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Plantar pressure image fusion for comfort fusion in diabetes 

mellitus using an improved fuzzy hidden Markov model 
 

Abstract 
Diabetes mellitus is a clinical syndrome caused by the interaction of genetic and environmental factors. The 

change of plantar pressure in diabetic patients is one of the important reasons for the occurrence of diabetic 

foot. The abnormal increase of plantar pressure is a predictor of the common occurrence of foot ulcers. The 

feature extraction of plantar pressure distribution will be beneficial to the design and manufacture of diabetic 

shoes that will be beneficial for early protection of Diabetes mellitus patients. In this research, texture-based 

features of the Angular Second Moment (ASM), Moment of Inertia (MI), Inverse Difference Monument 

(IDM), and Entropy (E) have been selected and fused by using the an up-down algorithm. The fused features 

are normalized to predict comfort plantar pressure imaging dataset using an improved Fuzzy Hidden Markov 

Model (FHMM). In FHMM, type-I fuzzy set is proposed and Fuzzy Baum-Welch algorithm is also applied 

to estimate the next features. The results are discussed, and by comparing with other back-forward algorithms 

and different fusion operations in FHMM. Improved HMMs with up-down fusion using type-I fuzzy 

definition performs high effectiveness in prediction comfort plantar pressure distribution in an image dataset 

with an accuracy of 82.2% and the research will be applied to  the shoe-last personalized customization in 

the industry. 

Keywords: plantar pressure imaging dataset; image fusion; texture-based feature extraction; fuzzy hidden 

Markov model; fuzzy Baum-Welch algorithm 

 

1.  Introduction 
 

Diabetic foot ulcer or gangrene occurs in a certain period of time, and the increase of plantar pressure is the 

most important factor leading to foot ulcer. Therefore, the detection of plantar pressure in diabetic patients 

has important clinical significance for the prevention and treatment of diabetic foot. At present, many diabetic 

hospitals have introduced footwear and insoles with therapeutic correction. The purpose is to reduce the foot 

pressure of diabetic patients in an area of excessive concentration, reduce related tissue damage and promote 

ulcer healing, thereby preventing the occurrence of diabetic foot. Foot pressure detection is an advanced 

technology which is based on the principle of human biomechanics, objective evaluation and prediction of 

future foot diseases and walking, providing advanced scientific methods of scientific rehabilitation treatment. 

While in traditional plantar pressure analysis, Image mining-based technologies for plantar pressure research 

is insufficient. Dynamic reaction of Diabetes mellitus in plantar pressure needs to be addressed, so time 

series-based analysis can be applied, the target of this research is to apply time-series analysis by using plantar 

pressure image fusion and so as to produce comfort shoe for Diabetes mellitus in the industry. According to 

the relevant medical and clinical studies, diabetic foot is most commonly affected by complications. The 

tissue of diabetes mellitus patients is destroyed by the increased plantar pressure concentration causing 

plantar capillary occlusion, tissue ischemia gangrene, and plantar foot ulcers. Repeated and sustained 

mechanical pressure can also lead to aseptic autolysis of tissues, leading to infection, ulceration and the risk 

of gangrene and amputation [1]. Because diabetes is a most complex condition to manage at present, the 

incidence of complications caused by diabetes mellitus is high, difficult to manage, and the morbidity rate of 

disability is high, so diabetes experts suggest that reducing the risk of complications of diabetic foot is 

particularly important. The increase of plantar pressure is an important risk factor for diabetic foot, so testing 

plantar pressure has two advantages, at least in preventing diabetic foot: one is that it can predict the 

occurrence and development of diabetic foot ulcer; the other is that foot shape can be obtained after testing, 

and a shoe or insole especially suitable for diabetic patients can be made, which can be evaluated by studying 

foot biomechanics [2][3]. Scientifically balancing plantar pressure using foot medical examination is 

currently employed to correct foot deformations; improve pain, lesions and joint instability. The use of this 

special shoe or insole can reduce the possibility of diabetic foot development [4]. 

