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SOME PROPERTIES RELATED TO TRACE INEQUALITIES FOR THE

MULTI-PARAMETER HARDY OPERATORS ON POLY-TREES

NICOLA ARCOZZI, PAVEL MOZOLYAKO, KARL-MIKAEL PERFEKT

Abstract. In this note we investigate the multi-parameter Potential Theory on the weighted d-tree (Carte-

sian product of several copies of uniform dyadic tree), which is connected to the discrete models of weighted

Dirichlet spaces on the polydisc. We establish some basic properties of the respective potentials, capacities

and equilibrium measures (in particular in the case of product polynomial weights). We explore multi-

parameter Hardy inequality and its trace measures, and discuss some open problems of potential-theoretic

and combinatorial nature.

1. Introduction

The Hardy operator on the set of the positive integers is given by Iϕ(n) =
∑n
l=0 ϕ(l). The problem of

characterizing the positive weights u, v : N→ R+ such that

(1) ‖Iϕ‖`p(v) ≤ C‖ϕ‖`p(u)

for some positive C, depending only on 1 < p < ∞, u, and v, has long been considered and solved [14]. It

was only rather recently [5] that an analogous problem was considered on trees. Let T be a tree with vertex

set V (T ) 3 o, where o is a root of T , and define, for ϕ : V (T ) → R+, the function Iϕ : V (T ) → R+ as

Iϕ(α) =
∑
β∈[o,α] ϕ(β), where [o, α] is the “geodesic” joining α to the root. In fact, N is a particular tree,

but general trees might exhibit the exponential growth, with respect to n, of the number of points having

distance n to a distinguished vertex. The usual dyadic tree is a typical example. We postpone the precise

definition of the Hardy operator on trees to the next section, where the necessary notation is introduced.

Characterizing the two-weight inequality for the Hardy operator on trees led to a new characterization of

the Carleson measures for the Dirichlet space, a result originally due to Stegenga [13], which applied, in fact,

to a wide range of exponents, weights, and underlying spaces. In its simpler form, one wants to characterize

all possible measures µ ≥ 0 on the unit disc {z ∈ C : |z| < 1} in the complex plane, such that

(2)

∫∫
D
|f(z)|2dµ(z) ≤ C

∫∫
D
|f ′(z)|2dxdy

for all holomorphic functions satisfying f(0) = 0. The connection between the holomorphic problem and the

discrete one might be summarized as follows. The function f on D is somehow identified with the function

Iϕ, the function f ′ with ϕ (the “derivative” of Iϕ), the unit disc D with the tree T which indexes its dyadic

Whitney decomposition.

In 1985, E. Sawyer [12] considered the extension of (1) to the bi-linear case: IIϕ(m,n) =
∑m
i=0

∑n
j=0 ϕ(i, j),

with ϕ : N2 → R+. He characterized the two weight inequality for the bi-linear Hardy operator II, and it

should be mentioned that the tri-linear inequality still awaits a characterization.

Recently, we and Giulia Sarfatti [4] considered the problem of characterizing the Carleson measures for

the Dirichlet space on the bi-disc, which may be thought of D(D2) ≡ D(D)⊗D(D). The first step is reducing

the problem to one on the bi-tree: the Cartesian product of two copies of the tree, with the corresponding

Hardy operator defined by summation on Cartesian products of geodesics, as in Sawyer’s result. We could
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not modify the proof of Sawyer, however, to make it work in the bi-tree case. Our proof follows Stegenga’s

idea of proving a capacitary strong type inequality, which is the heart of the proof.

In this note, we prove some results in multi-linear potential theory, which might prove useful in extending

the results in [4] to (i) polytrees (with more than two factors), (ii) with weights. In Section 3 we prove that

the capacity of a subset E of the polytree T d = T × · · · × T is comparable to that of its projection Sb(E)

onto the distinguished boundary (∂T )d of T d. The novelty is that we consider the discrete problem arising

from the study of the Potential Theory associated with weighted Dirichlet spaces, which have not been so

far investigated. In Section 4, we give two noncapacitary sufficient conditions for a measure to satisfy the

trace inequality for the multilinear Hardy operator on a polytree. Throughout this paper we refer to some

basic facts from potential theory, as presented in [1, Chapter 2].

The few notions of graph theory used in this article can be found in many textbooks, or in [4].

2. Weighted d-tree and potential theory

2.1. d-trees. As in [4] we start by considering the rooted directed (away from the root) uniform infinite

binary tree (a dyadic tree). The order relation on the vertex set V (T ) is given by direction: for α, β ∈ V (T )

we say that α ≤ β, if one can get from β to α following the directed root. In other words, β is one of the

endpoints of the edges in the geodesic [α, o] connecting α and the root o: the path from α to o containing

the least number of edges. We also write α < β, if α ≤ β, and α 6= β. The boundary ∂T of the tree is

defined in a standard way; each point ω ∈ ∂T is encoded as an infinite directed sequence [e0, e1, . . . ] ⊂ E(T )

of connected edges that starts at the root o (i.e. o is the endpoint of e0). The order relation makes sense for

