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This work reports the synthesis of boronated chitosan by reacting it with 4-

carboxyphenylboronic acid to improve its mucoadhesive properties. Three products with 

differing extent of boronate conjugation were synthesised and characterised using 1H NMR, FT-

IR and UV-Vis spectroscopy and the potential of these polymers to extend the residence time of 

loaded model drug in the bladder was investigated. 1H NMR and ninhydrin test were used to 

evaluate the extent of chitosan modification. Mucoadhesive properties were evaluated using ex 

vivo flow-through technique on porcine bladder mucosal tissue combined with fluorescent 

microscopy, where fluorescein sodium was used as a model drug. The mucoadhesive properties 

of these polymers on porcine bladder mucosa were also studied using tensile test. There was 

good correlation in the mucoadhesive profiles of the polymers using the flow through and 

tensile techniques. The degree of chitosan modification had a remarkable influence on their 

mucoadhesive behaviour and greater mucoadhesion was observed with increased degree of 

boronation. These chitosan derivatives have the potential as intravesical drug delivery systems 

to improve bladder therapy. 

Keywords: Chitosan, Mucoadhesive, boronation, Intravesical drug delivery, bladder. 

1. Introduction 

Bladder cancer is one of the frequent causes of tumour-associated mortality worldwide and the 

overall survival tendency for the advanced stage of the disease is only about a year despite the 

fact that urothelial cancerous tissues respond well to conventional chemotherapeutic agents.1–

3The local bioavailability and residence time of formulations delivered to the bladder is often 
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reduced as drugs are diluted or washed out of the bladder due to urine filling and excretion. 

Thus there is a need to develop better mucoadhesive delivery systems that are resistant to urine 

wash out, thereby prolonging duration of drug action and preventing disease progression.  

Chitosan is a biopolymer with well-established biodegradable, biocompatible and 

mucoadhesive properties.4–6 It is a polysaccharide consisting of acetylated and deacetylated 

glucosamine units, with the deacetylated segment that can be modified to prepare 

mucoadhesive derivatives such as chitosan-cysteine,7 chitosan-thioglycolic acid,8 chitosan-4-

thio-butyl-amidine,9 chitosan-glutathione,10 chitosan-N-acetylcysteine conjugates,11 chitosan-

graft-6-mercaptonicotinic acid12 and methacrylated chitosan.13 

One of the constituents of mucosal membranes are mucin oligosaccharides, which have sialic 

acid groups that are overexpressed in malignant tissues and organs such as the bladder.14 So, 

sialic acid moieties have been explored as therapeutic targets by conjugating polymeric drug 

carriers with phenylboronic acid groups which bind favourably with sialic acid groups to form 

reversible covalent complexes,15 thereby facilitating enhanced mucoadhesion and cellular 

uptake of their therapeutic payload.  

Phenylboronic acid decorated polymers have been explored for the delivery of drugs and 

biotherapeutics because they are biocompatible, mucoadhesive, can form stable colloidal 

systems and have tumour-targeting abilities.16–18 Transmucosal routes that have been explored 

include ocular,19–21 nasal22 and vaginal.23 Due to their responsiveness to glucose level, it makes 

them valuable for glucose detection18,24,25 and as glucose sensitive sustained insulin release 

system.26 They have also been explored for cancer targeting27–30 and gene delivery31,32 due to 

their favourable interaction with sialic acid moieties.  

Liu et al demonstrated that cyclosporine loaded phenylboronic acid conjugated polymeric 

nanoparticles reduced ocular drug clearance. The boronated nanoparticles displayed good drug 

encapsulation efficiency (13.7 % w/w), reduced inflammation after topical application to dry-

eye induced mice, and sustained drug release of up to 5 days showing their potential in reducing 

dosing interval and improving ocular drug bioavailability.20  

Recently, in vivo studies using H22 lung metastasis tumour-bearing mice showed that 

doxorubicin loaded boronate modified chitosan nanoparticles exhibit greater antitumour 

activity than carboxymethyl chitosan nanoparticles.33 3- and 4-carboxyphenylboronic acid 

modified chitosan nanoparticles were shown to exhibit superior doxorubicin loading, active 
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tumor targeting, cellular internalisation and target site retention, relative to unmodified 

nanoparticles.33,34 

Asantewaa et al studied the correlation between the physicochemical features of various 

boronic-acid-chitosan conjugates to their glucose adsorption properties.35 However, to our 

knowledge, there are no studies investigating how the physicochemical properties of different 

boronated chitosan affect urothelial mucoadhesiveness as a potential intravesical dosage form 

for bladder cancer treatment. Thus there is a critical need to establish whether boronated 

chitosan has sufficient interaction with the urothelial mucosa that is constantly in contact with 

urine, to prolong drug residence time in the bladder. 

