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Abstract: Pan evaporation plays a critical role in estimating water budget and modelling crop water 

requirements. However, it has been measured at a very limited number of meteorological stations. 

Estimation of pan evaporation from measured meteorological variables offers an important 

alternative and drawn increasing attention in the recent years. This paper investigated the 

performance of support vector machine (SVM) in estimation of monthly pan evaporation using 

commonly measured meteorological variables in Three Gorges Reservoir Area in China. Evaluation 

suggested that SVM models showed remarkable performances and significantly outperformed the 

empirical model. The SVM model with polynomial as kernel function outperformed that with radial 

basis function. In the case of unavailable measurements of pan evaporation and meteorological 

variables to construct the SVM model, pan evaporation can be well estimated by SVM model 

developed using data at other sites. The results indicated that the SVM method would be a 

promising alternative over the traditional approaches for estimating pan evaporation from measured 

meteorological variables. 

Key words: pan evaporation, support vector machine, meteorological variables, Three Gorges 

Reservoir Area 
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1 Introduction 

The critical importance of pan evaporation in estimating water budget and modelling crop water 

requirements has been well documented (Li et al. 2018; Flammini et al. 2018). It has been widely 

used as an indicator for estimating free water evaporation and reference evapotranspiration (Wang 

et al. 2017a). The realistic method for measuring pan evaporation is to use Class A pan evaporimeter. 

However, due to the large cost of the measurement devices and its difficult maintenance (Kisi et al. 

2016), pan evaporation has been measured only at a very limited number of meteorological stations 

(Shirsath and Singh 2010). Therefore, many attempts have been made to estimate pan evaporation 

with modelling approach (Malik and Kumar 2015). 

Two major methods have been generally used to calculate pan evaporation. One is mechanism 

method which simulates physical processes of evaporation based on the principles of energy budget 

and mass exchanges. Martínez et al. (2006) developed a multilayer model based on the 

discretization of the pan water volume into several layers. Choudhary and Klauda (2016) presented 

a physical model based on theoretical models for mass and energy transfer. Gentine et al. (2016) 

introduced a new methodology which is theoretically based on the budget of heat and moisture in 

the boundary layer. However, it is still difficult to build an accurate model representing all the 

processes due to the nonlinear and complex process of evaporation (Lin et al. 2013; Sanikhani et al. 

2012). Moreover, the physical models are generally complex and their calibrations require a large 

amount of data and computational costs (Tan et al. 2007), limiting the practical applications of 

physical models in researches in environment, agriculture and ecology. As a consequence, the other 

alternative  has been widely developed. 

In particular, a large number of data-driven models have been created. For example, the empirical 

model and machine learning algorithm have been extensively investigated. Stephens and Stewart 

(1963) developed an empirical model using radiation and air temperature. This model was found to 

perform best among 23 models in extremely arid areas (Al-Shalan and Salih 1987). Hanson (1989) 

presented an empirical equation using radiation and air temperature in the USA. Linacre (1977) 

proposed a simple model using temperature in Australia. Rotstayn et al. (2006) coupled the radiative 

component and the aerodynamic component to develop the PenPan model, which was later 

validated by Roderick et al. (2007) and Johnson and Sharma (2010) across Australia. Lim et al. 

(2016) modified the PenPan model to present the PenPan-V2 model, which was found to 

outperform the original PenPan model in Australia. Patel and Majmundar (2016) obtained empirical 

relations as functions of air temperature, relative humidity, wind velocity, and sunshine duration in 

India. Andreasen et al. (2017) developed multilinear regression models using various combinations 

of meteorological variables in the USA. The main benefit of empirical models is that the 

meteorological variables are routinely measured and easily available. However, they can only be 

applied to the places with similar climatic conditions (Goyal et al. 2014). Moreover, the empirical 

models cannot provide accurate estimations due to the complex process of evaporation (Shalamu 

2011). 

