain name,
except by using DANE that will be discussed in section IV-F.

CAs are usually managed by competent serious organiza-
tions, sometimes subject to auditing. Notwithstanding, the lack
of a bidirectional and verifiable relation between the entity
that vouches for a certificate protecting a resource, and the
owner of that resource, allows any CA to masquerade any
domain name without the knowledge of the domain owner.
As a simple example, an attacker can obtain a certificate for a
popular domain name from a compromised or cooperating CA,
so any man-in-the-middle masking that domain, will be fully
trusted by the victim, since the certificate can be verified and
contains the domain name. The victim will trust the certificate
and authenticate the server having no way to verify if the
owner of the domain allows that certificate to be used for
authenticating its domain.

Compromising a CA can be considered difficult and quite
infrequent, but the risk exists and there are several well doc-
umented attacks to popular services as Google and Facebook
that will be discussed in section IV. In order to illustrate the
dimension of the problem, the following section discusses the
current state of PKI certificates and the Certificate Authorities.

A. Current State of PKI Certificates

The Electronic Frontier Foundation (EFF) keeps a database
of certificates [73] in the project “SSL observatory”, used in
SSL/TLS handshakes. That database is no longer updated at
the time of writing this article but the EFF offers a dump
of around 16GB corresponding to 2011. Other organizations,
as Qualys SSL labs, maintain a database of certificates and
verification services that allows to find out if it is secure
to connect to a server using TLS by observing the server
configuration [74]. The data used in this section to illustrate
the problems of PKI certificates are based on EEF and Qualys
SSL labs data.

Currently there are more than 200 independent certificate
authorities in lists provided by operating system and applica-
tions. Currently, the biggest trusted root CAs repositories (root
stores) are those handled by software companies as Apple,
Microsoft and Mozilla [75]. Those root CAs expanded to 1482
trusted CAs (not only root but intermediate CAs) controlled
by 651 organizations in 2010.

Several CAs issue subordinate CA certificates allowing
the later to issue certificates as if they were issued by the
first. For instance, the CA named “C=DE, CN=Deutsche
Telekom Root CA 2” had 252 sub CAs in 2011 and “C=US,
CN=GTE CyberTrust Global Root” had 93 sub CAs [76]. The
disproportionate proliferation of sub CAs has lead to extreme

situations. “TrustWave” admitted some clients were issued
subordinate CA certificates allowing them to issue certificates
in the name of TrustWave. That amount of trusted third parties
is becoming a serious management problem leading to attacks
that are discussed in section IV.

When it comes to server certificates, in 2010 there were
more than 16.2 million servers listening at port 443 (HTTP
over TLS default port) but just 11.3 million (38%) were able
to respond to a SSL/TLS handshake and only 4.3 million had a
valid certificate. The rest, over the 60%, used either malformed
or unverifiable certificates. According to the EFF, some server
certificates had a valid signature but were signed with keys
from CAs known to be compromised time ago [76] whereas
others were issued to subject names as “localhost” or even IP
addresses.

The major concern about using malformed or untrusted
certificates when users are involved is that browsers allow
users to continue the interaction even if the certificate cannot
be validated. This behaviour is known as “click(ing) through”
security [77]. The literature concludes that the majority of
average users do not understand the warnings shown by
browsers upon a handshake with a defective certificate and
decide to access the service [78] since PKI is complex and hard
to understand. So PKI on its own does not provide protection
as defective certificate warnings can be circumvented.

Eckersley [79] discussed in 2011 that besides the general
use of secure protocols versus their unprotected counterparts
is much more secure, there are still several attacks that
basically rely on how certificates are issued and verified.
These structural problems on their own, thus not considering
cryptographic weaknesses and protocol design flaws, allow to
perpetrate sophisticated attacks.

These attacks can be carried out in the following situations:

• if an attacker is able to compromise a CA or its web
frontend (also known as Registration Authority or RA)
that conveys certificate requests to the CA.

• if a router close to the CA is compromised, since this
allows to read and manipulate outgoing CA email (since
STARTTLS is subject to downgrade attacks).

• if a recursive DNS used by a CA is compromised with
DNS Cache Poisoning Issue ("Kaminsky bug" - CVE-
2008-1447) that helps the attacker preventing a CA from
verifying a domain name.

• attacking other protocols as TCP or BGP to gain access
to the emails sent to the victim’s domain.

• governments or corporations with access to a cooperating
or owned CA that request the issuance of a malicious
certificate for a target domain [80].

In general, every aforementioned mechanism for compro-
mising a CA is worrying, but the participation of governments,
corporations, special-interest groups or lobbys is specially
alarming. The main reason is that trusted certificate lists are
global and observe no jurisdiction whereas CAs belongs to
companies or institutions that are present in different countries
with different legal regulations. Those institutions could be
also misused to attack other countries. Table I shows the list
of countries with root CAs in 2011 [73].

IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, VOL. V, NO. N, MONTH YEAR 8

Country Code Valid Certs Valid CAs % Certs % CAs
United States US 1031408 130 76.09 17.86
South Africa ZA 116437 3 8.59 0.41
United Kingdom GB 78896 15 5.82 2.06
Belgium BE 34650 8 2.56 1.10
Japan JP 20749 30 1.53 4.12
Netherlands NL 16610 15 1.23 2.06
Germany DE 15389 294 1.14 40.38
Israel IL 14166 6 1.05 0.82
Spain ES 4098 27 0.30 3.71
France FR 3814 26 0.28 3.57
Bermuda BM 1956 4 0.14 0.55
Poland PL 1883 8 0.14 1.10
Republic of Korea KR 1524 14 0.11 1.92
Switzerland CH 1415 14 0.10 1.92
Italy IT 1277 11 0.09 1.51
Total 1355551 728

TABLE I
TOP-15 COUNTRIES WITH ROOT CAS FROM EFF OVER A SAMPLE OF

1355551 PKI CERTIFICATES.

Reason June 2011 Occurences Reason Oct 2011 Occurrences
null field 876049 null field 921683
Affiliation Changed 27089 Affiliation Changed 41438
CA Compromise 55 CA Compromise 248
Certificate Hold 52786 Certificate Hold 80371
Cessation Of Operation 700770 Cessation Of Operation 690905
Key Compromise 59527 Key Compromise 73345
Privilege Withdrawn 4589 Privilege Withdrawn 4622
Superseded 66415 Superseded 81021
Unspecified 174444 Unspecified 168993

TABLE II
REVOCATION REASONS COLLECTED BY EFF BETWEEN JUNE AND

OCTOBER 2011

Beyond cross-regulation issues among countries and the
interests CA operators may have, it is important to note that
the consequences of PKI certificates issued by malicious or
inadequately managed CAs, can transcend the good practises
of domain owners, who have no way to defend against,
or even discover, a PKI certificate that has been issued to
their domain without their consent. There are documented
evidences of this kind of problems with PKI certificates, either
issued by compromised CAs or stolen. Despite those issued
by compromised CAs are more dangerous (can target any
domain), stolen ones can bring severe consequences if domain
owners do not realize the problem during a long time.

An evidence of the frequency of these attacks can be ex-
tracted from Eckerley and Burns analysis [81]. They analysed
Certificate Revocation Lists (CRLs) from the CAs monitored
by the SSL observatory at the EFF [73]. CRLs were analysed
considering the reason why every certificate was included in
the CRL. Table II shows the data of those experiments between
June and October 2011. It can be appreciated a significant
increment on the number of revocations due to a compromised
CA. Moreover, since there is no obligation to indicate the
reason, it may happen the “Unspecified” category conceals
many other compromised certificates.

CRLs have increased the number of items in the last few
years giving a correct idea not only of the explosion of cer-
tificate revocations, but also of the significant increase of PKI
adoption [79]. Due to that, it is undeniable these problems will
increase if PKI is generally adopted by IoT/M2M solutions
since the vast majority of IoT/M2M protocols are relying on
TLS/DTLS for security.

The results previously shown are useful for illustrating the
problem of the excess of Trusted Third Parties (TTPs) (CAs
in PKI), and despite the data was collected between 2011
and 2013, the problem is still worrying. In fact, the number
of CAs and certificates is still growing and there are several
documented cases of problems related to misused or malicious
certificates that happened after 2011 as discussed in section IV.

A more recent study, that analysed the HTTPS certificate
ecosystem over a bigger sample [82], insists also on the
problem of the growing number of TTPs. Table III shows a
comparison of the size of the sample used in different studies
over the time. The study demonstrated several problems [82]
already detected by EFF [73], as the fact that in August 2013
only the 67% of the servers listening to the port 443 were
able to finish a TLS handshake. Moreover, it detected that
from a sample of 8.1 million certificates, only 3.2 million
were trusted. The rest were self-signed certificates (48%),
certificates issued by unknown CAs (33%) and certificates
issued by known but untrusted CAs (19%) [82].

Regarding CAs, the study found 1832 certificates from CAs
belonging to 683 organizations spread among 57 countries
but with the 99% of the CAs concentrated in 10 countries.
From all those organizations with access to a trusted CA
and able to issue certificates without restriction, just the 20%
belongs to commercial CAs. The rest of the organizations
are religious institutions, museums, libraries, and more than
130 financial institutions. In other words, organizations that
are not commercial CAs, control 1350 out of 1382 (74%) of
the CA certificates trusted either directly or not by browsers,
suggesting a big trust problem.

B. TLS Security Evolution

After the discussion of PKI problems regarding trust and the
global PKI ecosystem, this subsection presents and discusses
data regarding the evolution of TLS perceived security over
the time. The data has been fetched from the database of
SSLLabs [74] that, since 2012, publishes [83] a monthly
security analysis of the most visited servers, as part of the
project SSLPulse [84] that presents a radiography of the TLS
security. SSLPulse performs verification of a certificate and
its chain but concentrates on tests concerning the supported
SSL/TLS versions, their key exchange mechanisms, and the
cipher suite support. The result of the individual tests are
combined into a global score ranging from 0 to 100 (it should
be noted a 0 in some tests results in a 0 in the global
score). According to the score, they classify servers with
a mark ranging from A to F being A the best and F the
worst. SSLPulse data has been downloaded and processed
to compare the number of secure (A) and insecure (rest of
marks) servers over the time with respect to the three different
families of SSL/TLS problems. These families are certificate
chain problems, key size, and protocol version or vulnerability
problems as described in section II-C.

Fig. 5 shows the proportion of secure and insecure servers
against valid and complete and valid but incomplete certificate
chain occurrences, showing it has no significant impact in
the results. It should be noted the study concentrates on the

IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, VOL. V, NO. N, MONTH YEAR 9

Scan EFF First Representative Latest Total
Date Completed 2010-8 2012-6-10 2013-3-22 2013-8-4 Unique

Hosts with port 443 Open 16,200,000 31,847,635 33,078,971 36,033,088 (unknown)
Hosts with HTTPS 7,704,837 18,978,040 21,427,059 24,442,824 108,801,503
Unique Certificates 4,021,766 7,770,385 8,387,200 9,031,798 42,382,241
Unique Trusted Certificates 1,455,391 2,948,397 3,230,359 3,341,637 6,931,223
Alexa Top 1 Mil. Certs (unknown) 116,061 141,231 143,149 261,250
Extended Validation Certs 33,916 89,190 103,170 104,167 186,159

TABLE III
COMPARISON AMONG PKI ECOSYSTEM STUDIES [82]

most visited sites with valid certificates, in contrast to other
experiments that consider the entire certificate ecosystem [73]
[82].

Fig. 6 shows the security evolution considering the length
of the certificate public key used for authentication (and some-
times for key exchange), and discovery of insecure symmetric
cypher suites. The figure shows that the number of certificates
with public key smaller than 1024 bits has been gradually
reduced and vanished at the end of 2013 whereas the most
common key length is 2048 bits. The number of insecure
cipher suites has been descending, becoming incidental in
2017. Alike the case considered in Fig. 5, there is no relevant
correlation between the key length and cipher suites and the
evolution of secure/insecure servers.

Fig. 7 shows a significant correlation between the SSL/TLS
versions and the number of secure servers. The most sig-
nificant event can be attributed to the Poodle vulnerability
of SSL 3.0 (CVE-2014-3566) at the beginning of 2014.
This vulnerability caused a drastic decrease on the number
of secure servers until SSL3 was abandoned at the end of
2014. Currently there are still a non negligible number of
occurrences.

IV. CERTIFICATE PINNING SOLUTIONS

As it has been discussed, PKI has no single root authority
able to verify certificates, otherwise it has a big set of indepen-
dent root authorities able to verify only sibling certificates. The
list of root CAs is compiled by software or operating systems
manufacturers.

Section III-A reasons the disproportionate growth of CAs
an its associated problems. In this section, the concept of
Certificate Pinning is introduced as a tool to avoid or diminish
the major current web problem that will, undoubtedly, affect
IoT and M2M restful services as well: the lack of trust.

To better illustrate the problem, consider TLS authentica-
tion. In the process of authenticating a server, the client starts
a TLS handshake and obtains the server certificate during
this handshake as stated in section II. There are two distinct
operations during a handshake: derive a key to protect the
traffic in a secure way, and authenticate either the server or
both the client and the server (mutual). Despite there are
several authentication algorithms, that can be negotiated during
the handshake, the party to be authenticated should provide
a proof of possession of the private key associated with the
certificate. The process is equivalent for server authentication
and mutual, so we will concentrate on server authentication.

The client, once in possession of the server certificate,
verifies the signature and builds a PKI certificate chain from
the server certificate up to the first intermediate or root CA
it trusts by checking the trusted CA list under use. If this
verification is successful, the client can also verify the certifi-
cate revocation list published by the CA. If the verification is
successful and the certificate is not revoked, it checks whether
the certificate alternative name matches the server’s domain
name. If it matches, the connection is considered trusted.

Thus, the creation of the PKI certificate chain is the weakest
part of the verification. It is known that public and private CAs,
that are in the trusted list and thus trusted by the clients, have
introduced intermediate sibling CAs that are therefore trusted
by the clients. The purpose of this intermediate CAs can
range from subordinate CAs borrowed to companies, can issue
certificates without the parent CA intervention, to SSL/TLS
accelerators that can access the traffic in clear text. In the first
case, the intermediate CAs increase the length of the certificate
chain but are transparent to the user. However, as mentioned in
section III-A, cases as the CA “C=DE, CN=Deutsche Telekom
Root CA 2” that had 252 sub CAs in 2011 and “C=US,
CN=GTE CyberTrust Global Root” had 93 sub CAs [76], raise
concerns about the control the parent CA has over their sibling
CAs.

In the second case, several network operators introduce
intermediate CAs that let companies to accelerate SSL/TLS
traffic [85]. By means of those intermediate CAs, providers
can issue intermediate server certificates that intercepts and
accelerate SSL/TLS traffic on behalf of customers (for in-
stance web servers with a huge traffic). In this way, servers
can offload encrypted streams management to a third party.
However, despite a client accessing a server can perceive an
improvement in the response time, it is generally unaware of
the fact its traffic is not protected end-to-end, but decrypted
at an intermediate point in the network and delivered in clear
text from that point to the server. Moreover, there are other
worrying cases in which these solutions are incorporated to
consumer electronics devices that can violate user privacy [86].

Any of these numerous root or intermediate CAs, that can be
compromised or misused, can issue certificates for any domain
name without the knowledge of the domain owner. There are
several well-known cases that occurred without being known
until later. In 2011, the Malaysian Agricultural Research and
Development Institute CA was compromised and used to build
a malicious tool out of the Acrobat update tool. That tool
installed updates that seemed to be legitimate but that turned
the client into a spy machine under the control of the hackers.

IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, VOL. V, NO. N, MONTH YEAR 10

Fig. 5. SSL/TLS security evolution considering the certificate chain (only for servers with valid certificates).

Fig. 6. SSL/TLS security evolution considering key length and cipher suite.

Until the problem was detected and the CA certificate was
revoked, they could have impersonated any Internet domain.