In this work, we synthesised boronate-conjugated chitosan derivatives by reaction of chitosan 

with 4-carboxyphenylboronic acid using EDC and NHS as coupling agents, characterised the 

resultant products in terms of their physicochemical properties and evaluated in vitro adhesion 

to porcine urinary bladder mucosa to establish their intravesical drug delivery potential.  

2. Materials and Methods 

2.1. Materials  

Chitosan (high molecular weight grade, 370 kDa; degree of acetylation extent 29.3 ± 2.5 %), 

ninhydrin, trifluoroacetic acid, FITC-dextran (3-5 kDa), dextran 5 kDa, deuterium oxide, urea, 

uric acid, magnesium sulphate heptahydrate, sodium hydrogen phosphate, creatinine, sodium 

bicarbonate, sodium sulphate, disodium oxalate and trisodium citrate were all purchased from 

Sigma-Aldrich, UK. 4-carboxyphenylboronic acid (4-CPBA), N-3(dimethylaminopropyl)-N-

ethylcarbodiimide hydrochloride (EDC), N-hydroxysuccinimide (NHS), dimethyl sulfoxide 

(DMSO), disodium hydrogen phosphate, sodium chloride, potassium chloride, ammonium 

chloride and calcium chloride dihydrate  were all purchased from Fisher Scientific, UK. Dialysis 

membrane with molecular weight cut off 12-14 kDa was obtained from Medicell International, 

UK. All chemical reagents were used as received without further purification. Freshly excised 

porcine urinary bladders were procured from PC Turner Abattoir (Farnborough, Hampshire, UK).  

2.2. Synthesis of boronated chitosan 

Three types of boronated chitosan were synthesised by varying the molar amount of 4-CPBA 

(Table 1) using a published method with modification.34 
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Briefly, 1.5% w/v chitosan solution (100 mL) was prepared in 4% v/v acetic acid for 12 h at room 

temperature for complete polymer dissolution. According to Table 1, the required amounts of 

4-CPBA, EDC and NHS were dissolved in predetermined amounts of DMSO, stirred under dark 

conditions at room temperature for 30 min. The 4-CPBA/NHS/EDC mixtures were then added 

slowly to chitosan solution and stirred for another 24 h at room temperature, in the dark. The 

products were redispersed in deionised water, purified by dialysis in the dark (MWCO 12-14 kDa 

membrane) against 4.5 L of 7 mM HCl for 24 h (three changes) followed by dialysis against 4.5 L 

deionised water for 2 days (6 changes) to remove unreacted 4-CPBA. The products were freeze-

dried using Heto PowerDry LL3000 Freeze Dryer (Thermo Scientific, UK). 

Table 1  

Materials used for the synthesis of boronated chitosan, with low (LBCH), medium (MBCHI) and high 

(HBCHI) degrees of modification. 

Parameters LBCHI MBCHI HBCHI 

Chitosan (CHI) concentration (% w/v) 1.5 1.5 1.5 

4-carboxyphenyl boronic acid (4-CPBA, g) 0.28  0.56  1.11  

N-3(dimethylaminopropyl)-N-ethylcarbodiimide 
hydrochloride (EDC, g) 

0.39  0.77  1.54  

N-hydroxysuccinimide (NHS, g) 0.23  0.47 0.93 

DMSO for 4-CPBA, EDC & NHS dissolution (mL) 5 10 20 

Moles of 4-CPBA per unit mole CHI 0.20 0.39 0.79 

2.3. Characterisation of boronated chitosan 

2.3.1. 1H NMR spectroscopy 

Solutions of CHI, LBCHI MBCHI, and HBCHI (0.6 %w/v) were prepared in D2O acidified with 30 µL 

trifluoroacetic acid and allowed to be dissolved overnight at room temperature. The 1H NMR 

spectra were recorded using 400 MHz Ultrashield Plus™ B-ACS 60 spectrometer (Bruker, UK). 
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Fig. 1. Reaction scheme for the synthesis of boronated chitosan: CHI is the parent chitosan and LBCHI, 

MBCHI, and HBCHI are chitosans with low, medium, and high degrees of boronation, respectively; a 

(deacetylated), b (acetylated), and c (boronated) segments of chitosan repeating units. 