In diabetes mellitus, sensory neuropathy makes feet loose their self-protection mechanism and can easy to be 

injured; motor neuropathy makes intrinsic foot muscle atrophy. As the foot (toe) deformity and metatarsal 

head protrude, the fiber fat pad of the forefoot is moved forward, the local pressure of forefoot and metatarsal 

head also is increased, and the pressure ratio of forefoot to hind foot is increased, so callus and pressure ulcers 

mostly occur in the forefoot. Motor neuropathy also occurs in the forefoot which can lead to abnormal gait, 



 
 

limited foot and ankle movement, callus formation, and eventually an ulcer. The results showed that the 

plantar pressure of diabetic patients was significantly higher than that of normal people, and the ratio of the 

forefoot to hind foot pressure increased in patients with peripheral neuropathy [5] [6]. Research on plantar 

pressure of diabetic patients including quantitative evaluation of plantar pressure will be beneficial to making 

reasonable treatment programs in clinical treatment; combined with other clinical examinations, early 

detection high-risk groups of diabetic foot will provide corrective insole intervention measures for early 

protection [7]. 

 

Plantar pressure distribution has been researched in recent years. Following the scan devices’ improvements, 

plantar pressure distribution detection technologies have been employed [8-10]. The study of  plantar pressure 

distribution can help alleviate the pressure on patients’ foot and the critical feature of plantar pressure will 

be guidance for producing comfortable shoes [11-13]. The plantar pressure distribution characteristics and 

technical action are consistent; for technical action of some slight changes, it can be made to change the 

characteristics of the foot [14-16]. These factors do not significantly change the plantar pressure distribution, 

but can alleviate and improve the condition because of the use of high heels with cause discomfort, so these 

factors are necessary to explore the structural design of the shoe sole.  Comfort is the key aspect in purchasing 

footwear, which should be considered during the precision design of the shoe [17] [18]. An improvement in 

simulating the contact at the plantar surface is necessary. Thus, plantar pressure imaging technologies and 

the processing of image datasets have recently been developed [19]. Shoe-last customizing system has 

already been reported by using finite element modeling (FEM) in computer-aided design (CAD) methods 

[20]. Furthermore, scholars have extended the research into the medical and biomedical fields [21-23].  

Image fusion can be used to combine some images into a new image using a specific algorithm. The 

technology has a basic system, including the main contents of image preprocessing, image fusion algorithm, 

image fusion evaluation and fusion results. Image preprocessing technology mainly includes two tasks, 

namely image denoising, image registration, and image fusion algorithm from the initial simple (weighted 

fusion algorithm and maximum value method) for the development of complex multi resolution algorithm 

(Pyramid, wavelet method). In addition, image fusion performance evaluation can be subjective or objective 

evaluation [24]. The system can obtain better performance than that of a subset of the components of the 

composition [25]. With the artificial intelligence development, artificial immune algorithm (AIA) [26] and 

the Curvelet transform [27] were used for multi-scale image fusion. Otherwise, fully convolutional network 

for sensor image fusion [28], evidence-based fusion [29] and Covariance Intersection (CI) fusion [30] were 

all developed to improve the obtained image. 

Before image fusion, the input image is processed by feature extraction, segmentation and matching. The 

preprocessing generally involves digitization, smoothing, recovery, and enhancement. The fused image is 

pretreated according to the selected image sensor type and image and the fused target. Recently, there have 

been several more effective de-noising methods which can effectively preserve the edge information while 

removing noise effects. Some methods use the idea of partial differential equations, and some methods utilize 

the wavelet domain hidden Markov model. The idea of choosing a de-noising method is based on the features 

of the image itself. It is helpful for the subsequent processing to study the appropriate image de-noising 

method and the appropriate parameters for image de-noising [31-33].  

Afterwards, a features extraction process is conducted where texture is an important feature of the image. 

