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ABSTRACT 34 

Animal studies have shown that the striatal cholinergic system plays a role in behavioural flexibility 35 

but, until recently, this system could not be studied in humans due to a lack of appropriate non-36 

invasive techniques. Using proton magnetic resonance spectroscopy (MRS) we recently showed 37 

that the concentration of dorsal striatal choline (an acetylcholine precursor) changes during reversal 38 

learning (a measure of behavioural flexibility) in humans. The aim of the present study was to 39 

examine whether regional average striatal choline was associated with reversal learning. 22 40 

participants (mean age = 25.2, range = 18-32, 13 female) reached learning criterion in a 41 

probabilistic learning task with a reversal component. We measured choline at rest in both the 42 

dorsal and ventral striatum using MRS. Task performance was described using a simple 43 

reinforcement learning model that dissociates the contributions of positive and negative prediction 44 

errors to learning. Average levels of choline in the dorsal striatum were associated with 45 

performance during reversal, but not during initial learning. Specifically, lower levels of choline in 46 

the dorsal striatum were associated with a lower number of perseverative trials. Moreover, choline 47 

levels explained inter-individual variance in perseveration over and above that explained by 48 

learning from negative prediction errors. These findings suggest that the dorsal striatal cholinergic 49 

system plays an important role in behavioural flexibility, in line with evidence from the animal 50 

literature and our previous work in humans. Additionally, this work provides further support for the 51 

idea of measuring choline with MRS as a non-invasive way of studying human cholinergic 52 

neurochemistry. 53 

  54 
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SIGNIFICANCE STATEMENT 55 

Behavioural flexibility is a crucial component of adaptation and survival. Evidence from the animal 56 

literature shows the striatal cholinergic system is fundamental to reversal learning, a key paradigm 57 

for studying behavioural flexibility, but this system remains understudied in humans. Using proton 58 

magnetic resonance spectroscopy, we showed that choline levels at rest in the dorsal striatum are 59 

associated with performance specifically during reversal learning. These novel findings help to 60 

bridge the gap between animal and human studies by demonstrating the importance of cholinergic 61 

function in the dorsal striatum in human behavioural flexibility. Importantly, the methods described 62 

here can not only be applied to furthering our understanding of healthy human neurochemistry, but 63 

also to extending our understanding of cholinergic disorders. 64 

  65 
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INTRODUCTION 66 

Acetylcholine (ACh) plays an important role in adaptive behaviour, and has been implicated in 67 

disorders of cognitive flexibility, such as Parkinson’s disease (Tanimura et al., 2018; Zucca et al., 68 

2018). Studies in rodents have repeatedly demonstrated that ACh transmission, determined by the 69 

activity and regulation of cholinergic interneurons in the dorsal striatum, is involved in reversal 70 

learning and similar forms of behavioural flexibility (Ragozzino et al., 2002, 2009; Tzavos et al., 71 

2004; McCool et al., 2008; Brown et al., 2010; Bradfield et al., 2013; Aoki et al., 2018; Okada et 72 

al., 2018). Further, ACh efflux has been shown to increase specifically during reversal learning (but 73 

not during initial learning), and this effect is specific to the dorsomedial striatum (with no changes 74 

in ACh levels in either the dorsolateral striatum or the ventral striatum) (Ragozzino et al., 2009). It 75 

is clear then that cholinergic activity in the dorsal striatum plays an important role in reversal 76 

learning but, despite the importance of understanding this system, there remain important 77 

challenges in probing ACh function in humans due to a lack of appropriate non-invasive techniques. 78 

Proton magnetic resonance spectroscopy (MRS) is a non-invasive method for measuring brain 79 

metabolites in vivo (Puts and Edden, 2012). Although it cannot be used to study ACh directly due to 80 

its low concentration (Hoover et al., 1978), MRS can be used to measure levels of certain choline 81 

containing compounds (CCCs) involved in the ACh cycle, including choline (CHO). CHO is the 82 

product of ACh hydrolysis, and its uptake in cholinergic terminals is the rate-limiting step in ACh 83 

biosynthesis (Lockman and Allen, 2002). Using functional MRS, we previously demonstrated task-84 

driven changes in the concentration of CHO in the human dorsal striatum during reversal learning 85 

(Bell et al., 2018). Although MRS studies typically model CCCs as a single peak due to their 86 

proximity on the spectrum, we showed that using this method may mask CHO-specific effects. 87 

Therefore, in the context of studying ACh function, it is necessary to separate the metabolites when 88 

measuring individual differences in CHO levels (Lindner et al., 2017; Bell et al., 2018). 89 
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Among the many open questions around this approach is the nature of the relationship between 90 

baseline levels of CHO availability and function-relevant ACh activity. Animal studies have shown 91 

that ACh synthesis is tightly coupled to CHO availability. For example, depletion of CHO has been 92 

shown to reduce ACh synthesis (Jope, 1979) and administration of CHO has been shown to increase 93 

it (Koshimura et al., 1990). Further, overexpression (Holmstrand et al., 2013) and under-expression 94 

(Parikh et al., 2013) of presynaptic CHO up-take transporters has been shown to increase and 95 

decrease ACh levels respectively. It is possible, therefore, that baseline CHO availability may 96 

modulate ACh activity, leading to effects on behavioural flexibility. In this study, we used MRS to 97 

test whether baseline levels of dorsal striatal CHO are related to individual differences in reversal 98 

learning performance. Due to limitations of spectroscopy voxel sizes, it is not possible to precisely 99 

target the human homologue of the rodent dorsomedial striatum, therefore we obtained average 100 

measures of CHO from the dorsal striatum overall. To test the hypothesised regional striatal 101 

specificity, we also measured CHO levels from the ventral striatum. Finally, we also measured 102 

CHO levels from the cerebellum as a further, more general control. In line with the animal literature 103 

and our previous findings in humans (Bell et al., 2018), we predicted that average levels of CHO in 104 

the dorsal, but not the ventral, striatum would be associated with performance during reversal, but 105 

not initial, learning. 106 

METHODS 107 

Participants 108 

The study was approved by the University of Reading Research Ethics Committee (UREC 109 

reference 13/15). 36 volunteers (20 female) between the ages of 18.3 and 32.8 (mean = 24.8, SD = 110 

3.5) were recruited from the University of Reading and surrounding areas. All participants were 111 

healthy, right handed non-smokers and written informed consent was taken prior to participation. 112 
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Two participants were excluded from analyses due to a high proportion of missed responses 113 

