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Abstract There is a growing need to simulate the effect of urban planning on both local climate and
greenhouse gas emissions. Here, a new urban surface carbon dioxide (CO2) flux module for the Surface
Urban Energy and Water Balance Scheme is described and evaluated using eddy covariance observations
at two sites in Helsinki in 2012. The spatial variability and magnitude of local-scale anthropogenic and
biogenic CO2 flux components at high spatial (250 m × 250 m) and temporal (hourly) resolution are
examined by combining high-resolution (down to 2 m) airborne lidar-derived land use data and mobility
data to account for people's movement. Urban effects are included in the biogenic components
parameterized using urban eddy covariance and chamber observations. Surface Urban Energy and Water
Balance Scheme reproduces the seasonal and diurnal variability of the CO2 flux well. Annual totals deviate
3% from observations in the city center and 2% in a suburban location. In the latter, traffic is the dominant
CO2 source but summertime vegetation partly offsets traffic-related emissions. In the city center, emissions
from traffic and human metabolism dominate and the vegetation effect is minor due to the low proportion
of vegetation surface cover (22%). Within central Helsinki, human metabolism accounts for 39% of the net
local-scale emissions and together with road traffic is to a large extent responsible for the spatial variability
of the emissions. Annually, the biogenic emissions and sinks are in near balance and thus the effect of
vegetation on the carbon balance is small in this high-latitude city.

1. Introduction
The main driver for ongoing global warming is increased anthropogenic greenhouse gas emissions to the
atmosphere. As anthropogenic activities concentrate in urban areas, these regions are estimated to be
responsible for 30–40% of the world's anthropogenic greenhouse gas emissions (Marcotullio et al., 2013;
Satterthwaite, 2008) of which carbon dioxide (CO2) is the most important. This has stimulated cities to take
actions to reduce their carbon emissions (Reckien et al., 2014; Rosenzweig et al., 2010) while seeking sustain-
able solutions to other challenges caused by urbanization and preparing adaptation and mitigation strategies
for the changing climate. The challenges include, for example, biodiversity, thermal comfort, and flooding.
To evaluate the benefits and disadvantages of different policies and practices on CO2 emissions for exist-
ing conditions as well as under future climate and planning scenarios, integrated models simulating CO2
surface exchange together with the other urban climate variables relevant for urban dwellers are needed.
However, there are few urban ecosystem models that allow examination of these integrated effects with suf-
ficient temporal and spatial resolution that planning choices can be compared. High resolution models are
also key to quantifying large-scale emissions. Errors in the timing, location, and magnitude of urban emis-
sions can cascade into the remaining flux components in carbon inversion studies where anthropogenic
CO2 emissions are used as boundary condition for other modeling components (Hutyra et al., 2014).
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Urban land surface models provide an excellent base for integrated urban ecosystem models as they simu-
late the surface exchange of energy and commonly the components of the hydrological cycle at a local scale.
Extending these models to local-scale CO2 emissions allows the highly spatially and temporally variable
anthropogenic CO2 emissions to be considered. The net emissions are a complex function of emissions from
road traffic, household activities, industry and other point sources, vegetation, and human metabolism. The
same sources, excluding vegetation, are also responsible for anthropogenic heat emissions in urban areas
(Allen et al., 2011) further supporting the integration of urban climate and CO2 emission models. In recent
years, spatial road traffic (Brondfield et al., 2012; Gately et al., 2017; Lee et al., 2017) and fossil fuel carbon
emissions (Gurney et al., 2012, 2017) in cities have been examined and local hot spots identified, but the
methodologies have not had any links to the heat emissions. Urban land surface models need to account for
both the anthropogenic and biogenic components that modify the net ecosystem exchange (NEE) of CO2.
The latter includes both emissions by vegetation and soil respiration as well as carbon uptake via photo-
synthesis. The impact of vegetation on NEE in urban areas has been quantified by urban eddy covariance
(EC) flux studies (Crawford et al., 2011; Järvi et al., 2012; Menzer et al., 2015; Nordbo et al., 2012a; Ward
et al., 2015). However, these have limited spatial extent relative to the city scale. At the city scale, street trees
sequester only a minor proportion (0.08–3.4%) of urban transportation (Russo et al., 2015) and net (Escobedo
et al., 2010; Tang et al., 2016) CO2 emissions. These biomass-based studies focus only on urban street trees,
whereas studies accounting for urban vegetation and biomass more widely have quantified higher propor-
tions. In Florence, Italy, green areas sequester 6.2% of the total direct anthropogenic CO2 emissions (Vaccari
et al., 2013) and in Massachusetts, USA, a ratio of biogenic sink strength to fossil fuel emissions of 14% was
found (Hardiman et al., 2017). Often, process models developed for natural ecosystems are used to estimate
biogenic carbon budgets within urban areas ignoring the urban effects. Hardiman et al. (2017) corrected
the biogenic components for urban effects but used model parameterizations developed for natural vegeta-
tion. Also, the relatively coarse spatial (102–103 m) and temporal resolutions of nonurban models are not
ideal for studies examining the effect of urban planning alternatives on cities' carbon balances. The role
of vegetation in sequestering CO2 emitted from anthropogenic activities may play an important role in the
surface-atmosphere exchange of CO2 and furthermore on a city′s carbon balance (Sargent et al., 2018). This
CO2 assimilation is one of the many ecosystem services that urban vegetation can deliver (Niemelä et al.,
2010).

Here both local-scale anthropogenic and biogenic surface-atmosphere exchanges of CO2 are incorporated
into the urban land surface model SUEWS (Surface Urban Energy and Water balance Scheme, Järvi et al.
(2011)). The model is evaluated against EC observations at two contrasting sites differing in surface cover and
human activities in Helsinki. Using the model, the spatial and temporal variability of both anthropogenic
and biogenic components of the net surface exchange are quantified across Helsinki.

2. Model Description
Urban surface-atmosphere exchange of CO2 is included within the SUEWS version V2018b (Ward et al.,
2016). This already has the capability of simulating the urban energy and water cycles at a local scale or
neighborhood scale using commonly measured meteorological variables and surface information including
surface cover fractions (buildings, paved surfaces, evergreen trees/shrubs, deciduous trees/shrubs, grass,
bare soil, and water), population densities, and tree and building heights. In SUEWS, the surface is divided
into seven parallel surface types, and the rates of evaporation-interception are calculated for each. Below
each surface type there is a single soil layer. Latent heat flux at each time step (default 5 min) is calculated
with a modified Penman-Monteith equation (Grimmond & Oke, 1991) and sensible heat flux as a resid-
ual from the energy balance equation. The model has submodels for net all-wave radiation, storage and
anthropogenic heat fluxes, snow, and irrigation (Järvi et al., 2011, 2014; Offerle et al., 2003). The advantage
of SUEWS when compared to other urban land surface schemes is that it contains a parameterization for
downward long-wave radiation (Loridan et al., 2010), and it does not have separate tiles for urban and veg-
etation surface fractions, but rather a dynamic interaction between the surface types is allowed. SUEWS
has demonstrated good performance against hydrological observations, and EC-measured turbulent sensi-
ble and latent heat fluxes in several cities in Europe, North America, and Asia (e.g., Alexander et al., 2016;
Ao et al., 2018; Järvi et al., 2011, 2017; Kokkonen et al., 2018, 2019; Ward et al., 2016).

The new module in SUEWS presented here determines the local-scale surface exchanges of CO2 (Fc,
μmol·m−2·s−1) allowing the impact of urban planning choices and climate scenarios on the cycles of energy,
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water, and CO2 to be studied in detail. The CO2 exchange module accounts for both the anthropogenic
(Fc,ant) and biogenic components (Fc,bio)

Fc = Fc,ant + Fc,bio = (FM + FV + FB + FP) + (Fpho + Fres), (1)

where FM are CO2 emissions from human metabolism, FV emissions from traffic, FB emissions from building
energy and heating/cooling combustion (with natural gas, coal, and wood), FP emissions from local-scale
point sources, Fpho is photosynthesis, and Fres is respiration. In the current model version, CO2 absorption
and release by water surfaces are not accounted for and are assumed to be zero. Positive values indicate
sources of CO2 and negative values sinks with respect to the atmosphere.