Texture analysis is an important research content of image understanding, analysis and recognition. Texture 

can be used to describe the difference of the structure, direction, granularity and regularity of the different 

regions of the image [34].  The texture contains not only the surface properties or characteristics, but also the 

extent. It reflects the relation between them and the environment. Suitable feature extraction algorithms for 

plantar pressure images is important for image mining issue. Khalaf et al. introduced peak plantar pressure 

(PPP), sample entropy (SamEn) and the 2nd wavelet moment (WM2) features of distribution plantar pressure 

for detecting diabetic peripheral neuropathy and warrant further investigation [35]. Wang et al. proposed the 

piecewise linear grayscale transformation on original image, and deployed the time domain mean filter and 

the maximum value filter for preprocess, then determine the position of the feet in the image by the foot 

localization algorithm for features extraction [36]. In our previous study, mean square error (MSE), and peak 

signal to noise ratio (PSNR) were used for evaluating the performance of image segmentation learning 

algorithms that we proposed -full convolution network (FCN) through the AlexNet platform (FCN-AlexNet-

8 s)[37]. 

 



 
 

Therefore, the texture features in the expression of gray statistical information can reflect the distribution 

structure and spatial information. Hence, in the present work texture-based features are extracted to study 

Fuzzy Hidden Markov Model (FHMM) based comfort prediction. The difficulty is to determine the implicit 

parameters of the process from observable parameters. These parameters are then used for further analysis, 

such as pattern recognition. A typical statistical Markov model is presented in which the modeled system is 

considered as a Markov process with unobserved (hidden) states [38]. HMM is a Markov chain, where the 

state cannot be observed directly. However, each observation vector is through certain probability density 

distribution for a variety of conditions. It is composed of a corresponding probability density distribution of 

a state sequence through the observation vector sequence being observed. Therefore, the HMM can be 

considered a double stochastic process. Huang et al. [39] proposed model-based character extraction method 

for HMM in images with non-uniform background case. Thanh et al. [40] used HMM for cancer classification 

combining with Gene Expression (GE). Zhang et al. [41] applied a fuzzy triplet Markov for Synthetic 

Aperture Radar (SAR) image segmentation. In addition, thermography images [42], multi-modal medical 

image [43] and protein sequence identification [44] were processed by using HMM combined with fuzzy set 

and fuzzy clustering algorithms. Recently Xie, et al. [45] introduced a generalized hidden Markov model 

(GHMM) for solving the problems of aleatory and epistemic uncertainties. Zhao et al. [46] developed FHMM 

for image segmentation, and Voronoi tessellation (VT) and hidden Markov random field (HMRF) based 

fuzzy c-means (FCM) algorithm (VTHMRF-FCM) for texture image segmentation and obtain superior 

results than other FCM based methods.  

Hidden Markov model and fuzzy model technologies also have been widely applied in stock prediction [47], 

Speech Recognition [48] and signal processing [49].  Ferhat et al. [50] introduced an improved HMM for 

automatic recognition of gait phases; Juri et al. [51] addressed a novel HMM distributed classifier for the 

detection of gait phases; dynamic gait researches have been developed recently for shoe product industry 

[52]. Accordingly, the HMM using type-I fuzzy set was proposed in this work through a definition on fuzzy 

set for parameters and status. Thus, the proposed model was named FHMM.  

 

2. Methodology 
2.1  Plantar pressure data acquisition 

10 patients with type 2 diabetes mellitus (5 male, 5 female) of 35-55 ages were involved the test using the 

footscan 7.0 system. The clinical diagnostic criteria were HbA1c is “> 6.5%”, fasting blood glucose FPG is 

“> 7.0 mmol/L”; an empty stomach is defined as no calorie intake for at least eight hours; blood sugar is “> 

11.1 mmol/L” at 2 hours of oral glucose tolerance test; in patients with typical symptoms of hyperglycemia 

or hyperglycemia crisis; and random blood sugar with “> 11.1 mmol/L”. In the choice of the way of boarding, 

taking steps on the way is adopted; in the choice of test times, "take steps" is to collect 4-6 times of data. In 

the static balance test, control of test time is under four states (double opening, double closing, single opening 

and single closing). Standing on two feet is usually 20 seconds, standing on one foot is usually 10 seconds. 

By starting the footscan 7.0 system software and registering the identity of the subjects, imaging database and 

personnel records are created; by importing the relevant parameters, starting the real-time detection power 

supply, and instructing the subjects to walk into the force plate by three times, the system software acquires 

the foot pressure imaging subset in real time, and stores the data automatically until the end of the experiment. 