In 2011, a CA called Diginotar was used to issue certificates
for Gmail and Facebook among others [72] [87]. Google
advertised the problem through a comment from a customer
in Google Groups. Other cases as Comodo in 2011 and
TurkTrust in 2013, have been also very popular examples
of compromised CAs. Recently, TrustWave admitted to have
issued subordinate root CA certificates to clients that were able
to issue PKI certificates for any domain in the planet without
the control of TrustWave [87]. Those practices increase the
risk of finding certificates issued by third parties without the
knowledge of the owners of the domains that are forged. These
attacks do not break but rather modify the trust chain, and work
transparently to the user and the domain owner, so they are
quite dangerous.

Despite several protocols have been proposed to manage
trust, or better, to manage “trust-anchors” [88] [89] for build-
ing the certificate chain, the problems arising from compro-

mising a CA are still present since the malicious certificate is
issued by a CA that is directly or indirectly in the trusted CA
list and, as it has been reasoned, there are too many.

“Certificate Pinning” is a concept that allows clients to
obtain a better certainty that a certificate used by a server is
not compromised. In the following sections several “Certificate
Pinning” proposals will be evaluated. Certificate Transparency,
described in section IV-A and SK, in section IV-B, propose
complementary infrastructures for controlling the certificates
globally together with a client cross verification; Trust Asser-
tion for Certificate Keys (TACK), analysed in section IV-C,
proposes a cross verification controlled by the domain owners;
DNS Certification Authority Authorization (CAA), described
in section IV-D, lets the domain owner limit which CAs
can issue certificates to its domain; HTTP Strict Transport
Security and HTTP Public Key Pinning Protocol describe new
HTTP headers that enforce policies for TLS and conveys the
certificate chain to be used (section IV-E); finally, DANE
together with DNSSEC are described in section IV-F2. The

IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, VOL. V, NO. N, MONTH YEAR 11

Fig. 7. SSL/TLS security evolution considering protocol versions.

solutions will be compared in section V and their viability for
IoT/M2M scenarios will be discussed.

A. Certificate Transparency

Certificate Transparency (CT) [90] was proposed as a
countermeasure to the impersonation of sites. CT provides a
“Certificate Pinning” or alternative verification for users and
a surveillance system for CAs. Basically, it allows a verifiable
structure containing traces of existing server certificates to
be audited by several actors, every of them with their own
interests, to detect malicious or compromised CAs.

The objectives of this proposal are: to harden malicious
CAs certificate issuance for a given domain without domain
owner knowledge; provide an auditing and monitoring system
to allow domain owners to detect unauthorized certificate
issuances; and, as a consequence of the previous, protect users
from being scammed.

The verifiable structure consists of a Merkle Tree (MT) [91].
Such a tree contains a hash of an object subject to verification
in every leaf. The existence of an object in the tree and the
order in which it was added to the tree can be verified by
means of the MT. To accomplish that, parent nodes in a MT
contain a hash that combines the hashes of their children and
continues until the root, that contains a hash combining the
hash of every descendant. In this way, any change in either
the content or the order of the leafs, alters the value of the
root.

Verifying a leaf in a MT requires processing a number of
nodes proportional to the logarithm of the number of nodes
[92] thus, to verify an single object within a tree of a million
leafs requires processing 20 nodes [93]. The tree used in CT is
based on the proposed method by Crosby and Wallach [94],
that uses a SHA-256 hash. Every node is calculated over a
data list and the hash is 32 bytes long. Thus, for an ordered
sequence of n entries D[n] = {d(0), d(1), ..., d(n − 1)} the
Merkle Tree Hash (MTH) (MTH()) is defined in the following
way [90] for an empty sequence, a single element and n
elements.

An empty sequence MTH() = SHA-256(). For a single entry
in the list corresponding to a tree leaf, MTH(d(0))=SHA-256
(0x00 | | d(0)). The reason to concatenate 0x00 and d(0)
permits to differentiate the hash operation over the leafs from
the rest of nodes, that are concatenated with 0x01. Otherwise,
it would be possible or easier to generate collisions or second
pre-images of the hash [95].

If n > 1, consider k the biggest power of two less than n so
k < n ≤ 2k. The MTH of a list of n elements, D[n], defined in
a recursive way is MTH(D[n]) = SHA-256(0x01| |MTH(D[0 :
k])| |MTH(D[k : n])) where | | means concatenation and
D[k1 : k2] = d(k1), d(k1 + 1), . . . , d(k2 − 1) is a list of k2 − k1
elements. In this way, a signature over the resulting MTH can
be used to verify the entire tree.

In CT, each leaf stores a certificate issued by a CA upon
CAs request. There are two interesting verifications in the tree.
The first, verifies if a given certificate belongs to the tree, i.e., it
was communicated by the corresponding CA and added. The
second pursues to verify that this append-only tree has not
been tampered with, so the order in which certificates were
added to the tree is consistent with their time stamps. In order
to prove this, CT defines “Merkle Audit Path” and “Merkle
Consistency Proof”.

The Merkle Audit Path (MAP) for a given leaf is defined as
the shortest list of nodes from the leaf to the root that allows
to derive the MTH for that tree. A verifier in possession of the
signed MTH, uses MAP to verify if a leaf belongs to a tree.
Thus, if the MTH derived from MAP matches the MTH in
possession of the verifier, then MAP proves the leaf belongs
to the tree.

The Merkle Consistency Proof (MCP) verifies the tree is
append-only so existing leafs are not modified or deleted and
kept ordered. Suppose a verifier has the current root hash,
MTH(D[n]), and a previous root hash corresponding to the
first m leafs, MTH(D[0 : m]), with m ≤ n. MCP is the
minimum list of tree nodes that allows to verify that the m
first leafs are the same in both trees.

Fig. 8 shows the same tree in two different times. The first

IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, VOL. V, NO. N, MONTH YEAR 12

Fig. 8. Example Merkle Tree in two different instants of time to illustrate the
examples of Merkle Audit Path (MAP) and Merkle Consistency Proof (MCP)
calculation.

has a hash labelled as hash0 and the second hash1. For the
tree with hash1, the MAP for d0 will be the list [b, h, l] since
d0 can derive a, but needs b to calculate g, h to calculate k
and finally l to calculate hash1. d0 belongs to the tree if hash1
matches the expected MTH. Equivalently, MAP for d4 will be
[f , j, k].

If both trees are considered, a consistency proof between
the tree with hash0 and hash1 will be MCP = [c, d, g, l]. c
and g will be used to verify hash0, d to verify k and l to
verify hash1. In this way, it can be verified that hash1 has
been generated from hash0 and thus, it is consistent.

CT defines three components that are log server, monitor
and auditor. Log servers guard CT MTs. Despite the number
of log servers needed to handle the current Internet is not
specified (nor who is in charge of them) [90], some research
indicates that around a thousand servers are needed in all the
world, [96] that may be managed by CAs, Internet Service
Providers and other parties.

When a valid certificate is sent to a log server, it issues a
“Signed Certificate Stamp” (SCT). The SCT is a log server
promise to incorporate the certificate into the tree in a time less
than the “Maximum Merge Delay” (MMD). The certificate
will be included in a leaf of the tree in a structure that includes
the certificate an the SCT. Then a hash is calculated over that
structure and added to the tree.

Every time a certificate is added to the tree, the hash of
every node affected by the change is recalculated down to the
root. The resulting hash at the root is then signed leading to
the “Signed Tree Header” (STH). Thus, only STH (one per
tree) and SCTs (one per certificate) are signed with the log
server key pair to allow secure tree verification.

In order to be accepted by a log server, candidate certificates
should pass a PKI verification. It requires building a certifica-
tion path from the certificate to a trusted CA, according to the
list of trusted CAs accepted by the log server. Accordingly,

every log server shall publish its trusted CA list [90]. The
procedure for CAs is different and requires pre-certificates
with poisoned extensions as explained later in this section.

In this way, there is no room for self-signed certificates or
those issued by local CAs (security islands) as well as other
use cases that modify locally the trust-anchor to cope with a
high dynamicity, as those described later in section IV-F2.

Monitors are entities that inspect and verify the operation
of a log server. Monitors have particular interests, looking
for certificates for a given domain or set of domains, but may
overlook others. Every monitor should inspect every new entry
in every monitored log server and may keep a copy of the
entire log. Hence, monitors should periodically obtain the log
server entries and the STH, verify the signature and perform
consistency verifications.

Finally, auditors take partial information from a log server
as input and verify that the information is consistent with
previously collected evidences. According to the specification,
an auditor can be a TLS client or an independent entity that
provides services to TLS clients. Basically, an auditor verifies
the consistency of two SCTs of the same tree, at the same log
server, with a consistency check (MCP).

Fig. 9. Interaction among participants in Certificate Transparency. Certificate
issuance is a one time operation. TLS handshake is synchronous whereas
the rest of the interactions (auditor-monitor, auditor-log, monitor-log) are
asynchronous.

In general, auditors are aimed to be part of the TLS clients
[96], so the verification of SCTs is devolved upon them. This
is important as TLS clients should reject certificates without
a valid SCT. However, it is suggested that monitors could
not only verify the log integrity and look for an interest, but
also provide free or paid services to CAs and domain owners.
Moreover, monitors can be operated by domain owners, and
even act as auditors on behalf of the TLS clients. CT operation
is presented in Fig. 9.

CT requires monitors with particular interests to warn the
owners of the monitored domain names so that owners can
take appropriate actions when a log is misused. Either failing
to insert a certificate in the MMD time or violating the order
in the tree (consistency) is considered misuse. Auditors can
detect failed insertions requesting MAPs for every observed
SCT. Auditors cooperation to detect consistency violations

IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, VOL. V, NO. N, MONTH YEAR 13

can be achieved by a “gossip” protocol, as suggested in the
specification.

Supporting CT entails servers to deliver SCT together
with the certificate, so clients can cross-verify SCTs against
certificates. Since log servers are monitored by monitors and
invalidated upon misuse, verifying SCTs may suffice to harden
impersonation using certificates from a compromised CA. CT
proposes several alternatives to deliver SCTs with certificates
[90] [96]:
• Embedded in the certificate: the SCT can be embedded

in the certificate using an X.509v3 extension [97]. The
problem is that the SCT is obtained after the certificate is
accepted by the log server, and embedding the SCT inside
the certificate afterwards will invalidate the signature.
For that reason, CAs willing to embed the SCT in the
certificate, should send a pre-certificate identical to the
certificate that will be eventually issued. A poisoned
extension will be added to the certificate using a critical
X.509 extension and signed (TBSCertificate [24]). In this
way, the pre-certificate serves as a log entry, so can
be used to verify, but cannot be delivered in a TLS
handshake. This mechanism does not require changes in
the clients or servers.

• TLS extension: in this case, the time stamp (SCT) is
delivered during the TLS handshake separately from the
certificate by means of a TLS extension [19] with an
specific type. This mechanism requires TLS extensions
to be supported by the endpoints thus, requires a change
in both entities despite nowadays TLS extensions are well
supported.

• OCSP stapling: the time stamp is delivered using the
well known TLS extension “Certificate Status Request”
[98]. To indicate this extension actually contains an SCT
rather than OSCP information, a special Object Identifier
is used.

Security considerations for the client: The specification
does not indicate how log servers publish or distribute the
necessary keys to verify SCT signatures. In the best case,
this log server public key list should be distributed with the
software or fetched using another out of band protocol. Thus,
it requires an additional trust list beyond the PKI one.

The detection of failure in the addition of a new certificate
requires clients to request one MAP per observed SCT. This
raises privacy concerns as the involved parties can trace the
client by observing requested SCTs. To overcome the problem,
clients can use trusted third party auditors, for instance from
the ISP. Also SCTs can be verified in batches asynchronously
so the time in which the SCT was fetched cannot be learn by
other parties. However it does not prevent parties from learning
the SCTs unless they are altered with noise, what requires an
extra effort from client side.

Any given certificate and its associated SCT can be verified
using a Signed Tree Header, from the same log server, that
was signed Maximum Merge Delay (MMD) after SCT time
stamp. In order to verify the SCT, it is enough to request a
MAP to the log. However, there is a window of opportunity for
an attack that depends on MMD, that is the time a log server
waits for accumulating insertion requests, so they can be added

Purpose Type Field

Monotonicity uint 64 bit serial number
uint 64 bit time stamp

Sovereign Key

char[256] name
bool wildcard
char[] key type
char[] sovereign public key
char[] protocols
uint 64 bit expires on

In case of revocation char[][] inheriting name(s)

Evidences for claim
char[] cacertchain
char[] DNSSEC_evidence
char[] claim_signature

TimeLine Signature char[] signature
TABLE IV

RECORD ENTRY IN A SOVEREIGN KEYS TIMELINE

in batch rather than individually saving costly cryptographic
operations. Due to that, CT is a system able to detect problems
with certificate in hours [96] but its effectiveness in dynamic
environments is inversely proportional to MMD. Moreover, in
order to detect misbehaving log servers, the system demands
a global adoption.

Additionally, there is no clear indication of the expected
behaviour of the CAs regarding the log servers to be used.
On the one hand, it is stated CAs may use some logs at its
convenience [96]; on the other hand, it is said CAs will request
the addition of a certificate to every available log server [93].
In any case, it is agreed there will be no synchronization
among the different log servers leading a different tree per
log server. That complicates monitors to find a log able to
verify a given certificate.

Regarding the client effort, it should have access to a list
of log server public keys to let the auditor verify the SCT
signature, or have a strong trust relation with an external
auditor, which in practise is the same problem. Moreover, a
certificate verified with Certificate Transparency should also
pass a PKI certificate chain and certificate status validation
[99].

B. Sovereign Keys

Just like Certificate Transparency, “Sovereign Key Cryp-
tography for Internet Domains” proposes a public verifiable
and auditable append-only structure [93] that associates every
certificate with a Sovereign Key (SK). A SK can be associated
with one or more certificates and used to cross-sign the final
certificate.

One of the objectives of the SK is to protect clients against
Man In The Middle (MITM) attacks or impersonation. To
achieve this goal, clients supporting SK should verify that the
public key pertaining to a certificate, used by a server, has
been cross-signed with the SK registered for the domain of
the server.

Unlike CT, SK enables the definition of an alternative
route to the server in case of impersonation, MITM attack or
connection blocking (every of them detected by SK). In this
way, beyond alerting the user, that may not be effective [78]
[100] as alerts are frequently ignored if there is no alternative
way, SK provides other routes to reach the service.

IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, VOL. V, NO. N, MONTH YEAR 14

The verifiable structure used by SK consists on an append-
only “TimeLine” whose entries are relationships between
domain names and SKs (keys), being SKs different from those
used by server certificates.

The purpose of the TimeLine is to store and preserve the
history of SK-domain relations. The latest entry for a domain,
together with the set of updates, changes on the service
domains, renovations, revocations, and other adjustments, is
valid. A request for a new SK, that will be stored in the
structure contains the fields described in table IV.

A request for addition to the TimeLine should contain data
related to the SK and the service (or services) to whom it will
be related. The field “Sovereign Key” contains the domain
name (“name”) that the SK applies to. If the “Wildcard” is
unset [101] a different SK can be used per sub domains;
otherwise only the SK will be valid for every sub domain.

Regarding the type of key, expressed with “key type”, the
specification [101] proposes the use of ECC for an optimum
storage and compression [102]. The SK key par should be
generated by the requester. The public key together with a
proof of possession of the private key should be added to the
request. The field “Sovereign public key” contains the public
key from SK.

The structure allows limiting the services to which the SK is
applicable by means of the “protocols” field. The field contains
a text chain with the alternative routes to the services delimited
with semicolon. For instance, HTTP at port 8080 or an onion
routing address [101]. Finally, that table entry also contains
the expiration date in the field “expires on”.

The field “inheriting names” allows SKs to be re-issued for
the domain if current SKs are compromised or revoked. The
value is a list of domains allowed to request the addition of a
new entry under these circumstances. In fact, it is a delegation
to re-register the domain if, and only if, the SK is revoked. In
this way, SK avoids the domain owners listed in the field to
alter others SKs if their domains are compromised but not the
original SK.

Requesting the inclusion of an SK in a domain, requires to
provide evidence that the domain is under the control of the
requester. This evidence can be a certificate signed by a trusted
CA containing the domain name in a subjectAltNames
extension, or a DANE DNSSEC response (see section IV-F2).
Evidence obtained during the addition of a SK that clients can
verify later.