SUEWS simulates the carbon emissions at the local scale neighbourhoods where many of the urban plan-
ning interventions, such as requiring building of new green areas or restricting vehicular traffic, occur. This
scale of simulation provides the lower boundary conditions for the planetary boundary layer but allows for
spatial variability across the urban area. Many studies focus on carbon balance of the whole city (Bréon et al.,
2015; Sargent et al., 2018) with it treated as a volume with lateral boundaries to the upper limit of the bound-
ary layer. Using the local scale, we can capture differences in neighborhood behaviors so that important
temporal, for example diurnal and daily (e.g., weekday/weekend), variations become apparent. The vertical
scale extends from the constant flux layer to the subsurface to cover the relevant time scale. Thus, very tall
stacks emitting CO2 are not captured unless SUEWS is coupled to a three-dimensional atmospheric model to
determine when that air is entrained back into the boundary layer. Most notably, work and home locations,
parks and roads, and so forth, are evident. Thus, the feedback between surface processes and the overlying
air volume are accounted for and the impact of planning of governance interventions at the short term (e.g.,
permitted behaviors such as changing work hour) or longer term (e.g., street tree planting and urban design)
can be captured. Different impacts across a city or implementation of different carbon reduction strategies
can also be evaluated.

2.1. Anthropogenic Components
The local-scale anthropogenic carbon emissions are estimated using a similar inventory approach as used
to estimate anthropogenic heat emissions from urban areas (Allen et al., 2011; Grimmond, 1992; Sailor &
Lu, 2004; Ward et al., 2015). The CO2 emissions simulated within the model are separated into human
metabolism, traffic emissions and building energy, and heating/cooling combustion. Other local-scale
sources can be user-defined with their emission strengths. Traditionally, the anthropogenic heat flux (QF)
in SUEWS is calculated with a simple model based on heating and cooling degree days, but now a mod-
ified inventory approach is also included. Hourly heat (QM,h,d, W·m−2) and carbon (FM,h,d, μmol·m−2·s−1)
emissions from human metabolism are calculated using

QM,h,d = ph,d · Ha,h,d · EM (2)

and

FM,h,d = ph,d · Ha,h,d · CM , (3)

where ph,d is the population density by day (d in our case workdays [wd] or weekends [we]) and by hour (hr,
cap/ha), Ha,h,d activity by hour calculated from the diurnal profiles for population HP,d and activity HA,d, and
EM and CM metabolic energy and CO2 release per person (W·cap−1 and μmol·CO2·s−1·cap−1). EM and CM
vary between nighttime minimum and maximum values (EM(min,max) and CM(min,max)) based on the activity
profile Ha,h,d.

Hourly traffic related heat (QV ,h,d) and carbon emissions (FV ,h,d) on different days are calculated from

QV ,h,d = Trd · Eh,d · HT,d (4)

FV ,h,d = Trd · Ec,d · HT,d, (5)

where Trd is the mean daily traffic rate within the study area (veh·day−1·area−1), HT,d the diurnal traffic
profiles, and Eh,d and Ec,d traffic emission factors for heat (J·km−1·veh−1), and CO2 (kg·km−1·veh−1) on week-
days and weekends. User-supplied emission factors can vary across the modeling domain if available. This
allows different vehicle distributions and speeds in different areas to be considered.
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The required mean traffic and population values are relatively easily obtained in many areas. For build-
ing related local-scale heat and carbon emission, inventory information can be more difficult to obtain. In
SUEWS daily values are estimated from the cooling (CDD) and heating degree days (HDD)-based model of
QF (Järvi et al., 2011)

QF,d = ph,d[a0,d + a1,dCDD + a2,dHDD], (6)

where a0,d is the nontemperature-related base value of QF including heat emissions from traffic, human
metabolism and electricity usage, and a1,d and a2,d are temperature-related coefficients above and below
a base human comfort temperature (18.2 ◦C; Sailor & Vasireddy, 2006). For convenience, the different
components in equation (6) are expressed as

QF,d = QF,base + QF,cool + QF,heat. (7)

The hourly building-related heat emissions (QB,h,d) are

QB,h,d = (QF,base · 𝑓 rQF,base,BEU,d) + QF,heat + QF,cool, (8)

where frQF,base,BEU,d is the fraction of the nontemperature-related base value coming from building energy
use on workdays/weekends.

Depending on the city, the building heating and energy production can take place at either the domestic or
the district level. In the first, biomass, gas, wood, or coal can be burned for energy and heating within the
study area creating local CO2 emissions, whereas in the latter no local CO2 emissions from buildings take
necessarily place. In SUEWS, the possibility for both options is enabled by introducing the fraction of fossil
fuels used for heating (frheat) and energy (frnonheat) within the study area

FB,h,d = [𝑓 rheat(QF,heat + QF,cool) + 𝑓 rnonheat · QF,base · 𝑓 rQF,base,BEU,d] · ECO2perJ. (9)

ECO2perJ is the emission factor for fuels used in building energy use. Emissions from single-point sources
such as power plants and industrial activities can be included as model inputs, but in many cases, these are
located outside the model domain or at heights that are beyond the local scale of interest.

2.2. Biogenic Components
Commonly in ecological models, the carbon uptake (Fpho) is estimated based on light response curves
(Lasslop et al., 2010). In SUEWS, the possibility to calculate photosynthesis both with rectangular and non-
rectangular hyberbola equations (Bellucco et al., 2017; Ruimy et al., 1995) is included. These methods,
however, do not consider the effect of the local conditions on Fpho, and thus, it can also be calculated using
an empirical canopy-level photosynthesis model, where the potential photosynthesis (Fpho,max,i) is modified
for different environmental factors (Mäkelä et al., 2008)

Fpho =
∑

i
(𝑓iFpho,max,iLAIi)𝑓 (Tair)𝑓 (Δq)𝑓 (Δ𝜃)𝑓 (K↓), (10)

where the sum is the product of potential photosynthesis and leaf area index (LAIi) over the three vege-
tated surfaces i weighted with their surface fraction fi and f(Tair), f(Δq), f(Δ𝜃), and f(K↓) are the responses of
photosynthesis on air temperature (Tair), specific humidity (Δq), soil moisture deficit (Δ𝜃), and shortwave
radiation (K↓). For reliable estimation of biogenic components fi should include also overhanging vegetation
on impervious surfaces such as street trees and shrubs. With the parameters derived from urban observa-
tions the local urban climate is accounted for (Appendix A). Tair and Δq from the model input or local values
at 2-m height calculated within the model (Sun & Grimmond, 2019) can be used with the latter allowing for
spatial variability of Fpho. Δ𝜃 is spatially variable with simulated response from both the energy and water
flux exchanges within SUEWS.

Soil and vegetation respiration Fres (μmol·m−2·s−1) is assumed to follow the exponential dependency on air
temperature

Fres =
∑

i
𝑓i max(ai · exp(Tairbi), 0.6), (11)
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where ai and bi are user-selected empirical constants. Although, soil respiration depends on the soil tem-
perature rather than air temperature, the latter is used to minimize model input. Sensitivity tests made by
Bellucco et al. (2017) suggest that this leads to reasonable respiration estimates. However, winter soil may
remain warmer than air resulting in carbon emissions via decomposition of organic matter in winter, even
through snow (Pumpanen et al., 2015). Thus, we limit the soil respiration to 0.6 μmol·m−2·s−1 based on win-
ter time soil chamber measurements made in a boreal forest in central Finland (see Appendix B). In Helsinki
this minimum value is exceeded only on 0.09% of the hours analyzed.

3. Site and Data Description
3.1. Site Characteristics and Measurements
The CO2 model is evaluated against direct EC measurements made at two sites with contrasting source area
characteristics in Helsinki, Finland, in 2012. The semiurban Kumpula, located 4 km northeast of the city
center, is classified as local climate zone (LCZ) 6 (Stewart & Oke, 2012). Half of the surroundings within 1
km of the 31-m measurement mast is vegetated (Karsisto et al., 2015). North of the tower (320–40◦, hereafter
Ku1) is the university campus area and further away suburban low height apartment buildings with small
gardens. To the east (40–180◦, Ku2) emissions come from one of the main roads leading to the Helsinki city
center. The area between the road and mast (closest distance 150 m) is covered with broadleaf forest. To
the southwest (180–320◦, Ku3) lies parks, the University Botanical Garden, and allotment gardens. In this
direction, the closest road is 800 m from the measurement mast. The second site, Hotel Torni, situated in
the highly built-up city center at 60 m (LCZ = 2) (Karsisto et al., 2015; Nordbo et al., 2013) has within 1-km
radius circle, a mean building height of 18 m, and vegetation cover fraction of 20% consisting of street trees
and a few parks. Table 1 summarizes the mean site characteristics of both sites.