(participant 14: 35% during initial learning and 39% during reversal learning; participant 31: 27% 114 

during initial learning, 54% during reversal learning). One participant was excluded from 115 

spectroscopy analysis due to issues with segmentation of the structural scan. Data from the ventral 116 

striatum of two participants were excluded from analysis due to poor data quality.  117 

Behavioural Data Collection 118 

Learning Task 119 

The task used was a probabilistic multi-alternative learning task previously described (Bell et al., 120 

2018), and was programmed using MATLAB (2014a, The Mathworks, Inc., Natick, MA, United 121 

States) and Psychtoolbox (Brainard, 1997). 122 

First, participants were presented with a fixation cross displayed in the centre of the visual display. 123 

Participants were then presented with four decks of cards. Each deck contained a mixture of 124 

winning and losing cards, corresponding respectively to a gain or loss of 50 points. The probability 125 

of getting a winning card differed for each deck (75%, 60%, 40%, and 25%) and the probabilities 126 

were randomly assigned across the four decks for each participant. Participants indicated their 127 

choice of deck using a computer keyboard. Outcomes were pseudo-randomised so that the assigned 128 

probability was true over every 20 times that deck was selected. Additionally, no more than 4 cards 129 

of the same result (win/lose) were presented consecutively in the 75% and 25% decks and no more 130 

than 3 cards of the same result in the 60% and 40% decks. A cumulative points total was displayed 131 

in the bottom right-hand corner throughout the session and in the centre of the visual display at the 132 

end of each trial (Figure 1). Participants were instructed that some decks may be better than others, 133 

they are free to switch between decks as often as they wish, and they should aim to win as many 134 

points as possible. 135 
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The learning criterion was set at selection of either of the two highest decks (60% or 75%) on at 136 

least 80% of the time over ten consecutive trials. Though the optimal strategy is to repeatedly 137 

choose the 75% deck, pilot testing revealed the participants were not always able to distinguish 138 

between the 75% and 60% decks. Therefore, as both decks generate an overall gain in points and 139 

choice of either deck could be considered a good strategy, both decks are included in the learning 140 

criterion.  141 

The initial learning phase (round 1) was completed when either the learning criterion was reached, 142 

or the participant completed 100 trials.  The deck probabilities were then reversed so that the high 143 

probability decks became low probability (75% to 25%, and 60% to 40%) and vice versa. 144 

Participants were not informed of the reversal. The task ended either after the learning criterion was 145 

reached following the reversal (round 2), or after another 100 trials (Figure 2).  146 

Impulsivity 147 

Previous research has shown that trait levels of impulsivity can influence decision making (Bayard 148 

et al., 2011). Individuals with higher levels of impulsivity have been shown to demonstrate sub-149 

optimal performance on decision making tasks, displaying a decreased ability to learn reward and 150 

punishment associations and implement these to make appropriate decisions. For instance, 151 

individuals with high levels of impulsivity were relatively impaired in adapting their behaviour 152 

during a reversal learning task (Franken, van Strien, Nijs, & Muris, 2008). Other tasks of cognitive 153 

flexibility have also been shown to be influenced by trait impulsivity levels (e.g. Müller, Langner, 154 

Cieslik, Rottschy, & Eickhoff, 2014). Therefore all participants completed the Barratt 155 

Impulsiveness Scale (BIS-11; Patton, Stanford, & Barratt, 1995) and their total score was used as a 156 

trait measure of impulsivity. This was included in the analysis to account for effects driven by 157 

individual differences in impulsivity.  158 
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Data Analysis 159 

Participants were split into two groups based on performance. Those who learnt both rounds (i.e. 160 

reached criterion both during initial learning and after reversal) were classified as learners and those 161 

who did not learn both rounds were classified as non-learners.  162 

Behaviour was analysed for learners only. The task stops at 100 trials in each round if the criterion 163 

is not met. Therefore, participants who did not reach criterion in either one round or both rounds 164 

were excluded from behaviour analysis. 165 

Performance was measured using the number of trials taken to reach criterion in round 1 (initial 166 

learning) and in round 2 (reversal learning). Round 2 was subdivided into perseverative trials and 167 

post-reversal learning (Figure 2). The number of perseverative trials was defined as the number of 168 

trials after reversal until the probability of selecting the previously favoured deck reached chance 169 

level (0.25), i.e. the number of trials taken to identify the reversal and switch behaviour. Post-170 

reversal learning was defined as the number of trials taken to reach criterion in round 2, minus the 171 

number of perseverative trials, i.e. the number of trials to reach criterion after the reversal had been 172 

detected. In other words, post-reversal learning is measured by the number of trials the participant 173 

took to learn the contingencies once they had realised the deck probabilities had reversed. 174 

Additionally, the post-reversal learning period included a measure of regressive errors. The number 175 

of regressive errors was defined as the number of times the previously favoured deck was selected 176 

during the post-reversal learning period (i.e. after the perseverative period had ended).  177 

Temporal Difference Reinforcement Learning Model 178 

We modelled participants’ choice behaviour as a function of their previous choices and rewards 179 

using a temporal difference reinforcement learning algorithm (Sutton and Barto, 1998). This allows 180 

us to track trial-and-error learning for each participant, during each task stage, in terms of a 181 
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subjective expected value for each deck. On each trial t, the probability that deck c was chosen was 182 

given by a soft-max probability distribution:  183 

 
 (1) 

where mt(c) is the preference for the chosen deck and j indexes the four possible decks. The 184 

preference for the chosen deck was comprised of the participant’s expected value of that deck on 185 

that trial, Vt(c), multiplied by the participant’s individual value impact parameter β (equivalent to 186 

the inverse temperature): 187 

 (2) 

The parameter β describes the extent to which trial-by-trial choices follow the distribution of the 188 

expected values of the decks: a low β indicates choices are not strongly modulated by expected 189 

value, being effectively random with respect to this quantity (i.e. participants are not choosing 190 

based exclusively on value, and are effectively exploring all options); conversely, a high β indicates 191 

choices largely follow expected value (i.e. participants choose the deck with the highest expected 192 

value; exploitation). 193 

To update the subjective value of each deck, a prediction error was generated on each trial,  194 

based on whether participants experienced a reward or a loss (rewardt = +1 or -1 respectively). The 195 

expected value of the chosen deck was subtracted from the actual trial reward to give the prediction 196 

error: 197 

 
 

 
(3) 