The operators select the dynamic model to obtain the change process of plantar pressure.Table 1 shows the 

details of the parameters of the scanning device in the proposed system while acquiring the planar pressure 

distribution imaging dataset using the RS-Scan Footscan 7.0 software system (as shown in Fig.3).. 

 

Table 1. The parameters of plantar pressure measurement system 

Items Measurement Items Measurement 

Area 40*50 cm2 Total sensors 4096 

Numbers of sensor 4 per cm2 Sampling Hz 125-300Hz 

Size of each sensor 0.5*0.7 cm2 Analog channels 16 

Image resolution 12 bits Entry level 2m 

 

Furthermore, the system can also calculate the pressure information in different zone (shown in Fig. 2). Fig 

3 showed time series based plantar pressure images under comfort shoes. 

 



 
 

 

 
Figure 2. Foot Scan system by RS-scan for measuring plantar pressure and imaging experiment 

 

 
Figure 3. Time-series based plantar pressure images 

 

2.2 Texture based features 

 

Gray-level Co-occurrence Matrix (GLCM) is used for image feature calculation. The co-occurrence matrix 

is calculated based on gray level of image to represent some image texture feature. The GLCM reflects the 

comprehensive information about the image direction, adjacent interval and amplitude of variation, which is 

the foundation of image analysis of local patterns and arrangement rules. Out of 14 texture features based on 

GLCM, only 4 features (Angular Second Moment, Moment of Inertia, Inverse Difference Monument, and 



 
 

Entropy) are uncorrelated. Suppose that ( , )x y  is a point’s coordinates in plantar pressure image, 

{1,2,..., }x m  , {1,2,..., }y n , gray level is L , and the nearby point is ( , )x x y y  , 0x  , 

0y  , ( , )f x y  is the value of point. The gray value can be calculated by

( ( , )) ( ( , )) ( ( , ))g f x y g f x y g f x x y y     , where, g  is gray difference. Assume there are m  levels, 

count g  in each m , then the probability on each g  can be acquired as ( )p i , ( 1, , )i m . GLCM 

extracts the texture by using gray and gradient synthetic information. The process is like the GLCM. The 

Sobel operator can be applied to ( , )f x y  in order to obtain the gray image ( , )g x y  and be discretized to 

be ( , )G x y . Let the new gray level be 
gL , then new gray is calculated by:  

( , ) min( ( , )
( , ) ( 1)

max( ( , )) min( ( , ))
g

g x y g x y
G x y L

g x y g x y


 


                                     (1) 

where 
ijH  is defined as number of {( , ) | ( , ) , ( , ) }x y f x y o G x y j  . Normalized Hij

 as follows: 
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i j
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 
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                                                              (2)  
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ij
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                                                            (3) 

(2) Moment of Inertia (MI) 
11

2

0 0

( )
gLL

ij

i j

MI i j P



 

                                                             (4) 

(3) Inverse Difference Monument (IDM) 
11

2
0 0

1

1 ( )

gLL

ij

i j

IDM P
i j



 


 

                                                   (5) 

(4) Entropy (E) 

2

0

( ) log ( ( ))
m

i

E p i p i


                                                           (6) 

The principals for texture features selection are: i) for the window size N ’s selection, a large value will result 

in a large amount of calculation and storage, but if it is too small, it will not contain complete texture 

information. In general, when the image size is determined, the calculation window is then determined, unless 

the image is processed in blocks, or the Region of Interest (ROI); and then the GLCM are extracted.  ii) For 

gray level L  selection, the gray level determines the computational scale of GLCM; and reduces the gray 

level to improve the calculation speed and reduce the storage space requirements. iii) In the selection of the 

distance D , the co-occurrence matrix changes rapidly with the distance in fine texture, while in the rough 

texture it varies slowly with distance. For smooth textures with larger distances, a smaller distance for a rough 

texture will lead to better results. vi) For direction selection, there are four kinds of values of 0, 45, 90, and 

135 degrees. Different theta can examine different textures, different co-occurrence matrix generated in 

different theta, by considering the direction, the mean values of four directions of gray level co-occurrence 

texture features matrix are calculated, then each direction eigenvalue is the final texture component. v) The 

entropy is used to measure the amount of information and reflects the disorder or the complexity of the texture 

of the image. vi) IDM directly measures the local uniformity of digital images and the larger the value of the 

deficit, the more consistent the image is. 