Many researchers have explored the potential of machine learning algorithms in estimating  pan 

evaporation. Sudheer et al. (2002) investigated the abilities of artificial neural networks (ANN) 

using meteorological variables, and the results showed that ANN model performed better than 

empirical models in Georgia, USA. Later, a large number of works evaluated the performances of 

ANN in Iran (Tabari et al. 2012), Turkey (Tezel and Buyukyildiz 2016), India (Malik et al. 2017), 

and China (Wang et al. 2017a), and the results confirmed the superiority of ANN over the empirical 
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models (Kim et al. 2013, 2014, 2015; Kisi et al. 2016; Malik and Kumar 2015). Guven and Kisi 

(2011) presented genetic programming (GP) to estimate pan evaporation in California. Evaluations 

suggested that GP model gave better estimation than ANN and empirical models (Guven and Kisi 

2013; Kim et al. 2015; Kişi and Tombul 2013). Malik et al. (2017) compared the performances of 

multi-layer perceptron neural network (MLPNN), self-organizing map neural network (SOMNN), 

ANFIS, ANN and empirical models in Indian. Wang et al. (2017c) investigated the performances of 

fuzzy genetic (FG), adaptive neuro-fuzzy inference systems (ANFIS) and M5 model tree and 

empirical models in China, and the results indicated that FG model generally produced better results 

than other models.  

In recent years, a novel machine learning algorithm, support vector machine (SVM), has been 

widely applied and proven to be a robust algorithm for estimation (Chen et al. 2015). Some 

researches have explored the potential of SVM in the estimation of pan evaporation from 

meteorological variables. Kim et al. (2012) evaluated the performance of SVM in Korea and Iran, 

and results suggested that SVM was superior to ANN and empirical models. Lin et al. (2013) 

compared the accuracy of SVM and ANN models and reported that SVM generated  better 

estimation than ANN. Goyal et al. (2014), Kisi (2015), and Tezel and Buyukyildiz (2016) evaluated 

the performances of SVM, ANN and empirical models and also reported that SVM outperformed 

other models. Pammar and Deka (2017) explored the potential of SVM for pan evaporation 

estimation in India. Wang et al. (2017b) compared the performances of SVM, FG, ANFIS, 

multivariate adaptive regression spline(MARS) and empirical models in China, and the overall 

results indicated that SVM performed better than other methods. 

China Three Gorge Project (TGP), officially launched in 1994 and fully operated in 2008, ranked 

as the largest hydropower project in the world (Xu et al., 2013). The climatic impacts of TGP in 

Three Gorges Reservoir Area (TGRA) were seriously debated since the late 1950s and remain so 

afterwards (Fu et al., 2010). Researches indicated that TGP has affected regional air temperature 

(Yao et al. 2013) and precipitation (Lv et al. 2017). These changes of meteorological variables may 

affect evaporation in TGRA, which would change the energy budget and mass exchange (Yang et al. 

2012). Therefore, it is of great significance to investigate the evaporation changes induced by the 

construction of TGP for understanding its climatic impacts. However, due to the lack of sufficient 

measurements of evaporation, it is still largely unknown about the effect of the construction and 

operation of TGP on regional evaporation. Therefore, it is important and urgent to estimate 

evaporation with novel method in TGRA. 

With respect to the rising popularity of SVM and the increasing need of evaporation for studying 

the climatic impacts of TGP. The main objectives of this study are (1) to explore the performance of 

SVM for estimating month pan evaporation using commonly measured meteorological variables in 

TGRA; (2) to compare the SVM model with empirical model; and (3) to explore the feasibility of 

pan evaporation estimation at one site using SVM model developed using data from other sites. 

2 Materials and method 

2.1 Study area 

TGRA (Figure 1) is located in the upstream of the Yangtze River, to the east of Sichuan Basin, 

to the north of Daba Mountain, and bordering the western Yangtze Plain. It stretches along the 

Yangtze River from Jiangjin county in Chongqing municipality to Yichang county in Hubei 

province, with the area of 5.79×104 km2. The geography is complex and the elevation generally 

decreases from northeast to southwest. The region is dominated by mountainous and hilly areas. 
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TGRA is located in the transfer zone between the northern temperate zone and the subtropical zone. 