Studies have shown that individuals differ in the degree to which they learn from better than 198 

expected outcomes (positive prediction errors) and worse than expected outcomes (negative 199 

prediction errors) (Gray, 1970; Niv et al., 2012; Christakou et al., 2013; Bull et al., 2015). To 200 
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account for this, two learning rate parameters were used to model sensitivity to prediction errors in 201 

updating the expected values: the weight of learning from better than expected outcomes (learning 202 

rate from positive prediction errors: η+) and the weight of learning from worse than expected 203 

outcomes (learning rate from negative prediction errors: η-). For example, individuals who are 204 

reward seeking will place a high weight on the former, whereas those who are loss-aversive will 205 

place a high weight on the latter. The prediction error on each trial was multiplied by either the 206 

positive (η+) or negative (η-) learning rate and used to update the value of the chosen deck. 207 

 
 (4) 

 
 (5) 

 
 

 

 
(6) 

Thus, the model has three parameters of interest (β, η+ and η-). In psychological terms, β captures 208 

the degree to which the subjective value of the chosen deck influenced decisions, while the learning 209 

rates capture the individual’s preference for learning from positive (η+) or negative (η-) prediction 210 

errors to guide choice behaviour during this task. 211 

Model Fitting 212 

The model was fit per participant to provide parameters that maximised the likelihood of the 213 

observed choices given the model (individual maximum likelihood fit; Daw, 2011). The reward 214 

value was updated as 1 (win) or -1 (loss). Subjective value was initialised at zero for all decks and 215 

the initial parameter values were randomised. To ensure the model produced consistent, 216 

interpretable parameter estimates,  was limited to between 0 and 1 and β was assumed positive. 217 

The parameters were constrained by the following distributions based on Christakou et al (2013): 218 
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The model was fit separately over the trials encompassing round 1 (R1, initial learning) and round 2 219 

(R2, perseverative trials and post-reversal learning, denoted as reversal learning). This was done to 220 

capture the change in influence of the model parameters from initial learning to reversal learning. 221 

The model was not fit over the perseverative trials separately as the average number of 222 

perseverative trials was too small to generate a stable model fit.  223 

Traditionally, to investigate the fit of a temporal difference reinforcement learning model the 224 

Bayesian information criterion (BIC) is used. The BIC is a post hoc fit criterion which looks at the 225 

adequacy of a model whilst penalising the number of parameters used. A lower number indicates a 226 

better fit (Steingroever et al., 2016). However, the BIC is generally used to compare different 227 

models, rather than model fits over different sets of data, and will penalise different sized data sets. 228 

Alternatively, the corrected likelihood per trial (CLPT) can be used. The CLPT is a more intuitive 229 

measure of fit that takes into account the number of trials completed without penalising different 230 

sized data sets. The CLPT varies between 0 and 1, with higher values indicating a better fit (Leong 231 

and Niv, 2013; Niv et al., 2015). 232 

Wilcoxon signed-rank tests showed there was no significant difference between the CLPT values 233 

for the model fit over round 1 (Mdn = 0.23) and round 2 (Mdn = 0.23; Z= -1.308, p = 0.191). 234 

Additionally, there was no significant difference between the BIC values for the model fit over 235 

round 1 (M = 75.7, SD = 45.5) and round 2 (M = 90.9, SD = 43.6; t(33) = -1.533, p = 0.135, r = 236 

0.26). 237 

To summarise, the model fit equally well across rounds. Therefore, differences in parameter 238 

estimates across the task can be examined. 239 
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Magnetic Resonance Spectroscopy 240 

Data Acquisition 241 

Data was collected at the University of Reading on a Siemens Trio 3T MRI scanner using a 242 

transmit-receive head coil. A high-resolution whole-brain T1 structural image was acquired for 243 

voxel placement using an MPRAGE sequence parallel to the anterior-posterior commissure line 244 

(176x1mm slices; TR = 2020ms; TE = 2.9ms; FOV = 256x256mm2, flip angle = 9 , voxel size 245 

1x1x1mm3).  246 

Voxels were placed in either the left or right dorsal striatum, ventral striatum and the cerebellum, 247 

with hemisphere placement and order of measurements counterbalanced across participants. 248 

Anatomy was used to guide voxel positioning. The top of the dorsal striatum was identified by 249 

slice-by-slice examination of the structural scan. The slice below the slice where the top of the 250 

striatum was no longer visible was selected and the top of the voxel was aligned with this slice. The 251 

slice above the slice where the bottom of the striatum could no longer be seen was selected and used 252 

for alignment of the ventral striatum voxel.  The cerebellum voxel was placed as high in the 253 

superior cerebellar vermis as possible whilst ensuring only cerebellar tissue was contained in the 254 

voxel. The superior cerebellar vermis was chosen as it has been shown to have the lowest variability 255 

in both inter and intra subject metabolite ratios as measured with MRS at rest (Currie et al., 2013). 256 

All voxels were visually inspected to ensure minimal cerebrospinal fluid was included in the voxels. 257 

A PRESS sequence was used to acquire data from the three separate voxel positions (voxel size = 258 

10x15x15mm3; TR = 2000ms; TE = 30ms). 128 spectra were collected and averaged for each area.  259 

A water-unsuppressed spectrum was also obtained from each area for data processing, which 260 

consisted of an average of 15 spectra. The SIEMENS Auto Align Scout was used in between each 261 
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scan to adjust the voxel position based on the actual head position of the participant. This was used 262 

to correct for participant motion and minimize the variability of the voxel position.  263 

Structural Segmentation 264 

Structural scans were processed using FSL version 5.0.8 (Smith et al., 2004; Jenkinson et al., 2012). 265 

First, the skull was removed using the brain extraction tool (BET) (Smith, 2002). Images were 266 

segmented into three separate tissue types: grey matter (GM), white matter (WM) and cerebrospinal 267 

fluid (CSF) using the FAST tool (Zhang et al., 2001). The coordinates and dimensions of the voxel 268 

were then superimposed on these images and the proportion of each of the three tissue types 269 

contained within the voxel was calculated. 270 

Quantitation 271 

Data was processed in the time domain using Java-Based Magnetic Resonance User Interface 272 

(jMRUI software version 5.0 (http://www.mrui.uab.es/mrui; Naressi et al., 2001). Phase correction 273 

was performed using the corresponding water spectrum from each area. Each spectrum was then 274 

apodized using a Gaussian filter of 3Hz to improve signal quality, reduce noise and reduce effects 275 

of signal truncation (Jiru, 2008). The residual water peak was removed using the Hankel-Lanczos 276 