 

2.3 Fusion operation 

 

The images of plantar pressure dataset are time series based, and the image fusion operation makes more 

effect on the data set to get key points in images and then for comfort prediction.  In this study, up-down 



 
 

fusion was applied based our previous studies [19]. Supposed that the matrices A and B are two time-series 

based plantar pressure images, and the fusion algorithm is “Up-Down” referring [53] [54]. 

 

2.4 Fuzzy Hidden Markov Model for comfort prediction 

 

Assume the observation sequence 
1 2{ , , }tO O O O  and the model parameter ( , , )A B  . The 

probability of an observation sequence can be effectively calculated, and then make a relevant assessment of 

the HMM for the next steps. For example, there are some HMMs with different model parameters, by giving 

the observation sequence O , the problem is which HMM model is most likely to generate the observation 

sequence. Usually the forward algorithm can be used to calculate the probability that each HMM produces a 

given observation sequence O , and then choose the optimal HMM model. Afterward the decoding problem 

is considered to find a sequence of implicit states is an optimal problem in some sense. Among these problems, 

hidden states in the Markov model were proposed, which means the system cannot be directly observed, but 

are more valuable, and are usually searched using the Viterbi algorithm. A practical example of such a 

problem is the Chinese word segmentation, that is to divide a sentence into its composition, and the HMM 

can be constructed to find the most likely correct word segmentation method. Finally, the learning process is 

considered, where the model parameter ( , , )A B   of the HMM is unknown. Thus, adjusting these 

parameters so that the probability of the observation sequence O  is as large as possible becomes essential. 

It is usually solved using the Baum-Welch algorithm and the Reversed Viterbi algorithm. 

 

2.4.1 Forward algorithm 

 

As above mentioned, HMM is  used to solve three problems: evaluation, decoding, and learning. In the HMM, 

the forward algorithm is used for evaluation, while the Viterbi algorithm is used for decoding. Supposed that 

the number of hidden states is N , and the number of observed sequences is T . Obviously, for a certain 

observation sequence, the hidden state sequence has a common situation in 
TN . If the probability is obtained 

by the exhaustive method, the complexity is 
TN . A recursive approach to reduce the complexity of the 

problem can be used, which is the forward algorithm, Fig.1 illustrates the framework of  the forward 

algorithm of HMM. 
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Figure 1. The framework of forward algorithm for HMM 

 



 
 

At time t , the probability of state j  is ( ) ( | )t ja j P O q P  (the path of all arrival state j  at time t ), then 

proceed with forward recursion as follows:  

        (1) Initialization: Calculate the local probability at 1t  , 1 1( ) ( ) ( )ja j j b O   , 1 j N  . 

       (2) Recursion: Calculate the local probability when t 1 , ( 1)

1

( ) ( ) ( )
N

t t ij j t

i

a j a j a b O



   , 

1 j N  ,1 t T  . 

        (3) Terminate at t T , where ( 1) ( )ta j  represents the local probability generated at time 1t  , ija  

represents the probability of transitioning from state i  at time 1t   to state j  at time t , and ( )j tb O  

represents observation from state j . The probability of the value tO . Algorithm 1 shows the forward 

algorithm of HMM. 

 

Algorithm 1: Forward algorithm of HMM 

INPUT:  

Phmm: known model of HMM 

T: length of observation sequence 

O: observation sequence 

alpha: local probability 

OUTPUT: 

pprob: final observation probability 
// Calculate all local probabilities of state at time t -alpha 

FOR i from 1 to phmm.N 

    alpha[1][i]  phmm.pi[i]* phmm.B[i][O[1]] 

ENDFOR 

// Recursively calculate the local probability of each time point, t=2, ..., T. 