The server holding the TimeLine has to perform an OCSP
verification [103] before adding the SK. The OCSP verification
is not added to the record due to space constraints.

In order to guarantee the request is consistent and to avoid
manipulations from intermediate entities during the request
process or from the TimeLine server after the request, the
request is signed with the private key of the SK and the result
added to the field “claim_signature”. This signature serves as
a proof of possession as well.

Despite it is not directly stated in the specification [101], it
is understood the fields contained in “Sovereign key”, “In case
of revocation”, and “evidences for claim” are protected by the
signature in “claim_signature”. Any further change performed

by the requester later on is added as a new record to the history
preserved by the TimeLine.

The signature of the TimeLine server over all the fields
of the table IV is performed with a private key belonging
to the TimeLine server and can be performed offline. Thus,
to guarantee the append-only feature of the TimeLine an
increasing serial number and a time stamp is added to every
entry.

The TimeLine structure can also incorporate other entries:
• References to other TimeLines. It is possible entities

managing a TimeLine get the TimeLine key compromised
thus, requests for SK addition can be sent to several Time-
Lines. The record field “Incorporate-by-reference” allows
linking a registry in a TimeLine with other registries in
different TimeLines corresponding to the same operation.

• Revocations provides a mechanism for the owner of the
SK to revoke the key. An effective revocation requires the
revocation date, the name of the SK (domain name), and a
signature over the parameters. The revocation information
will be added to the TimeLine with a unique serial
number and a time stamp.

• Re-issuing of a revoked SK allows a revoked SK to be
re-issued upon an evidence provided from a domain listed
in the field “In case of revocation”. The structure will be
added to the TimeLine with a serial number and a time
stamp.

• Protocol changes tracks changes in the field “Protocols”.
• Root CA list changes. Every entity managing a TimeLine

should keep and maintain a list of trusted CAs. The list
can be modified and every change in the list is published
in the TimeLine with a serial number and a time stamp.
Alike Certificate Transparency, described in section IV-A,
self-signed certificates, domain CAs and security islands
cannot be used with SK despite they can be trusted by
means of DANE-EE and DANE-TA described in section
IV-F2.

SKs define three entities that are TimeLine Servers, Mirrors
and clients. TimeLine Servers manage and custody TimeLines.
Unlike CT, SK specifies the set of TimeLine Servers for the
current and foreseeable Internet should have N entries with N
between 10 and 30. It is also stated TimeLine Servers should
be chosen to guarantee diversity in jurisdiction, operational
philosophy or security policies, hence the service will be
available even if several TimeLine Servers are compromised
or disabled.

Every TimeLine Server should have a key pair for the
signature of the TimeLime as it has been previously explained.
According to the SK specification the list of TimeLine Servers
and their corresponding public keys should be distributed
together with the software as happens with PKI trusted root
CA lists.

“Mirrors” increase the overall system performance and
availability by keeping updated copies of the TimeLine Servers.
“Mirrors” should be identified by an IP address, port and
public private key, introducing an additional list of keys.

SK do not define consistency checks based on the structure
as CT does, but at protocol level. TimeLine Servers should
answer mirrors and clients with all the entries since a given

IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, VOL. V, NO. N, MONTH YEAR 15

serial number S. Every record returned by a TimeLine Server
should be accompanied by a freshness message called “Time-
line Freshness Message” (TFM) with the fields: “TimeStamp”
of the request; “Highest Serial Number to date” with the
highest serial number of SK records available in the TimeLine
Server at the time of the request; “Highest CA update Serial
Number to Date” the highest serial number of CA update
record, and the signature of the TimeLine.

The specification describes the assessment of the freshness
considering responses younger than 24 hours as fresh, re-
sponses older than 24 hours and younger than 48 hours as
acceptable, those older than 48 hours but younger than 2 weeks
as unacceptable and older than 2 weeks as fatal.

In order to check the operation of a TimeLine Server, the
verifier needs to check the TFM of the responses, determining
a TimeLine Server fails in its duty if, observing the TimeLine:
• two different entries in the TimeLine with the same serial

number
• two different entries with discrepancies in the timestamp
• a TFM with a preceding timestamp and a serial number

higher than a previously observed TFM
• and entry for an SK with an invalid signature
If the verifier, either a Mirror or a Client detects a failure in

a TimeLine Server, it should keep a copy of the entries, distrust
the failing TimeLine Server and add the TimeLine Server to a
bad TimeLine Server record that can be learnt by other Mirrors
and Clients.

In order to synchronize the list of bad TimeLine Servers
among parties, the SK protocol uses a field called “renega-
tion_traking” of 32 bits, that contains the less significant
bytes of the hash of the bad server list. If a Client receives
a message whose “renegation_traking” field is inconsistent
with the one it keeps, it starts a synchronization process that
requires exchanging their lists.

Security considerations for the client: the SK specification
[101] does not clearly state how the target domain of a
certificate added to the TimeLine is verified, whereas other
proposals do, as DANE.

If the signature of the record is performed offline, there is
no indication of the time it takes unlike CT that promises to
incorporate the record before the MMD.

As it has been discussed before, every TimeLine Server
should have a key pair for the TimeLine signature. That key
pair should be distributed to Mirrors and Clients with the
software. Moreover, Mirrors are identified by IP, port and
public key, hence an additional set of keys is introduced in
the system.

The specification does not indicate whether the TimeStamp
of the TFM corresponds to the time of the request or the time
of the latest record. In the first case, the server should sign
immediately upon Mirror request, leading to an amplification
attack that can be dangerous if the number of requests grow. In
the second case, the server should not need to sign immediately
but, unless the channel between the server and the client is
protected, an entity in the middle could use previous TimeLine
Server responses to masquerade recent updates.

In regard to privacy, Mirrors can learn the IP address of
the Clients verifying certificates. The specification proposes

two alternatives. The first is that Clients should use Mirrors
managed by their ISPs. In this way, despite the ISP can learn
the domains a given Client visits, they can already do that by
means of the DNS servers. The second consist on a forwarding
mechanism initiated by the client. It is proposed every Mirror
should have two ports, the main one (443) to send the request
to the Mirror and a second, called “SK mirror port” or MP, that
is used to receive and forward responses. In such a way, Clients
can use a Mirror as a proxy improving privacy. However,
the second proposal does not protect users from cooperating
Mirrors.

Finally, the specification states a Client requests information
to Mirrors every 24 hours. Despite this reduces the load of the
Mirrors, it opens an attack window of 24 hours.

C. Trust Assertion for Certificate Keys

Trust Assertion for Certificate Keys (TACK) [104] allows
users to bind a domain with a certificate using a structure
called TACK, signed with a “TACK signing key” or TSK, that
is chosen by the domain owner. TSKs are trusted by clients and
should not be changed frequently whereas changes to server
certificates are not limited in frequency. TACK constitutes, in
practise, a change in PKI trust model as it moves the trust
from the root CA list to the TSKs. Moreover, it proposes
a revocation mechanism for compromised TLS certificates
whereas an overlapping mechanism for updating TSKs in
which the old and new TSK coexist during a time until the
old is finally disabled.

Unlike aforementioned proposals, TACK does not introduce
a global verifiable structure. TSKs and TACKs are generated
and delivered by servers so the client can process and keep
them to establish a long-term trust relation with a server.

The system defines two different life-cycles, one for TACKs
and other for TSKs. The TACK-TSK life-cycle is the follow-
ing:
• TSK generation: the server generates an ECDSA key

[105] that would be used to sign one or more domain
name TACKs.

• TACK creation: the TACK contains meta data to associate
a server certificate with a TSK. Once generated, the
TACK is signed with the TSK.

• TACK deployment: a TACK binding the TLS certificate
and the TSK is given to every server under the domain
to be protected. Those servers advertise the TACK setting
the “activation flag”.

• TACK re-generation: when the TACK expires or the
server changes the TLS certificate, a new TACK is
generated.

• TACKs revocation: if a TLS certificate is compromised,
a new TACK can be created incrementing the field “min
generation”.

• TACKs deactivation: the server owner can deactivate a
TACK unsetting the “activation flag”, so servers can
remove it after a period of 30 days.

• TACKs overlapping: when a TSK binding a TLS certifi-
cate with a given server by means of a TACK, needs
to be changed, the server publishes a new TACK signed

IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, VOL. V, NO. N, MONTH YEAR 16

with the new TSK. The new TACK is distributed together
with the old TACK during a period of time, so clients
can activate the new association whereas the service is
not disrupted.

The fields in a TACK delivered by the server to the client
during a TLS handshake are the following:

• public_key: contains the integers corresponding to a
point in the elliptic curve p-256 [106] that represents the
public key of the TSK that signed the TACK.

• min_generation: contains the value corresponding to
the field min_generation of the TSK associated with
the TACK.

• generation: signals the generation of the TACK so
every other TACK whose generation is less than the
maximum min_generation of the signing TSK is
considered revoked.

• expiration: date after the TACK is considered ex-
pired.

• target_hash: a SHA256 hash [107] of the public key
[24] from the TLS certificate used by the TLS server.

• signature: an ECDSA signature using the TSK over
all the previous fields.

The associations or “pins” between TSKs and domain
names, represented by TACKs, are organized in repositories or
“stores”. Every store keeps a map that relates Fully Qualified
Domain Names (FQDNs) with one or more attribute sets.
Among those attributes, it can be found the issuance date, the
expiration date, the TSK public key (or its hash), and the field
min_generation, that should be equal for every TACK
signed by the same TSK. A client may have one or more stores
that can be local (optional) or provided by a remote party, and
can share pins with other clients. The protocol allows clients to
download TACKs from others, and publish discovered TACKs
using a trusted third party.

TACKs are delivered to the client using a TLS extension,
so clients can verify they are connecting to the appropriate
server corroborating the received TACK with the information
contained in the stores. When a compatible server receives a
TLS handshake message, it negotiates the use of the TACK
TLS extension and delivers a TACK to the client. If the client
has learnt the same TACK several times, it can create a “pin”
between the domain name and the TSK within one of its stores.
The validity of the “pin” is equal to the period of time the
relation has been observed, limiting the impact of erroneous
or malicious “pins”. The exchange and verification processes
come next.

The client verifies the TLS handshake with TACK extension
as valid if the handshake results in an encrypted channel, the
TACK extension is present and the TACK delivered is valid.
A TACK is considered valid if the “generation” field is greater
than the “min_generation” field (from the TSK), “expiration”
is dated in the future, “target_hash” is correct and the signature
verifies. Once the TACK is verified, the client looks for a
“pin” in its stores for the server domain name. If the stored
TACK is equal to the one received, the connection is flagged
as “Confirmed” otherwise as “Contradicted”. If there is no
association registered for the server domain name the con-

nection is flagged as “unpinned”. In the case of “unpinned”,
if the server TACK has been observed before, the client can
activate a “pin” and create an association with an end date:
end = current +MIN(30 days, current − initial), being “initial”
the date of the initial observation.

Security considerations for the client: As it has been
mentioned, a client can use one or more stores, one local and
others being remote. The remote ones can be provided by third
parties but neither the organizations managing the repositories
nor the requirements for a third party to become trusted, are
specified. Moreover, if repositories containing TACKs related
to a collection of servers from a given geographical area,
belong to an operator or provide TACKs by topic, client
queries can reveal interest or habits raising privacy concerns.

The specification also states clients can share “pins” with
other clients, and even publish those they have discovered
using a trusted third party or sharing service. This raises
privacy concerns as other entities can learn user habits and
interests. Moreover, only valid TACKs can be shared as they
can be easily verified, thus clients cannot add perturbations to
the observed TACKs to avoid profiling. Finally, this requires
the client to support a sharing protocol that may require
additional storage and processing power.

D. DNS Certification Authority Authorization

DNS Certification Authority Authorization (CAA) lets do-
main owners specify which CAs can issue certificates for their
domain names. Unlike CT or SK, the proposal does not define
a verifiable structure to store evidences of certificate issuance,
nor a mechanism for cross verification. It just provides a
mechanism for CAs to check if they are allowed to issue a
certificate for a given domain upon reception of a Certificate
Signed Request (CSR). Thus CAA intervenes only before
issuing the certificate.

CAA defines a DNS record called “Certification Authority
Authorization (CAA) DNS Resource Record” that allows the
domain owner, or the entity managing the primary DNS for
that domain, to specify a list of authorized CAs for the purpose
of issuing a certificate. In this way, any compliant CA should
query the domain owners’ DNS server for a CAA record in
order to verify if it is authorized for that domain. In this way,
the inadvertent erroneous issuing risk is reduced.

In a similar way as TLSA DANE records [108], discussed
in section IV-F, CAA is under the control of the domain owner
and no third party is involved. However, the fundamental
difference is that CAA helps the CA to determine if it is
authorized before issuing the certificate, whereas TLSA allows
clients to verify if a server certificate, used in TLS, is autho-
rized by the domain owner for the purpose of authenticating
an encrypted connection.

According to the specification, compliance with the CAA
DNS record is necessary, but not sufficient condition, for cer-
tificate issuance since certificate requests should also comply
with the CA “Certificate Policy”. As part of this criteria, it is
required CAs publish their “Certificate Practices Statement”
(CPS) and count with an external auditing process. CAA
does not pursue creating security islands with local CAs, but

IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, VOL. V, NO. N, MONTH YEAR 17

Domain name TTL Class Type Value
example.com. 3600 IN CAA 0 issue "ca.example.net"
example.com. 3600 IN CAA 0 iodef "mailto:sec@example.com"
example.com. 3600 IN CAA 0 iodef "http://rep.example.com/"

TABLE V
CAA RR EXAMPLE

enforces any certificate should be issued by a CA in the CAA
record. The CAA in the record should be a trusted CA for the
client hence, the CA should be in the client’s trusted CA list.
In this way, if a CA listed in a CAA record for a domain is not
trusted by a given client but issued a TLS server certificate,
that client cannot trust the TLS server certificate irrespectively
of the CAA record.

CAA records cannot help clients in cross verification since a
TLS server certificate can have a long life (around years) while
the domain owner can change its providing CA and thus, the
CAA record, several times during the life of TLS certificates.

A CAA RR consists on a set of flags and label-value
pairs known as properties. Several different properties can be
associated with a domain by publishing different CAA RR
under the same domain DNS. A property can be flagged as
“issuer critical” indicating it should be correctly interpreted
by the issuer (CA) before issuing or otherwise desist from
issuing. The most representative CAA properties are:
• issue <Issuer Domain Name>: authorize the

owner of the domain “Issuer Domain Name” to issue
certificates for domain names managed by the consulted
DNS.

• issuewild <Issuer Domain Name>: same as
previous but allows wildcard domain names.

• iodef <URL>: defines the url where inconsistent cer-
tificate request attempts should be reported to. Uses the
IODEF format [109]

Table V shows an example in which the domain name
example.com asserts the only authorized CA for that do-
main is ca.example.net, inconsistent requests should be
reported through email and a URL.

Despite the specification recommends CAA records to be
authenticated with DNSSEC, it is not mandatory. Thus, it
would be possible an attacker drops, alters or inserts fraudulent
CAA records if DNSSEC is not used.

CAA does not prevent impersonation or fraudulent use of
certificates so it contributes to “certificate pinning” but is not
a mechanism on its own. Security considerations for the client
cannot be discussed as no client is involved in CAA.

E. HTTP Strict Transport Security and HTTP Public Key
Pinning Protocol

HTTP Strict Transport Security (HSTS) [110] describes a
mechanism that allows web sites using HTTP to declare they
are accessible only by means of an encrypted connection, as
HTTPS. Thus, the specification is limited to HTTP that can
be used over TLS [111] with the URI schema “https”.

HSTS is based on previous research [112] [113] facing
threats from passive and active attackers. In the first group of
attacks, an attacker listens to the network for session cookies

that, despite delivered in first place through a protected channel
(HTTPS), are delivered in clear text (HTTP) when the client
loads other resources.

In the second group of attacks, an attacker can use poi-
soned DNS servers or modify unprotected frames to obtain
that session information. Then, the traffic can be redirected
to unprotected web servers or to servers using self signed
certificates, since, as discussed in section III, clients will “click
through” upon a warning. Other threats as phishing or malware
are not addressed by HSTS.