∂T as well, given ω ∈ ∂T we say that ω ≤ α, if and only if the vertex α is an endpoint of one of the edges

ek encoding ω, or if α = ω. We write T := T
⋃
∂T . In what follows we identify the vertex set V (T ) and

the tree itself, i.e. we assume that α ∈ T is always a vertex. If α, β ∈ T , then there there exists a unique

point γ ∈ T that is the least common ancestor of α and β, we denote it by α ∧ β. Namely, we have that

γ ≥ α, γ ≥ β, and if there is another point γ̃ satisfying these relations, then γ̃ ≥ γ (basically γ is the first

intersection points of geodesics connecting α and β to the root). In particular, α∧α = α. The total amount

of common ancestors of α and β is denoted by dT (α∧β) ( dT (α∧β) = distT (α∧β, o)+1, where distT is the

usual graph distance on T ). dT can be infinite, for instance, dT (ω ∧ ω) =∞ when ω ∈ ∂T . The predecessor

set (with respect to the geometry of T ) of a point α ∈ V (T ) ∪ ∂T is

P(α) = {β ∈ T : β ≥ α}.

In particular, every point is its own predecessor. The successor set is

S(β) := {α ∈ T : β ∈ P(α)}, β ∈ T .

Clearly dT (α ∧ β) = ]P(α ∧ β).

We are now ready to define the d-tree. Fix an integer d, and consider T1, T2, . . . , Td — identical copies of

the dyadic tree T . The vertex set V (T )d of the graph T d is defined as follows

V (T d) := V (T )d = V (T1)× V (T2)× · · · × V (Td),

i.e. α ∈ V (T d), if α = (α1, . . . , αd) with αj ∈ Tj , j = 1, . . . , d. Two vertices α, β ∈ V (T d) are connected

by an edge, if and only if there exists a number 1 ≤ j ≤ d such that αj and βj are connected by an edge

in Tj , and αk = βk for any k 6= j. As before, we usually identify V (T d) and T d. The order relation on T d

is induced by the order on its coordinate trees, we say that α ≤ β, if αj ≤ βj for every 1 ≤ j ≤ d. The

boundary of the d-tree is

∂T d =
⋃

D⊂{1,2,...,d}

∏
j∈D

Tj
∏

k∈{1,2,...,d}\D

∂Tk

(the Cartesian products are taken according to the order of indices). The set ∂T1 × ∂T2 × · · · × ∂Td is

called a distinguished boundary of T d and denoted by (∂T )d. We let T
d

= T d
⋃
∂T d. As before, we define
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predecessor and successor sets of a vertex α = (α1, , . . . , αd) using the same notation

P(α) = P(α1)× · · · × P(αd), S(α) = S(α1)× · · · × S(αd).

Sometimes we specify the dimension writing ST (α) for a point α in the tree T , and STd(α) for a point α in

the d-tree (same goes for the predecessor sets). The part of S(α) that lies on the distinguished boundary is

denoted by ∂S(α). Similar to one-dimensional setting we denote the number (possibly infinite) of common

ancestors of α and β by dTd(α∧β), where α∧β = (α1∧β1, . . . , αd∧βd) is a (unique) least common ancestor

(in T d) of α and β. The predecessor and successor sets are defined as above (and denoted in the same way).

We have

dTd(α ∧ β) =

d∏
j=1

dT (αj ∧ βj) = ]P(α ∧ β).

We also write dT (αj) and dTd(β) instead of dT (αj ∧ αj) and dTd(β ∧ β).

2.2. Potential theory on d-tree. Before we introduce the basics of potential theory on the d-tree we adapt

our space to the conventions used in [1].

First we define a metric on T j : given αj , βj ∈ T j we set

δj(αj , βj) := 2−dT (αj∧βj) − 1

2

(
2−dT (αj) + 2−dT (βj)

)
,

essentially this is a distance associated to the graph distance on T with weights 2−dT (αj). Then we let

(3) δ(α, β) =

d∑
j=1

δj(αj , βj), α, β ∈ T d.

Clearly, δ is a metric on T
d
.

We suggest two ways of interpreting a d-tree: as parametrizing the Cartesian product of d copies of the

Cantor set, or, rather, as parametrizing dyadic parallelepipeds. The first one is less natural in a sense, but

as it identifies T
d

with a compact subset of R2d, it allows us to properly use the machinery in [1]. The

reader who is not worried with such details can directly consider the more natural interpretation below. The

dyadic tree is a planar graph, and one can embed it into R2 in such a way that its boundary ∂Tj is actually

a classical ternary Cantor set Ec on the unit interval. As a result we can assume that T j ⊂ R2, moreover,

embedded with δj it is a locally compact Radon space, and Borel sets in T j are Borel in R2. In the same

vein, the points of T d embed into R2d. In particular (∂T )d can be identified with Edc .