Singular Value Decomposition (HLSVD) filter tool. 277 

Metabolite models were generated using the software Versatile Simulation, Pulses and Analysis 278 

(VEsPA; https://scion.duhs.duke.edu/vespa/project; Soher, Semanchuk, Todd, Steinberg, & Young., 279 

2010). 14 typical brain metabolites (Acetate, Aspartate, CHO, Creatine, Gamma-Aminobutyric 280 

Acid (GABA), Glucose, Glutamate, Glutamine, Lactate, Myo-inositol, N-acetyl Aspartate (NAA), 281 

Phosphocreatine, PC & GPC, Scyllo-inositol, Succinate, Taurine) were simulated at a field strength 282 

of 3T using a PRESS pulse sequence (TE1 = 20ms, TE2 = 10ms, main field = 123.25MHz). For 283 

initial analyses, CHO was modelled separately from PC+GPC based on the method described in 284 

Bell et al., 2018.  Additionally, the sum of the three peaks (total choline, tCHO) was included in the 285 
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analyses for comparison. If tCHO produced similar results to CHO, it would potentially suggest that 286 

there may not be a need to separate the three peaks, or that the quantitation method is not separating 287 

CHO effectively.  288 

The jMRUI tool Accurate Quantification of Short Echo time domain Signals (AQSES) was used for 289 

automatic quantification of spectra signals. AQSES was applied using the method described in 290 

Minati, Aquino, Bruzzone, & Erbetta, 2010. To correct for any chemical shift displacement, the 291 

spectrum was shifted so that the peak for n-acetyl-aspartate (NAA) was at 2.02ppm. The frequency 292 

range selected for processing was limited to 0-8.6ppm (equal phase for all metabolites, begin time 293 

fixed, delta damping (-10 to 25Hz), delta frequency (-5 to 5Hz), no background handling, 0 294 

truncated points, 2048 points in AQSES and normalisation on). Based on common practice in the 295 

field, values with a CRB higher than 30% were excluded on a case by case basis. 296 

Metabolite concentrations were calculated for CHO, PC+GPC, tCHO, NAA and total creatine (tCR, 297 

creatine + phosphocreatine), correcting for partial-volume and relaxation effects, using the formula 298 

described in Gasparovic et al., 2006. 299 

Experimental Design and Statistical Analysis 300 

Statistical analysis was performed using SPSS (IBM Corp. Released 2013. IBM SPSS Statistics for 301 

Windows, Version 22.0. Armonk, NY: IBM Corp). 302 

The relationships between model parameters and behaviour, along with model parameters and 303 

metabolite levels, and behaviour and metabolite levels wereas assessed using correlation analysis. 304 

The distribution of the data was analysed using measures of skewness and kurtosis, along with the 305 

Shapiro-Wilk test. When the assumptions of normality and homogeneity were met, Pearson’s 306 

correlation (r) was used to assess correlations. When assumptions of normality were not met, 307 

Kendall’s Tau (rƮ) was used to assess correlations, as it provides a better estimation of the 308 

correlation in a small sample size compared to other non-parametric methods (Field, 2009).Both the 309 
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behavioural and MRS data reported satisfy false discovery correction using the Benjamini-310 

Hochberg procedure at a reasonably conservative 10% false discovery rate (Benjamini and 311 

Hochberg, 1995). We report the FDR correction because of our strong a priory prediction and the 312 

high cost of false negatives. Further, in the case of model-behaviour correlations, the FDR 313 

correction is more appropriate than a family-wise error rate correction for multiple comparisons 314 

(such as the Bonferroni method) because of the high correlation rate expected in the data, given that 315 

model parameters were estimated from behaviour itself. We included a bootstrap approach (1000 316 

iterations) to calculate bias-corrected 95% confidence intervals (CI). Where appropriate, 317 

hierarchical multiple regression analysis was used to assess the variance in behaviour explained by 318 

metabolite levels, after the model parameters were accounted for. 319 

Confounding Variables 320 

There were no significant differences in metabolite levels between hemispheres, therefore the 321 

results were combined across hemisphere of acquisition. 322 

To examine if variations in the metabolite values might be caused by differing proportions of tissue 323 

composition, correlations were performed between CCC levels and proportion of grey and white 324 

matter present in the voxel. Additionally, metabolite values were checked against the water signal 325 

for the same reason. No significant correlations were found between CCCs and grey/white matter 326 

content, indicating any variance seen is generated by differing metabolite levels. The water signal 327 

significantly correlated with dorsal striatum tCHO (rƮ (34) = -0.348, p = 0.003) and ventral striatum 328 

PC+GPC (rƮ (31) = -0.270, p = 0.001). Therefore, analyses involving dorsal striatum tCHO or 329 

ventral striatum PC+GPC were corrected for this source of variance using partial correlations. No 330 

other significant correlations were seen between the water signal and metabolite levels of interest.  331 

There is evidence that metabolite levels in the brain can vary based on time of day (Soreni et al., 332 

2006) and age (Pfefferbaum et al., 1999; Reyngoudt et al., 2012). Therefore, all metabolites were 333 
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checked against these two variables to ensure this was not a source of variance. Time of day 334 

significantly correlated with dorsal striatum tCHO (rƮ (34) = 0.249, p = 0.038) and cerebellum 335 

tCHO (rƮ (30) = 0.285, p = 0.026). Therefore, analyses involving dorsal striatum tCHO or 336 

cerebellum tCHO were corrected for this source of variance using partial correlations. No other 337 

significant correlations were seen between metabolite levels and time of day or age of participant. 338 

Controls 339 

The cerebellum was used as a control to demonstrate the regional specificity of results. None of the 340 

effects were present in the cerebellum and therefore these results are not reported further. NAA and 341 

tCR were used as controls to demonstrate the neurochemical specificity of the results (i.e. that the 342 

relevant individual differences were specific to choline and not to spectrum-wide inter-individual 343 

differences). None of the effects were present in either NAA or tCR and therefore these results are 344 

not reported further. Furthermore, none of the reported effects were found when using tCHO as a 345 

measure of cholinergic availability and therefore these results are not reported further. 346 