The wind components are measured with an ultrasonic anemometer (USA-1, Metek GmbH, Germany). The
carbon dioxide mixing ratio is measured with a closed-path infrared gas analyzer (LI-7000, LI-COR, Lin-
coln, NE, USA) at Kumpula and with an enclosed-path infrared gas analyzer (LI-7200, LI-COR) at Torni. At
both sites, 60-min flux values are calculated using commonly accepted procedures following Nordbo et al.
(2012b). After quality flagging and stationarity test (limit of 60% used) 3.6% (N = 318) of Fc are miss-
ing from Kumpula in 2012. At the city center site, a building structure disturbs the measurements in the
40–150◦direction which leads to greater removal of flux data (N = 3, 971, 45.2% in 2012; Järvi et al., 2018).
No filtering based on friction velocity, kurtosis and skewness is made. For calculation of observed annual
NEE, the missing data are gap filled using median diurnal cycle method, where gaps are filled using the
monthly median diurnal cycle values calculated separately for weekdays and weekends. This has been found
to give good correspondence with respect to more comprehensive and complex gap filling method artificial
neural network at the Kumpula site (Järvi et al., 2012). The uncertainty of the annual cumulative flux value
at the city center due to the large amount of missing data is up to 12% as calculated from the simultaneous
measurements of second EC system located on the opposite side of the building structure (Järvi et al., 2018).

The meteorological forcing data are mostly measured at Kumpula. These include Tair (Pt-100, “in-house”),
wind speed (Thies Clima 2.1x, Gottingen, Germany), and K↓ (CNR1, Kipp&Zonen, Delft) measured on
the EC mast 31 m above the ground level. In addition, air pressure (DPA500, Vaisala Oyj, Vantaa, Fin-
land), relative humidity (HMP243, Vaisala Oyj), and precipitation (rain gauge, Pluvio2, Ott Messtechnik
GmbH, Germany) are measured on the roof of a nearby building at 24 m. For model runs in city center, Tair
(HMP45D, Vaisala Oyj) measured 550 m southeast of the EC Torni at 53 m is used.

3.2. Surface Data
Surface characteristics for Helsinki are obtained from a variety of sources. Surface cover fractions and the
height of buildings and trees are from airborne lidar data with a resolution of 2 m (Nordbo et al., 2015).
The vegetation is classified into trees, low vegetation and shrubs, and grass. Low vegetation is assumed to
be all deciduous, whereas trees are 60% deciduous and 40% evergreen, based on assuming street trees are
half and forest trees 25% deciduous as is the case in southern coastal region of Finland (Korhonen et al.,
2015). Population densities from the SeutuCD database for 2011 (HSY, 2011) provide the nighttime popula-
tion. Daytime population can increase significantly (50–100%; Sailor et al., 2015) particularly in city centers,
and for realistic human carbon emissions these need to be accounted for. The mean daily information on
spatial movement of people is obtained from the Monitoring System of Urban Structure (YKR), produced
by the Finnish Environment Institute and Statistics Finland. In YKR, the nocturnal population is based on
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Table 1
Site Characteristics Within a 1-km Radius Circles Around the EC Measurement Towers (Kumpula
and Torni) in Helsinki

Variable Kumpula Torni
Latitude 60◦12′10.14′ ′N 60◦10′04.09′ ′N
Longitude 24◦57′40.06′ ′E 24◦56′19.28′ ′E
Time zone 02 UTC 02 UTC
z (m) 31 60
alt (m) 26 15
DLS 86–303 86–303

Ku1 Ku2 Ku3
LCZ 3 6 9 2
A (ha) 70 122 122 314
frbuild 0.20 0.15 0.11 0.37
frpaved 0.42 0.39 0.30 0.40

frevergtr 0.08 0.07 0.10 0.00

frdecidtr 0.14 0.13 0.17 0.10
frgrass 0.16 0.25 0.32 0.07

frwater 0.00 0.01 0.00 0.01
frheat 0.05 0.05 0.05 0.00
frnonheat 0 0 0 0
frQF,base,BEU,wd 0.57 0.43 0.80 0.70

frQF,base,BEU,we 0.67 0.51 0.82 0.71

zbuild (m) 10.4 11.5 12.6 17.9
ztree (m) 10.0 8.8 8.5 8.3
pnight,d(inh·ha−1) 30.7 37.5 43.6 80.9

pday,wd(inh·ha−1) 8.9 40.9 28.8 344.5

pday,we (inh·ha−1) 15.8 39.8 33.5 283.2

Trwd (veh km·m−2·day−1) 0.0182 0.0637 0.0045 0.0920
Trwe (veh km·m−2·day−1) 0.0124 0.0434 0.0031 0.0706
a0,wd (W ha·cap−1·m−2) 0.1337 0.1672 0.0958 0.1105
a1,d (W ha·cap−1·m−2·K−1) 0 0 0 0
a2,d (W ha·cap−1·m−2·K−1) 0.0149 0.0149 0.0149 0.0149
a0,we (W ha·cap−1·m−2) 0.1153 0.1433 0.0937 0.1084

Note. EC = eddy covariance.

the Finnish population registry (same data used in the SeutuCD database) collected at the level of build-
ings and aggregated to the 250-m grid squares. The dynamic daytime population is calculated for working
population based on work trip information. The movement is calculated as the difference of the nighttime
population and the incoming and outgoing work journeys per grid square, as registered in YKR data. The
YKR population data are for 2012 and the work journeys for 2010. The activity (HA,d) and population (HP,d)
profiles determine the change between daytime and nighttime human-based CO2 emissions (Figure 1).

Mean traffic rates are reported by street for Helsinki for workdays. Weekend traffic rates are 77% in city cen-
ter and 68% at Kumpula of the workday values at city center and access road online traffic monitoring points
(Kurppa et al., 2015). For simplicity, the same fractions are used to calculate the workday and weekend pop-
ulation densities (i.e., assuming fewer people move in and out of the city center during weekends than on
workdays). Traffic counts are converted to vehicle kilometers per area per day by estimating the mean dis-
tance traveled within the area of interest. Traffic measurements provide traffic profiles (HT,d) for converting
daily traffic emissions to hourly values (Figure 1). HP,d follow those of traffic, whereas HA,d increase 1 hr
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Figure 1. Weekday and weekend diurnal profiles of activity (HA,d), traffic (HT,d) and population (HP,d). HAH,d are the
emission profiles originally used in Surface Urban Energy and Water balance Scheme to describe anthropogenic heat
emissions without partitioning to the different emissions sources. Traffic profiles are different for city center (Torni)
and suburbs (Kumpula). HP,d is scaled using both nighttime and daytime populations. There can also be smaller
daytime population density values.

before people start to move from their homes and 1 hr after people have returned to their homes. All profiles
take into account the daylight saving time.

4. Model Runs
We conduct two types of model runs. First, SUEWS is run for the approximate source areas of the EC mea-
surement sites in Helsinki in order to evaluate its performance and the contributions of different sources
on the net CO2 exchange. Second, the spatial variability of the emissions and the contributions of differ-
ent components to the net CO2 emissions in central Helsinki are assessed. To calculate the biogenic fluxes,
the simulated 2-m air temperature and specific humidity are used to allow spatial variability of Fc,bio. The
parameters used to calculate Fpho and Fres have been derived from urban observations (Appendix A).

4.1. Model Evaluation in Helsinki
The model is evaluated using the EC-measured net CO2 exchanges at two sites. Good model performance at
the same sites has been found for sensible and latent heat fluxes (Karsisto et al., 2015). For both sites the EC
flux source areas (Kurppa et al., 2015; Nordbo et al., 2013) extend approximately 1 km around the EC tow-
ers. As source area models have large uncertainties for urban areas, further refinement is not warranted for
individual hours. The site heterogeneity around Kumpula is addressed by simulating the three 1-km radius
sectors separately, whereas around Torni the source/sink distribution is relatively homogeneous and thus
no separation to different sectors is made. The surface parameters for the model simulations are calculated
for the 1-km radius sectors. The model outputs are then combined based on the prevailing measured wind
direction for each hour. As EC observations (prior to the study year 2012) for Ku3 are used to derive param-
eter values for Fpho and Fres, the modeled values are not completely independent of the Ku3 observations.
On the other hand, observations from Ku1, Ku2, and Torni have not been used in model development.