Let π be a positive Borel measure on T d, that is, collection of positive weights on vertices of T d – we

always assume π has zero mass on ∂T d. Denote by M the (open) d-tree T d equipped with measure π and

a family of Borel (with respect to the distance δ) measurable sets. We define a kernel G : R2d ×M → R+

to be G(α, β) := χSβ (α), where α ∈ T d ⊂ R2d, β ∈ T d and Sβ := {γ ∈ T d : γ ≤ β} is the T
d
-successor

set of β. It is easy to verify that G is lower semicontinuous on T
d

in first variable, and measurable on M in

second variable. This means that we are now squarely in the context of Adams and Hedberg ([1, Chapter

2.3]), and we can proceed with the Potential Theory. Given a non-negative Borel measure µ on T
d

(which,

again, is by extension Borel on R2d) and a non-negative π-measurable function f on M we let

(If)(α) :=
∫
MG(α, β)f(β) dπ(β) =

∑
γ≥α f(γ)π(γ),(4a)

(I∗µ)(β) :=
∫
T̄d
G(α, β) dµ(α) =

∫
S(β)

dµ(α).(4b)

Observe that a measure supported on T d and a non-negative function are pretty much the same objects —

a collection of masses assigned to the points of the d-tree. The Potential Theory generated by these two

operators leads us to the notions of π-potential

(5) Vµπ := (II∗)(µ)
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and capacity

(6) Capπ E := inf

{∫
f2 dπ : f ≥ 0, (If)(α) ≥ 1, α ∈ E

}
, E ⊂ T d.

Given two Borel measures µ, ν ≥ 0 on T
d

we define their mutual energy to be

(7) Eπ[µ, ν] :=

∫
T
d
Vµ dν =

∫
T
d
Vν dµ =

∑
α∈Td

(I∗µ)(α)(I∗ν)(α)π(α) = 〈I∗µ, I∗ν〉L2(Td,π),

the last two equalities following from Tonelli’s theorem. When µ = ν we write Eπ[µ] instead, and we call it

the energy of µ. Given a Borel set E ⊂ T d there exists a uniquely defined equilibrium measure µE ≥ 0 that

generates the minimizer in (6), so that

Capπ E =

∫
Td

(I∗µE)2 dπ = Eπ[µE ] = µE(E)

(see [1]). If E is a compact set, then one also has suppµE ⊂ E.

Another way to look at the d-tree (which is more convenient and tangible) is the dyadic rectangle rep-

resentation. It is well known that a dyadic tree can be interpreted as a collection of dyadic subintervals of

some basic interval (say, [0, 1]), with a natural order given by inclusion. This approach is not without its

own problems though, since ∂T and [0, 1] do not have a one-to-one correspondence — dyadic-rational points

can be images of two different elements of ∂T . This obstacle however is is not relevant in the context of

the potential theory we have developed, since the measures we are working with do not distinguish these

points. In other words, if the measure has finite energy for an appropriate choice of weight π, its total mass

on the non-injective set is zero, see Lemma 3.1. That means that for every point α ∈ T d there exists a

unique dyadic rectangle Rα =
∏d
j=1[kj2

−nj , (kj + 1)2−nj ] ⊂ [0, 1]d with nj ≥ 0 and 0 ≤ kj ≤ 2nj − 1, and

vice-versa, every such dyadic rectangle corresponds to a point α ∈ T d. In the same way, the distinguished

boundary can be roughly viewed as the unit cube [0, 1]d (again, the problematic points are not seen by finite

energy measures). The rest of ∂T d is visualized similarly.

This representation makes it clear that a d-tree (for d ≥ 2) is not a tree, since, for instance, every point

has several geodesics connecting it to the root (o1, . . . , od), and T d has a lot of cycles. This has been a serious

obstruction to developing a bi-parameter theory, at least since the pioneering work of Jessen, Marcinkievicz,

and Zygmung [9]. However T d still has some structural properties inherited from the geometry of T , in

particular it does not have any directed cycles. This allows us to salvage some of the arguments used in

one-dimensional case.

As usual, we write A . B if there exists a constant C (that depends only on d, π, and whose value may

change from line to line) such that A ≤ CB, and A ≈ B, if A . B and B . A.

3. Properties of potentials and standard polynomial weights

3.1. Basic properties of potentials and capacities. We call π a product weight, if π(β) =
∏n
j=1 πj(βj),

where πj is a weight on Tj .

Lemma 3.1 Assume π is bounded away from zero. Then the following properties hold:

(1) If µ ≥ 0 is a Borel measure on (∂T )d with finite energy, then µ({ωj} ×
∏
k 6=j ∂Tk) = 0 for any

ωj ∈ ∂Tj , 1 ≤ j ≤ d.

(2) Assume π is a product weight. Let E ⊂ T
d

be a Borel set. Define Ej ⊂ T j to be its coordinate

projections, i.e. αj ∈ Ej, if there exist points αk ∈ T k, k 6= j such that (α1, . . . , αj , . . . , αd) = α ∈ E.

Then

(8) Capπ E ≤
d∏
j=1

Capπj Ej .

In particular, if E is a product set, E = E1 × · · · × Ed, then we have equality in (8).
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(3) Let E be a Borel subset of T
d

and µ ≥ 0 be a Borel measure on T
d

such that Eπ[µ] <∞ and Vνπ ≤ 1

q.a.e. on E. Then Capπ E ≥ µ(E).

(4) Let E be a Borel subset of T
d

and µ ≥ 0 be a Borel measure on T
d

with finite mass such that

µ(E) ≥ Eπ[µ]. Then Capπ E ≥ µ(E).