FOR t from 1 to T 

FOR j from 1 to phmm.N 

  sum  0.0; 

  FOR i from 1 to phmm.N 

    sum = sum+alpha[t][i] * (phmm.A[i][j]) 

  ENDFOR 

alpha[t+1] [j]  sum*phmm.B[j][O[t+1]] 

ENDFOR 

ENDFOR 

// Termination: the probability of observation sequence is equal to the sum of all local probabilities 

at T time  

pprob = 0.0 

FOR i from 1 to phmm.N 

  pprob pprob+ alpha[T][i] 

ENDFOR 

 

2.4.2 Baum-Welch estimation in Hmm  

 

The first issue is decoding to find the best hidden state sequence for an observation sequence. For each hidden 

state sequence Q , calculate ( | )P O Q  and select one of the cases with the highest probability. The 

complexity is 
TN , and the Viterbi algorithm is used for recursive calculation to reduce the complexity. By 

defining the probability of being in state j  at time t  is ( )tV j . Unlike the forward algorithm, the Viterbi 

algorithm finds the probability of the most probable path to a certain state at time t , instead of all paths. The 

sum of the probabilities can be calculated as the steps as follows. 



 
 

      Step 1 Initialization, when 1t   , it is obvious that the most probable path to a certain state is non-

existent, that is, the local probability at time 1t   is 1( ) ( ) ( )i jV j j b O  , 1 j N   

      Step 2 Recursion by calculating the local probability when 1t  , and 

 1 1( ) ( ( ) ( )t i N t ij j tV j Max V j a b O                                                       (7) 

      Step 3 Terminates until t T  . 

      The Viterbi algorithm introduces a reverse pointer, performs Viterbi backtracking, and records the best 

state. The argmax operator is used to calculate the index j  that maximizes the value of the expression in 

parentheses. Formally, we have that: 

1 1( ) argmax { ( ) ( }t i N t ij j tb j V j a b O     ,1 j N  ,1 t T                           (8) 

When the entire calculation process is completed, the most probable state is first found at the end time, 

and then backtracked to the time 1t  by the backward pointer, so that the state sequence on the backtracking 

path is the most likely hidden state sequence (See the Algorithm 2). 

 

Algorithm 2: Viterbi algorithm 

INPUT:  

Phmm: known model of HMM 

T: length of observation sequence 

O: observation sequence 

OUTPUT: 

pprob: final observation probability 

// Initialization 

FOR i from 1 to phmm.N 

 delta[1][i]  phmm.pi[i] * (phmm.B[i] [O[1]] 

 psi[1][i]  0 

ENDFOR 

// Recursion 

 FOR t from 2 to T   

        FOR j from 1 to phmm.N 

     maxval  0.0 

      maxvalind  1 

      FOR i from 1 to phmm.N 

       val  delta[t-1] [i]*phmm.A[i][j] 

       IF val. maxval 

         maxval  val 

       maxvalind  i 

       ENDIF 

     ENDFOR 

     delta[t][j]  maxval*phmm.B[j][O[t]] 

     psi[t][j]  maxvalind 

    ENDFOR 

  ENDFOR 

// Termination  

pprob  0.0 

q[T]  1 

FOR i from 1 to phmm.N 

 IF delta[T][i] > pprob 

  pprob  delta[T][i] 

  q[T]  i 

ENDIF 

 ENDFOR 

// Path (state sequence) backtracking 

FOR t from T – 1 to 1 

 q[t]  psi[t+1] [q[t+1]] 



 
 

        ENDFOR 
 

2.4.3 Proposed Fuzzy HMM 

 

In this work, firstly, parameters of FHMM were defined. Suppose that fuzzy set can be formalized as Â ; and 

fuzzy HMM is presented as: 

ˆ ˆ ˆ ˆ ˆˆ ˆ( , , , , , )S O A B F                                                                            (9)  

where 
oS  is initial fuzzy measure of status; Ô  is a finite set of observe and in time t , Â  is transmission 

matrix of status { ( )}ijB b k  is a set of probability of observe k  from status ˆ
iS  to ˆ

jS  , ̂  is fuzzy density 

function; F̂  is fuzzy measured final status set. Using fuzzy presentation for Baum-Welch algorithm, the 

process is updated following fuzzification of parameters estimation for the FHMM. The process is: 
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where D  is initial fuzzy presented status,   is a fuzzy density function can be calculated by Algorithm 3.  

 

Algorithm 3: Fuzzy measured density function calculation for transmission matrix 

INPUT: 

        S -  a finite set of status.  