The hourly meteorological forcing data are used to undertake calculations with a 5-min time step. The data
are averaged back to 60-min for subsequent analyses. SUEWS is run for two consecutive years, with the first
year (2011) being a spin-up period and the actual model evaluation made for 2012. Tables 1 and 2 summarize
the parameters used in the model runs. At both sites, nighttime populations are assumed to be the same on
workdays and weekends and thus ignore some nocturnal activities keep captured in the daytime mobility.
In Kumpula, daytime population densities decrease associated with people traveling to work from the area
on workdays. Whereas in the city center, the population densities increase to 345 from 81 inh·ha−1. On
weekends people move less (32% and 23% in Torni and Kumpula, respectively) based on the traffic rates.
In Helsinki energy and to a large extent building heating are provided via district energy networks. Wood
burning mainly occurs in single-family houses, whereas in other areas this is expected to be negligible. In
Kumpula, the fraction of CO2 emissions from building heating (frheat) is estimated to be 5% and at Torni
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Table 2
Nonsite-Dependent Model Parameters

Parameter Value Reference
CM(min) (μmol CO2·s−1·cap−1) 120 Ward et al. (2013)

CM(max) (μmol CO2·s−1·cap−1) 280 Moriwaki and Kanda (2004)

Ec,d (kg·km−1) 0.285 Järvi et al. (2012)
Eh,d (kJ·km−1) 4.11 · 106 This study
ECO2perJ (μmol CO2·J−1) 0.0025 Tilastokeskus (2018)

Note. See Notation for details.

zero. The heat release per vehicle per meter of travel (Eh,d) in Table 2 has been calculated as a product of the
net heat of combustion of gasoline (46.5·106 J·kg−1), fuel density (0.75 kg·L−1) and mean fuel economy (8.5
km·L−1; Sailor & Lu, 2004).

Model evaluation is done by thermal seasons defined by the 5-day mean Tair: winter <0 ◦C (27 October to
28 February 2012), summer >10 ◦C (8 May to 22 September 2012) and between spring (1 March to 7 May
2012) and fall (23 September to 26 October 2012).

4.2. Spatial Model Runs
The spatial variability of net CO2 exchange (resolution 250 m × 250 m) is studied for a 6 × 9 km2 domain
(Figure 2a). The parameters for each grid's surface and anthropogenic activities, based on a split between
dense city center and suburban area (Figure 2a), follow Torni and Ku2 (Table 1). The only exceptions are
frheat which is zero except for the single-family housing areas located northeast and northwest of the model
domain, and agrass and bgrass for which values used at Torni and obtained from soil chamber measurements
are used in the whole domain (Table A1).

The access roads leading to Helsinki city center are evident on the traffic map (Figure 2b) with values
reaching 68,500 veh·day−1. In the city center, typical daily traffic counts are 10,000–30,000 veh·day−1. The
difference between daytime and nighttime population densities is striking (Figured 2c and 2d), with popula-
tion hot spots varying. At night, the densest neighborhoods are in west-northwest and north (maximum 440
inh·ha−1) of the city center which has a few residents. During the day, people travel to the city center with
maximum densities reaching 1,873 inh·ha−1. The number of people within the model domain increases from
(nighttime) 179,000 to (daytime) 466,000, with people commuting from the rest of Helsinki and neighbor-
ing cities within the Helsinki metropolitan region. A secondary hot spot northwest of the city center (1,800
inh·ha−1) is associated with the University of Helsinki's medical campus and the main hospital.

4.3. Evaluation Statistics
The model performance is evaluated using common statistical metrics including a Pearson correlation coef-
ficient (r), root-mean-square error (RMSE, μmol·m−2·s−1), normalized RMSE, mean absolute error (MAE,
μmol·m−2·s−1) and normalized mean absolute error (nMAE). The normalized statistics have the form

nRMSE = RMSE
max(Fc,obs) − min(Fc,mod)

(12)

and

nMAE = MAE
max(Fc,obs) − min(Fc,mod)

. (13)

The difference in modeled and observed cumulative sums is expressed as a percentage change

D = 100 ·
Fc, obs − Fc, mod

Fc, obs
. (14)

5. Results
5.1. Model Performance and Source Apportionment at the EC Sites in Helsinki
SUEWS simulates the diurnal behavior of all three Kumpula land use sectors (Ku1–Ku3; Figure 3 and
Table 3) well with the largest MAE (1.46–1.69 μmol·m−2·s−1) in Ku1 in summer and fall. The model has
particular difficulty in simulating nocturnal Fc in summer. In Ku2 and Ku3, MAE are between 0.10 and
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Figure 2. Study area 6 × 9 km2 (Kaupunkimittausosasto, Helsinki, 2017) (a) with 250-m × 250-m grids and location of
the eddy covariance sites Kumpula (blue) and Torni (red). City center and suburban areas (separated by red line) use
different model parameters (Table 1). (b) Mean workday daily traffic rates. (c) Nocturnal population densities. (d)
Daytime population densities. Note different scales between daytime and nighttime population density maps. See
section 3.2 for data sources.

1.28 μmol·m−2·s−1. The same pattern is seen in nMAE with values 0.02–0.05 (winter–fall) in Ku1, 0.00–0.02
(summer–spring) in Ku2, and 0.00–0.02 (summer–spring) in Ku3. For Ku1, some observations are within
the roughness sublayer because of the nearby tall buildings and therefore may not be necessarily repre-
sentative of the local CO2 surface exchange (i.e., greater uncertainty). Also, in our simulations the only
component contributing to the building emissions is heating degree days-driven emissions and thus the sim-
ulations do not account for possible recreational household emissions in summer, for example, from heating
of saunas. Based on RMSE and nRMSE, the model has the most challenge for Ku2, with the values ranging
between 2.10–3.00 μmol·m−2·s−1 (winter–summer) and 0.03–0.07 𝜇mol·m−2·s−1 (winter–fall), whereas the
ranges are 0.62–1.85 μmol·m−2·s−1 (spring–summer) and 0.02–0.05 𝜇mol·m−2·s−1 (winter–summer) in Ku1
and 0.50–2.93 μmol·m−2·s−1 (winter–summer) and 0.01–0.07 𝜇mol·m−2·s−1 (winter–fall) in Ku3.
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Figure 3. Median (lines) diurnal behavior of measured and modeled carbon dioxide flux (Fc, μmol·m−2·s−1) and its components at Kumpula (a–d) built (Ku1),
(e–h) road (Ku2), (i–l) vegetation (Ku3) sectors, and (m–p) at Hotel Torni for different thermal seasons. CO2 emissions/sink from photosynthesis (Fpho),
respiration (Fres), human metabolism (FM), traffic (FT), and buildings (FB). Gray areas show the quartile deviation ((Q3–Q1)/2, where Q3 and Q1 are the third
and first quartiles) of the measured Fc.

For Ku1, the observed daytime maximum is 8.2 μmol·m−2·s−1 in winter compared to the smaller simulation
maximum 4.5 μmol·m−2·s−1 (Figure 3a). Road traffic is the largest source of CO2 with modeled maximum
2.7 μmol·m−2·s−1. The only exception is summer when soil respiration reaches 3.3 μmol·m−2·s−1. In sum-
mer, the maximum vegetation sink is −7.7 μmol·m−2·s−1. The other sources (soil and vegetation respiration,
heating and human metabolism) stay below 2.6 μmol·m−2·s−1 throughout the year. For Ku2, the observed
daytime maximum 18.8 μmol·m−2·s−1 is measured in spring with simulated value 12.2 μmol·m−2·s−1. In
summer, the observed and modeled maxima are 7.9 and 9.0 μmol·m−2·s−1, but the timing of the maxima are
slightly off. The effect of road traffic on the net CO2 emission is clear with maximum 9.3 μmol·m−2·s−1 in
daytime. Despite the large vegetation sink (−8.5 μmol·m−2·s−1) in summer, vegetation is not able to offset
the emissions in the area. Emissions from respiration, human metabolism, and building heating stay below
4.1 μmol·m−2·s−1. The model captures Fc well in summer in the most vegetated sector Ku3 where the lowest
MAE occurs (0.06 μmol·m−2·s−1) when compared to other seasons. The observed and modeled daily maxi-
mum sinks are−8.3 and−7.5 μmol·m−2·s−1, respectively. Vegetation uptake reaches−13.5 μmol·m−2·s−1 and
soil and vegetation respiration 5.2 μmol·m−2·s−1 in summer. In fall, the effect of vegetation is still evident in
the middle of the day, but the net flux stays positive. Anthropogenic emissions are below 0.81 μmol·m−2·s−1

throughout the year.