RESULTS 347 

Behavioural Results 348 

Twenty-two (22) participants reached criterion during both rounds (i.e. they reached criterion both 349 

during initial learning and after the reversal) and were included in the analysis. Table 1 shows the 350 

average number of trials taken to complete each component. 351 

Model parameters and performance 352 

A reinforcement-learning model was used to disentangle components of learning that contribute to 353 

overall behaviour. We looked at three parameters of interest, the learning rates from positive (η+) 354 

and negative (η-) prediction errors, and the overall impact of subjective value of the deck on the 355 
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participants choice (value impact parameter, β). Table 2 shows the mean of the model parameters 356 

for both rounds. Outlier analysis resulted in the exclusion of the value impact parameter (β) during 357 

initial learning for one participant (Z=3.12). 358 

To explore how the contribution of the model parameters to behaviour changes over time, we 359 

looked at correlations between behaviour (as measured by trials to criterion, number of 360 

perseverative trials and number of regressive errors) and the corresponding model parameters 361 

separately, i.e. behaviour during initial learning was correlated with model parameters fit over the 362 

initial learning period, and likewise for the reversal learning period.  363 

Table 3 shows the correlation coefficients for the relationships between model parameters and 364 

behaviour. Faster initial learning (low number of trials to criterion) was associated with a higher 365 

learning rate from positive prediction errors (r(21) = -0.439, p = 0.041) and a higher value impact 366 

parameter (r(20) = -0.536, p = 0.012). A lower number of perseverative trials was associated with a 367 

higher learning rate from negative prediction errors (r(21) = -0.527, p = 0.012). As was the case 368 

during initial learning, during post-reversal learning (after the reversal has been identified) a lower 369 

number of trials taken to reach criterion was associated with a higher learning rate from positive 370 

prediction errors (rƮ (21) = -0.335, p = 0.03), and a higher value impact parameter (rƮ (21) = -0.352, 371 

p = 0.022). Additionally, during post-reversal learning, a lower number of regressive errors was 372 

associated with a higher learning rate from positive prediction errors (rƮ (21) = -0.355, p = 0.023) 373 

and a higher value impact parameter (rƮ (21) = -0.337, p = 0.031). 374 

Effects of trait impulsivity on performance 375 

To investigate the influence of impulsivity on decision making, we looked at correlations between 376 

impulsivity (total BIS-11 score) and measures of behaviour (including model parameters) in 377 

learners. Higher impulsivity levels were associated with a lower number of perseverative errors 378 

(r(21) = -0.470, p = 0.027). No other measures of behaviour correlated with impulsivity.  379 
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Summary 380 

The contribution of learning parameters to performance changes over the learning period. Faster 381 

initial learning was indexed by both higher learning rates from positive prediction errors (R1η+) and 382 

higher value impact parameters (R1β). However, reduced numbers of perseverative trials were 383 

associated with higher learning rates from negative prediction errors (R2η-) and higher impulsivity 384 

levels. Similar to initial learning, faster post-reversal learning was associated with higher learning 385 

rates from positive prediction errors (R2η+) and higher value impact parameters (R2β). 386 

Additionally, during post-reversal learning, lower numbers of regressive errors were associated with 387 

higher learning rates from positive prediction errors (R2η+) and higher value impact parameters 388 

(R2β). 389 

Spectroscopy Results 390 

One participant was excluded from spectroscopy analysis due to issues with segmentation of the 391 

structural scan. All metabolite values had CRB < 30% and were all included in the analysis.  392 

Association of reversal learning with dorsal striatal choline 393 

Table 4 shows the average metabolite levels in the dorsal striatum. To test the hypothesis that 394 

reversal learning performance is associated with dorsal striatal CHO levels, we looked at the 395 

correlation between measures of reversal learning performance (number of perseverative trials and 396 

learning rate from negative prediction errors; R2η-) and levels of CHO in the dorsal striatum in 397 

learners (n = 21). 398 

A lower number of perseverative trials was associated with lower levels of dorsal striatum CHO (rƮ 399 

(20) = 0.367, p = 0.021; 95% CI [0.081, 0.669]; Figure 4A). The opposite effect was seen with 400 

dorsal striatum PC+GPC (r(20) = -0.447, p = 0.042; 95% CI [-0.779, 0.004]). Additionally, higher 401 

learning rates from negative prediction errors were associated with lower dorsal striatum CHO 402 
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levels (rƮ (20) = -0.371, p = 0.019; 95% CI [-0.258, -0.025] Figure 4B). This result is specific to 403 

dorsal striatum CHO, with no other dorsal striatum metabolites found to correlate with learning 404 

rates from negative prediction errors.  405 

After establishing an association between CHO levels and reversal performance, we wanted to 406 

examine whether CHO contributed to reversal efficiency over and above behavioural and 407 

personality variables. Using a hierarchical multiple regression, we first modelled the contribution of 408 

variance from learning rates from negative prediction errors and total BIS scores to the variance in 409 

the number of perseverative trials (Model 1; F(2,18) = 9.460 p = 0.002, R2 = 0.512; Table 5). The 410 

second model looked at whether the addition of dorsal striatum CHO would explain significantly 411 

more variance, over and above that explained by learning rates from negative prediction errors and 412 

total BIS score (Model 2; F(3,17) = 9.574 p = 0.001, R2 = 0.628; Table 5).  413 

The amount of variance in the number of perseverative trials explained by learning rates from 414 

negative prediction errors was significant in both Model 1 (  = -0.493, t(18) = -2.980, p =  0.008; 415 

Table 5) and Model 2 (  = -0.430, t(17) = -2.843, p = 0.011; Table 5). Additionally, total BIS score 416 

also explained a significant amount of variance in both Model 1 (  = -0.472, t(18) = -2.855, p = 417 

0.011; Table 5) and Model 2 (  = -0.419, t(17) = -2.787, p = 0.013; Table 5). 418 

In Model 2, dorsal striatum CHO also explained a significant amount of variance in the number of 419 

perseverative trials (  = 0.351, t(17) = 2.300, p = 0.034; Table 5). The addition of dorsal striatum 420 

CHO to the model increased R2 by 0.116 and this increase was statistically significant (F(1,23) = 421 

5.291, p = 0.034; Table 5).  422 

To assess the specificity of this result, dorsal striatum PC+GPC was also included in the model. 423 

However, analysis of multicollinearity diagnostics showed a tolerance of 0.175, which is below the 424 

acceptable value of 0.2. This is due to the strong significant correlation between dorsal striatum 425 