The climate of TGRA is subtropical monsoon climate which is characterized by four distinct 

seasons with a hot and humid summer, a warm to cool winter, and plenty of precipitation with a 

highly pronounced summer peak. Annual mean temperature is between 16.5℃and 19℃, and annual 

precipitation is about 1100 mm (Lv et al. 2016). 

2.2 Sites and data  

Six meteorological stations measuring pan evaporation and meteorological variables including 

solar radiation, sunshine duration, atmospheric pressure, vapor pressure, wind velocity, air 

temperature and relative humidity were  used in the current study (Figure 1). The mapping of 

stations roughly range from 29° 35 ' to 31° 3' N (latitude), from 106°28' to 111° 30' E (longitude), 

and from 133.1 m to 607.3 m altitude. Table 1 shows the detailed information about the 

meteorological stations.  

Monthly data records covering the period between 1970 and 2013 were obtained from the 

Chinese National Meteorological Information Center. Pan evaporation (mm) was measured by using 

a metal pan, 20 cm in diameter and 10 cm high, installed 70 cm above the ground. Solar radiation 

(MJ m2) was measured by Pyranometer (Chen et al., 2010). The type of Pyranometer used by CMA 

was changed in 1993 (Chen et al., 2019). However, the homogeneity of the radiation data was 

unlikely to be affected because the instrument has been calibrated to the same standard following 

the guidelines of the World Meteorological Organization (WMO) (Chen and Li 2014; Yang et al., 

2009). Sunshine duration (h) was measured by using Jordan sunshine recorder. Air temperatures (°C) 

was measured by using mercury and alcohol thermometers. Vapor pressure (Kpa) was measured by 

using adjustable cistern barometer. Relative humidity (%) was measured by using aspirated 

psychrometer at 2m height (CMA 1979). Wind velocity (m/s) was measured by using EL wind 

electric anemometer at 10 m height, which was transformed to speed at 2m height by a logarithmic 

model proposed by FAO56 (Allen et al. 1998). All the instruments were calibrated periodically and 

all the measurements were made following the guide of World Meteorological Organization (Chen 

and Li 2013).  

Although preliminary quality control tests were conducted by the supplier, meteorological 

measurements may still contain errors due to inappropriate measuring manipulations and occasional 

voltage instability (Qin et al. 2011). We further checked the data according to the quality control 

scheme presented by Feng et al. (2004) and Tang et al (2010). First, records with missing data 

which were replaced by 32766 were removed. Second, the data with evident systematic and 

operational errors were removed. For example, actual global radiation exceeds extra-terrestrial 

radiation, sunshine duration exceeds potential sunshine duration, and the relative humidity exceeds 

100%. Lastly, we used a relative simple method to build the relationship between pan evaporation 

and the meteorological variables and then to exclude noisy data and suspected data. More details 

can be found in Feng et al., (2004) and Tang et al. (2010). Two data sets were subsequently created 

for each station, and the first 70% of the record were used for modelling and the remaining 30% 

were used for validation. 

2.3 Data description 

Figure 2 shows the interannual variation of pan evaporation in TGRA. Pan evaporation showed 

a decreasing trend from 1970 to 2013, with the rate of -81.14mm/10y. After the Yangtze River 

interception and water impoundment of Three Gorges Dam in 1997, pan evaporation decreased with 

the rate of -84.66 mm/10y, which is insignificantly different from that in the period  1970 - 2013. 

Figure 3 shows the distributions of the monthly daily meteorological variables of the studied sites. 
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Monthly daily solar radiation varied between 4.42 and 16.22 MJ m -2, monthly daily sunshine 

duration varied between 1.38 and 6.38h, and monthly daily air temperature varied between 6.4 and 

28.15℃. These three meteorological variables showed similar change patterns with maximum in 

July and minimum in January (Figure 3.a-b). Monthly daily vapor pressure ranged from the 

minimum of 0.75 kPa in January and the maximum of 2.84 kPa in June (Figs.3c), which was 

generally opposite to that of atmospheric pressure with the minimum of 96.9 kPa in June and the 

maximum of 99.06 kPa in January (Figure 3c). Monthly daily relative humidity ranged between 

72.56% and 79.88%, and monthly daily wind velocity ranged between 1.15 and 1.5m/s (Figure 3d), 

without clear seasonal pattern. 