Within the model, the ratio of growing-season daily vegetation CO2 uptake to evaporation, a measure of
ecosystem water-use efficiency (WUE), is 2.4 g C·kg−1 H2O at Ku3. This value, when scaled by the fractional
cover of vegetation, falls within the range of WUE observed in northern temperate forests (Law et al., 2002).
In general, the modeled biogenic components in Kumpula are similar in magnitude to values obtained in
highly vegetated EC site in Minneapolis with a different approach (Menzer & McFadden, 2017).
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Table 3
Model Evaluation Statistics for Fc at Ku1, Ku2, Ku3, and Torni by Season

Site Season r RMSE nRMSE MAE nMAE Mean N
Ku1 Winter 0.45 0.69 0.021 0.65 0.019 3.74 562

Spring 0.52 0.62 0.037 0.46 0.028 2.93 342
Summer 0.67 1.85 0.048 1.46 0.038 3.35 372
Fall 0.10 1.31 0.038 1.69 0.049 4.67 197

Ku2 Winter 0.69 2.10 0.026 0.41 0.005 7.00 1342
Spring 0.51 2.35 0.030 1.28 0.016 8.85 409
Summer 0.31 3.00 0.040 0.10 0.001 4.99 905
Fall 0.08 2.65 0.066 0.17 0.004 6.94 227

Ku3 Winter 0.36 0.50 0.009 0.35 0.006 3.79 1008
Spring 0.17 0.91 0.020 1.11 0.024 2.66 815
Summer 0.84 2.93 0.066 0.06 0.001 −0.11 1917
Fall 0.48 2.63 0.070 0.46 0.012 3.80 370

Torni Winter 0.65 5.61 0.061 0.21 0.002 11.60 1308
Spring 0.66 5.38 0.081 1.13 0.017 10.39 759
Summer 0.63 5.27 0.061 0.24 0.003 11.51 2160
Fall 0.61 5.62 0.113 0.58 0.012 12.08 586

Note. Statistics are a Pearson correlation coefficient (r), root-mean-square error (RMSE, μmol·m−2·s−1),
normalized root mean square error (nRMSE), mean absolute error (MAE, μmol·m−2·s−1), normalized
mean absolute error (nMAE), observed mean Fc (μmol·m−2 ·s−1), and number of hours evaluated (N).

In the city center, the diurnal behavior is also well simulated with nRMSE between 0.06–0.11 (winter–fall)
and MAE between 0.21–1.13 μmol·m−2·s−1 (winter–spring). In winter the best model performance is seen
with nMAE 0.02 μmol·m−2·s−1. The observed and modeled daytime maxima 22.7 and 22.5 μmol·m−2·s−1

are measured in winter. Emission from road traffic reach 12.6 μmol·m−2·s−1 during the rush hours and
together with human metabolism (daytime maximum 9.6 μmol·m−2·s−1) is the largest source for CO2. In
winter the modeled Fc starts to increase earlier in the morning than the observed Fc. The observed CO2
flux is delayed because of weak turbulent mixing in the early morning in winter. The same effect has
also been seen with particle fluxes at the same site (Kurppa et al., 2015). Vegetation sink is maximum
−2.6 μmol·m−2·s−1 in summer while soil and vegetation respiration and building heating emissions remain
below 0.7 μmol·m−2·s−1. SUEWS overestimates the evening emissions because of the combined effects from
traffic and human metabolism particularly in summer and fall. In future, more detailed information about
the movement and activity of people is needed.

Not unexpectedly, the model has difficulties predicting extreme Fc as the detailed dynamics of the anthro-
pogenic emission sources (population density and traffic rate) are not captured. The modeled annual
cumulative carbon emission (1,440 g C·m−2·year−1) in Kumpula is 2% higher that the observed gap-filled
value (1,414 g C·m−2·year−1). Expectedly, these are smaller than the city center Fc (4,640 g C·m−2·year−1),
which is 3% higher than the gap-filled observed value (4,507 g C·m−2·year−1). However, the EC measured
CO2 exchange values have random and systematic uncertainties. The random uncertainty, related to the
stochastic nature of the turbulence, is estimated to be 10–20% in typical atmospheric conditions (Rannik
et al., 2016). However, this should cancel out in annual totals leaving the systematic uncertainties as error
sources. Errors in the annual totals of ecosystem CO2 exchange above vegetated ecosystems are estimated to
be 15–60% (Balldocchi, 2003). At Torni an underestimation of 12% has been reported resulting from removal
of data from a relatively wide flow distortion area (Järvi et al., 2018). Thus, we can conclude that SUEWS
simulates the net CO2 surface exchange well at the two sites in Helsinki.

5.2. Spatial Variability of CO2 Surface Exchange in Helsinki
The map of annual total Fc has distinct spatial variability (Figure 4a). The city center is clearly distinguished
as a hot spot with a maximum emission of 10,474 g C·m−2·year−1. In the same grid, human metabolism
is the largest contributor to the net emissions (9,103 g C·m−2·year−1), followed by road traffic (1,357 g
C·m−2·year−1). The YKR data can overestimate the number of people in certain areas as it can assume that
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Figure 4. Annual cumulative (a) net CO2 flux (Fc), (b) photosynthesis (Fpho), (c) respiration (Fres), and (d) biogenic
net CO2 (Fc,bio) flux for 2012. All have units g C·m−2·year−1, but scale differs between maps.

all employees are located in the headquarter of a company even though in reality they are situated in differ-
ent offices. Other hot spots are west of the city center (11,558 g C·m−2·year−1), where a major access road
with an annual emission of 6,192 g C·m−2·year−1 and some company headquarters are located, and the hos-
pital area (12,328 g C·m−2·year−1) where the emissions are mainly related to human metabolism (10,900 g
C·m−2·year−1). In the hospital, three shifts per day are common causing an overestimation as not all people
are present at the same time. Overall, the access roads are clearly visible because of the high traffic vol-
umes. Although, the highly vegetated areas are visible the biogenic components are an order of magnitude
smaller than the anthropogenic emissions (Figures 4b and 4c). In 252 (29 %) grids photosynthesis offsets
the soil and vegetation respiration resulting in negative NEE (maximum −762 g C·m−2·year−1). These areas
concentrate in the city center where there is less organic matter to respire. In the Helsinki central park
(urban forest in the northwest corner) NEE remains mainly positive with maximum photosynthesis -1,967 g
C·m−2·year−1 but at the same time, vegetation and soil respiration is 2,363 g C·m−2·year−1 resulting in NEE
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of 396 g C·m−2·year−1. Only in summer is the vegetation sink able to offset the emissions from respiration
with a maximum sink of −1,680 g C·m−2·year−1 and respiration of 1,138 g C·m−2·year−1 resulting in NEE of
−541 g C·m−2·year−1.

The magnitude of road traffic emission hot spots in central Helsinki are similar to eastern Massachusetts
(Brondfield et al., 2012) but generally less than the Boston region where emissions hot spots exceed 25 000 g
C·m−2·year−1 (Gately et al., 2017). An hourly 1 km resolution daily maxima value 55 g C·m−2·day−1 (October
2008) in Paris (Bréon et al., 2015) are larger than the equivalent in Helsinki (33 g C·m−2·day−1)

5.3. Total Areal Emissions
The total amount of carbon emitted to the atmosphere from the study area is 81.8 kt C·year−1. The largest
emission source is road traffic with a net emission of 49.6 kt C·year−1 followed by human metabolism 31.6 kt
C·year−1. Local emissions from building energy production are only 0.003 kt C·year−1 as heating and energy
are mainly centrally produced in Helsinki. The vegetation sink is −29.0 kt C·year−1 and respiration is 31.8 kt
C·year−1 resulting in NEE of 2.8 kt C·year−1. There is one power plant within the study area, but as its stack
height is 150 m (i.e., 7–8 times the mean building height) the emissions are mostly above the surface layer
of interested here. Hence they are not included. When the boundary layer depth is high, these emissions
will be mixed in to the background urban values. When the boundary layer is very low (e.g., winter stable
conditions), these emissions would need to be entrained back into the boundary layer to impact the area.
The intent of the tall stack is to ensure the emissions are lost to downwind areas beyond the immediate
local-scale vicinity.