HSTS defines an HTTP header that should be delivered
using HTTP over TLS to the client (User Agent or UA) with
the format that follows [114].

Strict-Transport-Security
= "Strict-Transport-Security" ":"

[directive] *(";" [directive])

directive = directive-name ["=" directive-value]
directive-name = token
directive-value = token | quoted-string

Among the directives included in the header, the UA should
remember the server policy (“max-age”), if sub-domains
should be treated in the same way (“includeSubDomains”) or
if it should be added to the list of permanent HTTPs servers
(“preload”). Clients should store and keep HSTS policies in the
UA. Some browsers include some preloaded servers avoiding
users to access them without TLS. Nevertheless, HSTS does
not prevent problems derived from malicious certificates issued
by compromised CAs, but prevents sessions to be redirected
to insecure protocols and hence, prevents session information
from being stolen.

HTTP Public Key Pinning Protocol (HPKP) [115] lets
client detect when a trust or certificate chain has changed
unexpectedly. HPKP defines an HTTP header that lets the
UA to learn which SubjectPublickKey structures should
be present in the certificate chain in future TLS connections
with the same server. The objective is to avoid MITM attacks
based on compromised certificates and it should be used in
conjunction with HSTS.

Thus, HPKP defines a relation among a domain name and a
certificate chain. The proposed mechanism follows a “trust-on-
first-use” (TOFU). The first time the client accesses the server
has no knowledge about the server. So, it would not be able
to detect a MITM attack. However, in this first connection,
the client (UA) learns the valid certificate chain for that server
avoiding future attacks.

The HPKP HTTP header should be delivered over TLS to a
client (UA) with the following format (in which fields “token”
and “quoted-string” are formatted according to [114]).

Public-Key-Directives
= directive *(OWS ";" OWS directive)

directive = directive-name
directive-name = token
directive-value = token/ quoted-string

The “Pin Directive” allows the web server to state the
certificates that should be associated with the host. To
do so, it provides a sequence of SHA256 hashes of the
SubjectPublickKey structures of the expected certificate

IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, VOL. V, NO. N, MONTH YEAR 18

chain. The directive “max-age” specifies the amount of time
(in seconds) a client should remember the chain, consider-
ing the server as a “Known Pinned Host”. Alike HSTS, it
also includes a directive called “includeSubDomains” and a
“report-uri” to report unsatisfactory verification.

Security considerations for the client: HPKP defines a
mechanism known as TOFU since the first time the client
connects to the server it lacks the necessary information to
validate the association (pin) so it would not be able to detect a
MITM attack. Moreover, since average users disregard browser
warnings, it is also feasible a MITM attack even for “Known
Pinned Host”.

HSTS and HPKP are designed for HTTP only. Moreover,
clients should store HPKP associations and remember HSTS
policies.

F. DNS-based Authentication of Named Entities

As discussed in section III, PKI has not a single root
authority able to verify every certificate. DNS has a single
root domain (.) under which every domain tree grows forming
a tree (.com., .net. and others). Thus, unlike PKI in which
every trusted CA can act with impunity issuing certificates, in
DNS only the root can act with impunity altering the domain
name database.

Branches or sub-domains in DNS are delegated to their
respective domain owners. Due to that, DNS has an in-
frastructure ready to provide an adequate certificate pinning
mechanism re-using the DNS infrastructure with several clear
benefits: it does not require the distribution of new credentials
since DNS is already deployed and can provide authenticated
records using security extensions (DNSSEC); it does not
require the creation of new services and lets domain owners
to manage their trust relations on their own, without the
intervention of third parties.

Section IV-F1 briefly describes DNS security extensions for
a better understanding of DNS-based Authentication of Named
Entities [108] (DANE) that will be described in section IV-F2.

1) Introduction to DNSSEC: Domain Name System Se-
curity Extensions (DNSSEC-bis) [116], [117] belong to a
set of specifications from the IETF that allows DNS clients
(resolvers) to authenticate the source of DNS responses, au-
thenticate the non existent domain responses (avoiding certain
attacks), and to verify the integrity of DNS responses. It does
not provide confidentiality unless used together with TLS or
DTLS [118], [119].

DNSSEC [120] was first proposed in 1997 but the first
version had major scalability problems since parent zones
should sign records upon changes in every delegated branch
or child zone. The current proposal, known as DNSSEC-bis,
proposes an indirection in the signature using records called
“Delegation Signer (DS) Resource Records” that improve
scalability.

Every DNS record in DNSSEC is delivered together with
and additional record known as RRSIG, that contains a signa-
ture over the original record using a Zone Signing Key (ZSK).
RRSIG records allows authenticating the information from the

Domain name TTL Class Type Value
abc.mydomain.com. 3600 IN A 163.117.141.197
abc.mydomain.com. 3600 IN RRSIG A 5 3 3600

20040509183619
(20040409183619
38519 mydo-
main.com. O M K
8rAZlepfzLWW75D
xd63jy2wswESzxDK
G2f9AMN1CytCd10
cYISAxfAdvXSZ7xu
jKAtPbctvOQ2ofO7
AZJ+d01EeeQTVBP
q4/6KCWhqe2XTjnk
VLNvvhnc0u28aoSs
G0+4InvkkOHknKx
w4kX18MMR34i8lC
36SR5xBni8vHI=)

TABLE VI
DNSSEC RESPONSE EXAMPLE - A RR AND ITS RESPECTIVE RRSIG

DNS. The ZSK is certified by the Key Signing Key (KSK), a
longer term key. KSKs and ZSKs are local to their respective
DNS zones so, in order to create a trust chain to the parent, a
parent DNSSEC uses DS records to indicate the KSKs for the
child zones. This signature delegation process, coherent with
DNS domain name delegation, is followed down to the root.

The DNS root authority itself, has its own practice
statement and a complex ceremony to roll a new RootZone
KSK (2). This ceremony not being altered is the anchor of
trust in DNSSEC. The sequence of DS records from the root
to any leaf in the DNS tree leads to a trust chain alternative
to PKI trust chain. Fig. 10 shows a comparison between both
certificate chains (the reader should note the DNS root is
unique whereas PKI is not and depends on a given certificate).

Fig. 10. Trust chain comparison between DNSSEC and PKIX [71]

Table VI shows an example of DNSSEC record that is
discussed next.

The value of a RRSIG is composed by several fields.
The first indicates the type of record being signed (A in
the example). The next field indicates the algorithm used to

2see details at http://data.iana.org/ksk-ceremony/iana.org/ksk-ceremony

IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, VOL. V, NO. N, MONTH YEAR 19

create the signature (5 RSA/SHA1 in the example). Then,
the RR contains the registers or labels, that are used to
validate the records generated from a wild card. In the ex-
ample, it has the value of 3 thus, the original is composed
by 3 labels. abc.mydomain.com is the original since
abc.mydomain.com is 3 labels long (abc,mydomain,
com) hence it has not been generated using a wild card.

If 2 was use instead of 3, the field would show the
domain name was generated from *.mydomain.com and
that should be used for the verification according to the
specification [117]. Then, the original RR TTL is included
(3600 in the example) avoiding old compromised signing
keys to be used after the TTL. After the TTL, the record
includes the expiration date (20040509183619) and the
start date (20040409183619), the key tag used to identify
the signing key (38519) as well as the signing key name
(mydomain). Several RRs can use the same RRSIGs, the set
of RRs sharing the RRSIG are known as RRSet. Finally, the
signature of the RRSet, is generated as follows [116]:
signature = sign(RRSIG_RDATA | RR(1) | RR(2)...)

where | means concatenation; RRDATA are the fields of the
RRSIG record including the canonical zone name and exclud-
ing the signature field; as mentioned, every RR pertaining to
the RRSIG contributes with RR(i), that is generated in the
following way:
RR(i) = owner | type | class | TTL |

RDATA length | RDATA

Every RR contributing to the signature should belong to the
same signing zone, keep the original TTL, and should have
the same class/type.

The combination of owner, class, and type can be used to
determine that the RRSIG in the example authenticates A
RRs from abc.mydomain.com and no wildcard has been
used. Thus, the signature can be verified using a DNSKEY
of the zone mydomain.com with the key tag 38519 using
the algorithm 5.

2) DNS-Based Authentication of Named Entities (DANE):
DNS-based Authentication of Named Entities [108] (DANE)
relies on DNSSEC to authenticate DANE DNS records with
the purpose of associating domain names with credentials (PKI
certificates). As it was discussed in section III, the fraudulent
use of certificates is among the most worrying problems of PKI
when used with TLS. The problem is that any compromised
CA can issue certificates for well-known sites that will pass
PKI validation and serve to the purpose of the attack, without
the knowledge of the domain owner. As the aforementioned
proposals, DANE also pursues creating a kind of association
among domain names and certificates (“Certificate Pinning”)
resistant to those attacks.

DANE allows domain owners to include information about
authentication credentials of their permanent services in their
DNS. Considering DNS is typically queried for name res-
olution by the client immediately before connecting to the
server, the client can receive information pertaining to the
credential that should be received from the server during a
TLS handshake before actually connecting to the server. Thus,

avoids malicious certificates to be used to impersonate servers
managed by the domain owner (see Figure 11).

Fig. 11. DANE use case: specifying the CA that should be used by a
service (PKIX-TA). The figure shows the DANE record can state the CA
that should have issued the server certificate is “Verisign SubCA” so the
TLSA record constraints the CA. The solid lines represent the hierarchy in
both DNSEC/DANE and PKI. The dashed lines indicate the relation among
entities.

DANE defines a new DNS record called TLSA that allows
a DNS zone to assert how clients, resolving domain names
of that zone, should process certificates received through a
TLS connection. DANE specifications [108], [121] define
the following use cases depending on the parameters of the
register:

• CA constraint: the record specifies the certificate, or the
public key of the certificate of the CA, that should have
issued the TLS certificate. It does not affect the way the
client handles trust since the TLS certificate should pass
PKI validation. It just specifies exactly which CA should
have issued the server certificate, and for that reason is
called “CA constraint” (PKIX-TA [122]). See Fig. 12.

• Server certificate limitation: the record contains the cer-
tificate (or the public key) of the TLS certificate used
by the server. It is called “service certificate constraint”
(PKIX-EE [122]) since it defines the certificate the server
should use. Despite the record specifies a concrete certifi-
cate, the certificate should pass PKI validation. See Fig.
13.

• CA specification: the record contains the certificate (or
the public key) of the CA that should have issued the
certificate used by the server. Unlike the first use case,
it is not necessary the certificate passes a PKI validation.
In this case, DANE modifies the way the client manages
trusts and due to that is called “trust anchor assertion”
(DANE-TA [122]). It alters client trust since specifies a
concrete CA that should be trusted even if the CA is
not trusted by the client. This use case gives support to
“security islands” within domain so domains can issue
their own certificates using their own CA. See Fig. 14.

IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, VOL. V, NO. N, MONTH YEAR 20

• Server certificate specification: the record contains the
certificate (or the public key) of the TLS certificate
used by the server. This use case, called “domain-issued
certificate” (DANE-EE [122]), allows a domain to issue
its own certificates without a third party or CA. Alike
“trust anchor assertion”, it does not require PKI validation
altering client’s trust. In fact, this use case enables self-
signed and ephemeral certificates to be issued by a
domain and trusted by the client. See Fig. 15.

Fig. 12. DANE use case for specifying the CA (PKIX-TA). Server Cert
should pass PKIX validation. PKIX-TA avoids compromised CA attacks.

Fig. 13. DANE use case for specifying server certificate (PKIX-EE). Server
Cert should pass PKIX validation. PKIX-EE avoids compromised CA attacks.

The TLSA record defines a “selector” that signals whether
the content of the records refers to a “Full Certificate”
[24] (Cert) or to its public key, “SubjectPublicKeyInfo” [24]
(SPKI). Moreover, it is possible to indicate if the registry
refers to the exact content or its hash by means of the field
“matching”. Finally, the “certificate association data” field,
defined by the previous two fields, defines the object target of
the association as raw (Full), hashed with SHA-256 or SHA-
512 for both certificate or public key.

Table VII shows a TLSA example record returned by a DNS
asserting the server abc.xyz.com with a REST interface
[15] running on port 443, should use a certificate issued by a
concrete CA.

Fig. 14. DANE use case for specifying a domain CA (DANE-TA). Server
Cert does not need to pass PKIX validation and will not pass it unless the
domain CA is added manually to the trusted CA list. Allows Domain CAs
(and security islands).

Fig. 15. DANE use case for specifying a server certificate (DANE-EE). Server
Cert does not need to pass PKIX validation and will not pass it anyway. Allows
Server Certs of any kind (including self-signed certificates) that can be trusted
by means of DANE.

The example in table VII contains a TLSA DANE record
and its related RRSIG DNSSEC record. The TLSA indicates
server abc.xyz.com should use a certificate (3 - “domain-
issued certificate”) whose full binary structure (0 - “Full
Certificate”) should have a SHA-256 hash (1 - SHA-256) with
a value equal to the one provided.

In order to avoid manipulation and to authenticate the TLSA
records, the TLSA record should be delivered together with its
corresponding RRSIG record. The RRSIG record in the exam-
ple protects a TLSA RR, using the algorithm 5 (RSA/SHA1)
[123]. Stronger protection is achieved with RSA/SHA-256
or RSA/SHA-512 (IETF RFC 5702), and ECDSA/SHA-256
(IETF RFC 6605). The RRSIG record refers to a domain name
with with 3 labels with a TTL of 900. It also contains the
valid from/to dates, the key tag with the value 14703 and the
zone to which the record belongs and from where the signing
public key should be retrieved to verify the record.

Security considerations for the client: DANE specifies the
compliant TLS client should support the three fields of TLSA

IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, VOL. V, NO. N, MONTH YEAR 21

Domain name TTL Class Type Value
_443._tcp.abc.xyz.com. 893 IN TLSA 3 0 1 (8CB0FC6

C527506A053F4F
14C8464BEBBD6
DEDE2738D1146
8DD953D7D6A3
021F1)

_443._tcp.abc.xyz.com. 893 IN RRSIG TLSA 5 5 900 (
20171117202722
20171018192722
14703 xyz.com. O
J4b/O7J+Fh3KV
DGG8nH9X5dRS
Xgl3j7/S/PbB1Rc
zcYfYxdu5C9xZS
ALCz0MgVFW6
Kcne74ou5R/Wd
+CDKm7mYYGa
28MrtE1boNLuO
Ta6kOpFcNjW+U
YnMFQuc6S8zh
U1G7LH0n3TbM
3rJS0wH0u6J4Ng
tiowZS2VlkwPez
3D8=)

TABLE VII
TLSA EXAMPLE RECORD FOR ABC.XYZ.COM

records: certificate usage, selector and matching type. Clients
have to support the four certificate usage values (use cases)
possible in TLSA records, and also to use selector types 0 (full
cert) and 1 (public key) to compare a certificate association
with a certificate from the TLS handshake using hashes (SHA-
256 or 512) or directly as specified by the matching type field
of the TLSA record.

V. COMPARISON OF CERTIFICATE PINNING SOLUTIONS
FOR IOT/M2M

This section contains a comparison of several aspects of
the discussed Certificate Pinning solutions in more detail than
other discussions [29], [30], [96], comparing more solutions
and with a particular focus on its application for IoT/M2M
scenarios. Table VIII, at the end of the section, contains a
summary of the most important aspects of the comparison.

A. Use of Side channels

Side channels allow to perform some of the necessary
validations but do not use the original protocol. For example,
the use of TLS can trigger the verification but it will be
performed using a different protocol or a different instance
of the same protocol.

The impact of the use of side channels depends on when the
side channel will be used. The first case consists on the use
of the side channel during the TLS handshake. The second
corresponds to the use of the side channel in a different
moment, generating data that can be used during a future TLS
handshake.