2.4 Theory of support vector machine 

SVM is a machine learning algorithm developed by Vapnik (1995) and has been widely 

applied and proven to be a robust algorithm for estimation (Chen et al. 2013; 2015). SVM has 

several features compared with traditional machine learning models which perform the empirical 

risk minimization. SVM is based on the machine learning theory and principle of structural risk 

minimization which minimizes the upper bound of generalization error. SVM constructs the 

regression function using kernel functions defined in a high dimensional space. It delivers a unique 

solution since the optimal problem is convex. More detailed principle of SVM can be found in 

Vapnik (1995; 1998). 

Given a set of data points ),( ii dx , SVM constructs regression function as the following form:  

bxwxf  )()(                           (1)  

where )(x  is high dimensional feature space. W and b are coefficients estimated by 
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The optimization problem (5) can be solved using Lagrange multipliers. 
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The regression function becomes: 
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By introducing kernel function K(xi, xj), Eq. (8) can be rewritten as follow: 
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K(xi, xj) is equal to the inner product of two vectors xi and xj in the feature spaceφ(xi) andφ(xj). 

Any function that meets Mercer’s condition can be used as kernel function. Four basic kernel 

functions including linear, polynomial, radial basis function (RBF) and sigmoid are provide by 

SVM. The linear kernel function is a special case of radial basis function (Vapnik 1996). The 

sigmoid kernel function behaves like RBF and is not valid under some conditions (Vapnik 1998). 

Therefore, the polynomial kernel function 
d

jiji xxxxK )1.(),(  and radial basis kernel 

function )exp(),(
2

jiji xxxxK    are widely used, where d andγare the kernel function 

parameters.  

The SVM algorithm was implemented by MATLAB software with the LIBSVM tool 

developed by Chang and Lin (2001). The main procedures included selection of the input attributes, 

data scaling, selection of kernel function, training and testing (Hsu et al. 2003). Seven 

meteorological variables including solar radiation, sunshine duration, atmospheric pressure, vapor 

pressure, wind velocity, air temperature and relative humidity were used as input variables, while 

pan evaporation was used as dependent variables. Data scaling can avoid calculation difficulties and 

improve data fitting. In this work, all the data were scaled to the range [0, 1] using the same linearly 

scaling method. The polynomial and radial basis kernel functions were employed and compared. 

The optimum ranges of SVM parameters were determined by grid search (Gestel et al. 2004), and 

the optimum values were then obtained from range using cross validation (Cherkassky and Mulier 

1998). The training data were divided into subsets with equal size, each subset was tested once 

using the trained SVM model on the remaining subsets. After the optimum values of parameters 

were found, the final model was trained on the whole training data set using the selected parameters 

(Hsu et al. 2003), and the accuracy was evaluated using the testing data. 

2.5 Empirical model 

An empirical model for the estimation of pan evaporation using meteorological variables was 

developed as the following form:   

Pan =aRa+bS+cAp+dVp+eW+fT+gR+h                  (10) 

Where Ra, S, Ap, Vp, W, T and R were solar radiation, sunshine duration, atmospheric pressure, 

vapor pressure, wind velocity, air temperature and relative humidity, respectively, a-h were 

empirical coefficients which were determined by least square regression to minimize the fitting 

squared residuals using the modelling dataset. The calibrated coefficients are presented in Table 2. 

2.6. Error indicators 

Root mean square error (RMSE) and relative root mean square error (RRMSE) (%) are used to 

evaluate the accuracy of developed models, higher values of RMSE, and RRMSE indicate better 

performances. Coefficient of determination (R2) is used to measure the fit of model, and higher the 
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value, better the fit.  