Proof. Property 1. Assume j = 1 and µ({ω1} ×
∏d
k=2 ∂Tk) = ε > 0 for some ω1 ∈ ∂T1. Then we

immediately have (I∗ν)(α1, o2, . . . , od) ≥ ε for any α1 > ω1, and

Eπ[µ] =
∑
α∈Td

(I∗ν)2(α)π(α) ≥
∑
α1>ω1

(I∗ν)2(α1, o2, . . . , od)π(α1, o2, . . . , od) =∞,

since π ≥ 1 (actually that is the only thing we need from the weight here).

Property 2. For every 1 ≤ j ≤ d let fj be some admissible for Ej function (so that
∑
βj≥αj fj(βj)πj(β) ≥

1 for every αj ∈ Ej). Define

f(β) =

d∏
j=1

fj(βj), β ∈ T d.

Since π =
∏d
j=1 πj , we clearly have

∑
β≥α

f(β)π(β) =

d∏
j=1

∑
βj≥αj

f(βj)π(βj)

for any α ∈ T d. Therefore f is admissible for
∏d
j=1Ej . In the same fashion, ‖f‖2L2(Td,dπ) =

∏d
j=1 ‖fj‖2L2(Tj ,dπj)

,

hence Capπ

(∏d
j=1Ej

)
≤
∏d
j=1 Capπj Ej , and (8) follows immediately. In particular, the product of sets

having null capacity, has null capacity as well.

To get the equality for product sets we turn to the dual definition of capacity:

Capπj = sup{µj(Ej)2 : suppµj ⊂ Ej , Eπj [µj ] ≤ 1}.

Now let µj be some admissible (in the sense above) measure for Ej . Define µ to be the usual extension of∏d
j=1 µj to T

d
. As before, for any α ∈ T d one has

Vµπ(α) =
∑
β≥α

(I∗µ)(β)π(β) =
∑
β≥α

∫
S(β)

dµπ(β) =

∫
T
d

∑
β≥α

π(β)χS(β)(τ)dµ(τ) =

∫
T
d

∑
β≥α∧τ

π(β)dµ(τ) =

∫
T1

· · ·
∫
Td

∑
β1≥α1∧τ1

π(β1) · . . . ·
∑

β1≥αd∧τd

π(βd) dµ1(τ1) . . . dµd(τ2) =

d∏
j=1

V µjπj (α).

In particular, we observe that Eπ[µ] =
∏d
j=1 Eπj [µj ], hence π-energy of µ is less than 1. Combined with the

fact that suppµ ⊂
∏d
j=1Ej we obtain Capπ

(∏d
j=1Ej

)
≥
∏d
j=1 Capπj Ej .

Property 3. Define, as usual, the restricted measure µ|E by µ|E(F ) := µ(E
⋂
F ), and let µE be the

equilibrium measure of E. Clearly, Eπ[µE ] <∞, and Vµ|Eπ ≤ Vµπ. We have

Eπ[µ|E ] =

∫
T
d
Vµ|Eπ dµ|E ≤

∫
T
d
VµEπ dµ|E = Eπ[µE , µ|E ],

since VµEπ ≥ 1 q.a.e. on E. Hence, by positivity of the energy integral,

µ(E) = µ|E(E) =

∫
T
d
dµ|E ≤ Eπ[µE , µ|E ] ≤ Eπ[µE ] = CapE.

Property 4, Let µE be the equilibrium measure of E. Clearly

Eπ[µE , µ] =

∫
T
d
VµEπ dµ ≥ µ(E) ≥ Eπ[µ].

By positivity of energy integral it follows that Capπ E = Eπ[µE ] ≥ Eπ[µE , µ].
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3.2. Standard polynomial weights and capacity of the boundary. From now on we are restricting

ourselves to a special class of weights — the so-called standard polynomial weights, where πj(βj) = 2sjdT (βj)

for some 0 ≤ sj < 1. This class is connected to the discrete representation of weighted Dirichlet space on the

polydisc, i.e. space of analytic functions f on Dd, f(z) =
∑
a1,...,ad≥0 f̂(a1, . . . , ad)z

a1
1 . . . zadd , which satisfy

that ∑
a1,...,ad

|f̂(a1, . . . , ad)|2(a1 + 1)1−s1 · · · · · (ad + 1)1−sd < +∞.

In this case there is a natural way to push down a measure µ defined on the whole d-tree to its distinguished

boundary (∂T )d.