CHO and dorsal striatum PC+GPC (rƮ (20) = -0.667 p < 0.001). As a result, including the two 426 
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variables in the same regression model would violate the assumption of multicollinearity and the 427 

regression model would not be able to provide unique estimates of the regression coefficients, as 428 

each will account for overlapping variance (Field, 2009). Therefore, we instead repeated the 429 

hierarchical regression with dorsal striatum PC+GPC in place of dorsal striatum CHO. The amount 430 

of variance explained by dorsal striatum PC+GPC was not significant (  = -0.301, t(17) = -1.900, p 431 

= 0.075). The addition of dorsal striatum PC+GPC to the model increased R2 by 0.085 and this 432 

increase was not statistically significant (F(1,23) = 3.611, p = 0.075). This indicates that dorsal 433 

striatum CHO levels can explain part of the variance in the number of perseverative trials, however 434 

dorsal striatum PC+GPC levels cannot. 435 

Association of other learning parameters with dorsal striatal choline 436 

No significant correlations were seen with measures of performance in round 1 (trials to criterion, 437 

R1η+ or R1β) and average levels of CHO in the dorsal striatum. 438 

No significant correlations were seen with dorsal striatal CHO levels and measures of performance 439 

during post reversal learning (trials to criterion, R2η+ or R2β). Additionally, there were no 440 

significant correlations between dorsal striatal CHO levels and the number of regressive errors.  441 

Association of learning parameters with ventral striatal choline 442 

Two participants were excluded from analysis due to poor data quality of the ventral striatal spectra. 443 

Table 6 shows the average metabolite levels in the ventral striatum. To test the hypothesis that 444 

associations between dorsal striatal CHO levels are region specific and not from the striatum as a 445 

whole, we looked at the correlation between measures of learning performance and levels of CHO 446 

in the ventral striatum in learners (n = 20). 447 

Ventral striatal CHO did not correlate with trials to criterion in round 1. However, low levels of 448 

CHO in the ventral striatum were associated with higher learning rates from positive prediction 449 

errors during initial (but not reversal) learning (r(19) = -0.625, p = 0.003; 95% CI [-0.873, -0.363]; 450 
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Figure 5A) and lower value impact parameter during initial (but not reversal) learning (r(18) = 451 

0.555, p = 0.014; 95% CI [0.312, 0.874]; Figure 5B).  452 

Ventral striatal CHO was not found to correlate with either the number of perseverative trials or 453 

learning rates from negative prediction errors. 454 

No significant correlations were seen with ventral striatal CHO levels and measures of performance 455 

during post reversal learning (trials to criterion, R2η+ or R2β). Additionally, there were no 456 

significant correlations between ventral striatal CHO levels and the number of regressive errors. 457 

Group Comparisons 458 

To investigate whether average levels of CHO in the striatum relate to learning ability, the average 459 

levels were compared between learners and non-learners. There was no significant difference in 460 

CHO levels between learners and non-learners in either the dorsal striatum or the ventral striatum.  461 

Summary 462 

In the dorsal striatum, average CHO levels were associated with performance during reversal, but 463 

not during initial learning. There was a significant positive correlation between dorsal striatal CHO 464 

levels and the number of perseverative trials, and a significant negative correlation between dorsal 465 

striatal CHO levels and learning rates from negative prediction errors (R2η-). Additionally, dorsal 466 

striatal CHO levels explained variance in the number of perseverative trials over and above that 467 

explained by learning rates from negative prediction errors. 468 

In the ventral striatum, average CHO levels were not associated with performance during reversal 469 

learning. Although ventral striatal CHO levels were not associated with the speed of initial learning, 470 

there was a significant positive correlation between ventral striatal CHO levels and learning rates 471 

from positive prediction errors, and a significant negative correlation between ventral striatal CHO 472 

levels and the value impact parameter during initial learning.  473 
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DISCUSSION 474 

We used MRS to investigate the relationship between average CHO levels in the human striatum (at 475 

rest) and probabilistic reversal learning. We show that baseline levels of CHO in the human dorsal 476 

striatum are associated specifically with individual differences in reversal learning efficiency, but 477 

not in initial learning, and that this effect is specific to the dorsal, but not the ventral striatum. 478 

Behaviourally, we show that faster initial learning is indexed by a higher learning rate from positive 479 

prediction errors (η+) and a higher value impact parameter ( ). Therefore, during this period, 480 

participants are using wins and expected value to guide their choices. This is also seen during the 481 

post-reversal learning period, in which faster post-reversal learning is indexed by higher learning 482 

rates from positive prediction errors (η+) and higher value impact parameters ( ). Faster reversal 483 

(less perseveration), however, was indexed by higher learning rates from negative prediction errors 484 

(η-) only. During this period, i.e. after the reversal has been implemented, participants must now 485 

pay increased attention to worse than expected outcomes in order to identify the change in 486 

contingencies. Therefore, to adapt to changes in task structure, participants adapt their strategy by 487 

altering the weight of learning from prediction errors based on reward history. 488 

The learning rate for negative prediction errors, even after accounting for trait impulsivity, 489 

explained a significant amount of variance in perseveration, providing a simple mechanism to 490 

explain reversal efficiency. Average dorsal striatum CHO levels explained variance in perseveration 491 

over and above this original model. This suggests a more complex mechanism in which 492 

perseveration is influenced, in part, by the learning rate from negative prediction errors (which can 493 

change due to task demand) and by resting levels of dorsal striatum CHO. Indeed, Franklin & 494 

Frank, 2015 showed that a model which takes into account cholinergic activity performs better on a 495 

reversal learning task than a model based solely on dopamine prediction error signalling. 496 
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Our results indicate that participants who were quicker to reverse had lower average levels of dorsal 497 

striatum CHO, suggesting that low trait levels of dorsal striatum CHO are beneficial for reversal 498 

learning. Based on evidence that ACh efflux increases during reversal learning (Ragozzino et al., 499 

2009; Brown et al., 2010), this suggests two potential mechanisms. Firstly, lower levels of dorsal 500 

striatum CHO at rest could reflect lower levels of ACh at rest. This is also supported by evidence 501 

from the animal literature, which has shown a positive correlation between ACh levels at rest as 502 

measured by microdialysis and average CCCs as measured by MRS (Wang et al., 2008). 503 

Additionally, higher levels of CHO availability have been shown to lead to higher levels of ACh 504 

release, implying a positive correlation between the two metabolites (Koshimura et al., 1990). 505 