        O - a finite set of observe 

        A - a transmission matrix of status 

        B - a set of probability of observe 

        Pi - a set of probability of initial status 

OUTPUT: 

     R(t) for any two x(i) and y(j)   



 
 

// Set T as length of seq. 

 FOR t from 1 to T 

         Evaluate fuzzy density for each status x at t 

         FOR i from 1 to N 

 // N is number of x(i) 

               g(x(i))f(x(i)) (t) 

         END FOR 

 // Define fuzzy measures set for transiting to status y(i) in t+1 

         FOR j from 1 to N 

                g(k(i)(y(j))g({x(i), x (i+1), …, x(N)} 

              G(k(i)(y(j))^(g({x(i)}), g(k(i+1) (y(j))) 

                FOR i from 1 to N 

                        Calculate R(t)(i,y(j)) 

                        D(i)(y(j))g(k(i)(y(j)-g(k(i+1) (y(j)), R(t)(x(i), y(j)) 

                END FOR 

END FOR 

END FOR 

 

The pseudo-code of fuzzy Baum-Welch estimation in FHMM is in Algorithm 4 as follows: 

 

Algorithm 4:  Fuzzy Baum-Welch estimation in hmm 

INPUT: 

     iterations 

     vector of observations by fuzzy presentation (y) 

     initial distribution of the hidden chain (nu) 

     tolerance for the stopping criterion 

     maximal number of iterations 

OUTPUT: 

     estimate of the transition matrix of the FHMM process (Q) 

     estimated probabilities of transition(g) 

     log-likelihood;  

 DO UNTIL T 

        Compute the posterior distribution for the current parameters 

        Compute filter (f) by (y, nu, Q, g) 

        Computer smoother by (y, Q, g, c) 

        Expectation of the number of transitions under the current parameters 

        Expectation of the number of emissions 

        Re-estimation 

 END DO 
 Sum of log(c) 

 

3. Results and discuss 
 

In the current work, the analysis was performed on a Windows 10 PC using a 64-bit AMD Athlon(tm) II X4 

631 Quad-Core CPU at 2.6GHz running MATLAB R2017a.3.1 ResultsThe redundant information provided 

by multiple sensors can improve the image accuracy and reliability, but for time series-based image set, the 

fused image contains more comprehensive and rich information as compared to single image. In the 

experiment, eight images of the same testee’s in different test subjects were selected for fusion. For simplicity, 

two sets of testee’s plantar pressure images were calculated. Table 2 illustrated the first test of testee’s and 

Table 3 is from second test. 

 

Table 2. The first test of testee’s features calculation on eight images 

Features Img11 Img12 Img13 Img14 Img15 Img16 Img17 Img18 

ASM 0.4075 0.4214 0.3944 0.3644 0.4788 0.3733 0.3878 0.4844 

MI 0.6566 0.6565 0.6440 0.5876 0.5467 0.5432 0.4897 0.6434 



 
 

IDM 0.1765 0.1876 0.1222 0.1678 0.1976 0.2009 0.2322 0.2127 

E 0.8978 0.6899 0.7893 0.8766 0.7876 0.8754 0.7987 0.8656 
(Note: Angular second moment -ASM, Moment of inertia -MI, Inverse difference monument -IDM, Entropy -E.) 

 

Table 3. The second test of testee’s features calculation on eight images 

Features Img21 Img22 Img23 Img24 Img25 Img26 Img27 Img28 

ASM 0.3444 0.4323 0.5432 0.5322 0.3544 0.3788 0.4322 0.4312 

MI 0.3898 0.3433 0.5677 0.5233 0.4899 0.42233 0.5433 0.4567 

IDM 0.2788 0.3019 0.3221 0.21291 0.2245 0.2865 0.2238 0.2182 

E 0.7896 0.7698 0.8743 0.7568 0.8777 0.8973 0.8650 0.7908 

 

And fusion operation using up-down was shown Fig. 4. The features of Fig 4 were calculated in Table 4. 
 