To do that we first need to define an analogue of Lebesgue measure on (∂T )d. We start with a dyadic

tree T . For any point α ∈ T we put

M(∂S(α)) := 2−dT (α)+1

to be the ’length’ of a ’dyadic interval’ on ∂T . We see that M can be extended to a Borel measure on ∂T

satisfying the property above (also, clearly, it has no mass on singletons). Since M is finite, there exists a

unique Borel measure Md on (∂T )d such that

Md(S(α)
⋂

(∂T )d) =
∏

M(∂S(αj))

(observe that Md({ωj} ×
∏
j 6=k Tk) = 0 for any 1 ≤ j ≤ d and ωj ∈ ∂Tj). Suppose now µ ≥ 0 is a Borel

measure on T
d

with finite energy. It is tedious, but elementary, verifying that the formula

dµb(ω1, . . . , ωd) :=
∑

D⊂{1,...,d}

∑
j∈D

∑
βj>ωj

dµ(τ(D,β, ω))∏
j∈DM(∂S(βj))

∏
j∈D

dM(ωj),(9)

where τ(D,β, ω)j = βj , if j ∈ D, and τ(D,β, ω)j = ωj otherwise, defines a measure µb supported on

the (∂T )d. Roughly speaking, here we take the mass µ(β) and distribute it uniformly over ∂S(β), the

distinguished boundary part of µ we leave as it is, and we do a mixed distribution on the rest of ∂T d.

Theorem 3.1 The potentials of µ and µb are equivalent,

(10) Vµπ(α) ≈ Vµbπ (α), α ∈ T d.

Proof of Theorem 3.1.

Given α, β ∈ T d define dπ(α ∧ β) :=
∑
γ≥α∧β π(γ). Since Vµb =

∫
(∂T )d

dπ(ζ ∧ ω) dµb, we want to compare

the values of dπ(α ∧ β), and the average of dπ taken over the boundary projections of α and β.

Lemma 3.2 One has

(11) dπ(α ∧ β) ≈ 1

Md(∂S(α))Md(∂S(β))

∫
∂S(α)

∫
∂S(β)

dπ(ξ ∧ ω)dMd(ξ) dMd(ω)

(dπ is almost a martingale with respect to the measure M).

Proof. Due to multiplicativity it is enough to prove that, say,

dπ1
(α1 ∧ β1) ≈ 1

M(∂S(α1))M(∂S(β1))

∫
∂S(α1)

∫
∂S(β1)

dπ1
(ξ1 ∧ ω1)dM(ξ1) dM(ω1).

If ξ1 ≤ α1 and ω1 ≤ β1, then dπ1
(ξ1 ∧ ω1) ≥ dπ1

(α1 ∧ β1), hence

dπ1(α1 ∧ β1) ≤ 1

M(∂S(α1))M(∂S(β1))

∫
∂S(α1)

∫
∂S(β1)

dπ1(ξ1 ∧ ω1)dM(ξ1) dM(ω1).

To get the reverse inequality we first show that for any β1 ∈ T1 and τ1 ∈ T 1 we have

(12)
1

M(∂S(β1))

∫
∂S(β1)

dπ1
(τ1 ∧ ω1) dM(ω1) . dπ1

(τ1 ∧ β1).

If τ1 ≥ β1 or these two points are not comparable, then, clearly, dπ1
(τ1 ∧ β1) = dπ1

(τ1 ∧ ω1) for ω1 ≤ β1,

and (12) is trivial. Hence from now on we assume that τ1 < β1. First we note that since π is a standard
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polynomial weight, one has dπ1
(γ) ≈ dT (γ), if s1dT (γ) ≤ 1, and dπ1

(γ) ≈ 1
s1

2s1dT (γ), if s1dT (γ) ≥ 1, for any

γ ∈ T 1. Let n := dT (β1) and N := dT (τ1). For every n ≤ k ≤ N there exists exactly one point γk ∈ T1 such

that τ1 ≤ γk ≤ β1, and dT (γk) = k (in particular γ1 = β1, γN = τ1). Define

Sk = ∂S(γk) \ ∂S(γk+1), n ≤ k ≤ N − 1,

and

SN = ∂S(τ1).

If ω1 ∈ Sk, then, clearly, dπ1
(τ1 ∧ ω1) ≈ 1

s1
2s1k for k ≥ 1

s1
, and dπ1

(τ1 ∧ ω1) ≈ k otherwise. Moreover,

these sets are disjoint and form a covering of ∂S(β1). Also M(Sk) = 2−k − 2−k−1, n ≤ k ≤ N − 1 and

M(SN ) = 2−N . We have

1

M(∂S(β1))

∫
∂S(β1)

dπ1
(τ1 ∧ ω1) dM(ωx) =

2dT (β1)
N∑
k=n

∫
Sk

dπ1(τ1 ∧ ω1) dM(ω1) ≈ 2n

[
1
s1

]∑
k=n

k ·M(Sk) +
1

s1
2n

N∑
k=max

(
n,
[

1
s1

]) 2s1k ·M(Sk) ≤

2n

[
1
s1

]∑
k=n

k2−k +
1

s1
2n

N∑
k=max

(
n,
[

1
s1

]) 2−k(1−s1) ≤ 10

1− s1
dπ1

(τ1 ∧ β1),

and we arrive at (12). It follows immediately that

1

M(∂S(α1))M(∂S(β1))

∫
∂S(α1)

∫
∂S(β1)

dπ1
(ξ1 ∧ ω1) dM(ξ1) dM(ω1) ≤

10

1− s1

1

M(∂S(α1))

∫
∂S(α1)

dπ1
(ξ1 ∧ β1)M(ξ1) ≤ 100

(1− s1)2
dπ1

(α1 ∧ β1).