2.3.2. Quantification of the extent of chemical modification 

The quantity of boronate groups conjugated to chitosan was calculated using previously 

published method with slight modification.36 Briefly, 2 %w/v solution of ninhydrin in DMSO was 

prepared by stirring for 12 h, protected from light at room temperature. Unmodified and 

modified chitosan solutions (0.05 – 0.5 %w/v) were prepared by dissolving in 0.1 M acetic acid, 

stirred for 12 h under dark conditions at room temperature. 5mL of ninhydrin solution and 1.25 

mL of 4M phosphate buffer (pH 5.4±0.2) were mixed with 0.5 mL polymer solution. The resultant 

mixtures were incubated in a water bath at 85oC shaken at 60 rpm for 30 min. The degree of 

chitosan amine substitution was determined using microplate spectrophotometer at 500 nm 

(Epoch, BioTek Instruments Inc., UK). Mixture of ninhydrin solution and phosphate buffer 

solution (4M, pH 5.4) (4:1) served as the blank control. 

 

 

2.3.3. Fourier Transform-Infrared spectroscopy (FT-IR) 

Solid samples of modified and unmodified chitosan were scanned from 4,000 to 600 cm-1, 

resolution of 4 cm-1 to identify characteristic functional groups in both chitosan and the 

boronate moieties that suggested that boronation was successful. Data was processed based 

on the average of sixteen scans per spectrum generated by FT-IR spectrometer (PerkinElmer 

Spectrum 100, Thermo Scientific, UK). 
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2.3.4. Turbidimetric analysis 

The influence of pH on the turbidity of polymer samples was evaluated based on a method 

reported by Sogias et al. (2010) with slight modification.37 Briefly, polymer solutions (0.1 %w/v, 

pH 3) were prepared in 0.1M acetic acid at room temperature. NaOH solution (0.1 molL-1) was 

added to increase the pH stepwise from 3 to 9 and 0.1 molL-1 HCl was used to adjust the pH of 

the samples if necessary. The turbidity values of polymer dispersions were measured at 400 nm 

using UV-Vis spectrophotometer (Jenway 7315, Bibby Scientific, UK).  

2.3.5. X-ray diffraction analysis 

In order to investigate the influence of boronation on the crystallinity of chitosan, solid forms of 

the polymers were studied using an earlier reported method.13 Briefly, solid samples of CHI, 

LBCHI, MBCHI, and HBCHI were loaded into a capillary tube sealed with wax to avoid loss of 

sample and placed onto the goniometer under a microscope to be analysed with a wide-angle 

powder D8 Advance diffractometer/LYNXEYE XE detector (Bruker, UK). Samples were scanned 

at diffraction ranges from 5 to 65oC with a scan step of 0.02o, producing distinctive 

diffractograms at the rate of 2.5 scans min-1. 

2.4. Ex vivo porcine mucoadhesion studies 

2.4.1. Preparation of polymer / fluorescein sodium mixtures and artificial urine solutions 

The solutions/dispersions of CHI, LBCHI, MBCHI and HBCHI were prepared by dissolving the 

polymers in 0.1 M acetic acid and stirred overnight in dark conditions at room temperature. 

Resultant polymer solutions/dispersions were mixed with 0.1 %w/v fluorescein sodium to yield 

final polymer concentration of 0.4 %w/v (FS/CHI, FS/LBCHI, FS/MBCHI and FS/HBCHI, 

respectively). FITC-dextran 0.4 %w/v in deionised water served as negative control. 

Chutipongtanate and Thongboonkerd (2010) method38 was used to prepare artificial urine. 

Briefly, urea (24.27 g), uric acid (0.34 g), magnesium sulphate heptahydrate (1.00 g), sodium 

hydrogen phosphate (1.00 g), disodium hydrogen phosphate (0.11 g), creatinine (0.90 g), 

sodium bicarbonate (0.34 g), sodium sulphate (2.58 g), disodium oxalate (0.03 g), trisodium 

citrate (2.97 g), sodium chloride (6.34 g), potassium chloride (4.50 g), ammonium chloride (1.61 

g), and calcium chloride dihydrate (0.89 g) were dissolved in 2 L ultrapure water (18.2 MΩ) for 

3 h at room temperature. The resultant artificial urine had a final pH of 6.2±0.2. 
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2.4.2. Retention on porcine urinary bladder mucosa 