 
Figure 4. Fusion operation using up-down 

 

Table 4. Fused images’ feature calculation 

Features Img1 Img2 Img3 Img4 Img5 Img6 Img7 Img8 

ASM 0.7655 0.7666 0.5664 0.5210 0.6230 0.6743 0.4320 0.4565 

MI 0.4743 0.45677 0.4534 0.5023 0.5430 0.5784 0.5094 0.4903 

IDM 0.1200 0.1245 0.1601 0.2322 0.2765 0.2654 0.2190 0.1121 

E 0.8433 0.9061 0.7988 0.8234 0.8789 0.7666 0.7680 0.8232 

 

All these textures-based features calculation was normalized in (0,1] . Set initial status as (ASM, MI, IDM, 

E) for every 8 fused images, observe vector used fuzzy evaluation for comfort using fuzzy linguistic variables 

which defined as {very uncomfortable, uncomfortable, median, comfortable, very comfortable}, and 

presented as fuzzy number set as ˆ ˆ ˆˆ ˆ{1,3,5,7,9} . Additionally, the transmission matrix A  was calculated by 

statistics method based on those fuzzy numbers, the probability between each status of i and j  also can be 

also calculated based on fuzzy numbers. As from the fuzzy Baum-Welch estimation algorithm proposed in 

Algorithm 3, set iterations 500,n  [0,1],nu  [0.7,0.3;0.2,0.8],Q  and

 0.35 0.35 0.35 0.35;  0.45 0.15 0.05 0.05g  . The prediction accuracy rate is82.2% ;  

3.2 Discuss 

FHMM using different fusion operations was deployed for comparing analysis with typical fusion methods, 

such as max-min, mean-mean, Gaussian as listed in Table 5. 

 

Table 5. The accuracy rate of the same FHMM using different fusion operations 

Fusion operations Accuracy Rate 

MAX-MIN [54] [55] 0.7573 

MEAN-MEAN [25] 0.7102 

GAUSSIAN [56] 0.7144 

UP-DOWN (this research) 0.8220 

 

For performing the prediction model in this work, different typical HMMs using up-down fusion were 

addressed. The proposed FHMM model achieved high accuracy rate for prediction. In which, DHMM is 

discrete hidden Markov model; DDBHMM means duration distribution based hidden Markov; CRF denoted 

conditional random field; MEHMM is maximum entropy hidden Markov model; and MRF is Markov random 

filed. For the results, FHMM using up-down fusion deployed high performance in this case. 



 
 

 

Table 6. Different typical HMMs using up-down fusion for prediction 

Typical HMMs Accuracy Rate 

DHMM [57] 0.6922 

DDB-HMM [58] 0.6954 

HMM [59] 0.7144 

CRF [60] 0.7510 

MEHMM [61] 0.7120 

MRF [62] 0.6965 

FHMM (this research) 0.8220 

 

4. Conclusion 
 

The formation of diabetic foot ulcer is directly related to the repeated high pressure on the ulcer site during 

standing or walking. Foot injury caused by improper shoe selection; repeated pressure stimulation caused by 

improper shoes, socks and pads, which affected local circulation, caused skin damage, epidermal keratosis, 

worsened local ischemia, damage, corns, ulcers, gangrene. Diabetic footwear is a new type of healthy 

footwear specially designed for the protection of diabetic foot, its sole formation mainly depends on the 

characteristics of the sole pressure image.The study of plantar pressure distribution is very important to the 

process of producing comfortable shoes for people with a side variety of medical conditions. From an image 

set of plantar pressure, and through analyzing features of plantar pressure images such as texture-based 

features of ASM, MI, IDM, and E, the proposed FHMM model achieved the superior accuracy rate in 

comparison with different typical HMMs using up-down fusion for prediction. The primary research 

contributions of the work include: 

(1) Image fusion technology was used to fuse the same subjects in different experiments to investigate if the 

image contains more content in the image preprocessing stage. 

(2) Four unrelated features separated from many image features are used as input states of FHMM, and the 

construction of observation and evaluation sets by means of fuzzy numbers is used to achieve better results. 

(3) An improved HMM was compared under different fusion methods, which was proven to be an effective 

use of our method. In future works, the state presentation of FHMM for plantar pressure imaging dataset and 

the fuzzy number’s definition also needs to be improved. 

In future works, more datasets need to be collected through footscan system, feature selection, feature 

extraction algorithms for plantar pressure images are also need to be improved. 
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