CT does not require the use of side channels during the TLS
handshake but proposes auditors, at client side, to contrast
information with monitors asynchronously and optionally to
share observed SCTs with other clients by means of a gossip

protocol. Despite the use of side channels during the hand-
shake is not mandatory, it is possible to verify SCTs syn-
chronously. This synchronous verification could be necessary
in IoT and M2M since devices may suspend their activity dur-
ing long periods of time difficulting asynchronous verification
and the use of gossip protocol. Regarding the difficulties with
the gossip protocol, it does not mean an IoT device cannot
cooperate, but the effectiveness of the cooperation should
be contextualized. An IoT/M2M device can be limited in
storage capacity affecting observed SCTs storage. Moreover,
it should be taken into account the energy balance between
the energy expenditure in transmissions needed to fulfil the
device’s purpose, and those motivated by the CT protocol.

SK requires the use of side channels to verify the pin. The
server delivers the pin (data structure signed with the SK)
through TLS together with the certificate, and the pin should
be verified. The verification is not necessarily performed
online, it can be performed later on, or by a daemon running
in the client that downloads verification information from a
mirror periodically (to keep SKs fresh for later verification).
The same considerations of CT can be applied to SK since
devices may not be always online for keeping the information
fresh.

TACK does not require side channels since the server
provides all the necessary information during the handshake.
The server distributes the domain signing key known as TSK
with an activation flag. Clients just need to store and remember
TSKs for future verification of TACKs signed with stored
TSKs. However, the specification describes that TACKs can be
optionally downloaded from a trusted third party. Despite there
is no description concerning the way clients trust these third
parties, downloading and keeping a list of trusted third parties,
can be considered as the use of a side channel. Moreover,
TACK also proposes clients to share their observed TACKs,
requiring additional side channels.

CAA is a mechanism for domain owners to advertise
what CA is currently authorized to issue certificates for their
domain. CAA does not involve clients so no side channel can
be considered.

HSTS and HPKP are limited to HTTP. The first defines
policies to enforce the use of TLS and the other makes
a promise about the certificate chain a server will use in
a future. Since HSTS and HPKP information is delivered
simultaneously using HTTP over TLS and needs no further
verification, this protocol does not rely on side channels.

Finally, DANE uses DNS with security extensions for
verifying the TLS certificate. For that reason it uses a side
channel (DNS) immediately before the TLS handshake.

B. Instant Recovery from Loss of Key - IR
One of the most worrying problems of PKI is to have a

private key compromised. This problem in PKI have associated
several processes as: certificate revocation, which involves the
CA to have the certificate added to the revocation list; request
of a new certificate; and service re-establishment with the new
certificate.

In case of loss, CT requires the issuance of a new certificate
to be notified to the appropriate logs. The previous certificate

IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, VOL. V, NO. N, MONTH YEAR 22

is not explicitly revoked since the addition of a new certificate
for the domain name implicitly revokes the previous certificate.
Despite this process can be triggered immediately after the
new certificate is issued, it should be considered the addition
of the new certificate can be delayed up to MMD.

After MMD, the new certificate can be asynchronously ver-
ified by monitors. Let “Maximum Verification Delay” (MVD)
be the time for verification. The total recovery time is bounded
to a maximum t = MMD+MVD. Moreover, the verification of
an SCT can be triggered by an auditor, requesting information
to a monitor, that eventually will reach a log. The time until the
first client connects to a server that provides the new SCT and
thus, an auditor verifies, or a monitor requests the verification
of a SCT can be called “Maximum SCT Delivery” time (MSD)
and corresponds to t = MMD + MSD. For that reason, the
total time is t = max (MMD +MVD,MMD +MSD). That
time should be considered since monitors do not need to verify
every log server nor look for all the domains, so it can happen
an SCT is not verified in a long time.

SK otherwise defines an explicit revocation mechanism that
distinguishes between the TLS certificate and the domain SK
key. It provides a mechanism to recover the SK using the
“incorporate by reference”. In general, it is possible to use a
new key immediately after the loss of the previous one. Alike
CT, there are certain time considerations that should be taken
into account.

In SK, there is no definition for the maximum time it can
take the addition of a new record. It can be added immediately
or in batches, however SK assesses the freshness of the data
received by the client being the period of the 24 first hours,
in which any information is considered fresh, a significant
window of opportunity for an attack. Despite new keys can
be used immediately, previous keys can be considered valid
during at least 24 hours. So, it would be enough to prevent
clients under attack from updating SK information during
24 hours. SK proposes a cooperation protocol to keep a
list of fresh TimeLine servers that could reduce the time a
compromised TimeLine server is considered fresh. However,
IoT devices cannot guarantee they can commit resources to
cooperation.

TACK allows to recover from a server key loss but not
immediately. A TACK can be substituted according to a plan
with a key roll-over mechanism since the proposal supports
key overlapping during a time. If a TACK is compromised
(which is equivalent to a server key compromised), it can be
revoked increasing the field “min_generation”. After that, a
new key can be announced, but it can take some time until
the change to the new key is effective.

HTTP Public Key Pinning protocol (HPKP) makes a
promise about the certificate chain that will be used by the
server during a time established in the field “max_age” of
the pining directive. So new keys cannot be incorporated
immediately except for clients connecting for the first time.

In regards to DANE, since clients query DANE information
from the DNS before connecting to the server, the minimum
time for incorporating a new key after a server key loss is the
DANE RR Time To Live (TTL).

C. Global Attack Detection - GA

A global attack in this context is an attack where the server
certificate has been substituted by a malicious one, issued by a
compromised CA, and every client accessing the victim server
can observe the malicious certificate. A malicious certificate,
in this case, passes the PKI verification. Due to that, this
section evaluates not only the ability of the different proposals
to defend clients and domain owners against this kind of
attacks, but also the effect of the proposals over domains not
adopting each solution.

Two different cases should be considered. In the first, the
attacker compromises the CA and tries to impersonate a TLS
server using a TLS server with the malicious certificate, but
does not add the malicious certificate to the verifiable structure
(if any) described by the proposal. This attack will be called
“impersonation only attack”. In the second, the attacker not
only compromises the CA and tries to impersonate a TLS
server using a malicious certificate, but also adds the malicious
certificate to the verifiable structure. This attack will be called
“impersonation with poisoning attack”.

In the event of an impersonation only attack, CT clients
can defend against the attack if and only if CT is globally
adopted by domain owners, since clients will reject any TLS
handshake not providing a SCT as a proof. Domain owners
will not notice the attack since auditors do not notify monitors
about servers not complying with CT, or that complied in the
past and have stopped doing so. Clients not supporting CT will
not notice the attack and may be exposed to the attack for a
long time since the compliant domain owner cannot notice the
attack as well, so cannot react to it.

If CT is globally adopted by clients but optionally by
servers, a legitimate TLS server using a legitimate certificate,
but unwilling to support CT will be indistinguishable from
a malicious one. Clients will not finish the handshake since
there is no possibility to verify the certificate by means of
CT thus, domain owners not supporting CT will be excluded
from secure traffic. CT compliant domain owners will also not
notice the attack.

If CT is globally adopted by clients and servers, clients will
detect the attack, but not domain owners since there is no trace
of malicious certificate in log serves.

In the event of a impersonation with poisoning attack, the
previous considerations can be applied except that domain
owners have a chance to detect the attack if they monitor
actively every log sever.

The CT gossip protocol and the auditor-monitor interaction,
is orchestrated around the verification of SCTs, but there is
no mechanism to signal the lack of an SCT or to detect
servers that delivered SCTs in the past and stopped doing so.
If auditors were able to notify monitors about servers that
stop delivering SCTs, monitors would be able to investigate
the issue and notify domain owners contributing to an early
detection. Unfortunately, that functionality is not considered
in CT.

IoT/M2M global adoption of CT is not plausible due to
the heterogeneity of devices and solutions, so global attack
detection may not be feasible.

IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, VOL. V, NO. N, MONTH YEAR 23

In the event of an impersonation only attack, entities sup-
porting SK can verify if the associated SK key is in force, by
requesting every available record for that domain since a given
time or sequence number. Hence, if SK is globally adopted
by domain owners but optionally by clients, SK aware clients
will detect the attack since the TLS certificate provided by the
server lacks the signature of the SK.

If SK is globally adopted by clients but not servers, SK
would have the same problem as CT, it would be enough for
an attacker to impersonate the TLS server with the malicious
certificate without offering the SK, so malicious servers will
be indistinguishable from legitimate servers not using SK. If
SK is globally adopted by both domain owners and clients,
the attack will be detected. In any case, domain owners will
not notice the attack since no new record will be added to the
TimeLine server.

An impersonation with poisoning attack in SK is more
complex to achieve, since SK is expected to be better protected
and less exposed than TLS server keys. Nevertheless, if SK
is compromised, and the domain owner does not realize, SK
provides no protection since the domain owner cannot revoke
the SK.

Cooperation among devices in SK protects from TimeLine
server tampering, but not from an attack to a concrete TimeLine
server.

If TACK is globally adopted by clients, in the event of
an impersonation only attack, clients are able to detect TLS
servers changing from a legitimate certificate to a malicious
one since the later will have no TSK signature. As happens
in CT and SK, legitimate servers not supporting TACK will
be treated in the same ways as malicious ones. If TACK
becomes mandatory for servers and optional for users, only
TACK aware clients will be protected from this kind of attacks.
Even if TACK is adopted by both domain owners and clients,
there is no way domain owners can notice their TLS servers
are being impersonated unless clients share not only observed
TACKs but report the absence of TACKs for a give domain
name.

In principle, the impersonation with poisoning attack has
no sense in TACK since there is no verifiable structure, but
in practise, it could be possible to achieve the same result
by poisoning the third parties that clients can use to obtain
trusted TACKs. There is no clear definition of the requirements
an entity should fulfil in order to become a trusted party nor
definition of the security of the protocol used to fetch TACKs
from them. In any case, if the TSK is also compromised, there
is no way to detect both attacks.

HPKP allows compatible clients to detect a global attack if
the attack happens after they have visited the TLS server for
the first time, when they get the trust chain that will be used
in the future. Non HPKP aware clients and those aware but
visiting the site for the first time after the attack starts would
not notice.

In the event of an impersonation only attack, if the domain
owner supports DANE, only clients supporting DANE will
notice the attack. Clients do not need to rely on previously
stored information to detect it. However, if the domain owner
does not support DANE, even DANE clients will not notice

the attack. The attack cannot be, in principle, detected by
the domain owner unless it uses DANE and another party
supporting DANE finds an inconsistency between the authen-
ticated authoritative information provided by the DNS and the
information obtained during the TLS handshake.

If clients globally adopt DANE but not domain owners, a
DANE client cannot be aware of an attack if the domain owner
does not support DANE. However, the attack is only effective
for a DANE aware domain owner if the attacker compromises
not only the CA but also the domain owner’s DNS (in order
to remove or alter DANE information from the DNS server).
The latest can be considered an impersonation with poisoning
attack, that will be useful if and only if, the attacker not
only compromise the DNS server but also gains access to the
DNSSEC ZSKs.

D. Targeted Attack - TA

A targeted attack is similar to a global attack. In this case,
the malicious certificate cannot be observed by every client
accessing the victim server but by a group of devices that
constitute the target group.

The effectiveness of CT, SK, TACK, and HPKP, in this case,
is equivalent to that of the global attack discussed in section
V-C. Again, as discussed before, many proposals as CT, SK,
and TACK, that do not report TLS servers that stop being
compliant, will have an equivalent protection. Others, that
expect a different behaviour, as HPKP if first visited before
the attack, would detect these kind of attacks promptly. Any
expected benefit or potential benefit from cooperation among
entities will be reduced in this case since the group able to
observe the attack is reduced. Considering IoT/M2M devices,
as reasoned before, may not be able to commit resources for
cooperation, the degree of protection would be the same.

In the case of DANE, since there is no expected cooperation
and devices would not store any previous information, the
protection is formally equal to the global attack.

E. Trusted Third Party Dependency- TTP

This section evaluates the impact of additional trusted third
parties on the participants. As it has been already discussed
in section III, the increasing number of directly or indirectly
trusted CAs (TTPs), distributed with current software, consti-
tutes a problem of trust, and is one of the weakest points
in PKI applied to TLS. Certificate Pinning solutions have
been proposed to overcome this PKI weakness, preventing
some attacks in a more or less efficient way. However, some
of the analysed solutions rely on additional TTPs, that may
eventually grow and become a problem. Moreover, managing
a whole new TTP structure may require extra effort from both
client and server sides.

Log servers in CT use a public key pair to sign the SCT
they issue upon the addition of new TLS certificates. CT does
not clarify how these new key pairs are obtained, distributed
or revoked, but it can be supposed the list of CT current
authorized key pairs will be distributed together with the
software, in the same way as PKI. In this way, as described in
the specification, CT requires auditors embedded in clients

IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, VOL. V, NO. N, MONTH YEAR 24

to have knowledge of CT TTPs or to delegate to external
components, but does not clarify how trust will be established
between clients and external auditors. Managing lists of CAs
is a problem on its own, but worse in IoT/M2M since many
devices may get updates later that expected or never be
updated. For that reason, requiring IoT/M2M devices to be
updated with an additional TTP list constitutes an additional
problem.

In the case of SK, every TimeLine server has its own
key pair. SK clearly states the TimeLine server list and their
corresponding keys should be distributed with software in the
same way as trusted certificates in PKI. Moreover, mirrors in
SK should identify by means of their IP/port and public key,
so SK introduces two additional key sets (TimeLine server and
mirrors). Management and distribution of the two lists may be
a problem for IoT/M2M devices that can be frequently out of
date.

TACK does not need additional TTPs. Every domain has its
own TSK that is distributed during the activation. The domain
is responsible of the distribution requiring no cooperation
from software manufacturers. Alike TACK, HPKP does not
introduce new TTPs, it just conveys what CAs should be found
in the certificate chain provided by the TLS server during
a handshake. Nevertheless, TACK proposes third parties to
provide sets of trusted TACKs. Despite these third parties act
as mere online stores for TACKs, the list of authorized TACKs
may need some management.

DANE relies on DNSSEC for authenticating DANE DNS
responses. These responses, which can be used to verify TLS
certificates, are signed with a ZSK, which is authorized by the
parent with a signature, then successively down to the root
that is signed by a reputed CA. The CA signing the unique
DNS root is well known and verifiable with the current PKI
certificate list. For that reason, DANE does not require the use
of additional trusted third parties.

F. Instant Start Up - IS

This section discusses if proposed solutions allows a TLS
server to start using a certificate immediately after issuance
without generating trust problems in clients.

CT requires the CA to register the certificate in a log
server in order to get the SCT, that will be delivered through
a extension in TLS or directly embedded in the certificate.
CT log servers add new certificates asynchronously in a
time shorter than MMD. A certificate provided by a TLS
server is trusted if the SCT is signed by a log server pub-
lic key that the client trusts. If the log server has been
compromised, participants may need up to a time t =
max (MMD +MVD,MMD +MSD), as discussed in section
V-B, to verify a SCT trustworthily. In IoT/M2M, CT does
not suppose any improvement over PKI, since in both cases a
TLS certificate can be used immediately and CT provides the
same degree of security than PKI during t.

SK does not hamper instant use of TLS certificates since
the only requirement is the domain owner to register a domain
key (SK) beforehand. After a domain owner registers the SK
for its domain, any new certificate can be used instantly. The

only requirement for a cross verification is to have the new
certificate signed with the domain SK. Alike CT, if a TimeLine
server has been compromised, it would be necessary to wait
more than 24 hours, according to the freshness defined by the
protocol, to have a trustworthy cross verification. So the degree
of protection, at least during a 24 hours window, would be the
same as with plain PKI.

In the case of TACK, there is a time in which the TACKs to
remove are distributed together with their replacements thus,
a change should be planned ahead. Hence, it is possible to
start using a new certificate with its corresponding TACK
immediately, but the distribution process can affect the con-
vergence time. It should be also considered that TACK allows
third parties to provide trusted TACK sets, so they should be
updated accordingly upon changes.

HPKP allows the immediate use of new certificates by
TLS servers. The major concern is that clients whose first
interaction with the server happens after the change, cannot
determine whether the certificate is legitimate or not.

Finally, DANE is considered an alternative independent
channel. Since DANE clients will not store any previous record
of a given server beyond the TTL time of the record, they will
take as valid the new certificate.