Fluorescence microscopy (MZ10F microscope, Leica Microsystems, UK), coupled to an “ET GFP” 

filter camera (Zeiss Imager A1/AxioCam MRm camera, 1296 x 966 pixels, 0.8 x magnification) 

was used to investigate the mucosal retention of model drug fluorescein sodium in the presence 

of the polymeric carriers based on a slightly modified protocol developed in-house.39 Freshly 

excised porcine urinary bladders were stored on ice until use and used within 24 h of 

procurement. The mucosal side of the bladder tissue was prevented from any possible damage 

during excision of the studied mucosal section about 1.5 x 2.5 cm and rinsed with artificial urine 

solution (~ 3 mL) prior to blank tissue imaging. The bladder tissue was placed on a glass slide 

and maintained in an incubator at 37oC during urine wash-out. The following exposure times 

were used: FITC-dextran (80 ms), FS/CHI (211 ms), FS/LBCHI, FS/MBCHI and FS/HBCHI (86 ms). 

Microscopic images of the tissues were taken before and after sample application (50μL) as well 

as after each of the five washing cycles with 10 mL artificial urine/cycle at 2 mL/min. The studies 

were carried out in triplicates. Image J software (National Institute of Health, USA) was used to 

analyse the microscopic images, generating average fluorescence values as a function of urine 

volume used for the wash-out. Fluorescence intensity values were normalised against the blank 

tissue control. The WO50 values (volume of artificial urine required to wash-out 50 % of the 

applied fluorescence sodium/polymer mixture) were determined based on the polynomial fit of 

the percent mucosal fluorescence retention versus artificial urine volume graphs (Fig. S1, 

Supplementary information). 

2.5. Tensile method 

The TA-XT Plus Texture Analyser (Stable Micro Systems Ltd, UK) coupled to a 5 kg load cell was 

used as an additional technique to study the mucoadhesive properties of the polymer samples. 

Blank chitosan solutions (0.4 %w/v in 0.1 M acetic acid solution) served as the positive control, 

while the negative control was dextran solution (0.4 %w/v in water). Porcine bladder tissues 

were secured at the base of a cylindrical container. The vessel bottom had a circular cut-out 

region (20 mm diameter) exposing the mucosal surface of the bladder tissue. This container was 

screwed onto the probe of the texture analyser through a hole drilled on the lid of the container. 

Another bladder tissue was placed on a petridish and coupled onto the lower platform of the 

texture analyser, exposing the mucosal surface (20 mm diameter) of another bladder tissue. The 

tests were performed using an earlier reported equipment settings40 with slight modification: 

pre-speed test 1.0 mm/s; test speed 0.1 mm/s; post-test speed 0.1 mm/s; applied force 0.05 N; 

contact time 120.0 s; trigger type auto; trigger force 0.1 N; and return distance of 10.0 mm. 
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Bladder tissues were maintained in an incubator at 37oC for 5 min prior to the study. CHI, 

dextran, LBCHI, MBCHI and HBCHI samples (0.4 mL) were applied onto the exposed area of the 

bladder tissue secured onto the lower platform of the texture analyser. The probe was then 

lowered such that the upper blank bladder tissue comes in contact with the formulation applied 

onto the bladder tissue secured on the lower platform for 2 min. The Texture Analyser software 

(T.A. Exponent) was used to record the area under the force versus distance curves (work of 

adhesion) as well as the force of adhesion/adhesive strength which is the maximum force 

needed to detach tissue from the polymer solutions/dispersions.40,41 

2.6. Statistical analysis 

All experimental data were collected in triplicates and data expressed as mean ± standard 

deviation. Data were compared using t-test and one-way ANOVA/post-hoc Bonferroni test with 

GraphPad Prism 5.04 (GraphPad Software Inc., San Diego, California), with p < 0.05 depicting 

significant statistical difference between data sets. 