We proceed with the proof of Theorem 3.1. Fix any point α ∈ T d. We have

Vµb(α) =

∫
(∂T )d

d∏
j=1

dπj (αj ∧ ωj) dµb(ω1, . . . , ωd).

Consider the first term (the one corresponding to the values of µ on T d) in the expression for dµb. By

Tonelli’s theorem and Lemma 3.2 one has

∫
(∂T )d

d∏
j=1

dπj (αj ∧ ωj)
∑
β≥ω

µ(β)∏d
j=1M(S(βj))

dM(ω1) . . . dM(ωd) =

∑
β∈Td

µ(β) ·
d∏
j=1

(
1

M(S(βj))

∫
S(βj)

dπj (αj ∧ ωj) dM(ωj)

)
≈

∑
β∈Td

µ(β)dπ(α ∧ β).
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Similarly, if we take one of the mixed terms in (9), say with D = {2, 3, . . . , d}, we obtain∫
(∂T )d

d∏
j=1

dπj (αj ∧ ωj)
d∑
j=2

∑
βj≥ωj

dµ(ω1, β2, . . . , βd)∏d
j=2M(S(βj))

dM(ω2) . . . dM(ωd) =

d∑
j=2

∑
βj∈Tj

∫
∂T1

dπ1
(α1 ∧ ω1)dµ(ω1, β2, . . . , βd) ·

d∏
j=2

(
1

M(S(βj))

∫
S(βj)

dπj (αj ∧ ωj) dM(ωj)

)
≈

d∑
j=2

∑
βj∈Tj

∫
∂T1

dπ1(α1 ∧ ω1)

d∏
j=2

dπj (αj ∧ βj)dµ(ω1, β2, . . . , βd) =

∫
∂T1×T2×···×Td

dπ(α ∧ τ) dµ(τ).

The rest of the terms are done in the same way.

We arrive at

V µbπ (α) =∫
(∂T )d

∑
D⊂{1,...,d}

∑
j∈D

∑
βj>ωj

∏
j∈D

dπj (αj ∧ βj)
∏

j∈{1,...,d}\D

dπj (αj ∧ ωj)
dµ(τ(D,β, ω))∏
j∈DM(∂S(βj))

∏
j∈D

dM(ωj) ≈

∑
D⊂{1,...,d}

∫
∏
j∈D Tj×

∏
j∈{1,...,d}\D

dπ(α ∧ τ) dµ(τ) =

∫
T
d
dπ(α ∧ τ) dµ(τ) = Vµπ(α),

here the Cartesian product is taken according to the order of indices. �

Corollary 3.1 Given a compact set E ⊂ T d define its boundary projection Sb(E) ⊂ (∂T )d to be

Sb(E) =
⋃
β∈E

∂S(β).

Then there exists a constant C > 1 depending only on d and π such that

(13) Capπ Sb(E) ≤ Capπ E ≤ C Capπ Sb(E).

Proof. The left inequality is trivial, since any function admissible for E is also admissible for Sb(E).

Now let µ and ν be the equilibrium measures for E and Sb(E) respectively. By definition of µb

|µb| :=
∫

(∂T )d
dµb =

∫
(∂T )d

∑
D⊂{1,...,d}

∑
j∈D

∑
βj>ωj

dµ(τ(D,β, ω))∏
j∈DM(∂S(βj))

∏
j∈D

dM(ωj) =

∑
D⊂{1,...,d}

∑
j∈D

∑
βj∈Tj

∫
∏
j∈D S(βj)

∫
∏
k∈{1,...,d}\D ∂Tk

dµ(τ(D,β, ω))∏
j∈DM(∂S(βj))

∏
j∈D

dM(ωj) =

∑
D⊂{1,...,d}

∫
∏
j∈D Tj×

∏
j∈{1,...,d}\D

dµ(τ) =

∫
T
d
dπ dµ(τ) =: |µ|.

By Theorem 3.1 and equilibrium property

|µb| = |µ| =
∫
T
d
Vµπ dµ ≈

∫
T
d
Vµbπ dµ ≈

∫
T
d
Vµbπ dµb.

On the other hand, for every C ∈ R we have

0 ≤
∫
T
d
Vµbπ dµb − 2C

∫
T
d
Vνπ dµb + C2

∫
T
d
Vνπ dν ≤

∫
T
d
Vµbπ dµb − 2C|µb|+ C2|ν|,

since ν is equilibrium for Sb(E) and Vν ≥ 1 q.a.e. on Sb(E) ⊃ suppµb. Hence, if we take C to be large

enough, we obtain

0 ≤
∫
T
d
Vµbπ dµb − C|µb|+ C (C|ν| − |µb|) ≤ C (C|ν| − |µb|) .

Therefore

C CapSb(E) = C|ν| ≥ |µb| = |µ| = CapE,

and we get the second half of (13).
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Note that the condition sj < 1 imposed on the standard polynomial weights is essential. Indeed, in the

proof of Lemma 3.2 one can see, that if sj ≥ 1 for some j, then the capacity of ∂Tj (and hence of (∂T )d)

becomes zero. In this case we basically leave the domain of weighted graph Dirichlet spaces and move to

Hardy spaces, for which the capacity is a much less convenient instrument. Also, since π is uniform, the

equilibrium measure of the distinguished boundary (∂T )d is actually CMd with C = C(d, π).