G. Unmodified Servers - US
One of the mayor concerns of Certificate Pinning is the

addition or alteration of protocols to support the proposals.
Significant changes will add complexity to clients complicat-
ing the adoption. This section analyses changes required by
the previously discussed Certificate Pinning solutions.

CT proposes alternative mechanisms to deliver SCTs to the
client during a TLS handshake. The first consists on delivering
SCTs using TLS extensions with two possibilities, using a
CT TLS extension or an OSCP one. The second describes
how the SCT can be directly incorporated to the certificate by
registering a pre-certificate before issuing the final certificate.
In the first case, CT requires clients to support the TLS
extensions described in the proposal. Despite supporting an
exotic TLS extension may be challenging, CT considers the
use of the widely adopted OSCP TLS extension. Thus, the
use of TLS extensions is not a big concern since are widely
supported. In the second case, there is no need to change the
protocol since the SCT is embedded in the certificate so, the
complexity is moved to the PKI software.

Nevertheless, it should be considered CT proposes a gossip
protocol for clients to exchange SCTs. That new protocol
should be supported by clients. In regard to IoT/M2M, it is
coherent to assume TLS extension support is not a problem
since they are supported by reference TLS implementations
as OpenSSL. Concerning the gossip protocol, and any other
protocol supporting the interaction among parties (i.e. auditor-
monitor), their support can be more challenging since addi-
tional software requires to be updated, but more precisely due
to the reasons discussed in section V-A.

In SK specification, it is suggested the SK signature over
the certificate chain is transmitted during the handshake as
part of the server certificate. In this case, there is no need for
modifying the protocol.

IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, VOL. V, NO. N, MONTH YEAR 25

Alike CT, TACK requires the use of TLS extensions that
are well supported in IoT. However, TACK may need support
for trusted third parties providing trusted TACKs to clients.

HPKP and HSTS require changes in HTTP headers in both
clients and servers thus, servers can deliver the chain and
clients process it. Clients unable to understand those headers
should ignore them, so it would not be a problem in IoT/M2M.

Finally, DANE does not require any modification to the
server or clients. Due to that, it can be used whenever the
client DNS resolver supports DNSSEC and is able to process
DANE RRs.

H. Necessary Storage - NS

Certificate Pinning solutions pursue to provide some of the
following characteristics: verifiable structures that can be au-
dited; cross verification for clients; or grounds for trust based
on collections of evidences. Hence, some information should
be stored in different entities considered by the solution. It
is necessary to evaluate the impact of these proposals on the
storage.

CT requires the storage of SCTs at client side (auditor)
to be verified by monitors or shared by means of the gossip
protocol. Additionally, CT requires storing a list of TTPs or
log servers that should be trusted. According to the expected
size of SCTs and pubic keys, it would not be a problem
event for IoT/M2M unless the number of SCTs or keys
grow exaggeratedly. Moreover, CT requires auditors to store
evidences (pieces of the MT or node sequences) that will be
used to detect errors and malicious behaviours.

SK requires the storage of TimeStamps, SKs and lists of
mirrors with their corresponding keys to feed the synchro-
nization protocol and allow the verification. The specification
makes a study of the estimated demanded size according to
the data entropy, showing the requirements can be afforded by
IoT/M2M devices.

The TACK specification defines “stores” as the place within
the client where to store observed and downloaded TACKs.
According to the TACK structure, it should not be a problem
to store a reasonable number of TACKs in IoT/M2M.

Alike the aforementioned solutions, HPKP requires storing
both HPKP associations and HSTS policies in the client, but it
should not be a significant information volume for IoT/M2M.

DANE does not require the client to store any information.

VI. OPEN CHALLENGES AND RESEARCH DIRECTIONS

This section describes open challenges and research di-
rections to improve TLS/certificate pinning in the context
of IoT and M2M. Adoption is among the most critical
problems in Certificate Pinning. On the one hand, the lack
of a global adoption can harden attack detection as discussed
in sections V-C and V-D. According to the discussion, clients
may be unable to differentiate malicious servers from those
not adopting the solution. On the other hand, requiring global
adoption may hamper innovation in server authentication and
security protocols. There is an interesting research area on
improving proposed certificate pinning protocols, or other

information systems, to convey extended information to clients
so they can differentiate among services not supporting a
given solution voluntarily from those that may be malicious.
Beyond the current possible outcome of these solutions: of
secure (connect) or not secure (do not connect); it would be
interesting to increase the outcome space by defining a third
option that represents uncertainty.

This is important for IoT/M2M devices. Commercially
available off-the-shelf software or hardware, which is going
to be integrated into an IoT device ecosystem long time
after its manufacturing process, it may become not only a
security threat [124] due to certain vulnerabilities detected
after production, but also unusable if it cannot reach backends.
Certificate Pinning solutions, if adopted globally, can lead to
a scenario in which devices cannot reach backends to receive
the appropriate updates and can be easily misused.

Future reseach considering uncertainty, should explore so-
lutions where devices engage in extended authentication by
other means, for instance using application protocol layers,
that eventually let them reach the appropriate backends. Also
solutions based on advertising alternative routes to the service
as part of the certificate pinning solution, should be explored.
This is presently incorporated of SK (see section IV-B) to
prevent denial of service.

Every of the certificate pinning solutions analyzed in sec-
tions IV-A to IV-F focus on making it difficult for malicious
endpoints to forge others’ identity by means of compromised
or cooperating CAs. As stated in the analysis, despite every
solution has its own mechanism, the combination of several
solutions or even their hybridization may contribute to a better
one.

The results obtained from various solutions can be com-
bined for judging the security of a given service using PKI
by means of a risk assessment engine. Several works [125]–
[127] argue that an evidence collection process and its ulte-
rior analysis can be of paramount importance to overcome
several attacks. These solutions can be also incorporated
into IoT/M2M environments and carried out by constrained
devices.

When it comes to the hybridization, there are several inter-
esting topics to be addressed. For instance, CT (see section
IV-A) and SK (see section IV-B) keep a central structure
that according to several cryptographic properties or using
timestamps, are useful to detect several attacks, if inspected
regularly for misuse, and to find out when the attack happened.
Despite these solutions have demonstrated their effectiveness
under certain circumstances, the control of the structure may
fall under a single private entity diminishing Internet neutrality.
Other solutions, as TACK (see section IV-C) or DANE (see
section IV-F2) do not keep a historical record, so they cannot
be audited for misuse, but allow clients to get an immediate
response regarding the trustworthiness of a given service. A
very interesting research can be carried out proposing the
use of verifiable structures locally combined with solutions
providing an immediate response. In such a way, solutions
as DANE or TACK, could not only provide an immediate
verification but also keep an auditable historic record of the
credentials they vouch for.

IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, VOL. V, NO. N, MONTH YEAR 26

CT SK TACK CAA HSTS-HPKP DANE

Use of Side channels • • ◦ −1 ◦ •

During TLS handshake ◦ ◦ ◦ − ◦ ◦

Other time •2 •2 ◦ − ◦ •3

Instant recovery (from loss of key) • • ◦ • ◦ •

Uncertainty time variable4 24 hours RR TTL

Global/Targeted attack detection •5 •5 •5 − •6 •5

Impersonation only •5 •5 •5 •6 •5

Impersonation and poisoning •5 •5 − •7

Domain owner detection •5a •5b •5c •5d •5c •5c

Additional TTP • •8 ◦9 ◦ ◦ ◦

Need TTP list distribution • •

Instant start up • • ◦ • • •

Maximum time until trustworthy verification variable4 24 hours −

Unmodified Servers •10 • •10 • •11 •

TLS extension •12 ◦ • ◦ ◦

Certificate modification • • ◦ ◦ ◦

Necessary Storage • • • ◦ • ◦

Evidences or relations • • • •

Public key lists • • ◦ ◦

Low storage requirements • • • •

PKIX only • • • • • ◦

Security island support •13

Self-signed certificate support •13

Management
Third party • • •9 ◦ ◦ ◦

Domain owner ◦ ◦ • • • •

1 No TLS client involved in CAA
2 Entities exchange data asynchronously not necessarily during handshake
3 Client may obtain DANE records when performing DNS address resolution
4 t = max (MMD +MVD, MMD +MSD)
5 Requires global adoption
5a A monitor looking for changes in log servers related to the concrete domain should exist
5b An entity looking for changes in TimeLine servers related to the concrete domain should exist
5c Domain owners should perform self-auditing to notice
5d CAA can report inconsistent certificate requests to domain owners
6 Not for clients visiting the server for the first time
7 Requires compromising DNSSEC keys
8 Requires a list of TTPs for TimeLine servers and also mirrors
9 TACK can optionally rely on third party repositories but describes no TTP enrolment
10 TLS extensions are pervasively supported thus, it is not considered a modification
11 HPKP requires modifying HTTP but not TLS servers
12 Optional, the SCT can be embedded in the certificate
13 DANE-TA supports domain CA and DANE-EE supports any certificate

TABLE VIII
SUMMARY OF THE CERTIFICATE PINNING TECHNIQUES COMPARISON. READ ◦/•/− AS “NO”/“YES”/“DO NOT APPLY” RESPECTIVELY.

Finally, the support of constrained devices opens an inter-
esting research. Considering the limitations present on nowa-
days IoT/M2M devices, certificate pinning solutions should
address the verification of the certificates requiring a minimum
storage (as reasoned in section V-H) and energy expenditure.
Moreover, as part of the offloading strategies, it is becoming
a trend to move certain communication services to the cloud
and to the fog. Since the access to these services is performed
using TLS or DTLS, certificate pinning solutions play an
important role. It is worth mentioning the work of DNS

PRIVate Exchange (DPRIVE) Working Group of the IETF
on DNS privacy, that focuses on providing confidentiality to
DNS transactions relying on TLS/DTLS for this purpose. As
part of the offloading strategy in IoT/M2M, DNS resolvers
will probably be replaced by a stub resolver that forwards
any DNS request to a resolver located near the device relying
on DNS over (D)TLS to guarantee privacy. Due to that, the
correct authentication of the resolver’s certificate is especially
worrying since it enables a huge number of attacks.

IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, VOL. V, NO. N, MONTH YEAR 27

VII. CONCLUSIONS

TLS has been widely used on Internet with a high degree
of success. Thus, it is reasonable it has been adopted by
IoT and M2M protocols. However, TLS and PKI tackle with
static services whereas services in IoT/M2M can be dynamic
and several orders of magnitude more numerous. Moreover,
IoT/M2M require adequate security support to address limita-
tions in processor, memory and battery and multiple vendors.

The global picture of PKI presented in the article, identifies
problems (section III-A) in regards to the number of authorities
that combined with the increasing number of endpoints to
protect, reveals that alternative certificate validation and attack
detection mechanisms are desirable to guarantee an adequate
degree of security.

Certificate Pinning technique (section IV) is being envisaged
as a way to strengthen the trust in the system. This article has
reviewed and compared the different proposals for certificate
pinning in the context of IoT/M2M. Section V has analyzed the
proposals in different aspects. Let us review the main points
we have found.

Only CT, SK and DANE use side channels. CT for exchang-
ing SCTs data, SK to verify the pin, and DANE for DNS initial
queries. In case of key loss, CT, SK, CAA and DANE provide
instant recovery, with different but bounded uncertainty times.

In a global attack scenario, IoT/M2M global adoption of CT
is required. This is not plausible due to the heterogeneity of
devices and solutions, so global attack detection may not be
feasible. Similar problems appear for SK in which malicious
servers will be indistinguishable from legitimate servers not
using SK. This is also the case of TACK if adopted by both
domain owners and clients since there is no way domain own-
ers can notice their TLS servers are being impersonated unless
clients share not only observed TACKs but report the absence
of TACKs for a give domain name. HPKP only protects clients
from a global attack to already visited and trusted TLS servers.
This may strongly limit the dynamicity of interactions with
the IoT increasing huge number of apps, services and devices.
DANE also requires global adoption in servers and clients to
protect from an impersonation only attack, if the domain owner
supports DANE, only clients supporting DANE will notice the
attack. There are no significant differences regarding instant
start up, and server modification.

CT and SK are the only approaches that require additional
TTPs. The need for extra storage is common to all proposals
but CAA and DANE, since they get the information from the
DNS. DANE is the only that supports security islands and
scenarios of domain owner self-signed certificates. CT, SK
and TACK require third party management, while the others
can be managed by the domain owner.

From all that, we conclude that DANE offers a set of char-
acteristics desirable for IoT and its dinamic scenarios. DANE
uses an existing side channel (DNS) but does not require
using a new side channel during TLS handshake. A query for
the address record is most often performed before the TLS
handshake. Thus services can frequently update certificates
and instantly recover from loss of keys, without imposing
convergence times or involving third parties. DANE does not

require collaboration between IoT limited devices in global
attack scenarios, nor additional TTPs, lowering operation and
management costs.

REFERENCES

[1] C. M. Medaglia and A. Serbanati, “An overview of privacy and security
issues in the internet of things.”

[2] R. H. Weber, “Internet of things – new security and privacy
challenges,” Computer Law & Security Review, vol. 26, no. 1, pp. 23
– 30, 2010. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0267364909001939

[3] F. T. Commission et al., “Internet of things: Privacy & security in a
connected world,” Washington, DC: Federal Trade Commission, 2015.

[4] C. Richardson, “Microservice architecture patterns and best prac-
tices,” URL: http://microservices. io/index. html [accessed: 2016-02-
12], 2016.

[5] L. Chen, “Continuous delivery: Huge benefits, but challenges too,”
IEEE Software, vol. 32, no. 2, pp. 50–54, 2015.

[6] A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Microservices architec-
ture enables devops: migration to a cloud-native architecture,” IEEE
Software, vol. 33, no. 3, pp. 42–52, 2016.

[7] C. Yang, P. Liang, and P. Avgeriou, “A systematic mapping study on the
combination of software architecture and agile development,” Journal
of Systems and Software, vol. 111, pp. 157–184, 2016.

[8] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and
its role in the internet of things,” in Proceedings of the First Edition
of the MCC Workshop on Mobile Cloud Computing, ser. MCC ’12.
New York, NY, USA: ACM, 2012, pp. 13–16. [Online]. Available:
http://doi.acm.org/10.1145/2342509.2342513

[9] S. Wang, J. Xu, N. Zhang, and Y. Liu, “A survey on service migration
in mobile edge computing,” IEEE Access, pp. 1–1, 2018.

[10] O. C. A. W. Group et al., “Openfog architecture overview,” White
Paper, February, 2016.

[11] D. Evans, “The internet of things: How the next evolution of the internet
is changing everything,” CISCO white paper, vol. 1, no. 2011, pp. 1–
11, 2011.

[12] B. Plale, D. Gannon, J. Brotzge, K. Droegemeier, J. Kurose,
D. McLaughlin, R. Wilhelmson, S. Graves, M. Ramamurthy, R. D.
Clark et al., “Casa and lead: Adaptive cyberinfrastructure for real-time
multiscale weather forecasting,” Computer, vol. 39, no. 11, 2006.

[13] T. Martin and J. Healey, “2006’s wearable computing advances and
fashions,” IEEE Pervasive Computing, vol. 6, no. 1, 2007.

[14] G. Pollock, D. Thompson, J. Sventek, and P. Goldsack, “The
asymptotic configuration of application components in a distributed
system,” University of Glasgow, Glasgow, UK, Technical Report,
1998. [Online]. Available: http://eprints.gla.ac.uk/79048/

[15] R. T. Fielding, “REST: architectural styles and the design of network-
based software architectures,” Doctoral dissertation, University of
California, Irvine, 2000. [Online]. Available: http://www.ics.uci.edu/
~fielding/pubs/dissertation/top.htm

[16] N. Kushalnagar, G. Montenegro, and C. Schumacher, “IPv6
over Low-Power Wireless Personal Area Networks (6LoWPANs):
Overview, Assumptions, Problem Statement, and Goals,” RFC 4919
(Informational), RFC Editor, Fremont, CA, USA, pp. 1–12, Aug.
2007. [Online]. Available: https://www.rfc-editor.org/rfc/rfc4919.txt

[17] D. Karaman, N. Gozuacik, M. O. Alagoz, H. Ilhan, U. Cagal, and
O. Yavuz, “Managing 6lowpan sensors with coap on internet,” in Signal
Processing and Communications Applications Conference (SIU), 2015
23th. IEEE, 2015, pp. 1389–1392.