3. Results and discussion 

The potential for chitosan as material for drug delivery and tissue engineering cannot be 

overemphasised due to its physical and biological properties such as biocompatibility, 

mucoadhesiveness and permeation enhancing properties.5,42–44 Chemical modification of 

chitosan with boronate groups may impact on its urothelial mucoadhesiveness. The 

biocompatible nature of boronate modified chitosan nanoparticles has been previously 

established in mouse and mammalian cells.33,34 Over 90% of human bone marrow 

neuroblastoma SH-SY5Y cells, human liver cancer HepG2 cells and mouse liver cancer H22 cells 

remained viable after incubation with chitosan and boronated chitosan based nanoparticles for 

48h.34 Also, boronated dextran based formulations were tested on healthy rabbit eyes and did 

not trigger any inflammatory response acutely (1 week) and chronically (12 weeks).20 These 

studies suggested that boronated drug carriers are safe. Consequently, cytotoxicity testing was 

not carried out for the studied boronated chitosan. Moreover, several in vitro and in vivo studies 

have already established the safety of phenylboronate molecules.17,20,45  

3.1. Synthesis of boronated chitosan derivatives and physical properties 

Three types of boronated chitosan were synthesised (Table 1) using EDC/NHS chemistry which 

is an efficient synthetic method for covalent amide bond formation.46 The yields of LBCHI, 

MBCHI, and HBCHI were 61%, 43%, and 33%, respectively and all materials were off white colour 
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(Table 2). The product yield decreased as the extent of chitosan modification increased. This 

finding correlates well with our previous studies where chitosan with low extent of 

methacrylation produced a greater yield (62%) than sample with a high extent of methacrylation 

(24%).13 The potential reacetylation of chitosan with acetic acid under the conditions of the 

reaction does not happen as it is seen from the analysis of acetylation degrees of all products, 

which do not change significantly.  

Table 2  

Yield and degrees of boronation (using 1H NMR spectroscopy and ninhydrin test) and acetylation (using 

1H NMR spectroscopy) of LBCHI, MBCHI, and HBCHI  

Parameter Chitosan LBCHI MBCHI HBCHI 
Yield (%) n/a 61 43 33 
Boronation extent 

(%) 

1H NMR 

 

n/a 
 
 

3.9 ± 0.3 

 

5.5 ± 0.1 

 

16.5 ± 0.2 

 

Ninhydrin test n/a 4.4 ± 1.8 

 

7.4 ± 1.2 

 

10.7 ± 2.2 

 

Acetylation (%) 29.3±2.5 

 

26.6±1.0 

 

29.4±0.9 31.8±1.5 

 

 

According to the 1H NMR spectra (Fig. 2), the characteristic peaks of chitosan were evident at 

2.0 ppm (-CH3 from the acetylated segment of chitosan) as well as 3.1-3.8 ppm (protons from 

the glucosamine ring). With the boronated chitosan, additional peaks were evident at 7.8-8 ppm 

representative of the phenyl ring protons from the boronate moiety, confirming the successful 

conjugation of phenylboronate groups to chitosan. Also, the peaks at 2.7-2.8 ppm for the 

boronated chitosan are the result of the quartet methyne protons of the boronic acid. These 

spectral data are in good agreement with that reported by Zhang et al.14 
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Fig. 2. 1H NMR spectra of CHI (1), LBCHI (2), MBCHI (3), and HBCHI (4), recorded in D2O acidified with 1% 

trifluoroacetic acid. Methyl protons from the acetylated part of chitosan observed at 2.0 ppm (i), methyne 

protons from the boronate moiety were evident at 2.7 - 2.8 ppm; (ii) H2-H6 protons of CHI were detected 

at 3.0-4.0 ppm (iii & iv) and benzene ring of the boronate groups detected around 7.8 and 8.0 ppm (v & 

vi). 
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Their degree of boronation was calculated from the ratio of mean intensity of the proton peaks 

of the boronate moieties (δ = 7.8-8.0 ppm) relative to that of the chitosan glucosamine protons 

(δ = 3.0-4.0 ppm). 

𝐵𝑜𝑟𝑜𝑛𝑎𝑡𝑖𝑜𝑛 (%) =
𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑜𝑓 𝑏𝑜𝑟𝑜𝑛𝑎𝑡𝑒 𝑝𝑟𝑜𝑡𝑜𝑛𝑠 𝑎𝑡 7.8 & 8.0 𝑝𝑝𝑚 /2

𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑜𝑓 𝑐ℎ𝑖𝑡𝑜𝑠𝑎𝑛 𝐻2−𝐻6  𝑝𝑟𝑜𝑡𝑜𝑛𝑠 /6
100%                (1) 

Based on 1H NMR data analysis (Fig. S1), a two-fold increase in the ratio of 4-CPBA per unit mole 

of chitosan used for LBCHI to generate MBCHI (Table 1) did not show a doubling of boronate 

conjugation (3.9% vs 5.5%, respectively) despite doubling the amount of boronate groups 

available to conjugate with the chitosan primary amino group. However, a 3-fold increase in the 

degree of boronation occurred when doubling the quantity of 4-CPBA in HBCHI against MBCHI 

with boronation of 5.5% and 16.5%, respectively. This finding may be due to a critical amount 

of 4-CPBA required to conjugate boronate groups to chitosan amine groups significantly.  