3 Results and discussions 

3.1 Pan evaporation in TGRA 

Annual mean pan evaporation of in TGRA varied between 1028.57 and 1655.02 mm with the 

average of 1264.72mm, which was much lower than the average pan evaporation over China (Yang 

and Yang 2012). It mainly occurred in summer, which accounted for 42.5% of the annual amounts, 

whereas it was very low in winter, accounting for 10.28% of the annual amounts. Pan evaporation 

generally increased northeastward along the main stream of Yangtze River, and it was correlated 

significant with longitude (r=0.763, p<0.01) and latitude (r=0.672, p<0.01) (Figure 4.a-b). Higher 

pan evaporation in northeastern region might be contributed by the higher global solar radiation, 

sunshine duration and wind velocity in this region. As shown in Figure 4c-e, pan evaporation was 

positively correlated with global solar radiation (r=0.904, p<0.001), sunshine duration (r=0.853, 

p<0.001) and wind velocity(r=0.732, p<0.01), while lower pan evaporation in southwestern region 

might be due to the higher relative humidity and water vapor in this region, as it negatively 

correlated with them with the correlation coefficients of 0.923 (p<0.001) and 0.787 

(p<0.01)(Fig.4f-g), respectively.  

3.2 Performance of developed models 

Error indicators of the developed models were presented in Table 3. Overall, empirical model 

gave reasonable estimations with the RMSE varying between 10.073 and 21.535 mm (average 

13.79 mm) and RRMSE varying between 9.73% and 22.22% (averaged 13.44%). The new 

empirical model performed much better than the PenPan model in the USA (Hobbins et al. 2012), 

Spain (Azorin-Molina et al. 2015), and China (Liu and Sun 2016) and the Romanenko model and 

Meyer model in Turkey (Tezel and Buyukyildiz 2016). Yu et al. (2017) modified the PenPan model 

to present a new empirical model with better accuracy in northwest China. However, both models 

were inferior to our new empirical model. The possible reason may be due to that we used more 

meteorological variables, which could increase the fit of the new empirical model. It is worth noting 

that the main difficulty in limiting the universal applicability of our developed empirical model to 

other regions was the empirical coefficients which varied greatly from sites to sites. This was as a 

result of its complexity, intrinsic quality of equipments, the topographical and the local climate 

characteristics (Liu and Sun, 2016). Nevertheless, it was reasonable that our results were applicable 

to the regions with similar climatic conditions and topography. For other places of interest, the 

coefficients of the empirical model can be calibrated following the scheme of this study with 

relative ease, making the model appropriate for widespread applications. 

All SVM models gave good performances with the RMSE varying between 4.808 and 

14.333mm (average 8.136mm) and RRMSE varying between 5.62% and 14.79% (averaged 7.92%), 

suggesting that SVM showed remarkable performance in the estimation of monthly pan evaporation 

from meteorological variables. In recent years, many works had explored the potential of machine 

learning algorithms in estimating pan evaporation. The SVM models in our work performed much 

better than ANN algorithm in Turkey (Tezel and Buyukyildiz 2016), China (Wang et al. 2017a; b) 

and India (Pammar and Deka 2017), the FG and ANFIS algorithms in China (Wang et al.2017a), the 

GP algorithm in Turkey (Guven and Kisi 2013). While the accuracy of SVM models were 

influenced by kernel functions. SVMpol had the average RMSE of 7.967 mm and RRMSE of 7.75%, 

which were slightly lower than the RMSE of 8.305 mm and RRMSE of 8.09% for SVMrbf, 
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suggesting that SVM model using polynomial as kernel function outperformed that using radial 

basis function. However, in many researches, RBF was commonly used and recommended other 

than polynomial kernel function (Wang et al. 2017c). It was probable that polynomial kernel 

function has more hyperparameters, which influenced the complexity of the computations (Dong et 

al. 2005). Our results indicated the importance of selecting an appropriate kernel function for the 

accuracy of SVM model. 