[18] Z. Shelby, K. Hartke, and C. Bormann, “The Constrained Application
Protocol (CoAP),” RFC 7252 (Proposed Standard), RFC Editor,
Fremont, CA, USA, pp. 1–112, Jun. 2014, updated by RFC 7959.
[Online]. Available: https://www.rfc-editor.org/rfc/rfc7252.txt

[19] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS)
Protocol Version 1.2,” RFC 5246 (Proposed Standard), RFC Editor,
Fremont, CA, USA, pp. 1–104, Aug. 2008, updated by RFCs 5746,
5878, 6176, 7465, 7507, 7568, 7627, 7685, 7905, 7919. [Online].
Available: https://www.rfc-editor.org/rfc/rfc5246.txt

[20] E. Rescorla and N. Modadugu, “Datagram Transport Layer Security
Version 1.2,” RFC 6347 (Proposed Standard), RFC Editor, Fremont,
CA, USA, pp. 1–32, Jan. 2012, updated by RFCs 7507, 7905.
[Online]. Available: https://www.rfc-editor.org/rfc/rfc6347.txt

[21] R. Lychev, S. Jero, A. Boldyreva, and C. Nita-Rotaru, “How secure and
quick is quic? provable security and performance analyses,” in 2015
IEEE Symposium on Security and Privacy, May 2015, pp. 214–231.

IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, VOL. V, NO. N, MONTH YEAR 28

[22] P. K. Verma, R. Verma, A. Prakash, A. Agrawal, K. Naik, R. Tripathi,
M. Alsabaan, T. Khalifa, T. Abdelkader, and A. Abogharaf,
“Machine-to-machine (m2m) communications: A survey,” Journal of
Network and Computer Applications, vol. 66, pp. 83 – 105, 2016.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S1084804516000990

[23] H. Tschofenig and T. Fossati, “Transport Layer Security (TLS)
/ Datagram Transport Layer Security (DTLS) Profiles for the
Internet of Things,” RFC 7925 (Proposed Standard), RFC Editor,
Fremont, CA, USA, pp. 1–61, Jul. 2016. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc7925.txt

[24] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and
W. Polk, “Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile,” RFC 5280 (Proposed
Standard), RFC Editor, Fremont, CA, USA, pp. 1–151, May 2008,
updated by RFC 6818. [Online]. Available: https://www.rfc-editor.org/
rfc/rfc5280.txt

[25] P. Yee, “Updates to the Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile,” RFC 6818
(Proposed Standard), RFC Editor, Fremont, CA, USA, pp. 1–8, Jan.
2013. [Online]. Available: https://www.rfc-editor.org/rfc/rfc6818.txt

[26] M. L. Sichitiu and M. Kihl, “Inter-vehicle communication systems: a
survey,” IEEE Communications Surveys & Tutorials, vol. 10, no. 2,
2008.

[27] J. Kim, J. Lee, J. Kim, and J. Yun, “M2m service platforms: Survey,
issues, and enabling technologies.” IEEE Communications Surveys and
Tutorials, vol. 16, no. 1, pp. 61–76, 2014.

[28] J. Granjal, E. Monteiro, and J. S. Silva, “Security for the internet of
things: a survey of existing protocols and open research issues,” IEEE
Communications Surveys & Tutorials, vol. 17, no. 3, pp. 1294–1312,
2015.

[29] J. Clark and P. C. van Oorschot, “Sok: Ssl and https: Revisiting past
challenges and evaluating certificate trust model enhancements.” in
IEEE Symposium on Security and Privacy. IEEE Computer Society,
2013, pp. 511–525.

[30] J. Amann, O. Gasser, Q. Scheitle, L. Brent, G. Carle, and
R. Holz, “Mission accomplished?: Https security after diginotar,” in
Proceedings of the 2017 Internet Measurement Conference, ser. IMC
’17. New York, NY, USA: ACM, 2017, pp. 325–340. [Online].
Available: http://doi.acm.org/10.1145/3131365.3131401

[31] M. Conti, N. Dragoni, and V. Lesyk, “A survey of man in the middle
attacks,” IEEE Communications Surveys & Tutorials, vol. 18, no. 3,
pp. 2027–2051, 2016.

[32] S. Kent and K. Seo, “Security Architecture for the Internet Protocol,”
RFC 4301 (Proposed Standard), RFC Editor, Fremont, CA, USA, pp.
1–101, Dec. 2005, updated by RFCs 6040, 7619. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc4301.txt

[33] C. Kaufman, “Internet Key Exchange (IKEv2) Protocol,” RFC 4306
(Proposed Standard), RFC Editor, Fremont, CA, USA, pp. 1–99,
Dec. 2005, obsoleted by RFC 5996, updated by RFC 5282. [Online].
Available: https://www.rfc-editor.org/rfc/rfc4306.txt

[34] M. H. Behringer, “End-to-end security,” The Internet Protocol Journal,
vol. 12, no. 3, 9 2009, iSSN:1944-1134.

[35] Organization for the Advancement of Structured Information Standards,
“Security assertion markup language (saml) v2.0,” Organization for the
Advancement of Structured Information Standards, Tech. Rep., 2005.

[36] S. Cantor, J. Kemp, R. Philpott, and E. Maler, “Assertions and
Protocols for the OASIS Security Assertion Markup Language
(SAML) V2.0,” OASIS, Security Services (SAML) TC, Tech. Rep.,
Mar. 2005. [Online]. Available: http://docs.oasis-open.org/security/
saml/v2.0/saml-core-2.0-os.pdf

[37] R. Canetti and H. Krawczyk, “Security analysis of ike’s signature-
based key-exchange protocol,” in Annual International Cryptology
Conference. Springer, 2002, pp. 143–161.

[38] H. Krawczyk, “Sigma: The ‘sign-and-mac’ approach to
authenticated diffie-hellman and its use in the ike protocols,”
in Advances in Cryptology - CRYPTO 2003: 23rd Annual
International Cryptology Conference, Santa Barbara, California,
USA, August 17-21, 2003. Proceedings. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2003, pp. 400–425. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-45146-4_24

[39] W. Aiello, S. M. Bellovin, M. Blaze, R. Canetti, J. Ioannidis, A. D.
Keromytis, and O. Reingold, “Just fast keying: Key agreement in
a hostile internet,” ACM Transactions on Information and System
Security (TISSEC), vol. 7, no. 2, pp. 242–273, 2004.

[40] A. Jungmaier, E. Rescorla, and M. Tuexen, “Transport Layer Security
over Stream Control Transmission Protocol,” RFC 3436 (Proposed

Standard), RFC Editor, Fremont, CA, USA, pp. 1–9, Dec. 2002.
[Online]. Available: https://www.rfc-editor.org/rfc/rfc3436.txt

[41] B. Aboba and D. Simon, “PPP EAP TLS Authentication Protocol,”
RFC 2716 (Experimental), RFC Editor, Fremont, CA, USA, pp.
1–24, Oct. 1999, obsoleted by RFC 5216. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc2716.txt

[42] T. Dierks and C. Allen, “The TLS Protocol Version 1.0,” RFC
2246 (Proposed Standard), RFC Editor, Fremont, CA, USA,
pp. 1–80, Jan. 1999, obsoleted by RFC 4346, updated by
RFCs 3546, 5746, 6176, 7465, 7507, 7919. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc2246.txt

[43] S. Blake-Wilson, M. Nystrom, D. Hopwood, J. Mikkelsen, and
T. Wright, “Transport Layer Security (TLS) Extensions,” RFC
3546 (Proposed Standard), RFC Editor, Fremont, CA, USA, pp.
1–29, Jun. 2003, obsoleted by RFC 4366. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc3546.txt

[44] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone,
Handbook of Applied Cryptography (Discrete Mathematics and Its
Applications), 1st ed. CRC Press, 10 1996. [Online]. Available:
http://amazon.com/o/ASIN/0849385237/

[45] W. Diffie, P. C. Van Oorschot, and M. J. Wiener, “Authentication
and authenticated key exchanges,” Designs, Codes and Cryptography,
vol. 2, no. 2, pp. 107–125, 1992. [Online]. Available: http:
//dx.doi.org/10.1007/BF00124891

[46] J. Salowey, H. Zhou, P. Eronen, and H. Tschofenig, “Transport
Layer Security (TLS) Session Resumption without Server-Side
State,” RFC 5077 (Proposed Standard), RFC Editor, Fremont,
CA, USA, pp. 1–20, Jan. 2008. [Online]. Available: https:
//www.rfc-editor.org/rfc/rfc5077.txt

[47] R. Hummen, J. Hiller, H. Wirtz, M. Henze, H. Shafagh, and K. Wehrle,
“6lowpan fragmentation attacks and mitigation mechanisms,” in
Proceedings of the Sixth ACM Conference on Security and
Privacy in Wireless and Mobile Networks, ser. WiSec ’13. New
York, NY, USA: ACM, 2013, pp. 55–66. [Online]. Available:
http://doi.acm.org/10.1145/2462096.2462107

[48] S. Raza, H. Shafagh, K. Hewage, R. Hummen, and T. Voigt, “Lithe:
Lightweight secure coap for the internet of things,” IEEE Sensors
Journal, vol. 13, no. 10, pp. 3711–3720, Oct 2013.

[49] B. Dowling, M. Fischlin, F. Günther, and D. Stebila, “A cryptographic
analysis of the tls 1.3 handshake protocol candidates,” in Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2015, pp. 1197–1210.

[50] C. Cremers, M. Horvat, S. Scott, and T. van der Merwe, “Automated
analysis and verification of tls 1.3: 0-rtt, resumption and delayed
authentication,” in Security and Privacy (SP), 2016 IEEE Symposium
on. IEEE, 2016, pp. 470–485.

[51] D. J. Wu, A. Taly, A. Shankar, and D. Boneh, “Privacy, discovery, and
authentication for the internet of things,” CoRR, vol. abs/1604.06959,
2016. [Online]. Available: http://arxiv.org/abs/1604.06959

[52] Y. Sheffer, R. Holz, and P. Saint-Andre, “Summarizing Known Attacks
on Transport Layer Security (TLS) and Datagram TLS (DTLS),” RFC
7457 (Informational), RFC Editor, Fremont, CA, USA, pp. 1–13, Feb.
2015. [Online]. Available: https://www.rfc-editor.org/rfc/rfc7457.txt

[53] E. Rescorla, “Understanding the TLS Renegotiation Attack,”
http://www.educatedguesswork.org/2009/11/understanding_the_tls_
renegoti.html, 2009, [Online; accessed 3-April-2018].

[54] E. Rescorla, M. Ray, S. Dispensa, and N. Oskov, “Transport
Layer Security (TLS) Renegotiation Indication Extension,” RFC 5746
(Proposed Standard), RFC Editor, Fremont, CA, USA, pp. 1–15, Feb.
2010. [Online]. Available: https://www.rfc-editor.org/rfc/rfc5746.txt

[55] T. Duong and J. Rizzo, “Here come the ninjas,” Unpublished
manuscript, vol. 320, 2011, [Online; accessed 23-April-2018].
[Online]. Available: http://nerdoholic.org/uploads/dergln/beast_part2/
ssl_jun21.pdf

[56] N. J. AlFardan, D. J. Bernstein, K. G. Paterson, B. Poettering,
and J. C. N. Schuldt, On the Security of RC4 in TLS, ser.
SEC’13. USENIX Association, 2013. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=2534766.2534793

[57] A. Popov, “Prohibiting RC4 Cipher Suites,” RFC 7465 (Proposed
Standard), RFC Editor, Fremont, CA, USA, pp. 1–6, Feb. 2015.
[Online]. Available: https://www.rfc-editor.org/rfc/rfc7465.txt

[58] J. R. T. Duong, The CRIME attack, 9 2012. [Online]. Available: https:
//docs.google.com/presentation/d/11eBmGiHbYcHR9gL5nDyZChu_
-lCa2GizeuOfaLU2HOU/edit#slide=id.g1d134dff_1_222

[59] Y. G. N. H. A. Prado, BREACH: Reviving the CRIME attack, 2013.
[Online]. Available: http://breachattack.com

IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, VOL. V, NO. N, MONTH YEAR 29

[60] B. Smyth and A. Pironti, “Truncating TLS Connections to Violate
Beliefs in Web Applications,” INRIA Paris, Research Report, 10 2014,
this document extends https://hal.inria.fr/hal-00863371v1. [Online].
Available: https://hal.inria.fr/hal-01102013

[61] N. J. A. Fardan and K. G. Paterson, “Lucky thirteen: Breaking the tls
and dtls record protocols,” in 2013 IEEE Symposium on Security and
Privacy, 3 2013, pp. 526–540.

[62] P. Gutmann, “Encrypt-then-MAC for Transport Layer Security (TLS)
and Datagram Transport Layer Security (DTLS),” RFC 7366 (Proposed
Standard), RFC Editor, Fremont, CA, USA, pp. 1–7, Sep. 2014.
[Online]. Available: https://www.rfc-editor.org/rfc/rfc7366.txt

[63] R. Barnes, M. Thomson, A. Pironti, and A. Langley, “Deprecating
Secure Sockets Layer Version 3.0,” RFC 7568 (Proposed Standard),
RFC Editor, Fremont, CA, USA, pp. 1–7, Jun. 2015. [Online].
Available: https://www.rfc-editor.org/rfc/rfc7568.txt

[64] N. Mavrogiannopoulos, F. Vercauteren, V. Velichkov, and B. Preneel,
“A cross-protocol attack on the tls protocol,” in Proceedings of
the 2012 ACM Conference on Computer and Communications
Security, ser. CCS ’12. ACM, 2012, pp. 62–72. [Online]. Available:
http://doi.acm.org/10.1145/2382196.2382206

[65] C. Paar, D. Adrian, E. Kasper, J. A. Halderman, J. Steube,
J. Somorovsky, L. Valenta, M. Dankel, N. Heninger, N. Aviram,
S. Schinzel, S. Cohney, S. Engels, V. Dukhovni, and Y. Shavitt,
“Drown: Breaking tls using sslv2,” in 25th USENIX Security
Symposium, 2016, pp. 689–706. [Online]. Available: https://www.
usenix.org/sites/default/files/sec16_full_proceedings.pdf

[66] D. Chadwick, Understanding X. 500: the directory. Chapman & Hall,
Ltd., 1994.

[67] R. Housley, W. Ford, W. Polk, and D. Solo, “Internet X.509
Public Key Infrastructure Certificate and CRL Profile,” RFC 2459
(Proposed Standard), RFC Editor, Fremont, CA, USA, pp. 1–
129, Jan. 1999, obsoleted by RFC 3280. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc2459.txt

[68] W. Yeong, T. Howes, and S. Kille, “X.500 Lightweight Directory
Access Protocol,” RFC 1487 (Historic), RFC Editor, Fremont, CA,
USA, pp. 1–21, Jul. 1993, obsoleted by RFCs 1777, 3494. [Online].
Available: https://www.rfc-editor.org/rfc/rfc1487.txt

[69] S. Hardcastle-Kille, “X.500 and Domains,” RFC 1279 (Experimental),
RFC Editor, Fremont, CA, USA, pp. 1–15, Nov. 1991. [Online].
Available: https://www.rfc-editor.org/rfc/rfc1279.txt

[70] K. Igoe and D. Stebila, “X.509v3 Certificates for Secure Shell
Authentication,” RFC 6187 (Proposed Standard), RFC Editor,
Fremont, CA, USA, pp. 1–16, Mar. 2011. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc6187.txt

[71] R. L. Barnes, “Let the names speak for themselves: Improving domain
name authentication with dnssec and dane,” The Internet Protocol
Journal, vol. 15, no. 1, pp. 201–213, 3 2015, iSSN:1944-1134.

[72] H. Hoogstraaten, “Black Tulip : Report of the investigation into the
DigiNotar Certificate Authority breach,” Fox-IT BV, Cybercrime report
PR-110202, 2012.