4. Hardy inequality on d-tree and properties of trace measures

Assume µ ≥ 0 is a Borel measure on the T
d
, and f ≥ 0 is a function on T d. The multilinear weighted

Hardy inequality is

(14)

∫
T
d
(If)2 dµ ≤ C

∑
α∈Td

f2(α)π(α) = ‖f‖2L2(Td, dπ),

for some constant C > 0. A measure µ is called a trace measure for Hardy inequality, if (14) holds for

any f ≥ 0 with constant C = Cµ depending only on µ (and of course on the weight π and dimension d).

There is a vast amount of literature on various types of trace inequalities of the form above (see e.g. [7],

[10], [11] and references therein). Trace inequalities appear in complex analysis in connection to multipliers,

interpolating sequences, imbedding theorems, Hankel operators, etcetera. They also naturally appear in

Sobolev space theory, in the theory of semilinear differential equations, and in many other chapters of PDEs.

Here we mostly aim to concentrate on this particular discrete version and investigate the relationship between

different necessary and sufficient conditions.

Inequality (14) means that the operator I is bounded when acting from L2(T d, dπ) to L2(T
d
, dµ). Equiv-

alently, the adjoint operator, which we denote by I∗µ, is bounded;

(15) ‖I∗µg‖2L2(Td, dπ) ≤ C‖g‖
2

L2(T
d
, dµ)

,

for any µ-measurable g ≥ 0 on T
d
. Since

〈ϕ, If〉
L2(T

d
, dµ)

=

∫
T
d
ϕ(α)

∑
β≥α

f(β)π(β) dµ(α) =

∫
T
d
ϕ(α)

∑
β∈Td

χS(β)(α)f(β)π(β) dµ(α) =

∑
β∈Td

∫
S(β)

ϕ(α) dµ(α)f(β)π(β),

we clearly have

I∗µg(α) =

∫
S(α)

g dµ.

Another reason to consider this inequality is to study the connection between Hardy inequality on d-tree

and Carleson embedding for weighted Dirichlet-type spaces on the polydisc, which has been well established

in [6], [7] for d = 1, and, recently, in [4] for d = 2 and π ≡ 1 (unweighted case).

We start with the dual inequality (15). Let µ ≥ 0 be a Borel measure on d-tree with finite energy, and

assume for simplicity that suppµ ⊂ (∂T )d (one can pass to general case by careful application of Theorem

3.1 above). A set E ⊂ (∂T )d is called rectangular, if E is a union of finite collection of ’dyadic rectangles’

on (∂T )d, in other words there exists a collection of points {αj}Nj=1 such that

E =

N⋃
j=1

∂S(αj).

Now fix such a set E and let g := χE , plugging g into (15) we obtain∫
T
d
χE dµ = µ(E) & Cµ‖I∗µχE‖2L2(Td, dπ) = Cµ

∑
α∈Td

(∫
Sα
χE dµ

)2

π(α) = Cµ
∑
α∈Td

(
µ
(
∂S(α)

⋂
E
))2

π(α).
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Using the dyadic rectangle interpretation from the end of Section 2.2 we can rewrite this inequality as

(16) µ(E) & Cµ
∑
Q

µ
(
Q
⋂
E
)2

π(Q), for any rectangular E,

where Q = Qα = ∂S(α) is the uniquely defined ’dyadic rectangle’ representing a point α ∈ T d, and

π(Qα) := π(α). Clearly, the expression on the right-hand side of (16) is just π-energy of µ restricted on the

set E, we call this inequality global charge-energy condition. Moreover, if we only consider those rectangles

Q that are inside E, we obtain

(17) µ(E) & Cµ
∑
Q⊂E

µ(Q)2π(Q), for any rectangular E,

this one is called local charge-energy condition (the reasoning being that the right hand side can be viewed

as a ’local’ π-energy of µ on the set E).

One of the questions we are interested in is whether one of these necessary conditions is also sufficient for

(15). We start with the global charge-energy condition. By Property 4 from Lemma 3.1 one has

Capπ E & Cµµ(E), for any rectangular E,

that is, µ is a subcapacitary measure. In [4] it was shown (for d = 2 and unweighted case) that subcapacitary

property indeed implies the trace condition (14). Note that the subcapacitary condition should hold for any

rectangular set E; if µ(E) ≤ Capπ E only for some particular set E, it does not necessarily imply (16) for

that set.

Consider now the weaker local charge-energy condition (17). In [2], [3] it was shown that it still is equivalent

to the trace inequality, for d = 2 and π ≡ 1. For d = 1 and general π, a proof can be found in [7]; see also [2]

for Bellman function approach. Here we want to present a slightly different approach, based on the maximal

function inequality.

Theorem 4.1 Assume that Borel measure µ ≥ 0, suppµ ⊂ (∂T )d, with finite energy satisfies (17). Then

the trace inequality (15) follows, if the maximal function inequality

(18)

∫
(∂T )d

g2 dµ & Cµ

∫
(∂T )d

(Mµg)2 dµ

holds for any g ∈ L2(T
d
, dµ), where

(Mµg)(β) = sup
β≤α∈Td

∫
Qα

g dµ

µ(Qα)
, β ∈ T d.