Based on this notion, the findings here suggest that lower levels of ACh at rest may be beneficial 506 

for reversal learning because they enable a higher contrast between ACh levels at rest and during 507 

reversal learning. However, it is important to note that Wang et al. (2008) modelled all three CCCs 508 

as a single peak. It is likely that the relationship between CHO levels as measured by spectroscopy 509 

and ACh levels in the brain is not straightforward, and this interpretation should be considered with 510 

caution. Indeed, animal studies have shown the relationship between CHO and ACh can change 511 

based on neuronal firing and ACh requirement (Löffelholz, 1998; Klein et al., 2002). Furthermore, 512 

we have previously demonstrated a drop in CHO levels in the human dorsal striatum during reversal 513 

learning, thought to reflect the sustained increase in ACh release seen in animal studies (e.g. 514 

Ragozzino et al., 2009). This drop is thought to be due to an increase in translocation of CHO 515 

uptake receptors in response to sustained neural firing (Bell et al., 2018). Though we have described 516 

the measurements in this study as “at rest”, cholinergic interneurons are tonically active, and 517 

therefore the relationship between CHO and ACh levels in the striatum will likely reflect a more 518 

complex dynamical relationship between the two. 519 

The second potential mechanism supported by our findings is that lower levels of dorsal striatum 520 

CHO at rest may result from a more efficient CHO uptake system. Mice carrying mutations in the 521 
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gene coding for CHO uptake transporters have reduced neuronal capacity to both clear CHO and 522 

release ACh. Moreover, performance on an attention task was impaired in these mice (Parikh et al., 523 

2013). Additionally, in a study of frontal cortex cholinergic modulation during attention, humans 524 

with a gene polymorphism which reduces CHO transport capacity showed reduced activation in the 525 

prefrontal cortex during an attentional task. Furthermore, the pattern of activation predicted CHO 526 

genotype (Berry et al., 2015). Although our findings are in line with biochemical and functional 527 

evidence in various models, it is clear that further work is needed to determine the relationship 528 

between CHO uptake, ACh release, and reversal learning.  529 

With regards to performance, disruption of cholinergic signalling in rodents typically results in an 530 

increase in regressive errors (Brown et al., 2010; Bradfield et al., 2013). However, here we found no 531 

association between dorsal striatum CHO levels and the number of regressive errors. In humans, 532 

measures of individual differences in perseverative and regressive errors are likely to be 533 

confounded by individual differences in representation of the task structure. Rather than making 534 

perseverative and regressive errors based solely on feedback, the ability to flexibly alter response 535 

depends in part on a higher level representation of the task, which is thought to be maintained in 536 

frontal areas of the cortex (Armbruster et al., 2012). It should be noted that the basal ganglia-537 

thalamo-cortical system has been shown to be modulated by the maintenance of task rules, with 538 

individuals with stronger representation of the task structure showing higher activation in the 539 

caudate and thalamus during a behaviour switch (Ueltzhöffer et al., 2015), indicating that 540 

representation of task structure likely modulates dorsal striatum activity in response to the need for 541 

behavioural flexibility. Inevitably, caution is needed when translating evidence from rodent studies 542 

of learning to human studies. This emphasises the need to further develop non-invasive techniques 543 

for studying human neurochemistry in vivo. 544 

As predicted, and in line with evidence from the animal literature (Ragozzino et al., 2009), levels of 545 

CHO in the ventral striatum were not associated with reversal learning. However, ventral striatum 546 
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CHO levels were associated with model parameters which contributed to initial learning. Though 547 

Ragozzino et al. demonstrated that ACh levels in the rat ventral striatum did not change during 548 

reversal learning, they did not test if they changed during initial learning. Successful learning 549 

requires the ability to learn from feedback, which is encoded through dopaminergic prediction error 550 

signalling in the ventral striatum (Schultz et al., 1997). The rodent ventral striatum has a higher 551 

density of cholinergic interneurons than the dorsal striatum (Matamales et al., 2016) and changes in 552 

cholinergic activity are time locked to changes in dopaminergic activity, which is thought to 553 

enhance the contrast of prediction error signalling (Aosaki et al., 2010). Indeed, cholinergic activity 554 

in the ventral striatum has been linked with effective learning of a stimulus-outcome association 555 

(Brown et al., 2012), therefore it is likely that cholinergic activity in the ventral striatum is involved 556 

in some aspect with goal-directed learning, and further studies should explore this contribution. 557 

Due to our specific a priori hypotheses and novel MRS application, we used several controls to 558 

demonstrate that these effects are specific to CHO levels in the striatum. We acquired data from a 559 

voxel in the cerebellum, geometrically identical to the striatal voxels. No learning effects were 560 

present in the cerebellum, demonstrating that our findings are specific to the striatum. Additionally, 561 

we also quantified two control metabolites (NAA and tCR) to ensure that the results were specific 562 

to the metabolite of interest, rather than a general measurement or region effect. None of the effects 563 

were seen in levels of NAA and tCR in the dorsal striatum or ventral striatum. Importantly, none of 564 

the effects were seen when modelling all three peaks together (tCHO), highlighting once more the 565 

importance of separating CHO when using MRS to investigate individual differences in CCC 566 

levels.  567 

As is common with learning tasks, a significant proportion of our sample did not reach criterion, 568 

leaving a smaller sample for analysis. This proportion is similar to that reported in previous studies 569 

using this task (i.e. Schönberg et al., 2007), and although the final sample size was reduced by this 570 

effect, it is in line with the size of typically published MRS/MRI samples. This observation 571 
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notwithstanding, the novelty of the approach presented here naturally warrants further validation of 572 

both the method and the findings. 573 

In summary, we used MRS to demonstrate that average levels of CHO in the human dorsal striatum 574 

are associated with performance during probabilistic reversal, but not during initial learning. This is 575 

in line with evidence from the animal literature and our own prior work with humans, which 576 

suggests a specific role for cholinergic activity in the dorsal striatum during reversal learning. These 577 

results provide evidence for the role of the human cholinergic striatum in reversal learning and 578 

behavioural flexibility more generally. Additionally, these findings further support the idea of using 579 

CHO levels as measured by MRS as a tool for non-invasive in vivo monitoring of both healthy 580 

human neurochemistry, as well as disorders of the human cholinergic system. 581 
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Tables  781 

Table 1: Performance variables  782 

 Average Number of Trials SD 
Initial Learning 44 28 
Reversal Learning 47 23 

Perseveration Period 12 8 
Post Reversal Learning 35 22 
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Regressive Errors 7 6 