[73] E. F. Foundation, “The EFF SSL Observatory,” https://www.eff.org/
observatory, 2010, [Online; accessed 11-April-2018].

[74] Q. S. Labs, “SSL Server Test,” https://www.ssllabs.com/ssltest/index.
html, 2009, [Online; accessed 19-April-2018].

[75] J. A. Berkowsky and T. Hayajneh, “Security issues with certificate au-
thorities,” in 2017 IEEE 8th Annual Ubiquitous Computing, Electronics
and Mobile Communication Conference (UEMCON), Oct 2017, pp.
449–455.

[76] J. B. Peter Eckersley, “Is the ssliverse a safe place?” in Proceedings
of the 27th Chaos Communication Congress, ser. CCC’10, 2010, pp.
1–56.

[77] N. Good, R. Dhamija, J. Grossklags, D. Thaw, S. Aronowitz,
D. Mulligan, and J. Konstan, “Stopping spyware at the gate:
A user study of privacy, notice and spyware,” in Proceedings
of the 2005 Symposium on Usable Privacy and Security, ser.
SOUPS ’05. ACM, 2005, pp. 43–52. [Online]. Available: http:
//doi.acm.org/10.1145/1073001.1073006

[78] J. Sunshine, S. Egelman, H. Almuhimedi, N. Atri, and L. F. Cranor,
“Crying wolf: An empirical study of ssl warning effectiveness,” in
Proceedings of the 18th Conference on USENIX Security Symposium,
ser. SSYM’09. Berkeley, CA, USA: USENIX Association, 2009,
pp. 399–416. [Online]. Available: http://dl.acm.org/citation.cfm?id=
1855768.1855793

[79] P. Eckersley, “How secure is HTTPS today? How often is it attacked?”
https://www.eff.org/deeplinks/2011/10/how-secure-https-today, 2011,
[Online; accessed 11-April-2018].

[80] C. Soghoian and S. Stamm, “Certified lies: Detecting and defeating
government interception attacks against ssl (short paper),” in Financial
Cryptography and Data Security: 15th International Conference,
FC 2011, Gros Islet, St. Lucia, February 28 - March 4, 2011,
Revised Selected Papers, G. Danezis, Ed. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, pp. 250–259. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-27576-0_20

[81] P. Eckersley and J. Burns, “The (decentralized) SSL observatory,” http:
//static.usenix.org/events/sec11/tech/slides/eckersley.pdf, 2011, [On-
line; accessed 11-April-2017].

[82] Z. Durumeric, J. Kasten, M. Bailey, and J. A. Halderman, “Analysis
of the https certificate ecosystem,” in Proceedings of the 2013
Conference on Internet Measurement Conference, ser. IMC ’13. New
York, NY, USA: ACM, 2013, pp. 291–304. [Online]. Available:
http://doi.acm.org/10.1145/2504730.2504755

[83] S. Labs, “SSL Pulse - Survey of the SSL Implementation of
the Most Popular Web Sites,” https://www.trustworthyinternet.org/
ssl-pulse/, 2017, [Online; accessed 21-April-2017].

[84] I. Ristic, “SSL Pulse - To Make SSL More Secure and
Pervasive,” https://www.trustworthyinternet.org/blog/2012/4/25/
ssl-pulse-to-make-ssl-more-secure-and-pervasive/, 2012, [Online;
accessed 12-Frebuary-2017].

[85] W. Chou, “Inside ssl: accelerating secure transactions,” IT Professional,
vol. 4, no. 5, pp. 37–41, Sep 2002.

[86] G. K. Pandya, “Nokia’s MITM on HTTPS traffic from their phone,”
https://gaurangkp.wordpress.com/2013/01/09/nokia-https-mitm/, 2013,
[Online; accessed 23-April-2018].

[87] S. Schultze and S. B. Roosa, “Trust darknet: Control and
compromise in the internet’s certificate authority model,” IEEE
Internet Computing, vol. 17, pp. 18–25, 05 2013. [Online]. Available:
doi.ieeecomputersociety.org/10.1109/MIC.2013.27

[88] R. Housley, S. Ashmore, and C. Wallace, “Trust Anchor Management
Protocol (TAMP),” RFC 5934 (Proposed Standard), RFC Editor,
Fremont, CA, USA, pp. 1–91, Aug. 2010. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc5934.txt

[89] S. Ashmore and C. Wallace, “Using Trust Anchor Constraints
during Certification Path Processing,” RFC 5937 (Informational), RFC
Editor, Fremont, CA, USA, pp. 1–8, Aug. 2010. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc5937.txt

[90] B. Laurie, A. Langley, and E. Kasper, “Certificate Transparency,” RFC
6962 (Experimental), RFC Editor, Fremont, CA, USA, pp. 1–27, Jun.
2013. [Online]. Available: https://www.rfc-editor.org/rfc/rfc6962.txt

[91] R. Merkle, “Method of providing digital signatures,” 1 1982, uS
Patent 4,309,569. [Online]. Available: https://www.google.com/patents/
US4309569

[92] G. Becker and R. universität Bochum, “Merkle signature schemes,
merkle trees and their cryptanalysis,” 2008.

[93] B. Laurie, “Secure the internet,” Nature, vol. 491, pp. 325–326, 11
2012.

[94] S. A. Crosby and D. S. Wallach, “Efficient data structures for
tamper-evident logging,” in Proceedings of the 18th Conference
on USENIX Security Symposium, ser. SSYM’09. Berkeley, CA,
USA: USENIX Association, 2009, pp. 317–334. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1855768.1855788

[95] P. Rogaway and T. Shrimpton, “Cryptographic hash-function basics:
Definitions, implications, and separations for preimage resistance,
second-preimage resistance, and collision resistance,” in Fast Software
Encryption: 11th International Workshop, FSE 2004, Delhi, India,
February 5-7, 2004. Revised Papers, B. Roy and W. Meier, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 371–388.
[Online]. Available: http://dx.doi.org/10.1007/978-3-540-25937-4_24

[96] G. Inc., “Certificate transparency website,” 2016. [Online]. Available:
https://www.certificate-transparency.org/

[97] S. Farrell, “Other Certificates Extension,” RFC 5697 (Experimental),
RFC Editor, Fremont, CA, USA, pp. 1–8, Nov. 2009. [Online].
Available: https://www.rfc-editor.org/rfc/rfc5697.txt

[98] D. Eastlake 3rd, “Transport Layer Security (TLS) Extensions:
Extension Definitions,” RFC 6066 (Proposed Standard), RFC Editor,
Fremont, CA, USA, pp. 1–25, Jan. 2011. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc6066.txt

[99] A. Deacon and R. Hurst, “The Lightweight Online Certificate Status
Protocol (OCSP) Profile for High-Volume Environments,” RFC 5019
(Proposed Standard), RFC Editor, Fremont, CA, USA, pp. 1–22, Sep.
2007. [Online]. Available: https://www.rfc-editor.org/rfc/rfc5019.txt

[100] C. Herley, “So long, and no thanks for the externalities: The rational
rejection of security advice by users,” in Proceedings of the 2009
Workshop on New Security Paradigms Workshop, ser. NSPW ’09.

IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, VOL. V, NO. N, MONTH YEAR 30

New York, NY, USA: ACM, 2009, pp. 133–144. [Online]. Available:
http://doi.acm.org/10.1145/1719030.1719050

[101] P. Eckersley, “Sovereign Key Cryptography for Internet Do-
mains,” https://www.eff.org/sovereign-keys, 2012, [Online; accessed
25-January-2018].

[102] D. M. Gordon, “A survey of fast exponentiation methods,” Journal of
algorithms, vol. 27, no. 1, pp. 129–146, 1998.

[103] S. Santesson, M. Myers, R. Ankney, A. Malpani, S. Galperin,
and C. Adams, “X.509 Internet Public Key Infrastructure Online
Certificate Status Protocol - OCSP,” RFC 6960 (Proposed Standard),
RFC Editor, Fremont, CA, USA, pp. 1–41, Jun. 2013. [Online].
Available: https://www.rfc-editor.org/rfc/rfc6960.txt

[104] M. Marlinspike, “Trust assertions for certificate keys,”
Working Draft, IETF Secretariat, Internet-Draft draft-perrin-
tls-tack-02, January 2013, http://www.ietf.org/internet-drafts/
draft-perrin-tls-tack-02.txt. [Online]. Available: http://www.ietf.org/
internet-drafts/draft-perrin-tls-tack-02.txt

[105] D. Johnson, A. Menezes, and S. Vanstone, “The elliptic curve digital
signature algorithm (ecdsa),” International Journal of Information
Security, vol. 1, no. 1, pp. 36–63, 2001. [Online]. Available:
http://dx.doi.org/10.1007/s102070100002

[106] P. Gallagher and C. F. Director, “Digital signature standard (dss),”
National Institute of Standards and Technology, Tech. Rep. FIPS PUB
186-4, 2009.

[107] S. H. Standard, “Fips pub 180-2,” National Institute of Standards and
Technology, 2002.

[108] P. Hoffman and J. Schlyter, “The DNS-Based Authentication of
Named Entities (DANE) Transport Layer Security (TLS) Protocol:
TLSA,” RFC 6698 (Proposed Standard), RFC Editor, Fremont, CA,
USA, pp. 1–37, Aug. 2012, updated by RFCs 7218, 7671. [Online].
Available: https://www.rfc-editor.org/rfc/rfc6698.txt

[109] R. Danyliw, J. Meijer, and Y. Demchenko, “The Incident Object
Description Exchange Format,” RFC 5070 (Proposed Standard),
RFC Editor, Fremont, CA, USA, pp. 1–92, Dec. 2007, obsoleted
by RFC 7970, updated by RFC 6685. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc5070.txt

[110] J. Hodges, C. Jackson, and A. Barth, “HTTP Strict Transport
Security (HSTS),” RFC 6797 (Proposed Standard), RFC Editor,
Fremont, CA, USA, pp. 1–46, Nov. 2012. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc6797.txt

[111] E. Rescorla, “HTTP Over TLS,” RFC 2818 (Informational), RFC
Editor, Fremont, CA, USA, pp. 1–7, May 2000, updated by RFCs 5785,
7230. [Online]. Available: https://www.rfc-editor.org/rfc/rfc2818.txt

[112] C. Jackson, “Forcehttps: Protecting high-security web sites from net-
work attacks,” in Proceedings of the 17th International World Wide
Web Conference, 2008, pp. 525–534.

[113] C. Jackson and A. Barth, “Beware of finer-grained origins,” in Web
2.0 Security and Privacy (W2SP 2008), 2008, pp. 1–7. [Online].
Available: http://seclab.stanford.edu/websec/safelock/fgo.pdf

[114] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach,
and T. Berners-Lee, “Hypertext Transfer Protocol – HTTP/1.1,” RFC
2616 (Draft Standard), RFC Editor, Fremont, CA, USA, pp. 1–176,
Jun. 1999, obsoleted by RFCs 7230, 7231, 7232, 7233, 7234, 7235,
updated by RFCs 2817, 5785, 6266, 6585. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc2616.txt

[115] C. Evans, C. Palmer, and R. Sleevi, “Public Key Pinning
Extension for HTTP,” RFC 7469 (Proposed Standard), RFC Editor,
Fremont, CA, USA, pp. 1–28, Apr. 2015. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc7469.txt

[116] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose, “Resource
Records for the DNS Security Extensions,” RFC 4034 (Proposed
Standard), RFC Editor, Fremont, CA, USA, pp. 1–29, Mar. 2005,
updated by RFCs 4470, 6014, 6840, 6944. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc4034.txt

[117] ——, “Protocol Modifications for the DNS Security Extensions,” RFC
4035 (Proposed Standard), RFC Editor, Fremont, CA, USA, pp. 1–53,
Mar. 2005, updated by RFCs 4470, 6014, 6840. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc4035.txt

[118] Z. Hu, L. Zhu, J. Heidemann, A. Mankin, D. Wessels, and
P. Hoffman, “Specification for DNS over Transport Layer Security
(TLS),” RFC 7858 (Proposed Standard), RFC Editor, Fremont,
CA, USA, pp. 1–19, May 2016. [Online]. Available: https:
//www.rfc-editor.org/rfc/rfc7858.txt

[119] T. Reddy, D. Wing, and P. Patil, “DNS over Datagram Transport
Layer Security (DTLS),” RFC 8094 (Experimental), RFC Editor,
Fremont, CA, USA, pp. 1–13, Feb. 2017. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc8094.txt

[120] D. Eastlake 3rd, “Domain Name System Security Extensions,” RFC
2535 (Proposed Standard), RFC Editor, Fremont, CA, USA, pp. 1–47,
Mar. 1999, obsoleted by RFCs 4033, 4034, 4035, updated by RFCs
2931, 3007, 3008, 3090, 3226, 3445, 3597, 3655, 3658, 3755, 3757,
3845. [Online]. Available: https://www.rfc-editor.org/rfc/rfc2535.txt

[121] R. Barnes, “Use Cases and Requirements for DNS-Based
Authentication of Named Entities (DANE),” RFC 6394 (Informational),
RFC Editor, Fremont, CA, USA, pp. 1–12, Oct. 2011. [Online].
Available: https://www.rfc-editor.org/rfc/rfc6394.txt

[122] O. Gudmundsson, “Adding Acronyms to Simplify Conversations about
DNS-Based Authentication of Named Entities (DANE),” RFC 7218
(Proposed Standard), RFC Editor, Fremont, CA, USA, pp. 1–5, Apr.
2014. [Online]. Available: https://www.rfc-editor.org/rfc/rfc7218.txt

[123] D. Eastlake 3rd, “RSA/SHA-1 SIGs and RSA KEYs in the Domain
Name System (DNS),” RFC 3110 (Proposed Standard), RFC Editor,
Fremont, CA, USA, pp. 1–7, May 2001, updated by RFC 6944.
[Online]. Available: https://www.rfc-editor.org/rfc/rfc3110.txt

[124] R. J. Ellison and C. Woody, “Supply-chain risk management: In-
corporating security into software development,” in System Sciences
(HICSS), 2010 43rd Hawaii International Conference on. IEEE, 2010,
pp. 1–10.

[125] P. Arias-Cabarcos, F. Almenárez-Mendoza, A. Marín-López, D. Díaz-
Sánchez, and R. Sánchez-Guerrero, “A metric-based approach to assess
risk for “on cloud” federated identity management,” Journal of network
and systems management, vol. 20, no. 4, pp. 513–533, 2012.

[126] C. Skalka, X. S. Wang, and P. Chapin, “Risk management for dis-
tributed authorization,” Journal of Computer Security, vol. 15, no. 4,
pp. 447–489, 2007.

[127] N. Li and J. Feigenbaum, “Nonmonotonicity, user interfaces, and risk
assessment in certificate revocation,” in International Conference on
Financial Cryptography. Springer, 2001, pp. 166–177.

Daniel Diaz-Sánchez is an associate professor at
UniversityCarlos III of Madrid. His research inter-
ests include distributed authentication/authorization,
content protection, distributed computing, fog com-
puting, IoT and Smart Cities. Díaz-Sánchez received
a PhD in telematics engineering from UC3M.

Andrés Marín is an associate professor at Uni-
versity Carlos III of Madrid. His research interests
include ubiquitous computing: limited devices, trust,
and security in next-generation networks. Marín
received a PhD in telecommunication engineering
from Universidad Politécnica of Madrid.

Florina Almenárez Mendoza is an associate profes-
sor at University Carlos III of Madrid. Her research
interests include trust and reputation management
models, identity management, and security architec-
tures in ubiquitous computing. Almenárez received
a PhD in telematics engineering from UC3M

IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, VOL. V, NO. N, MONTH YEAR 31

Patricia Arias Cabarcos is an Alexander von
Humboldt Post-Doctoral Fellow at Universität
Mannheim. Her interests include authentication,
identity management, and information systems se-
curity. Arias-Cabarcos received a PhD in telematics
engineering from UC3M.

Simon Sherratt R. Simon Sherratt is a professor in
the University of Reading, UK. His research inter-
ests include smart homes, personal area networks,
wearable devices, and their security, all with a focus
for mass-market healthcare. Sherratt received a PhD
in electronic engineering from the University of
Salford, UK.