3.3 Comparison between empirical model and SVM models 

Comparisons showed that SVMpol had 35.72%~52.26% (average 43.24%) lower RMSE, and 

4.03%~7.94% (average 5.68%) lower RRMSE than the emperical model, and the SVMrbf had 

33.44%~52.15% (average 40.88%) lower RMSE, and 4%~7.43% (average 5.56%) lower RRMSE 

than the emperical model, suggesting that SVM models significantly outperformed the empirical 

model. Out results were consistent with those from Goyal et al. (2014), Kisi (2015), Tezel and 

Buyukyildiz (2016), Pammar and Deka (2017), and Wang et al.(2017a; b; c) who compared the 

performances of SVM model against empirical models and reported that SVM performed better 

than empirical models. Favorable agreements had been observed between estimations and 

measurements, with the R2 varying between 0.953 and 0.993 (average 0.981) for SVMpol (Fig.5), 

and between 0.916 and 0.972 (average 0.957) for SVMrbf (Fig.6). The estimations of SVM models 

were much closer to the observations than those of the empirical model (Fig.7), further confirming 

the superiority of SVM over the empirical model. 

3.4 Error variation of SVM models 

Figure 8 showed the error variation of the best SVM model (SVMpol). RMSE at each site 

showed similar variation pattern with maximum in summer and minimum in winter, and this may 

be due to the influence of the East Asian monsoon climate with large fluctuation of the 

meteorological variables in summer, resulting in the higher errors in this season. However, RRMSE 

generally showed an opposite changing pattern with maximum in winter and minimum in summer, 

contributing to the higher pan evaporation flux in summer than in winter. Excepted for Yichang, 

RMSE was positively correlated with global solar radiation, sunshine duration, air temperature, 

wind velocity and water vapor (Table 4), generally indicating that higher values of these 

meteorological variables would result in higher errors of SVMpol, while RMSE was negatively 

correlated with atmospheric pressure. The correlation results further confirmed that errors of 

SVMpol was significantly affected by the climatic dynamics. RRMSE showed an opposite 

correlation trend to that of RMSE (Table 5). 

3.5 Assessing the transferability of SVM model developed at one site to other sites 

Long-term measured pan evaporation and meteorological variables were required to construct 

the SVM model. It was therefore open to question how to apply the model to the sites without 

measurements of pan evaporation. Therefore, estimations of pan evaporation using the SVM model 

developed at other sites were explored, and the performances were presented in Tables 6 and 7, in 

which the error indicators represented for the accuracy of SVM developed using the data from the 

sites in the first row for the estimation of pan evaporation at the sites in first column. 

In the case of unavailable data to construct the model, monthly pan evaporation can be 

estimated by SVM model developed at other sites with reasonable accuracy. Wang et al. (2017b) 

investigated the applicability of ANN using data from nearby station, and the results indicated that 

RMSE increased by more than 50% in the absence of local data, suggesting that SVM was superior 

to ANN for estimations of pan evaporation using data from other sites. The acceptable alternative 
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sites had been highlighted for each site. As it can be seen, all the sites can been used to estimate pan 

evaporation at Wanzhou with the average RMSE of 7.637 mm and RRMSE of 8.74%, indicating 

that pan evaporation at this place was relatively easier to be estimated with the model developed at 

other sites. While at Badong and Yichang, RMSE were relatively higher than those of models 

developed using their own data. The average RMSE and RRMSE in each column indicated the 

representativeness of modelling sites for estimation of pan evaporation at other sites. Overall, 

Chongqing and Fengdu had relatively lower RMSE and RRMSE, implying that SVM models 

developed at these sites could be used to estimate pan evaporation at any location without 

measurements of pan evaporation in TGRA.  

The findings had implications relative to the deployment of resource in hydrological and 

agricultural studies. Since many researchers were making efforts to obtain the data of pan 

evaporation at the places of interest where was not equipped with the evaporimeter. The results 

suggested that pan evaporation could be estimated by using SVM model developed at other suitable 

sites. For the studied sites in TGRA, selection of a suitable site can be guided by the results in this 

work, while for other sites, it depended on the climatic conditions, topography and the distance 

between the two sites. Therefore, future researches are still required to guide the selection of such 

suitable site. 