3.2. Calculation of boronation extent using ninhydrin test 

The ninhydrin test was used as an additional means of quantifying the degree of substitution of 

chitosan amine groups with boronate moieties. The principle of detection is based on the fact 

that ninhydrin reacts with the unmodified amine groups of chitosan to form a coloured product 

measurable by UV spectroscopy.47 The slope of the adsorption versus concentration curve of 

unconjugated chitosan is represented as δCHI, while that of LBCHI, MBCHI, and HBCHI are 

denoted as δBCHI. Boronation percentage can be defined as (1-δBCHI/δCHI)* 100%. 13,36The 

respective boronation extent for LBCHI, MBCHI, and HBCHI were 4.4%, 7.4%, and 10.7% (Table 

2). These values were comparable with that calculated using 1H NMR spectroscopy (3.9%, 5.5%, 

and 16.5%, respectively) and showing the same trend in the degree of boronation with an 

increase in the molar ratio of 4-CPBA used. 

3.3. FT-IR analysis 

FT-IR spectra (Fig. 3) showed pronounced absorption band at 1026-1151 cm-1 indicating the 

amine C-N stretch from chitosan. Since both chitosan and boronate groups exhibit alkyl C-H 

stretch at 2850 and 2930 cm-1, the increase in the intensity of the absorption bands depicts the 

formation of the boronated chitosan. The appearance of the new signal at 1311 cm-1 indicated 

–B(OH)2 groups of the boronic acid segment and peaks evident at 713 and 1533 cm-1 

represented para-substituted benzene ring. The prominent absorption peak at 1636 cm-1 in 

LBCHI, MBCHI and HBCHI confirmed the successful grafting of phenylboronate groups onto 

chitosan. This finding is in good agreement with the FT-IR spectra chitosan-boronate conjugate 
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reported in earlier studies 14 where –B(OH)2 groups were evident at 1333 cm-1; aromatic C-H 

bending bands were observed at 713 cm-1 while that of the benzene ring appeared at 1546 cm-

1. Also, the absorption peak confirming chitosan boronation (1636 cm-1) is comparable to that 

of the chitosan-boronate conjugate earlier reported (1643 cm-1). The FT-IR spectra of LBCHI, 

MBCHI and HBCHI are comparable but vary in terms of the spectral intensity, which is dictated 

by their degree of boronation.  

 

Fig. 3. FT-IR spectra of chitosan and boronated chitosan with distinct peak at 1311 cm-1 indicative of –

B(OH)2 groups; absorption bands at 713 and 1533 cm-1 depicted p-substituted benzene and absorption 

band confirming –NH-CO- linkage between chitosan and boronate groups evident at 1636 cm-1. 

3.4. Turbidimetric analysis 

The typical pH of the bladder environment is between 6 and 7. However, various factors such 

as diet and disease states such as bladder cancer can impact urine pH resulting in pH ranges 

from 4.6 to 8.48–50 Moreover, changes in solution turbidity may impact product stability and 

performance. Thus there is a need to develop drug carriers that will withstand possible pH 

changes in the bladder.  

The modified and unmodified chitosan solutions maintained transparency until pH 6.5, where 

further increase in pH resulted in a drastic increase in solution turbidity (Fig. 4). This turbidity-

pH pattern is in good agreement with our earlier reports,13,37 where the unmodified chitosan 

and the chitosan with low extent of methacrylation displayed steep increase in degree of 

turbidity at ≥ pH 6.5 comparable to our boronated chitosans. The influence of boronate 

conjugation on the turbidity of chitosan solution was pronounced at pH ≥ 7, where the 

boronated chitosans displayed a lower turbidity than that of the unmodified chitosan (p < 0.05). 
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This is because at pH ≥ 7 and higher degree of boronate conjugation, the bulky boronate groups 

would disrupt the semi-crystalline nature of chitosan, thereby improving its solubility and 

decreasing the solution turbidity.13,37  There was significant difference in the turbidity values of 

the boronated chitosan at pH 9 (Fig. 4).  