The contributions of different local-scale anthropogenic emission sources within the study domain are in
decreasing order road traffic (61%), human metabolism (39%), and heating and energy production (∼ 0%).
This is consistent with the concern that human and animal respiration is significant and underestimated
in bottom-up estimates of urban CO2 emissions (Gately et al., 2017). In central London, road traffic has
been found to be the greatest source contributing 70% to the net CO2 spatial emissions, followed by build-
ing activities (16%) and human metabolism (14%; Björkegren & Grimmond, 2018). Within the source areas
of EC measurements, large contribution for human metabolism (38%) was found in Tokyo, Japan, (Mori-
waki & Kanda, 2004) and small (5%) in Vancouver, Canada (Crawford & Christen, 2015), and (<2%) in
Minneapolis-Saint Paul, USA (Menzer & McFadden, 2017). The total spatial carbon emission per unit area
(5.7 kg C·m−2·year−1) is nearly the same (5.6 kg C·m−2·year−1) as in Boston region (Gately et al., 2017)
but smaller than reported for central London (12.7–14.5 kg C·m−2·year−1; Ward et al., 2015; Björkegren &
Grimmond, 2018).

5.4. Anthropogenic Model Uncertainties
Uncertainties in simulating human metabolic emissions originate from the estimation of population densi-
ties and the value of metabolic CO2 release per person. Unfortunately, we do not have uncertainty estimates
for the first database used in this study. As Gately et al. (2017) note, generally uncertainties for the data
required to estimate urban emissions are rarely available which makes the questification of uncertainty in
emissions difficult. However, we can estimate the uncertainty in the metabolic CO2 release per person. If
we use a daily mean value of 251 g C·day−1 (Prairie & Duarte, 2007) instead of the current values (Table 2),
the areal emission from human metabolism is 29.7 kt C·year−1 or 6% lower than the original estimate.

Uncertainties in traffic emissions originate from the emission factors used and the traffic rates. In the sim-
ulations, a single emission factor (0.285 kg·km−1) estimated for Helsinki is used as more detailed spatially
variable values are not available. For Ku2, we estimate a local emission factor from annual traffic data using
information on the vehicle types on each road. Combining these we estimate an emission factor of 0.298
kg·km−1. Given the linear dependence of traffic emissions on Ec, the 4% difference in Ec results in a 4%
difference in traffic emissions for this particular area. Using hourly traffic data (Järvi et al., 2012) for Ku2,
the annual emissions are 1,625 kt C·year−1or 1.5 % smaller than simulated using mean traffic rate (1,649 kt
C·year−1).

Building emissions are calculated using heating degree days and building energy use emission factors. The
uncertainty in coefficient a2,d (Appendix C) gives an areal emission of 0 to 0.004 kt C·year−1 compared to
0.003 kt C·year−1. The hard wood emission factor used for building energy use is selected as this is the main
emission source in the studied area. Similar to traffic, building emissions are linearly dependent on the
emission factor.
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Figure 5. Boxplots of vegetation uptake (Fpho), vegetation and soil respiration (Fres), and net ecosystem exchange
(NEE) made with the parameter uncertainties used to calculate Fpho and Fres. Whiskers are 5th and 95th percentiles.

5.5. Biogenic Flux Model Sensitivity
The challenge in estimating annual NEE is that it is a difference between two large values, Fres and Fpho.
Thus, even small uncertainties in their estimation can result in large errors in NEE. For each grid, we esti-
mated the parameters based on Helsinki observations. These estimates cannot capture all soil variability
within a city but act as a first step in using urban parameterizations in estimating biogenic components in
urban areas. To test the sensitivity of NEE to Fres and Fpho-related parameters, SUEWS is run across the
spatial domain with perturbed parameters based on measurements (Table A1).

Fres has larger variability than Fpho ranging between 19.5 and 33.2 kt C·year−1 compared to −26.8 and −31.2
kt C·year−1 (Figure 5). This greater variability originates from the larger scatter in the measured data used
to calculate the parameters for respiration than for photosynthesis. Using different combinations of Fres and
Fpho to calculate NEE, we get a median value of 0.76 ± 1.9 kt C·year−1. Thus, on an annual basis vegetation
is likely a source in Helsinki, but given the uncertainties of the parameters used to calculate biogenic fluxes
in the study domain, it could act as either a source or a sink.

6. Conclusions
In this study, the surface-atmosphere exchange of CO2 is incorporated into the urban land surface model
SUEWS. This complements the surface energy and water balance capability of the model allowing exami-
nation of the connections between energy, water, and CO2 exchanges at the local scale. The model contains
both anthropogenic and biogenic components. The biogenic parameters are derived from urban observa-
tions to ensure urban effects are accounted for. The model is evaluated in Helsinki using EC observations
from two sites representing four different urban surface covers. The high spatial and temporal variability
and magnitude of local-scale carbon emissions and sinks in central Helsinki are studied using a combina-
tion of sources for surface data. These include surface cover fractions derived from 2-m resolution airborne
lidar scanning, traffic data, and separate nocturnal, and daytime population densities derived from novel
mobility data. Building energy use is calculated from heating and cooling degree days-based anthropogenic
heat flux model minimizing the input data needed.

SUEWS simulates the correct diurnal and seasonal behavior for the net CO2 surface exchange over different
urban land uses. In suburban areas, road traffic is a dominant source for CO2 which is nearly countered
by vegetation uptake in summer. In the city center, road traffic and human metabolism account for nearly
equal shares but given the low fraction of vegetated surfaces (22%) the ability of vegetation to offset these
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emissions is small. The large difference between daytime (466,000) and nighttime (179,000) populations in
central Helsinki causes CO2 emissions from human metabolism to be 39% of the net local-scale emissions in
this area. If human metabolism was to be neglected, this can lead to a significant bias both in net emissions
and the spatial variability of the CO2 surface exchange. Carbon inversion studies need this component to
be included as the anthropogenic CO2 emissions are used as a boundary condition. Thus, estimation of
the magnitude and spatial variability of human emissions is highly dependent on a good understanding of
population mobility and distribution. Note that most of Helsinki's energy is produced in two large power
plants whose emissions do not get captured in a local-scale model.

The largest carbon source in a local scale in central Helsinki is road traffic (50 kt C·year−1) and human
metabolism (32 kt C·year−1). On an annual basis, vegetation acts as a net source for CO2 (2.8 kt C·year−1).
This is partly caused by the short growing season in Helsinki allowing for less photosynthetic uptake relative
to soil and vegetation respiration and partly by changes in other environmental variables. This suggests that
in high-latitude cities vegetation may have limited potential to sequester CO2 from the atmosphere. How-
ever, in order to quantify the seasonal and spatial variations in urban CO2 emissions and to understand the
detailed urban biogenic carbon cycle and its different components (respiration, storage, and photosynthesis),
detailed models accounting for the highly variable soil and vegetation structure are needed.

We have demonstrated that SUEWS can be used to study high temporal (hourly) and spatial (250 m × 250 m)
variability of local-scale CO2 in urban ares. Thus, it can be used to estimate the effectiveness of different
urban planning scenarios on local-scale carbon emissions at different spatial scales by answering questions
such as which type of vegetation would maximize carbon storage or what would be the effect of transforming
roads to bike lanes. SUEWS in a standalone mode is not intended to examine the total carbon budgets for
a city including emissions from airports, nonlocal power plants, or other nonlocal sources but rather can
provide a detailed local-scale emissions and their temporal and spatial variability that emission inventories
or top-down emission estimates often ignore or simplify. To estimate realistic local-scale anthropogenic CO2
emissions, the details on the emission sources and emission strengths are key to applying the model in
different cities and areas. Also, as the biogenic parameters will vary with plant functional types using the
Helsinki values may not produce the correct vegetation uptake and respiration behavior.