4 Conclusions 

Estimation of monthly pan evaporation using SVM algorithm with the commonly measured 

meteorological variables was investigated in TRGA. Our results suggested that SVM models 

showed remarkable performances and significantly outperformed the empirical model. While the 

accuracy of SVM models were influenced by kernel functions. The model using polynomial kernel 

function outperformed that using radial basis function. In the case of unavailable measurements of 

pan evaporation and meteorological variables to construct the SVM model, pan evaporation can be 

estimated by using SVM model developed at other sites with reasonable accuracy. The finding had 

potential attraction in generating monthly pan evaporation data for studies in agriculture, hydrology 

and ecology, especially for the large, remote areas where ground measurements were limited. 

However, further studies are needed to guide the selection of a suitable site where the data can be 

used to construct a transferable SVM model to the sites without measurements of pan evaporation. 

Moreover, development of powerful models with high level of reliability and better accuracy was 

still a challenging task. Recently, Pammar and Deka (2017) found that coupling different 

approaches to build a hybrid model was an effective and promising way. Thus, it is important for 

the future work to explore the hybrid model combining the SVM and other data statistic and 

analysis algorithms.  
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Table 1 Detail information of the studied meteorological sites 

Site ID Site name Latitude Longitude Altitude (m) 
Annual pan 

evaporation (mm) 

1 Chongqing 29.58 106.47 259.1 1028.57  

2 Fengdu 29.85 107.73 290.5 1165.61  

3 Wanzhou 30.77 108.4 186.7 1054.40  

4 Fengjie 31.05 109.5 607.3 1347.52  

5 Badong 31.03 110.37 334 1655.02  

6 Yichang 30.7 111.30 133.1 1337.18  
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Table 2 The empirical coefficients of the developed model 

Site ID Site name a b c d e f g h 

1 Chongqing 4.041 5.078 0.736 55.379 -2.137 -2.630 -375.541 218.347 

2 Fengdu 5.371 1.753 12.738 36.926 7.570 0.616 -359.674 -1014.673 

3 Wanzhou 1.707 7.797 5.666 60.134 10.127 -2.391 -447.337 -219.955 

4 Fengjie 3.858 2.211 -6.069 26.917 4.545 2.259 -295.637 765.515 

5 Badong 2.580 4.992 -10.505 8.305 14.540 4.408 -303.569 1214.355 

6 Yichang 3.096 6.134 -13.285 19.010 1.509 1.167 -199.656 1481.532 
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Table 3 Error indicators of the developed models 

Site ID Site name 
Emperical model SVMpol SVMrbf 

RMSE RRMSE RMSE RRMSE RMSE RRMSE 

1 Chongqing 10.073 11.77% 4.808 5.62% 4.820 5.63% 

2 Fengdu 21.535 22.22% 13.844 14.28% 14.333 14.79% 

3 Wanzhou 12.371 14.16% 7.315 8.37% 7.955 9.11% 

4 Fengjie 13.634 12.19% 7.098 6.35% 7.863 7.03% 

5 Badong 13.390 9.73% 7.848 5.71% 7.892 5.74% 

6 Yichang 11.735 10.56% 6.893 6.20% 6.967 6.27% 

7 Average 13.790 13.44% 7.967 7.75% 8.305 8.09% 
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Table 4 Correlation coefficients between RMSE of SVM and meteorological variables 

Site  
Solar 

radiation 

Sunshine 

duration 

Atmospheric 

pressure 

Wind 

velocity 

Air 

temperature 

Water 

vapor 

Relative 

humidity 

Chongqing 0.828*  0.794*  -0.825*  0.643*  0.775*  0.796*  -0.540  

Fengdu 0.814*  0.834**  -0.791*  0.708*  0.906**  0.902**  -0.593  

Wanzhou 0.799*  0.799*  -0.769*  0.704*  0.760*  0.759*  -0.477  

Fengjie 0.834**  0.713*  -0.906**  0.680*  0.823*  0.788*  -0.032  

Badong 0.861**  0.814  -0.846**  0.072  0.750*  0.741*  -0.174  

Yichang 0.025  0.177  -0.073  -0.259  0.234  0.224  0.218  

* Significant at 0.05 significance level. ** Significant at 0.01 significance level. 
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Table 5 Correlation coefficients between RRMSE of SVM and meteorological variables 