 

Fig. 4. Effect of pH on solution turbidity of unmodified and boronated chitosan (n=3, mean ± standard 

deviation)  

3.5. X-ray diffraction analysis 

Chitosan is a semi-crystalline polymer that displayed two main peaks at diffraction angles of 9.8o 

and 20.5o (Fig. 5). This finding is in good agreement with that of the chitosan peaks we previously 

reported.13,37,51,52 There was reduction in the crystallinity of chitosan after boronation with the 

disappearance and broadening of peaks as well as peaks appearing at a diffraction angle 

different from that of chitosan. The boronated chitosan did not exhibit any peak at a diffraction 

angle of 9.8o. The distinctive broad peaks for LBCHI, MBCHI and HBCHI were evident at 20.5o, 

21.6o and 21.9o, respectively (Fig. 5). This finding is in good agreement with that observed with 

the methacrylated chitosans with loss and broadening of peaks evident at diffraction angles of 

8.3o and 22.4o, respectively.13  
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Fig. 5. X-ray diffractograms of CHI, LBCHI, MBCHI and HBCHI generated at scan angle 5-65o, 2.5 scans·min-

1, scan step of 0.02o, spectra offset for improved clarity. 

3.6. Urine wash-out studies 

Fluorescein sodium (FS), which served as the model drug, was mixed with the unmodified and 

boronated chitosan prior to the mucoadhesion studies. The unmodified chitosan served as the 

mucoadhesive positive control,53 while the negative control was FITC-dextran, with limited 

mucoadhesive property.54 The ex vivo porcine bladder was used to measure the wash-out50 

values of fluorescein sodium in the presence of the unmodified and boronated chitosan. WO50 

is the volume of artificial urine needed to remove 50% of fluorescein from the bladder mucosal 

surface.39 

FITC-dextran displayed the least mucosal retention on the porcine bladder mucosa (WO50 of 7±2 

mL, Fig. 6) from extrapolation as 10 mL of artificial urine was used for each wash-out cycle similar 

to that reported previously.13,39 FITC-dextran was significantly less mucoadhesive than the 

boronated chitosan over the five washing cycles (with 50 mL artificial urine) (p < 0.05). Also, 

unmodified chitosan was significantly more mucoadhesive than FITC-dextran (p < 0.05).  

Typically, cationic polymers like chitosan interact with negatively charged sialic acid groups 

present on urothelial mucosal surfaces via electrostatic interaction. Phenylboronic acid is 

composed of phenyl substituent and two hydroxyl groups attached to boron, which enables it 

to form a complex with the diol groups of sialic acid at physiological pH.15 The presence of 

counter ions in the artificial urine used for the wash-out studies inhibits the favourable 

interaction of chitosan with sialic acid-rich mucosal surfaces. Chitosan conjugation with 

boronate groups (HBCHI) resulted in 3.1-fold increase in their WO50 values. The WO50 values of 
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FS/CHI, FS/LBCHI, FS/MBCHI and FS/HBCHI were 15±4 mL, 23±3 mL, 48±5 mL and 55±2 mL, 

respectively, calculated based on the polynomial fit of the mucosal fluorescence retention 

versus urine volume graph (Fig. S2). Boronated chitosan may interact with mucosal surfaces 

through various mechanisms:22 (i) the phenylboronic acid groups could potentially form 

covalent linkage with sialic acid expressed on cell membranes to form reversible covalent 

complexes55,56, (ii) hydrogen bond formation with mucin glycoproteins possible due to its 

constituent hydroxyl groups43 and (iii) electrostatic interaction between cationic polymer and 

negatively charged sialic acid residues.42,53 Therefore, the greater degree of mucoadhesion as 

seen in HBCHI could be due to the more boronate groups being available to interact with the 

mucosal surface (Fig. 6 and Fig. 7).  

Significant difference in the mucoadhesive behaviour of the parent chitosan and the boronated 

derivatives (LBCHI, MBCHI and HBCHI) can be seen after two urine washing cycles and 

differences remained significant after five washing cycles (p < 0.05). MBCHI and HBCHI were 

significantly more mucoadhesive than LBCHI after the first washing cycle with 10 mL artificial 

urine. On the other hand, the mucoadhesive behaviour of MBCHI and HBCHI was not 

significantly different after 5 washing cycles with 50 mL artificial urine. This finding indicated 

that the urine wash-out resistance of boronated chitosan may become unchanged after a 

certain degree of boronation. Fig. 7 confirmed that FS/CHI and FS/LBCHI displayed comparable 

mucoadhesiveness in terms of their WO50 values (15±4 mL vs 23±3 mL) but that of HBCHI was 

significantly more mucoadhesive than MBCHI, with WO50 values of 48±5 mL and 56±2 mL, 

respectively. Thus, boronation still had a somewhat influence on the mucoadhesiveness of the 

boronated chitosans, which was most prominent after washing out the bladder mucosa with 30 

mL artificial urine. 
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Fig. 6. Ex vivo urine wash-out studies using porcine urinary bladder with fluorescently labelled dextran, 