Appendix A: Parameterization of Biogenic Model Components
In empirical canopy-level photosynthesis models as used in SUEWS (equation (10)), the different responses
on environmental variables can be statistically estimated from observations (Mäkelä et al., 2008). For the
response functions of Fpho on K↓ (f(K↓)),Δq (f(Δq)),Δ𝜃 (f(Δ𝜃)), and Tair (f(Tair)) we use those used in SUEWS
to calculate of surface conductance (Ward et al., 2016)

𝑓 (Δq) =
K↓∕(G2 + K↓)

K↓,max∕(G2 + K↓,max)
, (A1)

𝑓 (Δq) = G3 + (1 − G3)G
Δq
4 , (A2)

𝑓 (Tair) =
(Tair − TL)(TH − Tair)TC

(G5 − TL)(TH − G5)TC
, (A3)

where

TC =
(TH − G5)
(G5 − TL)

, (A4)

and

𝑓 (Δ𝜃) =
1 − exp(G6(Δ𝜃 − Δ𝜃WP))

1 − exp(−G6Δ𝜃WP)
. (A5)

In equations, parameters G2–G6 describe the responses of Fpho on each environmental variable, K↓,max is the
maximum observed solar radiation, Δ𝜃WP is the wilting point, and TL and TH are the lower and upper limits
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Table A1
Model Parameters Used to Simulate Photosynthesis and Respiration in Helsinki Using SUEWS

Parameter Kumpula Torni Reference
Δ𝜃WP (mm) 120 120 Ward et al. (2016)
G2 (W·m−2) 566.1 566.1 Järvi et al. (2014)
G3 (-) 0.2427 0.5596 This study
G4 (-) 0.4362 0.9373 This study
G5 (◦C) 30 30 Ward et al. (2016)
G6 (mm) 0.05 0.05 Ward et al. (2016)
K↓,max (W·m−2) 1200 1200 Järvi et al. (2014)
TL (◦C) −10 −10 Ward et al. (2016)
TH (◦C) 55 55 Ward et al. (2016)
aevergtr (-) 5.295 ± 0.391 5.295 ± 0.391 Bellucco et al. (2017)

bevergtr (-) 0.03 ± 0.01 0.03 ± 0.01 Bellucco et al. (2017)

adecidtr (-) 5.295 ± 0.391 0.519 ± 0.001 Bellucco et al. (2017)/This study
bdecidtr (-) 0.03 ± 0.01 0.0896 ± 0.0002 Bellucco et al. (2017)/This study
agrass (-) 5.295 ± 0.391 2.1 ± 0.8 Bellucco et al. (2017)/Järvi et al. (2011)

bgrass (-) 0.03 ± 0.01 0.06 ± 0.03 Bellucco et al. (2017)/Järvi et al. (2011)

Fpho,max,evergtr (μmol·m−2·s−1) 29.2138 ± 2.2536 29.2138 ± 2.2536 This study

Fpho,max,decidtr (μmol·m−2·s−1) 27.0891 ± 2.0897 6.739 ± 0.021 This study

Fpho,max,grass (μmol·m−2·s−1) 25.2526 ± 1.9480 25.2526 ± 1.9480 This study

LAIevergtr,max (m2·m−2) 5.1 5.1 Järvi et al. (2011)

LAIdecidtr, max (m2·m−2) 5.5 5.5 Järvi et al. (2011)
LAIgrass, max (m2·m−2) 5.9 5.9 Järvi et al. (2011)

Note. See Notation for details. SUEWS = Surface Urban Energy and Water balance Scheme.

when photosynthesis and evaporation switch off (Table A1). Values for G2, G5, and G6 from past studies
provide reasonable responses for Fpho in Helsinki. However, for specific humidity, values of f(Δq) are too low.
Therefore, we fit parameters G3 and G4 together with the potential photosynthesis (Fpho,max) using Helsinki
observations, to obtain appropriate estimates of Fpho in SUEWS (equation (10)).

For urban forest and park area (Ku3), the parameters are determined by fitting equation (10) against EC
observations from Kumpula in 2006–2011. The environmental variables K↓, Tair and Δq are measured at the
site, whereas Δ𝜃 modeled values are used (Järvi et al., 2017). LAI and surface fraction of each vegetation
type i are only considered after the fitting has been made (see below). Following Bellucco et al. (2017),
summer (June–August) weekend days from the most vegetated direction in Ku3 (200–270◦) are used in the
nonlinear fit. The data selection is to minimize the anthropogenic effects on net CO2 exchange measured
by the EC technique. After commonly accepted quality control procedures including removal of spikes and
stationary test with limit 60% (Nordbo et al., 2012b), there are 597 sixty-minute data points for analysis. Soil
and vegetation respiration estimated from equation (11) is reduced from the net flux.

As parameter values we use ai = 5.295 ± 0.391 and bi = 0.03 ± 0.01 obtained from nocturnal EC data in
the same vegetated direction (Bellucco et al., 2017). The model parameter uncertainties are estimated using
bootstrapping with 7/8th of the data selected randomly 100 times to be used in the nonleast squares fitting
(Matlab function lsqcurvefit). This gives values G3 = 0.243 ± 0.014, G4 = 0.436 ± 0.029, and Fc,pho,max =
90.884 ± 7.011 μmol·m−2·s−1. Furthermore, Fc,pho,max is scaled with the maximum LAI and to 100% for each
vegetation type, resulting in vegetation specific values (Table A1).

Using the Table A1 parameter values, SUEWS simulates Fpho well for the independent summer of 2012 for
Ku3 with RMSE = 3.0 μmol·m−2·s−1 and R2 = 0.88 (Figure A1). Radiation and specific humidity have the
largest impact on Fpho with f(K↓) and f(Δq) between 0–0.97 and 0.28–0.88, followed by f(Tair) (0.63–0.99) and
f(Δ𝜃) (0.98–0.99).
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Figure A1. Correlation between the measured and modeled photosynthesis (Fpho) in Ku3 (180–320◦) in summer 2012.
Data are 60-min values (N = 1187).

Parameters G3, G4, and Fpho,max,decitr for deciduous street trees in Helsinki are determined with the aid of
leaf-level photosynthetic responses measured for the planted common lime (Tilia x vulgaris) during five field
campaigns in 2007–2009 (Riikonen et al., 2011). In each campaign, a total of 22–25 leaf samples from six
to seven trees was measured with portable gas exchange sensor (CIRAS-2, PP Systems, UK). The measured
responses are scaled to stand level using the forest stand gas exchange model SPP (Mäkelä et al., 2006) for a
typical summer in Helsinki (2012). From the several SPP photosynthesis and stomatal control models, the
optimal stomatal control model (Hari et al., 1986) was employed. The input data for SPP (photosynthetically
active radiation, air temperature, humidity, and CO2) are from Kumpula. Soil water is not explicitly consid-
ered, that is, set to a value where soil moisture will not affect the gas exchange of vegetation. The stand level
LAIdecidtr is assumed to be 6 m2·m−2.

The stand level Fpho 30-min values used with equation (10) and the Kumpula K↓, Tair and Δq, and observed
Δ𝜃 from the street where the trees were planted in 2016 (Riikonen et al., 2016) are used to get model param-
eters for city centre. Using bootstrapping (as above), we get G3 = 0.560 ± 0.027, G4 = 0.937 ± 0.006,
and Fpho,max, decidtr = 6.739 ± 0.021 μmol·m−2·s−1 (N = 2884). For the respiration parameters we get
adecitr = 0.519 ± 0.001 and bdecitr = 0.0896 ± 0.0002 for the city center. For grass surface, we use soil respi-
ration parameters agrass = 2.1 ± 0.8 and bgrass = 0.06 ± 0.03 measured by soil chambers in the vicinity of
Kumpula EC tower (Järvi et al., 2012). These values do not consider the large spatial variability of the dif-
ferent vegetation types present in Kumpula. Rather, the values are obtained from carefully selected EC data
(see above).

Appendix B: Estimating Minimum Soil Respiration
To minimize SUEWS input variables, air temperature is used to calculate soil respiration. This results in
unrealistically low winter respiration values when soil temperature maybe warmer than air. CO2 efflux
observations from a boreal forest in Southern Finland using three automatic soil chambers are used to
estimate realistic minimum values for winter time respiration. Two chambers are transparent, and one is
covered to prevent radiation from entering the chamber. From the transparent chambers, only hours with
no radiation are used. The chamber lids are closed for 3.5 min every 30 min, and CO2 gas concentrations
are measured with a diffusion probe (GMP343, Vaisala Oyj, Vantaa, Finland) and soil temperature with a
K-type thermocouple. Between concentration sampling times, the chamber lids are tilted to the side by an
electric motor. More details are given in Pumpanen et al. (2015). The minimum respiration value for 30-min
periods during 2009–2012 when the measured soil temperature is below −2 ◦C (1,677 sampling times) is
0.60 ± 0.07 μmol·m−2·s−1.
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Table C1
Parameter Values Used to Calculate a0,(wd,we) for EC Sites in Helsinki

Parameter Ku1 Ku2 Ku3 Torni Reference
a0,wd 0.1337 0.1672 0.0958 0.1105 This study
a0,we 0.1153 0.1433 0.0937 0.1084 This study
frQF,base,BEU,wd 0.57 0.43 0.80 0.70 This study

frQF,base,BEU,we 0.67 0.51 0.82 0.71 This study

pwd (pop·ha−1) 19.8 39.2 36.2 212.7 This study
pwe (pop·ha−1) 23.2 38.7 38.6 182.1 This study
Trwd (veh·km·m−2·day−1) 0.018 0.074 0.005 0.092 This study
Trwe (veh·km·m−2·day−1) 0.012 0.051 0.004 0.071 This study
Eh,d (J·km−1·veh−1) 4.11 · 106 This study
E (W·h·cap−1) 6.8 · 106 City of Helsinki
Md (W·cap−1) 125 Sailor and Lu (2004)

Note. EC = eddy covariance.