Site  
Solar 

radiation 

Sunshine 

duration 

Atmospheric 

pressure 

Wind 

velocity 

Air 

temperature 

Water 

vapor 

Relative 

humidity 

Chongqing -0.667*  -0.678*  0.656*  -0.746*  -0.685*  -0.627*  0.472  

Fengdu -0.593  -0.569  0.571  -0.652*  -0.385  -0.340  0.697*  

Wanzhou -0.673*  -0.660*  0.675*  -0.630*  -0.655*  -0.606*  0.650*  

Fengjie -0.853**  -0.878**  0.750*  -0.665*  -0.858**  -0.787*  0.285  

Badong -0.524  -0.571  0.501  0.589  -0.644*  -0.622*  -0.652*  

Yichang -0.919**  -0.814*  0.894**  -0.758*  -0.851**  -0.808*  -0.353  

* Significant at 0.05 significance level. ** Significant at 0.01 significance level. 
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Table 6 RMSE of SVM model developed at one site for estimation of pan evaporation at other sitesa 

 Site Chongqing Fengdu Wanzhou Fengjie Badong Yichang 

Chongqing 4.808 7.740 8.303 7.123 10.001 9.862 

Fengdu 15.704 13.844 15.642 17.844 16.881 17.465 

Wanzhou 7.661 7.321 7.315 7.900 7.726 7.901 

Fengjie 8.684 8.635 13.864 7.098 11.633 19.256 

Badong 11.683 14.097 11.276 12.792 7.848 13.921 

Yichang 13.535 11.426 14.472 12.290 11.910 6.893 

Average 10.346 10.511 11.812 10.841 11.000 12.550 

a The RMSE represent for the accuracy of SVM developed using the data from the sites in the first 

row for estimation of pan evaporation at the sites in first column. The highlighted cells indicate that 

the SVM model developed using the data at row of the highlighted cells can be used to estimate the 

pan evaporation at the column of the highlighted cells. 
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Table 7 RRMSE of SVM model developed at one site for estimation of pan evaporation at 

other sitesa  

 Site Chongqing Fengdu Wanzhou Fengjie Badong Yichang 

Chongqing 5.62% 9.05% 9.70% 8.33% 11.69% 11.53% 

Fengdu 16.20% 14.28% 16.14% 18.41% 17.42% 18.02% 

Wanzhou 8.77% 8.38% 8.37% 9.04% 8.85% 9.04% 

Fengjie 7.76% 7.72% 12.40% 6.35% 10.40% 17.22% 

Badong 8.49% 10.25% 8.20% 9.30% 5.71% 10.12% 

Yichang 12.18% 10.28% 13.02% 11.06% 10.71% 6.20% 

Average 9.84% 9.99% 11.30% 10.41% 10.80% 12.02% 

a The RRMSE represent for the accuracy of SVM developed using the data from the sites in 

the first row for estimation of pan evaporation at the sites in first column. The highlighted 

cells indicate that the SVM model developed using the data at row of the highlighted cells 

can be used to estimate the pan evaporation at the column of the highlighted cells. 
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Figure 1 Location of Three Gorges Reservoir Area and the studied meteorological sites  



 

 23 

 

Figure 2 Interannual variation of pan evaporation in Three Gorges Reservoir Area 
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Figure 3 Temporal variations of the meteorological variables in Three Gorges Reservoir Area 
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Figure 4 Relationships between pan evaporation (mm) and latitude ('), longitude ('), solar 

radiation (MJ m 2), sunshine duration (h), wind velocity (m/s), relative humidity (%), water 

vapor (Kpa), atmospheric pressure (Kpa) and air temperature (°C). 
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Figure 5 Scatter plots of the observations vs. estimations of pan evaporation (mm) by SVM 

model with polynomial kernel function 
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Figure 6 Scatter plots of the observations vs. estimations of pan evaporation (mm) by SVM 

model with radial basis function 
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Figure 7 Scatter plots of the observations vs. estimations of pan evaporation (mm) by 

emperical model 
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Figure 8 Error variation of the SVM model with polynomial kernel function 

 