FS/CHI, FS/LBCHI, FS/MBCHI and FS/HBCHI. (a) Exemplary fluorescent microscopic photos of the urinary 

bladder over 5 washing cycles, scale bar represents 2 mm; (b) Mucosal retention of the model drug 

fluorescein sodium mixed with CHI, LBCHI, MBCHI and HBCHI at different washing cycles; FITC-dextran 

served as negative control and FS/CHI (unmodified chitosan) as positive control. Results presented as 

average ± standard deviation, n = 3, all the studied groups of samples displayed statistically significant 

differences between them (p < 0.05) except those depicted by “ns” implying no significant differences 

between particular groups of samples. 
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It is important to note that the two formulations with better retention (FS/MBCHI and 

FS/HBCHI) show anomalously brighter images and over 100 % mucosal retention values in the 

initial wash with 10 mL. This could be related to positive deviations in the fluorescence intensity 

in this concentration range of sodium fluorescein as reported in Ref.57 However, these 

deviations do not affect the overall result showing greater retention of sodium fluorescein with 

MBCHI and HBCHI formulations.   

 

 

Fig. 7. Urine wash-out50 values of FITC-dextran, CHI, LBCHI, MBCHI and HBCHI. Results presented as 

average ± standard deviation, n = 3; all the studied groups of samples displayed statistically significant 

differences between them (p < 0.05) except those depicted by “ns” implying no significant differences 

between particular groups of samples. 

3.7. Mucoadhesive properties studied using tensile test 

The force of detachment or adhesive strength indicates the force required to overcome the 

adhesive bonds between the drug carrier and bladder mucosa, while the work of adhesion is 

the area under the force-distance curves. 
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Fig. 8. (a) Force of detachment and (b) work of adhesion of dextran, CHI, LBCHI, MBCHI and HBCHI to 

porcine bladder mucosa measured using tensile test. Results presented as mean ± standard deviation, n 

= 3; all the studied groups of samples displayed statistically significant differences between them (p < 

0.05) except those depicted by “ns” implying no significant differences between particular groups of 

samples. 

 Though, dextran and CHI displayed similar force of detachment (Fig. 8), the work of adhesion 

values showed that CHI was statistically more mucoadhesive than dextran. MBCHI and HBCHI 

were significantly more mucoadhesive compared to the unmodified chitosan with the force of 

detachment in increasing order from dextran (0.04±0.01 N) < CHI (0.06±0.01 N) < LBCHI 

(0.08±0.01 N) < MBCHI (0.12±0.01 N) < HBCHI (0.32±0.02 N). CHI vs LBCHI; LBCHI vs MBCHI and 

MBCHI vs HBCHI displayed comparable forces of detachment and work of adhesion values. The 

work of adhesion presented in increasing order: CHI (0.14±0.02 N·mm) <LBCHI (0.16±0.02 

N·mm) < MBCHI 0.2±0.01 N·mm < HBCHI (0.4 N±0.02 N·mm). Overall, the adhesive strength of 

the polymers correlated well with their work of adhesion as MBCHI and HBCHI exhibited greater 

force of detachment and work of adhesion relative to the parent chitosan. Though dextran and 

CHI displayed similar force of detachment, the work of adhesion values showed that CHI was 

statistically more mucoadhesive than dextran. These findings inferred that the 

mucoadhesiveness of the polymers was improved with increased extent of boronation. This is 

in good agreement with the urine-wash-out test data. 
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4. Conclusions 

Chitosan boronation had a profound influence on the mucoadhesiveness of the new polymers 

as their mucoadhesive properties (in terms of wash-out50 profile, force of adhesion/detachment 

and work of adhesion) were greatest for the highly boronated chitosan. This makes boronated 

derivatives of chitosan promising as mucoadhesive excipients for formulating dosage forms not 

only for intravesical drug delivery but also for applications in other mucosal routes of drug 

administration.  
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