Appendix C: Improved Coefficients for Building Heat Emissions
To improve the description of building heating-related heat and carbon emissions, the parameters a0,d–a2,d
in equation (6) are revisited in Helsinki using the EC measured sensible heat flux (QH) for the two sites
(Kumpula and Hotel Torni). As air conditioning is uncommon in Helsinki, the CDD coefficient a1,d is set to
zero. a2,d is estimated from hourly QH and air temperature data when the net all-wave radiation is 0< Q* < 10
W·m−2. The limit is set to minimize the contribution of Q* and storage heat flux, which is directly dependent
on Q*, from the measured QH . To obtain a reasonable amount of data to determine a2,d, data from 2006–2012
are used. At both sites, a value of 0.0149 ± 0.0147 W·ha·cap−1·m−2 is obtained. This is nearly the same (0.01
W·ha·cap−1·m−2) as previously used in Helsinki (Karsisto et al., 2015).

For updated values of a0,d an inventory approach following Allen et al. (2011) and Ward et al. (2015) is used

a0,d =
QV ,d + QB,d + QM,d

pd
=

TrdEh,d

pd
+ E

8784
+ Md, (C1)

where QV ,d, QB,d, and QM,d are daily heat emissions from traffic, energy use, and human metabolism, pd is
daily population density, Trd traffic rate on weekdays and weekends, Eh emission factor for heat, E the net
electricity consumption per capita in Helsinki, and Md is mean daily human metabolism. The coefficient is
calculated separately for the surface cover sectors at Kumpula and Hotel Torni within a 1-km radius circle
from the EC measurements. Table C1 gives the parameter values used in equation (C1). Population densities
are mean of the daytime and nighttime populations.

The same parameters are used to estimate the fraction of non-temperature related base QF from building
energy use on weekdays and weekends (frQF,base,BEU,d)

𝑓 rQF,base,BEU,d =
QB,d

QV ,d + QB,d + QM,d
. (C2)

Notation
Δq Specific humidity deficit (kg·kg−1)
Δ𝜃 Soil moisture deficit (mm)

Δ𝜃WP Wilting point (mm)
ai Empirical parameter for soil and vegetation respiration dependence on Tair

a0,d Parameter for QF at base temperature (W·ha·cap−1·m−2)
a1,d Parameter describing CDD dependence of QF (W·ha·cap−1·m−2· K−1)
a2,d Parameter describing HDD dependence of QF(W·ha·cap−1·m−2·K−1)
alt Base elevation (m)
A Study area (ha)

JÄRVI ET AL. 8380



Journal of Geophysical Research: Atmospheres 10.1029/2018JD029576

bi Empirical parameter in the dependency of soil respiration on air temperature relation
cap Capita within the study area
CM CO2 release per capita (μmol·CO2·s−1·cap−1)

CM(min,max) Minimum and maximum CO2 release per capita (μmol·CO2·s−1·cap−1)
CDD Cooling degree days
CO2 Carbon dioxide

d Weekday (wd) or weekend (we)
D Percetage change between the modeled and observed values

DLS Day light saving
E Net electricity consumption per capita (Wh·cap−1)

Ec,d CO2 release per vehicle per meter of travel (kg·km−1·veh−1)
Eh,d Heat release per vehicle per meter of travel (J km−1 veh−1)

ECO2 CO2 emission factor for fuels used for building heating (𝜇mol·CO2·J−1)
EM Energy release per capita (W·cap−1)

EM(min,max) Minimum and maximum value for human heat emission (W cap−1)
EC Eddy covariance

fi Surface fraction of ith surface
f(K↓) Function for the dependence of stomata opening on K↓

f(Δ𝜃) Function for the dependence of stomata opening on Δ𝜃
f(Δq) Function for the dependence of stomata opening on Δq
f(Tair) Function for the dependence of stomata opening on Tair

FB CO2 emissions from building energy use (𝜇mol·m−2·s−1)
Fc Net CO2 flux (𝜇mol ·m−2·s−1)

Fc,ant Anthropogenic CO2 flux (𝜇mol·m−2·s−1)
Fc,bio Biogenic CO2 flux (𝜇mol·m−2·s−1)

Fc,mod Modeled net CO2 flux (𝜇mol·m−2·s−1)
Fc,obs Observed net CO2 flux (𝜇mol·m−2·s−1)

Fpho,max,i Potential photosynthesis (𝜇mol·m−2·s−1)
FM CO2 emission from human metabolism (𝜇mol·m−2·s−1)

FM,h,d Hourly CO2 emission from human metabolism on workday/weekend (𝜇mol·m−2·s−1)
FP CO2 emission from stationary single-point sources (𝜇mol·m−2·s−1)

Fpho Photosythesis (𝜇mol·m−2·s−1)
Fres Soil and vegetation respiration (𝜇mol·m−2·s−1)

FV CO2 emissions from road traffic (𝜇mol·m−2·s−1)
FV ,h,d Hourly CO2 emissions from road traffic on workdays/weekends (𝜇mol·m−2·s−1)
frbuild Plan area fraction of buildings within the study area

frdecidtr Plan area fraction of deciduous trees/shrubs within the study area
frevergtr Plan area fraction of evergreen trees/shrubs within the study area

frgrass Plan area fraction of grass within the study area
frpaved Plan area fraction of paved surfaces within the study area
frwater Plan area fraction of water surfaces within the study area
frheat Fraction of fossil fuels used for building heating relative to district heating

frnonheat Fraction of fossil fuels used for energy consumption relative to district heating
frQF,base,BEU,d Fraction of building energy use from QF,base

G2−6 Parameters describing the response of photosynthesis on different environmental factors
h Hour

HA,d Diurnal activity profile on different days
HA,h,d Activity per hour calculated from the activity and population profiles

HP,d Diurnal profile for population density on different days
HT,d Diurnal traffic profile on different days

HDD Heating degree days
i Vegetation type

K↓ Shortwave radiation (W·m−2)
K↓,max Maximum shortwave radiation (W·m−2)

Ku1 Kumpula northern land use sector
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Ku2 Kumpula eastern land use sector
Ku3 Kumpula southwestern land use sector
LAIi Leaf area index of ith vegetation type (m2 m−2)
LCZ Local Climate Zone (Stewart & Oke, 2012)

Md Mean daily human metabolism (W·cap−1)
MAE Mean absolute error (𝜇mol·m−2·s−1)

nMAE Normalized mean absolute error (-)
nRMSE Normalized root mean square error (-)

N Number of data points
NEE Net ecosystem exchange

pd Mean population density within study area on weekdays and weekends (cap·ha−1)
ph,d Population density within the study area per hour per day (cap·ha−1)
Q ∗ Net all-wave radiation (W·m−2)
QB,d Heat emissions from buildings on workdays/weekends (W·m−2)

QB,h,d Hourly heat emissions from buildings o workdays/weekends (W·m−2)
QF Anthropogenic heat flux (W·m−2)

QF,base Non-temperature related anthropogenic heat flux (W/m−2)
QF,cool Anthropogenic heat flux related to CDD (W/m−2)
QF,heat Anthropogenic heat flux related to HDD (W/m−2)

QH Sensible heat flux (W/m2)
QM,d Heat emissions from human metabolism (W/m−2 )

QM,h,d Hourly heat emissions from human metabolism on workdays/weekends (W·m−2 )
QV,d Heat emissions from road traffic (W/m−2)

QV ,h,d Hourly heat emissions from road traffic on workdays/weekends (W·m−2)
r Pearson correlation coefficient

R2 Squared Pearson correlation coefficient
RMSE Root mean square error (𝜇mol·m−2·s−1)

SUEWS the Surface Urban Energy and Water balance Scheme
Tair Air temperature (◦C)
TC Air temperature fraction needed to calculate the response of stomata opening on air tempera-

ture
TH Upper limit when photosynthesis and evaporation switch off (◦C)
TL Lower limit when photosynthesis and evaporation switch off (◦C)

Trd Daily traffic rate on weekdays/weekends (veh·km·m−2·day−1)
z EC measurement height (m)

zbuild Mean height of buildings within the study area (m)
ztree Mean height of trees within the study area (m)
wd Weekdays
we Weekends

WUE Water Use Efficiency (g C kg−1)
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