 783 

Table 2: Estimates of model parameters  784 

 η+ η- β 

Initial Learning 
 
Reversal Learning 

0.37 
(SD = 0.30) 

0.24 
(SD = 0.35) 

0.42 
(SD = 0.31) 

0.31 
(SD = 0.27) 

1.44 
(SD = 0.56) 

1.37 
(SD = 0.97) 

Note: η+ = learning rate from positive prediction errors; η- = learning rate from negative prediction 785 

errors; β = impact of subjective value on choice.  786 

Table 3: Correlation coefficients for relationships between model parameters and behaviour 787 

   η+ η- β 

Initial Learning (TTC)  -0.439  
[-0.710, -0.066] 

-0.218 
[-0.307, -0.680] 

-0.536* 
[-0.808, -0.248] 

Reversal Learning     

 Perseverative Errors -0.176 
[-0.516, 0.233] 

-0.527* 
[-0.754, -0.285] 

0.132 
[-0.117, 0.403] 

 Post Reversal Learning (TTC) -0.335* 
[-0.593, -0.014] 

0.322 
[-0.164, 0.673] 

-0.352* 
[-0.674, -0.051] 

 Regressive Errors -0.355* 
[-0.612, -0.047] 

0.292 
[-0.174, 0.649] 

-0.337* 
[-0.639, -0.054] 

Note: η+ = learning rate from positive prediction errors; η- = learning rate from negative 788 

prediction errors; β = value impact parameter; * p<0.05; ranges in square brackets indicate bias 789 

corrected 95% confidence intervals.  790 

 791 

Table 4: Average metabolite levels in the dorsal striatum 792 

CHO PC+GPC tCHO NAA tCR 
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Learners 0.15 0.27 0.42 8.73 11.58 

(SD = 0.20) (SD = 0.10) (SD = 0.12) (SD = 0.77) (SD = 1.74) 

Non-Learners 0.11 0.36 0.46 8.83 11.80 

(SD = 0.16) (SD = 0.14) (SD = 0.10) (SD = 2.37) (SD = 2.31) 

Note: CHO = choline, PC+GPC = phosphocholine and glycerophosphocholine, tCHO = total 793 

choline, NAA = n-acetyl aspartate, tCR = total creatine. 794 

Table 5: Summary of hierarchical regression analyses for variables predicting perseveration 795 

    B SE B  R2 ΔR2 p 
Model 1     0.512  0.002 
 R2η- -14.476 4.858 -0.493   0.008 
 BIS Total -0.504 0.176 -0.472   0.011 
        
Model 2     0.628 0.116 0.034 
 R2η- -12.619 4.439 -0.430   0.011 
 BIS Total -0.447 0.160 -0.419   0.013 
 DS CHO 5.306 2.307 0.351   0.034 
Note, for ΔR2=0.139, p = 0.037  796 

B = unstandardized coefficient, SE = standard error,  = standardised coefficient 797 

Table 6: Average metabolite levels in the ventral striatum 798 

CHO PC+GPC tCHO NAA tCR 
Learners 0.24 0.27 0.5 5.39 12.02 

(SD = 0.17) (SD = 0.12) (SD = 0.17) (SD = 1.97) (SD = 2.26) 
Non-Learners 0.23 0.25 0.48 5.45 11.13 

(SD = 0.17) (SD = 0.14) (SD = 0.16) (SD = 1.54) (SD = 3.95) 

Note: CHO = choline, PC+GPC = phosphocholine and glycerophosphocholine, tCHO = total 799 

choline, NAA = n-acetyl aspartate, tCR = total creatine. 800 
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FIGURE LEGENDS 801 

Figure 1: General outline of learning task trials. Participants were instructed to choose between four 802 

decks of cards. Each deck had a different probability of generating wins:losses (75:25, 60:40, 40:60, 803 

25:75). Once the learning criterion had been reached, the deck probabilities were reversed so that 804 

high probability decks became low probability decks and vice versa. Participants were not informed 805 

of this in advance and were simply instructed to gain as many points as possible. Each screen was 806 

shown for 2.5s, RT = reaction time 807 

 808 

Figure 2: General overview of learning task structure. Participants completed the initial learning 809 

phase (round 1) by reaching the predefined accuracy criterion or after 100 trials. Upon completion 810 

of the initial learning phase, the deck probabilities were reversed. Participants then completed a 811 

reversal learning phase (round 2). For behavioural analysis, this was subdivided into perseverative 812 

trials (PER) and a post-reversal learning period. The number of perseverative trials was defined as 813 

the number of trials after reversal until the probability of selecting the previously favoured card 814 

reached chance level (0.25). The post-reversal learning period was the number of trials to reach 815 

criterion in round 2, minus the number of perseverative trials. The number of regressive errors was 816 

defined as the number of times the previously favoured deck was selected during the post-reversal 817 

learning period. The task ended once participants either reached the same accuracy criterion in 818 

round 2 or after 100 round 2 trials.  819 

 820 

Figure 3: Location of voxels and example spectra. Heat maps showing the sum of the MRS voxels 821 

over all subjects in MNI space, along with a voxel and a representative spectrum from a single 822 

subject (A = Dorsal Striatum, MNI coordinates: -3.41, 2.37, 11.16; B = Ventral Striatum, MNI 823 

coordinates: -2.99, 5.92, -3.93; C = Cerebellum, MNI coordinates: -2.10, -61.03, 19.20). 824 
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 825 

Figure 4: Correlations between dorsal striatum CHO levels and performance during reversal A: 826 

Positive correlation between the number of perseverative trials and levels of CHO in the dorsal 827 

striatum (rƮ (21) = 0.367, p = 0.021). B: Negative correlation between the learning rate based on 828 

negative prediction errors derived from round 2 (R2η-) and levels of CHO in the dorsal striatum (rƮ 829 

(21) = -0.371, p = 0.019). DS: Dorsal Striatum; CHO: Choline. 830 

 831 

Figure 5: Correlations between ventral striatum CHO levels and performance during initial learning 832 

A: Negative correlation between learning rate based on positive prediction errors derived from 833 

round 1 (R1η+) and levels of CHO in the ventral striatum (r(19) = -0.625, p = 0.003). B: Positive 834 

correlation between impact of participant’s subjective value on their future choice derived from 835 

round 1 (R1β) and levels of CHO) in the ventral striatum (r(18) = 0.555, p = 0.014). VS: Ventral 836 

Striatum; CHO: Choline. 837 