Proof. Fix a function g ∈ L2(T
d
, dµ), some k ∈ Z and consider the set Ek := {ω ∈ (∂T )d : (Mµg)(ω) >

2k}. Clearly there exists a sequence {αjk}∞j=1 such that Ek =
⋃∞
j=1 ∂S(αjk). Approximating Ek by rectangular

sets Enk =
⋃n
j=1 ∂S(αjk) we see that local charge-energy condition implies

µ(Ek) & Cµ
∑
Q⊂Ek

µ(Q)2π(Q), k ∈ Z.

By distribution function argument and maximal function inequality (18) we have

C−1
µ

∫
(∂T )d

g2 dµ &
∫

(∂T )d
(Mµg)2 dµ ≈

∑
k∈Z

22kµ(Ek) &
∑
k∈Z

22k
∑
Q⊂Ek

µ(Q)2π(Q) &

∑
β∈T 2

(Mµg)2(β)µ2(Qβ)π(Qβ),
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since
⋃
k∈ZEk = (∂T )d. On the other hand,

∑
β∈T 2

(Mµg)2(β)µ2(Qβ)π(Qβ) =
∑
β∈T 2

(
sup
β≤α

∫
Qα

g dµ

µ(Qα)

)2

µ2(Qβ)π(Qβ) ≥
∑
β∈T 2

(∫
Qβ

g dµ

µ(Qβ)

)2

µ2(Qβ)π(Qβ) ≥

∑
β∈T 2

(∫
Qβ

g dµ

)2

π(Qβ) = ‖I∗µg‖2L2(Td, dπ).

We are done.

For d = 1 this proposition solves the problem, since the maximal function operator is obviously bounded.

In higher dimensions (18) fails for some measures; due to presence of cycles in T d, several rectangles can

have non-trivial intersection. However the counterexamples to (18) that we are aware of are of rather

non-subcapacitary nature, that is, all of them also fail to satisfy (17). Therefore one can ask whether the

local charge-energy inequality can be transformed into some sufficient conditions for the maximal function

inequality. This might not be straightforward, since (17) and (18) scale differently.

Another question is connected to the nature of the rectangular sets on which we test the trace inequality.

In the one-dimensional case it is sufficient that (17) holds for all single rectangles (dyadic intervals). One

would expect that a single box test, (17) for rectangles, is no longer sufficient when d ≥ 2. One might

compare with the description of Carleson measures for the Hardy space on the bidisc [8], but note we have

been discussing the dual inequality of the Hardy inequality (14). The single box test for (14) is just a

subcapacitary condition, and it fails to be sufficient already for d = 1, since, generally, capacity is not

additive. In particular, the single box test for (14) on an unweighted dyadic tree asks that µ(Q) . 1
log 1

|Q|
.

However, if we ask a little bit more from this single box test, we can obtain sufficient conditions for µ to

satisfy the trace inequalities (14) and (15).

Proposition 4.1 Let π be a standard polynomial weight, and ϕ : [0, 2]d → R+ be a function, increasing in

each variable, such that ∫
[0,2]d

ϕ(t1, . . . , td)

t1+s1
1 · · · · · t1+sd

d

dt1 . . . dtd < +∞.(19)

Then, if µ ≥ 0 is a Borel measure on (∂T )d satisfying

(20) µ(Qα) ≤ ϕ(M(Qα1
), . . . ,M(Qαd)),

for any α = (α1, . . . , αd) ∈ T d, then µ is a trace measure for Hardy inequality (14).

Proof. First we show that (20) implies that Vµπ(ω) . 1 for any ω ∈ (∂T )d. The weight π is uniform,

in particular, it (along with the estimate (20)) depends only on generation numbers of β, and not on the

location of β within T d. Therefore it is enough to show the boundedness of potential only for one point, say

ω = (0, . . . , 0) (i.e. the point that corresponds to the leftmost geodesic taken on each tree Tj , j = 1, . . . , d).

For any multiindex n = (n1, . . . , nd) ⊂ Nd there exists a unique point β(n) ≥ ω with those exact generation

numbers (i.e. d(βj(n)) = nj and M(Qβj(n)) = 2−nj ), hence

Vµπ(ω) =
∑
β≥ω

µ(Qβ)π(Qβ) ≤
∑
n∈Nd

ϕ(2−n1 , . . . , 2−nd)2s1n1+···+sdnd .
∫

[0,1]d

ϕ(t1, . . . , td)

t1+s1
1 · · · · · t1+sd

d

dt1 . . . dtd.

It follows immediately that for any g ∈ L2(T
d
, dµ) one has

‖I∗µ‖2L2(Td, dπ) =
∑
α∈Td

(∫
Qα

g dµ

)2

π(Qα) ≤
∑
α∈Td

∫
Qα

g2 dµ · µ(Qα)π(Qα) ≤∫
(∂T )d

∑
α≥ω

µ(Qα)π(Qα)g2(ω) dµ(ω) . Cµ

∫
(∂T )d

g2 dµ.
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